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AN EFFICIENT TRUNCATED SVD 593omputed. Usually, the �rst step is done by the Householder re�etions and osts
(4/3)n2(3m−n) arithmeti operations (FLOPS). The seond step an be performedby an iterative re�nement algorithm with stoping riteron equal to the mahinepreision, it takes about O(n) iterations, eah osts O(n) FLOPS [3℄. Anotherversion of the seond step is a QR algorithm for the omputation of eigenvaluesand takes O(n2) FLOPS [4℄,[10℄. There are various modi�ations of them, usinga divide-and-onquer method, preonditioned and Jaobi plane rotation methods.These ones are implemented in LAPACK routines. To ompare with own developedalgorithm we use the LAPACK funtionality from Intel MKL. However, it is almostimpossible to ompute suh a deomposition for large-sale problems using a robustarithmeti.The objetive of this paper is designing an e�ient algorithm to ompute anapproximation of the T-SVD based on a low-rank arithmeti.More preisely, in this paper we aim at looking for matries Uk = {ū1, . . . ūk} ∈
C

I×k, V k = {v̄1, . . . v̄k} ∈ C
J×k and Dk = diag{di}ki=1 ∈ R

k×k whih approximate
Uk, Vk, Dk of the T-SVD (28) in the following sense:I The di�erene between approximate singular values and exat singular valuesis smaller than a small parameter η1(1) di − d̄i < η1, 1 < i ≤ k and di < δ, k < i ≤ nII The angles between the approximated and exat left and right singular spaesare smaller than a small parameter η2(2) ∠(Uk, Uk) < η2 and ∠(Vk, V k) < η2where ∠(A,B) = arccos(σ) with the smallest singular value σ of A∗B.The major appliation of the algorithm proposed is the geophysial inverseproblem. It onsists in determining the physial harateristis of a propagationmedium by interpreting the measured data by reeivers for di�erent soures. Oneof the main features of this problem is the huge number of reeivers, soures andparameters of the model whih is under study. Among all di�erent tehniques thatexist, the Full Waveform Inversion (FWI) is one of the most ostly. It onsists in aninterative Newton-type proedure whih requires the omputation of the so-alledBorn Matrix assoiated with the fullwave equation.It is known that beause of its poor onditioning this very large sale problem isdi�ult to solve: some (ombinations) of the soures, reeivers or model parametersare very important to take into aount whereas some other (ombinations) donot have so strong impat. The numerial method proposed in this paper needsomputing the Singular Value Deomposition [14, 7℄ of the Born matrix to reduethe omplexity of this problem by identifying the most important model parameters,soures and reeivers.This paper will is omposed as follows: In Setion 2, we brie�y reall whatis a low-rank approximation of a matrix and some algorithms to ompute theseapproximations. Setion 3 is the "ore"of this paper. We desribe an algorithm toompute a numerial approximation of the Trunated Singular Value deompositionbased on a low-rank arithmeti. In Setion 4, some numerial results are presented.These results illustrate the e�ieny and auray of the method. There are threeappendies: in Appendix A, we desribe in detail the Singular Value Deompositionand the Trunated Singular Value Deomposition. Appendix B is onerned with atheoretial result about the Born aousti matrix. We reall that the Born matrix



594 S.A. SOLOVYEV AND S. TORDEUXassoiated with homogeneous aousti media an be approximated by a low-rankapproximation under suitable assumptions. Finally, Appendix C brie�y realls lassi-al results about the Chebyshev tensorial interpolation.2. The low rank approximation of a matrixIn what follows, we will make an intensive use of the low-rank approximation.2.1. De�nition of the ε-rank of a matrix and low-rank approximation. Let
A ∈ CI×J be a matrix with I rows and J olumns with J ≤ I. The matrix A has
ε-rank k if k is the smallest integer suh that there exists a matrix Ak ∈ CI×J withthe rank k satisfying(3) ‖A−Ak‖

