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Simulating MPI applications: the SMPI approach
Augustin Degomme, Arnaud Legrand, George S. Markomanolis,

Martin Quinson, Mark Stillwell, and Frédéric Suter

Abstract—This article summarizes our recent work and developments on SMPI, a flexible simulator of MPI applications. In this tool,
we took a particular care to ensure our simulator could be used to produce fast and accurate predictions in a wide variety of situations.
Although we did build SMPI on SimGrid whose speed and accuracy had already been assessed in other contexts, moving such
techniques to a HPC workload required significant additional effort. Obviously, an accurate modeling of communications and network
topology was one of the key to such achievements. Another less obvious key was the choice to combine in a single tool the possibility
to do both offline and online simulation.

Index Terms—Simulation, MPI runtime and applications, Performance prediction and extrapolation.

F

1 INTRODUCTION

Predicting the behavior of distributed algorithms has always
been a challenge, and the scale of next-generation High
Performance Computing (HPC) systems will only make
the situation more difficult. Consider that the Tianhe-2, the
second fastest machine in the Top500 list, is made up of
16,000 compute nodes, each comprising two Intel Ivy Bridge
Xeon processors and three Xeon Phi chips and that Sunway
TaihuLight, the fastest machine in the Top500 list comprises
4,096 compute nodes of 260 cores each, for an astonishing
total of more than 10 million cores. No human being could
possibly track the activity of the individual components that
make up these machines, and there is no known simple
abstraction that can be used to reliably model the perfor-
mance of an arbitrary algorithm running on a particular
distributed system (in fact, such an abstraction is hardly
possible due to its relation to the halting problem). Thus,
performance modeling and software engineering for these
systems increasingly require a simulation-based approach,
and this need will only become more apparent with the
arrival of Exascale computing by the end of the decade.

As there are currently no widely accepted standards for
simulation of distributed systems, most research conclu-
sions are based on one-off programs or scripts wherein the
authors have made any number of (undocumented) simpli-
fying assumptions. This code is not often made available
to other researchers for review, which makes it difficult to
validate experimental results or meaningfully compare pro-
posed solutions. This is a complicated problem that affects
disciplines outside of computing as well, and it will not be
solved by a single technical solution. However, standard
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frameworks for modeling and simulation of HPC systems
are an essential requirement for improving the situation.

Several simulators have been proposed recently in the
HPC domain to fulfill this need (e.g., [1], [2], [3], [4], [5],
[6]). Our previous experience [7] with grid, cloud and peer-
to-peer simulators is that most tools that focus solely on
scalability and performance often rely on simplistic network
models that lead to wild inaccuracies when predicting the
behavior of network-intensive applications. At the other
extreme, microscopic models from the architecture or from
the networking community are sometimes used to get per-
fectly accurate performance predictions about individual
computer systems, but these studies are inherently limited
in scale to only a small number of nodes.

When developing a simulation for any complex system
it is important to consider which aspects are the most
important to model, and for distributed computing plat-
forms the most important consideration is clearly inter-node
communication. Message passing is the most commonly
used abstraction to program and fully exploit the capacities
of current petascale systems–Implementations of the MPI
standard are used on all the leading supercomputers of
the Top500 list. While MPI and applications using this
standard have proved to be usable on machines that com-
prise hundreds of thousands individual cores, scaling the
specification, the implementations, and the applications to
exascale remains a true challenge.

In this article, we explore the tradeoffs between scalabil-
ity and accuracy that appears when studying HPC systems
at extreme scale. This study is motivated by a number of
typical questions facing HPC researchers and system admin-
istrators. Each question defines a broad topic area and serves
as a starting point in the definition of concrete use cases for
simulations of distributed computational platforms. They
are as follows:

1) What would be the performance of a given appli-
cation run on a hypothetical larger version of a
currently available hardware platform? (i.e., Quan-
titative performance extrapolation)

2) What would be performance of a given application
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when run on a hypothetical hardware platform with
characteristics, e.g., type of processors, network in-
terconnect and/or topology, that differ from those
currently available? (i.e., Qualitative performance
extrapolation)

3) Given a workload, can we detect unexpected be-
havior of a hardware platform from discrepancies
between simulated and actual executions? (i.e., De-
tection of hardware misconfiguration)

4) Can the internals of an MPI runtime, i.e., collective
communication algorithms, be finely tuned using
data generated by an extensive campaign of sim-
ulations? (i.e., MPI runtime tuning)

5) Can simulation provide a reliable and useful en-
vironment for teaching students to program dis-
tributed algorithms, given the price and scarce
availability of the real resources? (i.e., Teaching)

In this work, we identify a number of important features
and components that should be provided by any sound
simulation framework for enabling such studies of MPI
applications at large scale. For each feature or component,
we first present the related work and then detail the con-
tributions we made in SMPI, a stable, open-source1, and
flexible simulator leveraging the SimGrid framework. This
allows to better understand the positioning of recent MPI
simulators in the cost/accuracy/applicability spectrum.

In Section 2 we present how the applications’ behavior
can be captured for study. Frameworks for the simulation
of MPI applications generally follow one of the two com-
plementary approaches: off-line simulation, or “post-mortem
simulation” and on-line simulation, or “simulation via di-
rect execution”. In off-line simulation, a log, or trace, of
MPI communication events (begin and end time-stamps,
source, destination, data size) is first obtained by running
the application on a host platform. A simulator then replays
the execution of the application as if it were running on a
target platform that may have different characteristics than
the original host. In on-line simulation the application code
is executed on the host platform that attempts to mimic the
behavior of the target platform. During this execution part of
the instruction stream, typically calls related to inter-process
communication, is intercepted and passed to a simulator.

In Section 3 we discuss the problem of modeling the
hardware resources of the target infrastructure in a way that
is both sound and efficient. While dealing with the required
scale of these simulations alone can be a challenge, oversim-
plification of the underlying network models that ignores
many important phenomena can lead to research results of
limited interest for reasoning about real-world systems. The
question of the validity of the network model is often left for
future work. However, we claim that given the performance
evaluation challenges that need to be addressed, prediction
accuracy has to be the primary goal in the design of any
simulator for HPC, and that the underlying network models
have to be validated (at least at small scale). The computa-
tional aspects of the simulation are equally difficult to model
closely without expending considerable time and effort, but
fortunately we show in this article that rough estimates

1. Available at http://simgrid.org

based on monotonic functions of benchmark timings are
often sufficient to provide reasonably accurate results.

