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ABSTRACT 

The co-existence of small cells and macro cells is a key feature of 

4G and future networks. This heterogeneity, together with the 

increased mobility of user devices can generate a high handover 

frequency that could lead to unreasonably high call drop 

probability or poor user experience. By performing smart mobility 

management, the network can pro-actively adapt to the user and 

guarantee seamless and smooth cell transitions. In this work, we 

introduce an algorithm that takes as input sounding reference 

signal (SRS) measurements available at the base station (eNodeB 

in 4G systems) to estimate with a low computational requirement 

the mobility level of the user and with no modification at the user 

device/equipment (UE) side. The performance of the algorithm is 

showcased using realistic data and mobility traces. Results show 

that the classification of UE speed to three mobility classes can be 

achieved with accuracy of 87% for low mobility, 93% for medium 

mobility, and 94% for high mobility, respectively. 

Categories and Subject Descriptors 

C.2.3 [Computer-Communication Networks]: Network 

Operations - network monitoring, network management. 

General Terms 

Algorithms, Management, Measurement, Performance, Design. 

Keywords 

Mobile networks; Heterogeneous cellular networks; User mobility 

estimation; Time-based spectral spreading method. 

1. INTRODUCTION 
Future cellular networks will consist of dense small cells overlaid 

by macro cells. With the deployment of heterogeneous networks 

(HetNets), a mobile user will switch from one cell to another 

whereas the network must ensure continuous service and high 

quality user experience. Supporting service continuity is 

especially challenging due to potentially high handover frequency 

and the future requirement of ultra low latency. However, if the 

UE mobility information is available, then the network can pro-

actively adapt to the user and guarantee seamless and smooth UE 

handover with optimal cell selection such that a UE could always 

experience maximum throughput [1]. 

For example, if the UE is classified as having low mobility, it may 

be more appropriate to attach him/her to a small cell so he/she can 

benefit from higher link capacity. Also, the network can decide to 

use such a UE for device-to-device (D2D) communications, 

multiple-input-multiple-output (MIMO) or other techniques that 

require a certain network topology for relatively long period. On 

the other hand, if the UE is classified as having a high mobility, 

the network may attach him/her to a macro cell to minimize the 

handover rate and maintain service continuity. 

Several methods have been proposed in the literature to estimate 

the UE speed in specific use cases, e.g., crossing level based 

methods [2], covariance based methods [3-4], maximum 

likelihood (ML) based methods [5], and power spectrum based 

methods. The main drawback of these methods is that they do not 

cope with the large periodicity of SRS measurements as they aim 

at analyzing the speed dependent fast fading and Doppler 

characteristics of the signals. Due to large sampling period of 

sounding reference signal (SRS), the Nyquist frequency for 

avoiding spectrum aliasing will be reduced, which limits the 

maximum observable Doppler frequency and thus decreases the 

maximum observable speed. Furthermore, it is known that 

crossing level based methods are less efficient than covariance 

methods for small observation windows. Both techniques are 

sensitive to noise for small Doppler spreads. The ML based 

methods could provide near optimal performance but would need 

to know the signal-to-noise-ratio (SNR) and the Gaussian noise 

and have high implementation complexity. 

In this paper, we propose a new method by defining a novel 

metric that is a function of the auto-correlation of the SRS 

measurements. This metric depends on the ratio of the UE speed 

to the decorrelation distance. Given this dependency, we can 

estimate the UE mobility by lookup in a reference data basis 

providing a one-to-one mapping between the metric and the UE 

speed, for a given decorrelation distance. The algorithm has low 

complexity. Meanwhile, simulation results using realistic data and 

mobility traces from the city of Cologne [6] show that the 

proposed method can determine the user mobility with high 

accuracy. 

2. TIME-BASED SPECTRAL SPREADING 

METHOD (TSSM) 
Shadowing is a spatial correlated process. The correlation 

between shadow fading at two points separated by a distance will 

decrease with the increase of their distance. This property is 
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notably captured by Gudmundson’s correlation model for 

shadowing [7]: 

                                         

                    
    

   
                                   

where      is a Gaussian random process,   and    in decibel 

are its shadowing fading mean and standard deviation values,   is 

the UE’s speed while   is the time variable, and D is the 

decorrelation distance at which the signal autocorrelation equals 

to 1/e of its maximum value [8].  

Since     , where   and   are the speed and time, our purpose 

is to find a metric that would vary proportionally with the speed. 

By applying the Fourier transform of the auto-correlation function 

[9], the power spectral density of the shadowing process gives a 

Lorentzian function with frequency 

                                                               

which is to say that there exists a spread in spectrum under the 

effect of velocity. However, the Fourier transform is 

computationally expensive. Therefore, we will derive in time-

domain a method to capture this behavior. 

It is of interest to observe that when computing the second 

derivative of the autocorrelation function of the shadowing:  

  
       

   
 
   

                          

where      is the received signal amplitude. The relationship 

between the speed and the derivative of the SRS measurement can 

be thus expressed as:  

         
 
  

  
   

  .    (4) 

This implies that the standard deviation of the derivative of the 

measurements is a linear function of    .  