‖A‖ < ε.When ‖ · ‖ is the eulidean matrix norm ‖ · ‖2, the ε-rank of a matrix A is expliitlygiven by the number of singular values whih are larger than ε. Moreover, the matrix
Ak an be dedued from the T-SVD of the matrix A(4) Ak = Uk Dk V ∗

k with Uk ∈ C
I×k, Dk ∈ R

k×k
+ and Vk ∈ C

J×k.In reality, the omputation of the T-SVD of a large-size matrix is very expensive,many authors have proposed other algorithms to ompute non-optimal (in thesense of the matrix eulidean norm) low-rank approximation of a matrix A. Thesemethods onsist in looking for a matrix Ak as a produt of the two matries
Bk ∈ CI×k and Ck ∈ CJ×k, whih minimize k, satisfying(5) ‖A−BkC

T
k ‖

‖A‖ < ε.The norm ‖A‖2 is given by the largest singular value of the matrix A and itsomputation is pretty expensive. So, we prefer to use ‖A‖ = max
i≤I,j≤J

|Ai,j | norm.The two ommon tehniques to obtain this fatorization are the QR fatorizationwith pivoting of the matrix and the Cross Approximation (CA) tehnique whih issimilar to the inomplete LU fatorization with pivoting. To determine ε-rank ofa matrix and obtain low-rank approximation, the rank-revealing QR modi�ationwith pivoting is used (RRQR-piv) [8℄. The approximate number of �oating-pointoperations for real �avors is (2/3)n2(3m− n),m ≥ n. The RRQR-piv algorithm isslow (however faster than the omputation of the T-SVD of a matrix A) algorithmand is almost optimal in terms of the rank k, whereas the CA algorithm is rapid,but an give rise to non-optimal k.Lets us brie�y desribe the RRQR-piv algorithm and desribe in detail variousmodi�ations of the CA approah.Cross approximation.The ross approximation algorithm [11℄ takes the follow-ing form.
• Initialization:(6) R0 = A ∈ C

I×J , n = 0

• While stopping-riteria (Rn) > ε‖A‖Step 1. Choose a pivot (i⋆, j⋆) in Rn



AN EFFICIENT TRUNCATED SVD 595Step 2. De�ne two vetor olumns bn+1 ∈ CI and cn+1 ∈ CJ(7) (bn+1)i = (Rn)i,j⋆ and (cn+1)j =
(Rn)i⋆,j
(Rn)i⋆,j⋆Step 3. Inrement n: n = n+1. De�ne the matriesBn ∈ CI×n and Cn ∈ CJ×nand(8) Bn = [b1, b2, · · · , bn] and Cn = [c1, c2, · · · , cn]Step 3. Update(9) Rn = A−Bn CT

n .As a result, we obtain both matries Bk and Ck that are involved in the low-rankapproximation of A.Like for the inomplete LU fatorization algorithm, we have the following optionsfor this algorithm:I Total pivoting: The stopping riterion is the following:(10) stopping-riterion(Rn) = max
i≤I,j≤J

(|(Rn)i,j |)At eah iteration, the pivot is hosen by maximizing |(Rn)i,j | over whole thematrix(11) |(Rn)i⋆,j⋆ | = max
i≤I, j≤J

|(Rn)i,j |II Dynami panel strategy: The algorithm is more omplex to desribe. Thisorresponds to a partial pivoting. First, as for the total pivoting we de�ne
i� and j� suh that(12) |(Rn)i�,j� | = max

i≤I, j≤J
|(Rn)i,j |We then de�ne a panel J� ⊂ [1, J ] of width 2K + 1 ∈ [1, J ]:(13) J� =






[1, 2K + 1] if j� ≤ K,

[j� −K, j� +K] if K < j� ≤ J −K,

[J − 2K, J ] if j� > J −K.As long as a maximum of |Rn| over this panel is larger than ε(14) max
i≤I, j∈J�

|(Rn)i,j | > ε,the pivot (i⋆, j⋆) will be hosen into this panel of olumns(15) |(Rn)i⋆,j⋆ | = max
i≤I, j∈J�

|(Rn)i,j |.When (14) is not ful�lled anymore, another panel is onsidered in the sameway until(16) max
i≤I, j≤J

|(Rn)i,j | < ε.III Cross pivoting: The pivot is hosen in the following way: Pik by hazard anon-zero olumn (Rn)·,j△ of Rn, with j△ ∈ J . De�ne the integer i⋆ ∈ I bylooking for a maximum of |Rn| in this olumn(17) |(Rn)i⋆,j△ | = max
i∈I

|(Rn)i⋆,j△ |



596 S.A. SOLOVYEV AND S. TORDEUXDe�ne the integer j⋆ ∈ J by looking for a maximum of |Rn| in this row(18) |(Rn)i⋆,j⋆ | = max
j∈J