An essential requirement for accurate simulation, de-
tailed in Section 4, is to faithfully take the specifics of the
software runtime environment into account. In the case of
MPI one of the most important relevant considerations is
how the collective communication operations are imple-
mented. Many MPI applications spend a significant amount
of time in such operations, that thus are a key to perfor-
mance. Several algorithms exist for each collective opera-
tion, each of them exhibiting very different performance
depending on various parameters such as the network
topology, the message size, and the number of communi-
cating processes [8]. MPI implementations make a careful
selection at runtime that has to be captured by a simulation
framework to fully model the application dynamics.

A final consideration that will be discussed in this pa-
per is the importance of having an efficient and scalable
simulation engine. As detailed in Section 5, taking con-
tention into consideration mandates specific adaptations to
the techniques that are classically used for the simulation of
Discrete-Event Systems.

The remaining sections can be described briefly: Sec-
tion 6 wraps up our contribution and situates it compared to
the state of the art. Section 7 provides an evaluation of our
contribution by exploring how SMPI could provide answers
to the questions raised by the aforementioned use cases.
Finally we summarize our contributions in Section 8.

2 APPLICATION BEHAVIOR CAPTURE

As mentioned in the introduction, there exist two main
approaches to capture and simulate the behavior of MPI
applications. In off-line simulation, a trace of MPI commu-
nication events is first obtained and then replayed. In the
on-line simulation approach the actual application code is
executed and part of the instruction stream, is intercepted
and passed to a simulator.

Most simulators that have been proposed follow the off-
line simulation approach [3], [9], [10], [11], [12] while rela-
tively few projects go for on-line simulation [13]. This may
be due to the fact that on-line simulation is technically very
challenging, but only mandatory for the study of dynamic
network-aware applications, while most MPI applications
were based on rigid communication patterns until recently.
However, the irregularities inherent in modern very large
scale platforms impose a requirement for dynamic appli-
cations, and this in turn can mandate the use of on-line
simulation.

In this section, we first present the challenges and related
work for each of these approaches. Then we detail the
design and implementation choices of the SMPI framework
that allows for both the off-line and on-line simulation of
MPI applications.

2.1 Background on Off-line Simulation

The typical approach to off-line simulation is to compute
the durations of the time intervals between MPI commu-
nication operations, or “CPU bursts”. Upon replaying the
application, the CPU bursts are modified to account for

http://simgrid.org
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the performance differential between the platform used
to obtain the trace and the target platform, using either
simple scaling [9], [10] or a more sophisticated convolution
between the application computational signature and the
target platform’s hardware signature [14]. Network commu-
nications may be simulated based on the communication
events recorded in the trace and a model of the network.
As the size of computing platform increases (potentially
towards exascale) , it is crucial that post-mortem analysis
be scalable.

One problem with the off-line approach is that most
tools require traces with precise and uniform measured
elapsed times for all events (computation, communication)
included, which limits the scalability to the largest ded-
icated homogeneous platform available. Additionally, the
sheer number of recorded events leads to traces so large
that transferring, storing, and processing them becomes an
analysis bottleneck. One possible solution to this challenge
is to forego recording full traces, and instead to record only
aggregated statistical information. Using such lossy traces
has proved sufficient for the automated or semi-automated
detection of performance bottlenecks, load imbalance, and
undesired behaviors. Unfortunately, this approach prevents
more in-depth analysis of the application.

Another problem with the off-line approach is that in
many cases one wishes to consider other platforms than the
one on which the event trace has been obtained, perhaps
even hypothetical platforms that are not currently available.

While trace extrapolation to larger numbers of nodes
or alternative hardware configurations is feasible for some
applications [3], [10], [15], this approach requires making as-
sumptions about program behavior that may be impossible
to justify in the general case.

2.2 SMPI: Time-Independent Trace Replay

To address the different scalability challenges raised by
the off-line simulation of MPI applications, we proposed
in [16] a trace replay framework whose main originality is
to eliminate all time-related information from application
event traces, using what we call “time-independent traces”.
For each event occurring during the execution of the ap-
plication, e.g., a CPU burst or a communication operation,
we log its volume (in number of executed instructions or
transferred bytes) instead of the time when it begins and
ends or its duration. The main advantage is that the logged
information does not depend on the hardware character-
istics of the platform on which the trace is collected. The
size of the messages sent by an application is not likely
to change according to the specifics of the network inter-
connect. The number of instructions performed within a
basic block does not increase with the processing speed of
the CPU. These two claims do not hold for adaptive MPI
applications that modify their execution path according to
the execution platform. But since off-line simulation cannot
be applied to such applications anyway, time-independent
traces does not reduce the application scope. The trace
acquisition platform can be composite, e.g., a set of hetero-
geneous clusters interconnected via a wide-area network
and the application execution can be folded, i.e., by running
multiple MPI processes on the same compute node. Results

in [16] show how using folding on a composite platform it is
possible to acquire a trace for a 16,384-process execution of
the LU NAS Parallel Benchmark using either 778 compute
nodes aggregated from 18 geographically distant clusters or
a single cluster with 20 nodes with each 24 cores.

For the acquisition of time-independent traces, we devel-
oped a lightweight instrumentation method, call MinI, that
leverages the PMPI interface of the MPI standard. Initially
intended for profiling and tracing purposes, this interface
allows the user to attach arbitrary callback functions to MPI
calls.

This code retrieves hardware performance counters, the
calling parameters of MPI functions, and generates event
traces in an efficient way. This approach is guaranteed to
perform the minimal amount of instrumentation.

However, the main drawback of the time-independent
traces is their verbosity, hence their size. As all the events
are explicitly logged, the trace size grows linearly with both
the problem size and the number of processes. To address
this last scalability challenge, we recently modified the Sca-
laTrace [17] off-line analysis tool to produce compact time-
independent traces that are orders of magnitude smaller
than those produced by MinI [18]. Thanks to ScalaTrace
these traces of near-constant size preserve the structural
information and temporal event order of the original ap-
plication.

2.3 Background on On-line Simulation

The first challenge in on-line simulation of MPI applications
is to capture the MPI calls to be mediated in the simula-
tor. Another big challenge can be found in the interaction
between the application and the simulation kernel. One can
use a distributed simulator, fold the application into a single
process, or connect the distributed processes to a sequential
simulator in another way. Obtaining full coverage of the
MPI standard is a third challenge, as it describes hundreds
of specific functions that must be implemented in simula-
tion. Not all functions are equally important: a few dozen
are used very frequently, while most others are used only
seldomly. Finally, most existing projects target the study of
platforms that are larger than the one at hand. This poses a
fourth challenge related to resource over-subscription.