Now, we define the TSSM metric as: 

          
 
               (5) 

which is equal to     and corresponds to the spectrum spreading 

of the received signal amplitude. This leads to the following 

estimate approximation of the speed as a function of the received 

signal amplitude:  

               
 
  .         (6) 

3. ALGORITHM AND SYSTEM MODEL 
The speed dependent spread of the power spectral density is 

detected in time by exploiting the variance of the temporal 

derivative of the SRS signal. Figure 1 shows the TSSM metric as 

a function of the speed and decorrelation distance. As expected, 

the metric is increasing with the increase of speed and with the 

decrease of the decorrelation distance. 

Given this observation, we build a database that maps the TSSM 

metric function of user speed for different values of the 

decorrelation distance. This database is stored at the eNodeB. The 

only prior knowledge necessary for the algorithm is the 

decorrelation distance corresponding to the environment. Its value 

can be determined through an initial learning phase. Once the 

database is built offline, the speed estimation is done online, for 

UE. The algorithm consists of the following steps illustrated in 

Figure 2. 

 

Figure 1. TSSM metric as a function of UE speed for different 

decorrelation distance D. 

 

Figure 2. Per block implementation of the TSSM algorithm. 

Taking blocks of   samples of SRS measurements, denoted by 

[Xi+1, …, Xi+N], the signal is first normalized: 

                     .                     (7) 

Next, derivatives are computed over the temporal blocks. This 

operation enables to smooth the signal, thus reduces fast fading 

and Doppler variations, for capturing only the slow variations of 

shadowing. Here, 

                                (8) 

where   is the delay between two points of derivatives and   is 

the measurements sampling period. 

Then, the TSSM metric is computed per block   from the set of all 

derivatives    as follows: 
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where   is the number of derivatives computed on block   and   

is the mean value over these  derivatives. 

The above estimated metric in (9) is compared to the database that 

provides a one-to-one mapping between the speed and the TSSM 

metric, given shadowing decorrelation distance  . The speed that 
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corresponds to the closest dispersion from this database is 

outputted as the estimated UE speed. 

For 4G (3GPP-LTE) cellular networks, we consider three classes 

of UE mobility: low mobility class for speeds below 40 Kmph, 

medium mobility class for speeds between 40 and 90 Kmph, and 

high mobility class for speeds above 90 Kmph. The estimated 

speed will be compared to the above thresholds and then classified 

accordingly. 

4. EXPERIMENTAL EVALUATION  
We use signal measurements provided by Alcatel-Lucent eNodeB 

to test our algorithm. The SRS signals are sampled with a period 

of 80 ms, proving a proper resolution. For the mobility, we use 

real world vehicular traces provided by Kolontrace project that 

comprise recordings of user speeds in the city Cologne [6]. 3GPP 

extended typical urban (ETU) channel model is considered with 

4G (3GPP-LTE) carrier frequency of 1.9 GHz. We build 160 

minutes of signal measurements. 

The normalization of the SRS signals is performed on blocks of 

size        signal samples. After taking derivatives, we 

compute the TSSM metric. By searching the nearest value to our 

TSSM metric in the database, the estimated speed is found by 

performing the one-to-one mapping. Figure 3 shows an example 

of the real trace of the speed of one user in the experiment in 

comparison to the estimated speed by the proposed algorithm. 

 

Figure 3. Example of real speed versus the estimated speed. 

The above result is then classified into different classes by 

comparing to previously defined thresholds. These operations can 

be done in an adaptive manner. The estimation can be done not by 

blocks of samples but by using a moving time window. The 

percentages of correct classification in our experiment of 160 

minutes are summarized in Table 1. These percentages offer a good 

accuracy in determining the speeds of mobile users in today’s 4G 

(3GPP-LTE) networks. 

Table 1. The percentages of correct classification of UE speed 

 

Low 

mobility 

class 

Medium 

mobility 

class 

High 

mobility 

class 

Probability of 

correct 

classification 

87% 93% 94% 

  

 

For implementation and practical considerations, in Table 2, we list 

the key operations and computation requirements due to the 

proposed TSSM method in order to highlight its possible impacts to 

the eNodeB CPU and memory. 

Table 2. Key operation and characteristics in TSSM 

Main Functional 

Elements 

• Normalization operation 

• Derivative computation 

• Variance computation 

To eNodeB CPU Around 10 operations per UE 

speed estimation 

To eNodeB Memory Circular buffer of 15 samples 

 

5. CONCLUSION 
In this paper, we have presented a new method to estimate the user 

mobility for LTE and future networks. TSSM method exploits 

shadow fading effects, taking advantage of the existence of SRS 

measurements at the network side, and provides a method of low 

(CPU) computation and memory requirement. Our evaluation 

studies based on real data and mobility traces show success rates of 

87% for low mobility class, 93% for medium mobility class, and 

94% for high mobility class, and indicate a high-accuracy 

implementable solution with low complexity. 
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