|(Rn)i⋆,j |The stopping riterion is then the following:(19) |(Rn)i⋆,j⋆ | > εRemark 1. The searh for a maximum and the update of the matrix Rn is theperformane of the bottle-nek of the CA algorithm. The total pivoting strategy ismuh slower than the two other strategies beause of
• the searh for the maximum is made over the full matrix.
• at eah iteration the matrix should be fully updatedThe dynamial panel strategy is more e�ient sine
• the searh for the maximum is made over a small subset of the full matrix.
• only the panel of the matrix needs to be updated at eah iterationSine the panel is formed of a group of olumns, it is important to optimize theaess to memory in storing the matrix in the RAM olumn-by-olumn. If a matrixis stored rows-by-rows, the panel should be onstruted of a group of rows.The ross partial pivoting strategy is also very e�ient sine
• the searh for the maximum is made over a ross whih is a small subset ofthe full matrix.
• the matrix Rn does not need not to be updated but only needs to beevaluated for a small number of indies at eah iteration.3. DESCRIPTION OF THE ALGORITHMThe algorithm an be deomposed into four steps.The �rst step onsists in deomposing vertially the matrix A into bloks Ai,

A =
A6

A5

A4

A3

A2

A1

Fig. 1. Deomposition of the matrix A by bloks



AN EFFICIENT TRUNCATED SVD 597(Figure 1), and in performing a low-rank approximation of eah blok Ai ∈ Cmi×J ,(Figure 2).
Ai ≃ Bi C

T
i with Bi ∈ C

mi×ki and Ci ∈ C
J×kiTo ompute a low-rank approximation of bloks we have the three options:i) T-SVD in the full arithmeti;ii) RRQR-piv algorithm;iii) Cross Approximation (CA) tehnique.Remark 2. The algorithm will only be e�ient if the integer ki is less than J . Inpratie, this number is small.Remark 3. The auray of the low-rank approximation of the matrix A is harate-rized by a small parameter ε and by the stopping riterion. For SVD-ompression,QR-piv and CA algorithm, it takes the form(20) 




‖Ai −BiC
T
i ‖2 ≤ ε for T-SVD and RRQR algorithm,

‖Ai −BiC
T
i ‖∞ ≤ ε for CA algorithm,with ‖ · ‖2 the eulidean matrix norm and ‖A‖∞ = max

i≤I,j≤J
|Ai,j |.

Ai

=

Bi CT
iFig. 2. Low-rank approximation of AThe result of the �rst step is depited in Figure 3. In this piture and in the nextones, the "plotted"parts of matries mean dense non-zero bloks. The "white"bloksmean zero �ll-in.At the seond step, we orthogonalize the matries B and C. More preisely,we perform a QR deomposition of the matries Bi and C

Bi = B̃i Ri and CT = L C̃T ,with B̃i ∈ Rmi×ki , C̃ ∈ RJ×k being orthogonal, Ri ∈ Rki×ki � the upper triangularand L ∈ Rk×k � the lower triangular, where k =
∑

ki. The matries B̃i and Riare olleted into the orthogonal matrix B̃ and into the upper triangular matrix R,(see Figure 4). This result in that the Low-rank approximation of A should be(21) A ≃ B̃ (R L) C̃T ,with B̃ ∈ RI×k, C̃ ∈ RJ×k and RL ∈ Rk×k being full.At the third step, a robust T-SVD with the auray δ of the produt RL isperformed(22) RL = URLDRLV
∗
RL with ‖URLDRLV

∗
RL −RL‖ < δ.The result of the third step is presented in Figure 5.Remark 4. When the matrix RL is muh smaller than the initial matrix A (thisis a wide-spread in the pratie ase), the omputation of the T-SVD in the fullarithmeti of the produt RL is less expensive than the omputation of the T-SVDof the matrix A.
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A = =

A6

A5

A4

A3

A2

A1

Bi

B

Ct
i

Ct

Fig. 3. Low-rank approximation of the matrix A

A = =
A6

A5

A4

A3

A2

A1

B̃

B̃i

R

Ri

L C̃T

Fig. 4. The result of the seond stepAt the fourth step, we onstrut the �nal matries by omputing the produts
U = B̃URL, V ∗