The most natural way to capture the MPI calls is to
leverage the PMPI interface that is proposed by every MPI
implementation. The xSim project [5] uses this capability to
intercept and mediate the MPI calls through the simulator. It
should be noted that concerning MPI collective operations,
this approach only captures high level calls and not the
specific point-to-point communications used to implement
them. This reinforces the MPI standard coverage problem:
every call present in the application must be correctly mod-
eled by the tool.

The MPI calls can be captured at other points within the
stack. For example, one could design a specific MPICH or
OpenMPI driver that would mediate every communication
through the simulator. This would, however, tie the solution
to a specific MPI implementation. In BigSim [2], the appli-
cation is executed on top of the Charm++ runtime (after a
semi-automatic code adaptation), and the application trace
is captured through the logging features of Charm++. This
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elegant solution to the over-subscription challenge could be
adapted to another runtime environment for online sim-
ulation. Since this captures only low-level events such as
point-to-point communications while most high level calls
are decomposed into a smaller set of lower level functions,
this even alleviates the MPI standard coverage problem.

A third approach, followed by SST Macro [4], is to pro-
pose an ad-hoc implementation of the MPI standard. It re-
duces the technical difficulties posed by the PMPI approach
while enabling the capture of both high-level and low-level
events. A drawback is that it requires more development
work to cover the MPI standard. The key challenge is then
the application/simulator interactions.

To scale up the simulations, several tools opt for a fold-
ing of all simulated MPI ranks into the same address space,
as threads in a single process. This design is more likely
to scale than relying on full UNIX processes, but has the
drawback that global variables in the MPI application will
clash unless they are privatized to ensure that the simulated
MPI ranks are still isolated from each other. In xSim, the
memory area that contains the global variables is duplicated
to provide a private copy to each MPI rank. In an ELF
executable, global variables are stored in the .bss (for
uninitialized variables) and .data (for initialized variables)
memory segments. They are usually contiguous (or possibly
interleaved with read-only segments) once the program is
loaded into memory. When switching from the rank A to the
rank B, xSim copies the process-wide global segments in the
private copy of A, and then the private copy of B is copied
in the process-wide areas. This approach is very robust
since it leverages proven techniques, but the copy overhead
can become problematic. In BigSim, the MPI application is
virtualized to run on top of Charm++ to capture a trace.
The globals are privatized using a trick based on the Global
Offsets Table (GOT). This table is part of the dynamic linking
mechanism of Linux: it contains the address of every dy-
namic symbol (global variable or function) that was loaded
dynamically. The trick used in BigSim is to give a private
copy of the GOT to each MPI rank, and to restore the actual
GOT used by the system when switching between ranks.
The overhead is greatly reduced since the GOT is much
smaller than the actual global memory segments, but it is
only applicable to dynamic symbols and not static ones. This
is particularly problematic for static local variables.

2.4 SMPI: Ad-hoc Virtualization of MPI Applications
SMPI is based on a complete reimplementation of the MPI
standard on top of the SimGrid simulation kernel. Even
though the full MPI standard is not covered yet, SMPI
can run many existing C/C++ or Fortran MPI applications
unmodified. The most prominent feature sets that are still
missing are Remote Memory Access, MPI I/O, the MPI-3
topology and communicator advanced functions, the rank
spawning functions, and the support for multithreaded
MPI applications. We ensure the conformance of the im-
plemented functions by running the MPICH internal com-
pliance tests as part of our automatic testing and build
process. Adding the missing features is perfectly possible
in the framework and only requires further development.

Since SimGrid’s discrete-event simulation kernel is se-
quential (but fast, see Section 5), we also follow the approach

consisting in folding all the MPI ranks as threads in a single
process. We have explored various techniques for (semi-)
automatic privatization of global variables. Early versions of
SMPI relied on automatic source-to-source transformation,
but this proved to be fragile. Moreover, such modification
can change the performance of CPU-intensive kernels and
impact the simulation accuracy. A compiler plugin would
have been more robust without solving the accuracy issue.
The current version of SMPI uses an approach similar to
that of xSim, but is more efficient. Instead of copying the
memory over, we remap it using the mmap system call. This
leverages the virtual memory mechanism of the operating
system to ensure that the address range allocated for global
variables is mapped to the private memory of the currently
executing rank without any performing any memory copy
operations.

These different techniques are only possible when the
MPI ranks are activated by the simulation kernel sequen-
tially and in mutual exclusion, to avoid any memory consis-
tency issues. Actually running the MPI ranks in their own
UNIX process, and interconnecting them to a sequential
simulator using some sort of Inter-Process Communication
(IPC, e.g., sockets or shared memory) mechanism could
alleviate this limitation, but to the best of our knowledge,
no existing framework has implemented this approach.

3 INFRASTRUCTURE MODELING

3.1 Background on Network Modeling
Packet-level simulation has long been considered the "gold
standard" for modeling network communication, and is
available for use in some HPC simulation frameworks [2],
[20]. Such simulations reproduce the real-world communi-
cation behavior down to movements of individual packets
that contain both user data and control information. How-
ever, packet-level simulations of simple network interac-
tions often take significantly longer than the corresponding
real-world events, and parallel applications are likely to
generate large amounts of network traffic. Additionally, im-
plementing packet-level simulations that accurately model
real world behavior requires correctly accounting for a vast
array of factors [21], including minutia such as cable length,
network router model, and network driver or firmware ver-
sion numbers. In practice, there is little difference between
a model that is inaccurate because it has been simplified
and an accurate model of the wrong system. In this context
we can see that a less-accurate, but much faster, model of
network communication may provide equally useful results.

When packet-level simulation becomes too costly or
intractable, the most common approach is to resort to delay
models that simply ignore the network complexity. Among
these models, the seminal LogP model [22] captures the
key characteristics of real communication platforms while
remaining amenable to complexity analysis. A parallel ma-
chine is thus abstracted with four parameters: L is an upper
bound on the latency of the network, i.e., the maximum
delay incurred when communicating a word between two
machines; o denotes the CPU overhead, i.e., the time that
a processor spends processing an emission or a reception
and during which it cannot perform any other operation;
g is the gap between messages, whose reciprocal is the
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Routine Condition Cost
MPI_Send k ≤ S T1

k > S T4 + T5 + T1
MPI_Recv k ≤ S max(T1 + T2 − (tr − ts), 0) + T3

k > S max(o+ L− (tr − ts), 0) + o+
T5 + T1 + T2 + T3

MPI_Isend o
MPI_Irecv o

(c) MPI routine costs.