= V ∗
RLC̃

T and D = DRL. As a result, the matries U and V haveorthogonal olumns.Our statement is that the deomposition U D V
∗ approximates the exat T-SVDof A in the sense of (1) and (2).
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A = =

A6

A5

A4

A3

A2

A1

B̃

B̃i

URL DRL V ∗
RL C̃T

Fig. 5. The result of the third step4. NUMERICAL EXPERIMENTSThe numerial experiments are aimed at demonstrating the performane of ouralgorithm in terms of omputation time and preision.We have not developed our own linear algebra library but have used the LAPACKand BLAS funtions of Intel MKL. The performane was measured on Intel Core i7-3770K CPU 3.5 GHz, (Ivy Bridge). We have avoided the impat of OMP paralleliza-tion of all MKL funtions by swithing o� threading by setting OMP_NUM_TRE-ADS=1.The Born matrix A assoiated with a 2D elastiity vertially inhomogeneous(layered) isotropi medium, one soure, 1450 reeivers and 10 di�erent frequenies,has been onsidered. The target domain, ontaining 120x20 points, is a part of ahuge real model whih we would like to image. Details of this model are desribedin [13℄. The full matrix A has 29,000 lines and 7,200 olumns. At the preliminarystep, the matrix A is separated into p = 10 bloks.4.1. Computational time. In the �rst test, the auray ε of the low-rank appro-ximation is 10−6 and the threshold δ of the ropped exat SVD UkDkV
∗
k and ofthe ropped low-rank SVD U D V

∗ is 10−6. Di�erent options for the �rst stepare tested: the omputational time for the SVD, the QR and the CA ompressionmethods are omputed. These omputational times should be ompared to 970 s,i.e. the time of a robust SVD by the gesvd omputational optimized routine of IntelMKL.The performane results show the advantage of using partial pivoting in the CAover the ross pivoting and lassial total pivoting. Additionally, the performaneresults on�rm the high aeleration of the CA approah in omparison with theSVD and the QR-piv tehniques.



600 S.A. SOLOVYEV AND S. TORDEUXTable 1. Comparison of performane algorithms of Low-rankSVD-based on SVD/QR/CA approahesSteps, desription SVD RRQR CA CA CA
\ Approahes Total Cross Partialpivot. pivot. pivot.1-st, Get SVD/QR/CA of all Ai 605s 255s 90s 44s 18s2-nd, Make QR of B and T-QR of C: 18s 20s 19s 20s 25s3-rd, Perform SVD of RL: 16s 13s 13s 13s 15s4-th, Gathering U ,D,V 7s 6s 6s 6s 6sTotal time 651s 294s 130s 84s 66sFinally, we point out that the �rst step of the method proposed is easily paralleli-zable: sine the ompression of all bloks an be done by di�erent proessors asopposed to the last three steps.4.2. Preision. In the seond test our attention will be foussed on two di�erenterror indiators. Only the results for the most e�ient ase (Cross Approximationwith dynami panel partial pivoting) will be presented.First, we are interested in the error resulted from approximate singular values.Denoting by Iε the ε-rank of the matrix A, the following quantities(23) 





max
i≤Iε

|di − di|
|d1|

(absolute error)
max
i≤Iε

|di − di|
|di|

(relative error)have been plotted with respet to ε, the parameter relating to the auray ofthe Cross Approximation parameter and with respet to δ, i.e. the �nal thresholdparameter. The results are reported in Figure 6 for the absolute error and in Figure7 � for the relative error. It seems that the absolute error does mostly depend on
ε. On ontrary, the relative error is su�iently related to the ratio ε/δ. Seond, wequantify the quality of the approximation of the left singular spae. The results forthe right singular values are quite similar and are not presented. We ompute theangle (in degrees) between the subspae generated by the olumns of U and thesubspae generated by the olumns of Uk(24) ∠(U,Uk) = arccos(σ)

180

πwith the smallest singular value σ of the matrix U
∗
Uk.Numerial measurements (Figure 8) show that the angle α = ∠(U,Uk), forany threshold δ, an be dereased via improving the auray ε of the low-rankapproximation. The numerial results reveal that the error depends mostly on ε/δlike the relative error for the singular values (Figure 7).4.3. Evolution of ε-rank. In the last test we investigate the ranks of trunatedmatries.They are presented in Tables 2 and 3 for di�erent low-rank approximations.The SVD approah is the most optimal in terms of ε-rank, whereas the CA tehniqueis the worst (the rank after the �rst step in the Tables). For ε = 10−6 and δ = 10−6,the �nal ranks assoiated with di�erent ompressions are slightly di�erent. For
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Fig. 6. The CA partial pivoting: Dependene of the singular valueabsolute error on auray ε and threshold δ.

Fig. 7. The CA partial pivoting: Dependene of the singular valuerelative error.
ε = 10−9 and δ = 10−6, the �nal ranks are equal. This will be the ase when theompression ε is muh smaller than δ. The �nal rank of a low-rank SVD should beompared to a rank obtained by trunated full arithmeti SVD, i.e. 1984. In theontext of seismi imaging, a small mis�t of the rank will not have, in our opinion,a large impat on the solution of the inverse problem.5. CONCLUSIONWe have presented an algorithm to ompute the trunated SVD of the Bornmatrix. This method is based on a low-rank arithmeti and the CA tehnique.To perform the low-rank approximation, we have proposed a dynami panel CAalgorithm. This approah is similar to the panel loal pivoting LU deomposition
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Fig. 8. The CA partial pivoting: Dependene of the angle betweensubspaes spanned on singular vetors of the ropped exat SVDand Low-rank SVD.Table 2. The rank of matries at intermediate steps, ε = δ = 10−6Matrix rank SVD RRQR CA CA CA
\ Approahes Total Cross Partialpivot. pivot. pivot.After the 1-st step 2366 2424 2444 2454 2795After the 2-nd step 2041 2041 2022 1961 2013After the 3-th step 1963 1963 1953 1936 1950Table 3. The rank of matries at intermediate steps, ε = 10−9,

δ = 10−6Matrix rank SVD RRQR CA CA CA
\ Approahes Total Cross Partialpivot. pivot. pivot.After the 1-st step 2963 3030 3052 3052 3565After the 2-nd step 2619 2619 2586 2541 2581After the 3-th step 1964 1964 1964 1964 1964tehnique [12℄. The algorithm proposed is an alternative to a very popular ande�ient randomized SVD approah proposed by Rokhlin [6℄. The main advantagesare: (i) the ε-rank of a matrix has not to be known in advane, (ii) the omputationof a redued matrix is less expensive (this has been on�rmed by preliminarynumerial tests whih are not inluded in this paper).For a representative on�guration we have ompared the results generated by theproposed trunated SVD algorithm to the results obtained by an exat SVD. Wehave observed that the method is aurate and the aeleration of the omputationhas inreased by the fator 10 on one-thread systems. The algorithm has a good



AN EFFICIENT TRUNCATED SVD 603opportunity for parallelization both on shared memory systems (using OMP paralle-lization) and on distributed ones (MPI parallelization).Appendix A. The Singular Value Deomposition and the TrunatedSingular Value DeompositionThe SVD of a matrix A ∈ CI×J with J ≤ I is a fatorization of the form(25) A = UDV ∗,where the matries U and V ontain the left and right singular vetors ui and vi;the matrix D is diagonal and ontains the singular values di(26) U = {u1, · · · , uJ} ∈ CI×J with U∗U = I ∈ CJ×J

V = {v1, · · · , vJ} ∈ CJ×J , with V ∗V = I ∈ CJ×J

D = diag{di}Ji=1 ∈ R
J×J
+ .The singular values di are all positive and ordered(27) d1 ≥ d2 ≥ · · · ≥ dJ ≥ 0.The T-SVD of the matrix A is obtained from the SVD by removing the singularvalues dk+1, dk+2, . . . whih are lower than a small parameter δ(28) Ak = UkDkV

∗
k ,(29) Uk = {u1, · · · , uk} ∈ CI×k with U∗

kUk = I ∈ Ck×k

Vk = {v1, · · · , vk} ∈ CJ×k with V ∗
k Vk = I ∈ Ck×k

Dk = diag{di}ki=1 ∈ Ck×k.The matrix Ak is an approximation of the matrix A in the following sense(30) ‖A−Ak‖2 ≤ δwith the Eulidean matrix norm ‖ · ‖2 :(31) ‖A‖2 = sup
x 6=0