T1 = o+kOs T2 =

{
L+ kg if k < s

L+ sg + (k − s)G otherwise
T3 = o+kOr T4 = max(L+o, tr−ts)+o T5 = 2o+ L

Figure 1: The LogGPS model [19] in a nutshell.

processor communication bandwidth for short messages;
and P represents the number of processors.

The LogGPS model proposed in [19] introduces addi-
tional parameters: G to represent the larger effective band-
width experienced by long messages and two parameters s
and S to capture the lack of linearity in message size and
the existence of a synchronization threshold. Overheads are
represented as affine functions: o+kOs where Os (resp. Or)
is the overhead per byte at the sender (resp. receiver) side.
This model is described in Figure 1, where ts (resp. tr) is
the time at which MPI_Send (resp. MPI_Recv) is issued.
When the message size k is smaller than S, messages are
sent asynchronously (Figure 1a). Otherwise, a rendez-vous
protocol is used and the sender is blocked at least until the
receiver is ready to receive the message (Figure 1b). The s
threshold is used to switch from g to G, i.e., from short to
long messages, in the equation. The message transmission
time is thus continuously piece-wise linear in message size
(Figure 1c).

While used in some HPC simulation frameworks [3],
there are several characteristics of the LogGPS model that
make it unsuited to modern computing infrastructures:
expressing overhead and transmission times as continuous
piece-wise linear functions of message size is not realistic
at large scale; the single-port model unrealistically implies
a processor can only be involved in at most one com-
munication at a time; and the lack of topology support
means that the possibility of contention on the core of
the network is completely ignored. Several extensions of
LogGP have thus been proposed to alleviate these flaws.
For example the LoGPC model [23] accounts for average
contention in the core of regular (k-D torus) networks, while
the LogGPH [24] model accounts for the non uniformity
of communications in hierarchical networks. More recently
the τ -Lop model [25] incorporates the number of concurrent
transfers directly in the transmission or synchronization
costs but does not build any particular network topology.

Flow-level models provide an alternative to both ex-
pensive packet-level models and simplistic delay models.
Communications, represented by flows, are simulated as
single entities rather than as sets of individual packets. The
time to transfer a message of size S between processors
i and j is then given by Ti,j(S) = Li,j + S/Bi,j , where
Li,j (resp. Bi,j) is the end-to-end network latency (resp.
bandwidth) on the route connecting i and j. Estimating the
bandwidth Bi,j is difficult as it depends on interactions

between flows that occupy the same network segments
and each of these flows may be influenced by others in
different parts of the network. Computing message transfer
times generally amounts to determining which share of the
bandwidth is allocated to each flow at a given moment
in time. Such models are rather flexible and account for
many non-trivial phenomena (e.g., RTT-unfairness of TCP
or cross-traffic interferences [7]), but have been disregarded
so far for the simulation of MPI applications for at least
two reasons: First, until a few years ago contention could
be neglected for high-end machines. Second, such models
are quite complex to implement and are often considered as
too slow and complex to scale to large platforms. However,
neither of these assumptions remains true today, and flow-
based approaches can lead to significant improvements in
simulation accuracy over classical delay models.

3.2 SMPI: A Hybrid Network Model
To capture all the relevant effects observed when executing
MPI applications on a commodity cluster with a hierarchi-
cal Ethernet-based interconnection network, we proposed
in [26] an original hybrid model that builds upon both Log-
GPS and flow-based models. All the presented experiments
were conducted on the graphene cluster of the Grid’5000
testbed [27]. This cluster comprises 144 2.53 GHz Quad-
Core Intel Xeon x3440 nodes spread across four cabinets,
and interconnected by a hierarchy of 10 Gigabit Ethernet
switches (see Figure 2).

1−39 40−74 105−14475−104

1G
10G

Figure 2: graphene: a hierarchical Ethernet-based cluster
(https://www.grid5000.fr/mediawiki/index.php/Nancy:Network).

To design this hybrid model, we first ran a set of point-to-
point communication experiments according to the follow-
ing protocol: To avoid size and sequencing measurement
bias, the message size is exponentially sampled from 1
byte to 100 MiB. We ran two "ping" and one "ping-pong"
experiments. The ping experiments aimed at measuring the

https://www.grid5000.fr/mediawiki/index.php/Nancy:Network
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time spent in the MPI_Send (resp. MPI_Recv) function by
ensuring that the receiver (resp. sender) is always ready
to communicate. The ping-pong experiment allowed us to
measure the transmission delay. We ran our analysis on the
whole set of raw measurements rather than on averaged
values for each message size to prevent behavior smoothing
and variability information loss. This allowed us to study
the asynchronous part of MPI (from the application point of
view) without any a priori assumptions on where switching
may occur.

Figure 3: MPI_Send and MPI_Recv duration as a function
of message size.

From the results shown in Figure 3, we identify four
distinct modes:

• Asynchronous (in frame) (when k ≤ 1, 420): this
mode corresponds to messages that fit in a Ethernet
frame and are sent asynchronously by the kernel.

• Asynchronous (when 1, 420 < k ≤ 32, 768 or
32, 768 < k ≤ 65, 536 = Sa): these messages are
still sent asynchronously but incur a slight overhead
compared to smaller messages. The distinction at
k = 32, 768 does not really correspond to any par-
ticular threshold on the sender side but is visible on
the receiver side where a small gap is noticed.

• Detached (when 65, 536 < k ≤ 327, 680 = Sd): this
mode corresponds to messages that do not block the
sender but require the receiver to post the reception
before the communication actually takes place.

• Large (when k > 327, 680): for such messages, both
sender and receiver synchronize using a rendez-
vous protocol before the data is sent. Except for the
waiting time, the durations on the sender side and
on the receiver side are very close.

As illustrated by Figure 3, the duration of each mode can
be accurately modeled through linear regression. From these
observations we derive the model described in Figure 4.
It distinguishes three modes of operation: asynchronous,
detached, and synchronous. Each mode can be divided in
sub-modes where discontinuities are observed. The "ping"
measurements are used to instantiate the values of os, OS ,
or , and Or for small to detached messages. By subtracting
2(or + k.Or) from the round trip time measured by the
ping-pong experiment, and thanks to a piece-wise linear
regression, we can deduce the values of L and B. It is in-
teresting to note that similar experiments with MPI_Isend
and MPI_Irecv show that modeling their duration by a
constant term o as done in [19] is not a reasonable assump-
tion for simulation or prediction purposes.

Distinguishing these modes may be of little importance
when simulating applications that only send particular
message sizes. However, accurately accounting for all such
peculiarities allows us to obtain good predictions in a wide
range of settings, without any application specific tuning.

Within a cluster or cluster-like environment the mutual
interactions between send and receive operations cannot
safely be ignored. To quantify the impact of network con-
tention of a point-to-point communication between two pro-
cessors in a same cabinet, we artificially create contention
and measure the bandwidth as perceived by the sender and
the receiver. We place ourselves in the large message mode
where the highest bandwidth usage is observed, transfer 4
MiB messages, and use concurrent MPI_Sendrecv trans-
fers. We increase the number of concurrent bidirectional
transfers from 1 to 19 and measure the bandwidth on the
sender (Bs) and receiver (Br) sides. A single-port model, as
assumed by the LogGPS model, would lead to Bs+Br = B
on average since both directions strictly alternate. A multi-
port model, as assumed by flow-based models, would esti-
mate that Bs+Br = 2×B since communications would not
interfere with each other. However, both fail to model what
actually happens, as we observe that Bs +Br ≈ 1.5×B on
this cluster.

We model this bandwidth sharing effect by enriching
the simulated cluster description. Each node is provided
with three links: an uplink and a downlink, so that send
and receive operations share the available bandwidth sep-
arately in each direction; and a specific limiter link, whose
bandwidth is 1.5 × B, shared by all the flows to and from
this node. Such a value represents the effective limitation
due to the card capacity and the protocol overhead and
can be determined with an appropriate benchmark. This
modification is not enough to model contention at the level
of the entire graphene cluster, which is composed of four cab-
inets interconnected by 10 Gb links. Experiments show that
these links become limiting when shared by several concur-
rent pair-wise communications between cabinets. This effect
corresponds to the switch backplane and to the protocol
overhead. We capture it by describing the interconnection
of two cabinets as three distinct links (uplink, downlink,
and limiter link). The bandwidth of this third link is set to
13 Gb as measured. The resulting topology is depicted on
Figure 5.

3.3 Background on CPU Modeling
Modeling of computation so that it is possible to efficiently
predict the execution time is an open problem if the target
system is not available. As for network modeling, using
microscopic models such as those presented in [28] is the
standard approach to accurately describe CPU behavior, but
with a scalability limited up to a few nodes in practice.
The SST [29] can leverage cycle-accurate simulators from
the architecture community, but the authors advise the use
of more efficient coarse-grain CPU modeling (provided by
SST Macro [4]) for studies that do not mandate exact yet
expensive CPU models.

Such coarse-grain CPU models are very commonly used
in the literature to simulate HPC systems. The CPU load
induced by communications is usually ignored since high-
quality network cards allow to offload network protocol
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duties. This allows to focus on the Sequential Execution
Blocks (SEBs) that each thread of the application executes
between MPI primitives and it is then sufficient to predict
the execution time of each SEB as a whole.

The most simplistic approach is to say that processor B
is some number of times faster or slower than processor A,
and then speed up or slow down the execution time of the
same code on B by this factor relative to its execution time
on A. In many this may give reasonable results, particularly
if the architectures are similar.

However, this approach can only provide the roughest
estimates across different architectures (e.g., moving from
x86_64 to POWER architecture) or across the multiple
variations of a processor line (e.g., Sandy Bridge vs. Ivy
Bridge Intel Xeon E5) as these differing systems will vary
not only in raw speed, but across a number of different
performance related elements (number of registers, number
of hyperthreading cores, speed of floating point compu-
tation and number floating point computational elements,
bandwidth to memory, etc.). Indeed, while the execution
of a given piece of code may be fully deterministic, its
exact execution time may be impossible to predict precisely
without the perfect knowledge of system state that is only
available to cycle-accurate simulators. Factors such as cache
and pipeline effects and memory access times can make
accurately predicting the runtime of a particular piece of
code complicated even across multiple runs on the same
system.

Several simulation frameworks try to extend the sim-
plistic analytic models to bridge the gap with the overly
expensive cycle-accurate models in a less expensive way. In
BigSim [2], the user can provide a specific execution time
projections for SEB, or the execution time can tentatively be
devised from analytic memory models developed in [14].

Similarly, Dimemas [1] specifies how each SEB should be
scaled when running on different architectures. By contrast,
PSINS [9] attempts to extrapolate the performance of SEBs
from hardware counters.

Such approaches become barely tractable with the com-
plexity evolution of existing infrastructures. They will likely
fail to predict the computational performance of upcoming
systems present with multiple cores, implicit memory ac-
cesses, multi-level caches inducing multi-level contentions
(which are sometimes handled seamlessly by the hardware
using unknown algorithms) dedicated hardware accelera-
tors, and automatic performance variations due to energy
considerations. In particular, the pressure put on cache by
multiple cores and the effect this has on performance seems
difficult to predict accurately even with complex analytic
models.

Given the relatively poor predictive power of analytic
models and the poor performance of microscopic models,
the Phantom project [11] does not model the CPU perfor-
mance, but instead simply benchmark the CPU bursts on a
processor of the target platform. The measured timings are
added to the captured trace, which is then replayed offline.

3.4 SMPI: Sequential Execution Block Emulation
SMPI emulates SEBs by directly executing them on one
processor of the target infrastructure whenever possible. A
constant factor can be used to account for speed differences
between similar infrastructures. This extends [11] by making
this approach applicable to both off-line and on-line studies.
It makes it possible to study applications that are network-
aware (thanks to the on-line analysis) and data-dependent
(thanks to the emulation).

As explained in Section 2.4, most MPI codes can be
compiled and executed on top of SimGrid without requir-
ing any modification. Such an approach is usually quite
expensive in terms of both simulation time and memory
requirements since the whole parallel application is actually
running on a single host machine. However, it is common
in the HPC context that not all the code is data-dependent.
For instance, applications often have several options re-
garding how to perform a computation depending on the
input data size, the number of available processors, or
some configuration option. In such a particular case it is
necessary to run through all this decision logic to faithfully
capture the application behavior, but in general the execu-
tion structure is independent on the computation results.
Then most computation-intensive kernels could actually be
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skipped for the purpose of the simulation. To this end, SMPI
provides several macros (e.g., SMPI_SAMPLE_LOCAL and
SMPI_SAMPLE_GLOBAL) to annotate regular computation
kernels. In simulation, such regions of code are executed
a few times to obtain estimations of their cost and are
skipped when enough samples have been obtained. If the
duration of some code regions depends on known pa-
rameters, preliminary modeling can be done to evaluate
the corresponding amount of flops that should be passed
to the simulator through the SMPI_SAMPLE_FLOPS macro
(see [30] for an illustration of this approach). Finally, since
the computation results are irrelevant, SMPI provides the
SMPI_SHARED_MALLOC and SMPI_SHARED_FREE macros
to indicate that in simulation some data structures can safely
be shared between processes (e.g., an input matrix). Making
such allocations at least once is important to allow sampled
computation kernels to execute correctly. Such annotations
(kernel sampling and memory folding) make it possible to
drastically reduce both memory footprint and simulation
duration.