‖Ax‖2
‖x‖2Appendix B. Some theoretial results involving the aousti BornmatrixLet us show on a simple example that the Born matrix of an aousti probleman be approximated by a low-rank approximation derived thanks to a kernelindependent multipole expansion.The model parameters. The onsidered propagation domain onsists of unbo-unded three-dimensional (3D) aousti media governed by the Helmholtz equationwith varying physial harateristis µ(y) (the square of the wave-number).The model is parametrized on a regular grid with the spatial step δy ∈ R+omposed of J ells Kj ⊂ R3 (Figure 9),(32) Kj = [j1δy, (j1 + 1)δy]× [j2δy, (j2 + 1)δy]× [j3δy, (j3 + 1)δy]with the integer j ∈ [1, J ] related to the integers j1 ∈ [0, J1− 1], j2 ∈ [0, J2− 1] and

j3 ∈ [0, J3 − 1] by the relation(33) j = j3 J2 J1 + j2 J1 + j1 + 1 and J = J1 J2 J3.
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δy

δy

δy

the ell Kj

Fig. 9. Disretization of the model parameter via a 3D gridThe funtion µ is hosen to be onstant outside the regular grid and pieewiseonstant on the regular grid with the value µj ∈ R+ on Kj(34) µ(y) = µj if y ∈ Kj and µ(y) = µ0 else.The model parameters µj , 1 ≤ j ≤ J , are olleted into a vetor µ ∈ RJ .The data are obtained thanks to I1 experiments, eah orresponding to a soureloated at a point x1
i1

∈ R3, with 0 ≤ i1 ≤ I1 − 1. For every experiment, I2measurements are realized by reeivers loated at a point x2
i2

∈ R
3, with 0 ≤ i2 ≤

I2 − 1. This gives rise to a set of data omposed of I = I1 I2 measurements. Toorganize these data, every reeiver�soure ouple is indexed by an integer i ∈ [1, I]given by
i = i1 I1 + i2 + 1.The full wave inverse problem takes the form:Given f ∈ CI , �nd µ ∈ RJ

+ suh that(35) Fi(µ) = fi for 1 ≤ i ≤ Iwith Fi(µ) = ui1(µ;xi2) where x 7→ ui1(µ,x) is de�ned over all R3 as theoutgoing solution of the diret aousti problem for the ith1 soure :(36) △ui1(µ;x) + µ(x) ui1(µ;x) = −δx1

i1with δx1

i1

the Dira delta funtion loated at the point x1
i1
.Most of the algorithms that have been proposed in the literature are of the Newtontype [9, 1℄. They require the omputation of the Born Matrix A ∈ C

I×J whihontains the partial derivative with respet to µj of the nonlinear form Fi.(37) Ai,j =
∂Fi

∂µj

(µ) for 1 ≤ i ≤ I and 1 ≤ j ≤ J.The matrix A an be expressed as(38) Ai,j = uj
i1
(x2

i2
)



AN EFFICIENT TRUNCATED SVD 605with respet to the funtion uj
i1
whih is the partial derivative of ui1 with respetto µj(39) uj

i1
(µ;x) =

∂ui1

∂µj

(µ;x) = lim
h→0

ui1(µ+ hej ;x)− ui1(µ;x)

h
.Deriving (36) with respet to µj , we obtain that the funtion uj

i1
is the uniqueoutgoing solution of(40) △uj

i1
(µ;x) + µ(x) uj

i1
(µ;x) = −1Kj

(x)ui1 (µ;x)with the harateristi funtion 1Kj
assoiated to Kj(41) 1Kj

(x) = 1 for x ∈ Kj and 1Kj
(x) = 0 for x /∈ Kj.This Born matrix an then be related to the Green funtion assoiated with theaousti media. This funtion, whih depends on x ∈ R3 and y ∈ R3, is symmetri