4 COLLECTIVE OPERATIONS MODELING

4.1 Background on Collective Operations Modeling

As mentioned in the introduction, the way MPI collective
operations are implemented is of utmost importance to
application performance. Several solutions have been pro-
posed in the literature.

The Dimemas framework [1] relies on the fact that all
the MPI collective operations share a very regular com-
munication pattern. The completion time of each collec-
tive operation is thus modeled by summing up to three
simple analytic terms: the data fan-in time; the middle op-
eration time; and the data fan-out time. For instance, the
completion time of a MPI_Gather operation using a bi-
nomial tree is only composed of a fan-in time equal to⌈

logN
log fanin

⌉
×
(
latency + size

bw

)
(amount of steps × duration

of each step) while a MPI_All2all operation has neither
fan-in nor fan-out times but only a middle operation time of
N(N−1)×

(
latency + size

bw

)
. Such simple models cannot cap-

ture the sophistication of real collective implementations as
they neglect important effects such as network contention,
but seem sufficient to capture performance trends.

In [31] the authors follow a radically different approach.
Each collective communication operation is automatically
benchmarked on the target platform for a broad range of
parameter sets and communicator geometries, without any
manual analysis. The obtained timings are then simply re-
injected to predict the application performance. However,
this approach does not apply to performance extrapolation
or the exploration of what-if scenarios. Furthermore a long
benchmarking time is required to instantiate such a model.

The Group Operation Assembly Language (GOAL) is a
domain-specific language that aims at specifying the precise
communication pattern of MPI collective communication
operations [32]. The LogGOPSim simulator leverages this
decomposition to replace any operation with the set of
corresponding point-to-point operations [3]. While inter-
esting this approach does not capture the logic in charge
of selecting the right algorithm for an operation given

a parameter set. This selection is done by a code up to
several thousand lines long (for each operation) in major
MPI implementations.

BigSim [2] captures the decomposition of a given collec-
tive operation into point-to-point communications during
the acquisition of an execution trace. The resulting trace can
then be replayed in other settings since, to the best of our
knowledge, the algorithm selection only depends on the
message size and the communicator geometry. The traces
are then more portable than those in [31] and captured in a
more automatic way than in [3]. However, this approach
is limited to the off-line replay of traces and cannot be
leveraged for on-line simulation.

4.2 SMPI: MPI Runtime(s) Code Integration

The optimization of the performance of MPI collective oper-
ations has received a lot of attention. MPI implementations
thus have several alternatives for each collective operation
and select one at runtime depending on message size and
communicator geometry. For instance, in OpenMPI, the
MPI_Allreduce operation represents about 2,300 lines of
code. Ensuring that any simulated run of an application
uses the same or a similar implementation is thus key to
simulation accuracy.

To adhere as closely as possible to the selection logic of
the targeted MPI implementation, SMPI implements all the
collective algorithms and selection logics of both OpenMPI
and MPICH [33] as well as a few other collective algorithms
and selectors from Star-MPI [8], the Intel vendor imple-
mentation of MPI, and MVAPICH2 [34]. SMPI currently
provides more than 120 different collective algorithms, in-
cluding seven SMP-aware algorithms for MPI_Allgather
or MPI_Allreduce. Users can choose the selector or al-
gorithms from the command line, allowing them to test in
simulation whether replacing one algorithm by another may
be beneficial or not on a particular platform/application
combination.

5 EFFICIENT SIMULATION ENGINE

5.1 Background on Discrete Event Simulation

Simulating MPI applications requires an efficient Discrete
Event Simulation (DES) kernel, especially when using
packet-level simulation. One tempting approach to handle
such a workload could be to build upon a stock parallel DES
(PDES) kernel. The design of such kernels has received a
lot of attention in the last few decades [35] and has even
been recently used in the HPC context to simulate large
networks [6], [36]. The approach followed by xSim naturally
leads to the use of a PDES. Every application process is
associated to a Logical Process (LP) of the PDES and com-
municates through a virtual MPI layer implemented over
the PDES. A new challenge arising from this design is that
the PDES itself is often implemented using MPI, resulting
in intricate implementations where developers may have
difficulty keeping track of the differences between the vir-
tual MPI used by the application and the real MPI used to
implement the PDES. Added to the extra complexity posed
by the oversubscription of LPs onto the physical compute
cores, this results in an quite complex design. In some



DEGOMME et al.: SIMULATING MPI APPLICATIONS, THE SMPI APPROACH 9

sense, this complexity comes from the seemingly natural
choices made for how to capture MPI calls and manage
simulation/application interactions.

The performance of a DES kernel usually depends on the
efficiency of its Future Event Set (FES). This data structure
stores the future simulation events and highly optimizes the
retrieval of the next occurring event. Many solutions were
proposed in the literature beyond the classical heap [37],
which all rely on the fact that the date at which future events
will occur is known beforehand.

5.2 SMPI: Optimization of a Sequential DES

From our experience, simulating parallel applications offers
quite limited parallelization opportunities to the simula-
tion kernel even for relatively loosely coupled distributed
systems comprising millions of entities and the benefit for
tightly coupled applications is thus low [38]. We therefore
decided to focus on the optimization of a sequential DES.

Most of simulation costs come from the application itself,
which can be resource hungry, and from the evaluation of
the flow-level network model. To reduce the overhead of
emulating applications, we provide memory and computa-
tion annotations (Section 3.4).

Flow-level simulations are typically several orders of
magnitude faster than packet-level simulations when large
messages are involved, which is why we have built on top
of an existing flow-level simulator that is highly optimized
for network-intensive workloads on possibly complex het-
erogeneous topologies [39]. With such approach, computing
the date at which future events will occur in a FES is not
possible when the network model integrates contention. For
instance, an action often ends earlier or later than expected if
some competing actions are started or canceled meanwhile.
The resulting workload for the FES is quite particular and
requires to leverage other techniques to efficiently compute
the next occurring event, as detailed in [40]. Once such
optimizations have been done, the resulting workload is
intrinsically sequential and hardly benefits from classical
PDES approaches.

6 THE SMPI FRAMEWORK

The previous sections detailed the techniques used in differ-
ent simulation frameworks [1], [2], [3], [4], [5], [6], including
SMPI. Table 1 summarizes these techniques in terms of
application behavior capture, infrastructure modeling, collective
communication modeling, and simulation engine. The choices
made in the design of SMPI allow us to answer to offer
a unique combination of features gathered within a single
unified framework. The primary target of SMPI is the fine
understanding of real applications at small or medium scale.
The flit-level simulation of routing protocols at extreme scale
is not the kind of study that can be done with SMPI, other
tools [6] being more adapted.

Figure 6 shows how the different components detailed in
the previous sections are organized within this single uni-
fied framework. From top to bottom, we have the trace re-
play program for the off-line simulation approach (Sec. 2.2)
and the API that implements the MPI-2 standard (and a
subset of the MPI-3 standard) for the on-line approach

(Sec. 2.4). Both are built on top of an emulated MPI runtime
that also implements all the collective communication algo-
rithms from several real runtimes, and their selection logic
(Sec. 3.4 and 4.2). This layer interacts through the SimIX
module with the DES kernel, called SURF (Sec. 5.2), in which
the network models are implemented (Sec. 3.2).

MPI Application MPI Trace

SMPI Runtime

SMPI API Trace Replay

SIMIX
"POSIX-like" simulation API

Si
m

G
ri

d

Simulation kernel
SURF

Other SimGrid APIs

Figure 6: Internal organization of the SMPI framework.

7 EVALUATION

In this section we illustrate how the on-line and off-line
simulation capabilities of the proposed SMPI framework can
be used to answer to several important questions related
to the performance optimization of MPI applications and
runtimes. All the experiments have been done either on
the graphene cluster that was described in Sec. 3.2 (Sec. 7.3,
7.4, and 7.5) or the Tibidado prototype cluster (Sec. 7.2).
This experimental HPC cluster, designed within the Mont-
Blanc European project [41], is built using NVIDIA Tegra2
chips, each a dual-core ARM Cortex-A9 processor. The PCI
Express support of Tegra2 is used to connect a 1 Gb Ethernet
NIC, and the board are interconnected hierarchically using
48-port 1 Gb Ethernet switches. The descriptions of these
clusters used as input to SMPI are instantiated with val-
ues obtained independently from the studied applications
according to the procedure described in Sec. 3.2.

7.1 A Glimpse at Simulation Scalability
According to some recent work [5], xSim is one of the most
scalable simulator of MPI applications. To illustrate this
scalability, the author reports results using xSim to emulate
a simple MPI program that only calls MPI_Init() and
MPI_Finalize() without performing any communication
or I/O operations. Using 40 nodes comprising 2× 12 AMD
Opteron cores, xSim allows to simulate 134,217,728 (= 227)
MPI processes in about 1,000 seconds with 2TiB of RAM. A
similar experiment with SMPI using a commodity laptop
(4 core 2.10GHz Intel i7-3687U CPU) we have been able
to simulate 220 ≈ 106 MPI process with 9.1GiB of RAM
in about 40 seconds (including parsing time and process
creation). Given the perfect scaling we observed, simulating
227 MPI processes would therefore require around 1.1TiB
of RAM and last for 4,900 seconds, but using only a single
core. Although machines with such amount of memory are
not that commonly found for now, this limitation could be
overcomed by aggregating the RAM of several nodes of a
cluster through its high speed network [42].

We now present scalability results on a slightly more
complicated workload. The NAS EP benchmark performs
independent computations with three MPI_Allreduce()
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Framework Application Infrastructure Modeling Collective Simulation Software
Capture Network CPU Communication Engine Licence

Off-/On-line Communication Topology Contention Model Operations
BigSim [2] Yes/No Delay Torus No Projections Identical trace replay DES/PDES Charm++/Converse
CODES [6] Yes/No Flit level Torus, dragonfly No Scaling Tree algorithms PDES N/A
LogGOPSim [3] Yes/No LogGPS None No Simple Basic algorithms DES open source
Dimemas [1] Yes/No Delay 2 levels of hierarchy Partial Scaling Analytic formula DES LGPL
xSim [5] Yes/Yes Delay Hierarchies, torus Yes Emulation Linear/tree algorithms PDES N/A
SST Macro [4] Yes/Yes Packet- or Flow-level Torus, fat trees, dragonfly, ... Yes Cycle Linear algorithms DES/PDES BSD

SMPI Yes/Yes Flow-based LogGPS Torus, fat trees, dragonfly,
hierarchies, general graphs Yes Emulation Algorithms and selectors

from OpenMPI, MPICH,. . .
Optimized

DES
LGPL

Table 1: Summary of the Modeling approaches of various active MPI simulation frameworks.
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●

●

●

●

●

●

1129 MiB

0

2

4

6

8

1024 16384 32768 65536

Number of MPI processes

M
em

or
y 

us
ag

e 
[G

iB
]

●●●●

●

●

347 s

0

100

200

300

1024 16384 32768 65536

Number of MPI processes

S
im

ul
at

io
n 

du
ra

tio
n 

[s
]

Figure 7: Simulation scalability depending on its configura-
tion and on the workload.

operations at the end to check the correctness of the results.
The performance of an emulation of unmodified EP (class B)
on a 32 × 32 × 32 torus is reported in Figure 7 (blue solid
line) and is obviously limited by the memory consumption
since all the operations and memory allocations are done.
With such an approach, filling the platform with 65,536
process would require 65GiB of memory and take several
hours. However, performing all computations is typically
useless for performance evaluation purposes. A 6-line an-
notation of the code allows us to activate kernel sampling
and memory folding and to drastically reduce computation
time and memory consumption (blue dashed line). The time
spent running the MPI code then drops from about 100
seconds to less than 1 second in all settings and the memory
required for 65,536 processes drops to about 1.2GiB of RAM.
The remaining of the simulation time mostly corresponds
to the time spent simulating the three MPI_Allreduce
operations. We configured our simulation to use the classical
recursive doubling algorithm, which is not aware of the torus
topology and incurs contention (the corresponding butterfly
communication pattern incurs N/2 concurrent communi-
cations at each stage of the butterfly), hence a quadratic
simulation time. A simpler star topology leads to a sim-
pler contention pattern, hence to a shorter (although still
not linear since there are N. log2(N) communications in
total) simulation time (red dashed line). Note that the lazy
update mechanism used in SimGrid [39] exploits locality
so that simulations of SMP- or topology- aware collective
algorithms are naturally more scalable. In the rest of this
section, the time needed to perform any of the simulation is
always beyond a dozen minutes on a commodity machine.