G(µ;x,y) and is de�ned for every y ∈ R3 as G(µ;x,y) = Gµ;y(x) with Gµ;y theoutgoing solution of(42) ∆Gµ;y(x) + µ(x) Gµ;y(x) = −δy(x) on R
3with the Dira generalized funtion δy at x = y. It follows that the funtion ui1 ,whih solves (36), is expliitly given by(43) ui1(µ;x) = G(µ,x,x1

i1
).Its partial derivative uj

i1
, whih solves (40) with respet to µ is given by therepresentation formula(44) uj

i1
(x) =

∫

R3

G(µ;x,y)1Kj
(x)ui1 (µ;y)dy.Taking into aount (43), we obtain(45) uj

i1
(x) =

∫

Kj

G(µ;x,y)G(µ;y,x1
i1
)dy.This leads to the following simple formula for the Born matrix(46) Ai,j = uj

i1
(x2

i2
) =

∫

Kj

G(µ;x2
i2
,y) G(µ;y,x1

11 )dy.For large problems (a large number of soures, reeivers and model parameters),the omputation of this matrix an be very expensive and an be ahieved onlythanks to high�performane omputing. However, it an be easily evaluated in thease of homogeneous media (i.e. µ(y) = µ0)(47) G(µ;x,y) =
eikr

4πr
with k =

√
µ0 and r = |x− y|.Pratially, this partiular hoie, an be seen as the initial guess for the aoustimedia under study.Remark: In pratie, the number of rows of the Born matrix is muh largerthan the number of olumns, i.e. I >> J .Let us prove that the Born Matrix de�ned in (46) an be approximated bya low-rank matrix under suitable assumptions on the loation of reeivers andsoures. Most of the arguments that are present in this Setion are rather similarto those developed in the multipole theory to solve the diret problem [5℄. The



606 S.A. SOLOVYEV AND S. TORDEUXmain ingredient to obtain a low-rank approximation of the Born matrix A is theso�alled kernel-independent fast multipole method [2℄. This method furnishes atensorial approximation of the Green matrix under the following assumptions, seeFigure 10:i) The soures x1
i1
are inluded in a 3D�dimensional box B1(48) B1 = x1

0 + [−d1, d1]
3with x1

0 ∈ R
3, the enter of the box and d1 > 0 the size of the box.ii) The reeivers x2

i2
are inluded in a 3D box B2(49) B2 = x2

0 + [−d2, d2]
3with x2

0 ∈ R3 the enter of the box and d2 the size of the box.iii) The re�etors Kj are inluded in a 3D box B3(50) B3 = y0 + [−d3, d3]
3with y0 ∈ R3 being its enter and d3 � the size of the box.iv) The diameters of these three boxes are smaller or equal to a wavelength(51) d1 < λ, d2 < λ and d3 < λ.v) The distane D1 between the boxes B1 and B3 and the distane D2 between theboxes B2 and B3 are larger than some wavelengths.(52) D1 >> λ and D2 >> λ.In the box Bℓ, 1 ≤ ℓ ≤ 3, we an approximate the funtion fℓ : Bℓ −→ C in the

Loation of the reeivers
B2

d2 < λ

B1

Loation of the soures
d1 < λ

B3

Loation of the re�etors
d3 < λ

D2 >> λ

D
1 >>

λ

Fig. 10. Assumptions on the soures, reeivers and re�etorsfollowing way(53) fℓ(x) =

M∑

m=1

fℓ(X
ℓ
m) pℓm(x) + εℓ(x) ∀fℓ ∈ C∞(Bℓ),where for 1 ≤ m ≤ M and ℓ ∈ [1, 3], Xℓ

m ∈ R3 are the interpolation points the
p
ℓ
m : Bℓ −→ R are interpolating funtions. The residual εℓM is small when the



AN EFFICIENT TRUNCATED SVD 607interpolating funtion is well hosen (see Appendix C for a possible hoie) and theinterpolated funtion is regular.In the ontext of the Born matrix, these interpolation funtions an be used tode�ne a tensorial approximation of the Green funtion(54) 




Gk(x,y) ≃
M∑

m=1

M∑

n=1

Gk(X
1
m,X3

n)p
1
m(x)p3n(y), x ∈ B1, y ∈ B3,

Gk(x,y) ≃
M∑

m=1

M∑

n=1

Gk(X
2
m,X3

n)p
2
m(x)p3n(y), x ∈ B2, y ∈ B3.This brings about residual in the following approximation of the Born matrix(55) Ai,j ≃

M∑

m1=1

M∑

m2=1

M∑

n1=1

M∑

n2=1

Gk(X
1
m1

,Yn1
)Gk(X

2
m2

,Yn2
)

p
1
m1

(x1
i1
)p2m2

(xi2 )

∫

Kj

p
3
n1
(y)p3n2

(y)dy.Rearranging the latter, we dedue that the Born matrix A takes the form(56) A = A1 A2 A3,with A1 ∈ CI×M2 , A2 ∈ CM2×M2 and A3 ∈ CM2×J(57) 



A1
i,m = p

1
m1

(x1
i1
)p2m2

(xi2 )

A2
m,n = Gk(X

1
m1

,Yn1
)Gk(X

2
m2

,Yn2
)

A3
n,j =

∫

Kj

p
3
n1
(y)p3n2

(y)dywhere the integers m, n ∈ [1,M2] and i ∈ [1, I] are related to the integers m1, m2,
n1, n2, i1 and i2 by the relations(58) m = (m1 −1 ) M + m2, n = (n1 −1 ) M + n2 and i = i1 I1 + i2 +1Equation (56) reveals that the Born matrix A an be approximated by a low-rankapproximation when M2 is muh smaller than I and J . This is the ase, when thenumber of reeivers, soures and re�etors is very large.We have proved that the Born matrix assoiated with a homogeneous aoustimedium admits a low-rank approximation under very restritive assumptions onthe loation of the reeivers, soures and re�etors. These results that use similararguments to the fast multipole method an be extended. When these assumptionsare not ful�lled, a low-rank approximation an also be obtained. It relies on elabo-rated arguments of the Fast Multipole Method. This will not be presented here dueto its omplexity.For elasti media, it is also possible to show that the Born matrix assoiatedwith a homogeneous media admits a low-rank approximation. The reader an referto [2℄ for the fast multipole method for elasti media.



608 S.A. SOLOVYEV AND S. TORDEUXAppendix C. The tensorial Chebyshev interpolationWe would like to brie�y reall lassial results about the Chebyshev tensorialinterpolation of a funtion f in the box(59) B = x0 + [−d, d]3.We denote by CP the Chebyshev polynomial of degree P > 0 whih is given by theformula(60) CP (Z) = cos(P arccos (Z)), Z ∈ [−1, 1].For 1 ≤ p ≤ P , its zeros are denoted by ZP
p = cos

[
(p − 1

2 )
π
P

]. To the zeros ZP
p ,that all belong to [−1, 1], we assoiate the Lagrangian interpolation polynomial(61) IPp (z) =

P∏

k=1
k 6=p

z − ZP
k

ZP
p − ZP

k

for p ∈ [1, P ] and z ∈ [−1, 1].On the interval [−1, 1], any funtion u an be approximated by the formula(62) u(z) =
P∑

p=1

u(ZP
p ) IPp (z) + εP (z).These interpolation polynomials are optimal in the sense that they minimize the

L∞�norm error(63) ‖εP ‖L∞([−1,1]) =
( 2

π
log(P + 1) + 1

)(π/2)P
P !

‖u(P )‖L∞([−1,1]).Thanks to this family of unidemensional interpolation funtions, we de�ne thetensorial interpolation funtions pm : B −→ C on the box B(64) pm(x0 + z d) = IPp1
(z1) I

P
p2
(z2) I

P
p3
(z3) with z = (z1, z2, z3) ∈ [−1, 1]3.and the interpolation points Xm ∈ B(65) Xm = x0 + d (ZP
p1
, ZP

p2
, ZP

p3
)where we have denoted by m ∈ [1,M ], with M = P 3, the integer de�ned by(66) m = p3P

2 + p2P + p1 with p1, p2 and p3 ∈ [1, P ]It follows that a funtion f : B −→ C an be approximated in the following way(67) f(x) ≃
M∑

m=1

pm(x) f(Xm)Referenes[1℄ N. S. Bakhvalov, Numerial Methods, Nauka, 1973. in Russian. MR0362811[2℄ S. Chaillat and M. Bonnet, Reent advanes on the fast multipole aelerated boundaryelement method for 3D time-harmoni elastodynamis, Wave Motion, 50:7 (2013), 1090�1104.MR3144050[3℄ J. Demmel and W. Kahan, Aurate singular values of bidiagonal matries, Soiety forIndustrial and Applied Mathematis, Journal on Sienti� and Statistial Computing, 11:5(1990), 873�912. MR1057146[4℄ Z. Drma and K. Veseli, New fast and aurate Jaobi SVD algorithm I, SIAM J. MatrixAnal. Appl., 35:2 (2008), 1322�1342. Zbl 1221.65100
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