7.2 Performance Prediction

The Mont-Blanc project [41] aims to assess the potential of
low-power embedded components based clusters to address
future Exascale HPC needs. One of the objectives of the
Mont-Blanc project is thus to develop prototypes of HPC
clusters using low power commercially available embedded

technology such as ARM processors and Ethernet technolo-
gies. In order to start evaluating applications before 2014, a
small experimental cluster of ARM systems on chip, named
Tibidabo and hosted at the Barcelona Supercomputing Cen-
ter, was built.

We used Tibidabo to evaluate the scalability on such
architecture of BigDFT, an open-source Density Functional
Theory massively parallel electronic structure code [43],
which is able to scale particularly well on supercomputers.
For our experiments, we disabled the OpenMP and GPU
extensions at compile time to study behaviors related to
MPI operations. BigDFT alternates between regular com-
putation bursts and important collective communications.
Moreover the set of collective operations that is used may
completely change depending on the instance, hence the
need for on-line simulation. In the following experiments,
we used MPICH 3.0.4 [33] and while this application can be
simulated by SMPI without any modification to the source
code, its large memory footprint would require an improb-
ably large amount of RAM if run on a single machine.
By applying the memory folding and shadow execution
techniques mentioned in Section 3.4 and detailed in [44],
we were able to simulate the execution of BigDFT with
128 processes, whose peak memory footprint is estimated
to 71 GiB, on a single laptop using less than 2.5 GiB of mem-
ory. This memory footprint compression could be further
improved with additional manual annotations to allow the
same laptop to support some even larger applications.
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Figure 8: Prediction of the performance of BigDFT on a
prototype ARM-based cluster.

Figure 8 shows the comparison of the speedup evo-
lution as measured on Tibidabo for a small instance. This
instance has a relatively low communication to compu-
tation ratio (around 20% of time is spent communicat-
ing when using 128 nodes and the main used operations
are MPI_Alltoall, MPI_Alltoallv, MPI_Allgather,
MPI_Allgatherv and MPI_Allreduce). This instance is
thus particularly difficult to model and is expected to have
a limited scalability, which one may want to observe in
simulation first to avoid wasting resources or to assess the
relevance of upgrading hardware. As expected, the LogGPS
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model predicts an over-optimistic perfect scaling whereas
the flow-based SimGrid model succeeds in accounting for
the slowdown incurred by the hierarchical and irregular
network topology of this prototype platform. To further
demonstrate the usability of our tool, we want to mention
that simulating 64 nodes of Tibidabo, which is made of
slow ARM processors, on a Xeon 7460 with partial on-line
simulation takes only half the time as running the code for
real (10 vs. 20 minutes).

7.3 Performance Extrapolation
An interesting use of simulation is the exploration of "what-
if" scenarios to obtain indicators of the performance of an
MPI application on hypothetical hardware configurations.
In this section, we illustrate this feature by analyzing the
quantitative extrapolation of the target platform. This con-
sists in simulating the execution of an application on more
compute nodes than available on the actual cluster. Such a
study can be conducted following either the off-line or on-
line simulation approach, as both are supported by the SMPI
framework.

We consider the off-line simulation of various instances of
the LU NAS Parallel Benchmark. We compare a simulated
execution based on time-independent traces [16] to a real
execution on the graphene cluster. While we can obtain
results on the actual cluster, which is made of 144 compute
nodes, only up to 128 processes, we can run simulations
for 16 times larger platforms (an hypothetical version of
graphene with 2,048 compute nodes). Such extrapolation is
made possible by the time-independent nature of the traces
that do not require a machine at scale to be acquired.
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Figure 9: Simulated and actual execution times for class B,
C and D LU benchmark vs. number of processes.

Figure 9 shows the obtained execution times vs. number
of MPI processes. We observe that simulation follows a
trend that is very coherent with the evolution of the exe-
cution time from 8 to 128 processes. For class D instances,
there is no execution to compare to simulation. However, the
increase in simulated time is consistent with the increased
size of the data processed which is sixteen times larger
than for class C instances. Moreover, the evolution of the
execution time when the number of processes increases is
coherent with what was measured for classes B and C. While
this experiment is at a relatively modest scale, the achieved
results are encouraging with regards to the capacity of the
SMPI framework to simulate a larger cluster in a scalable
way, regardless of the maximum size of the physical cluster
at hand.

7.4 Detection of Hardware Misconfiguration

During the long series of accuracy evaluation experiments
we conducted, it already happened that we encountered a
significant difference between simulation and reality and
these mismatches motivated some of our developments
(e.g., the careful modeling of point-to-point communications
for arbitrary message sizes in Section 3.2 or of collective
operations evoked in Section 4.2). As a result, the SMPI
network model has become very reliable and accurate and
in all our studies the largest error in term of speedup or time
prediction is of at most 5% and does not seem to depend on
the platform size. This allows to to use SMPI beyond its
primary role of a performance evaluation.
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Figure 10: Evolution of the simulated and actual speedups
for the CG benchmark (class B) on the graphene cluster.

Figure 10 shows the speedup as measured on the
graphene cluster and as obtained with the SimGrid model
with the class B of instances of the CG NAS Parallel
Benchmark. This benchmark has a complex communication
scheme made of a large number of point-to-point transfers
of small messages. Moreover, processes are organized in a
hierarchy of groups. At each level communications occur
within a group and then between groups. This benchmark
is then very sensitive to the mapping of the MPI processes
on to the physical processors with regard to network orga-
nization, particularly in non-homogeneous topologies.

We can see that the hybrid model of SMPI leads to excel-
lent estimations except on the scenario with 128 processes.
To determine the cause of such a discrepancy between the
simulated and observed times, we compare the Gantt charts
of two actual runs. Figure 11 details the execution of the CG
benchmark with 32 (Figure 11a) and 128 (Figure 11b) MPI
processes.

(a) CG –Class B w/ 32 proc. (b) CG – Class B w/ 128 proc.

Figure 11: Illustration of a network collapse due to a TCP
misconfiguration.

The execution with 128 processes shows several out-
standing zones of MPI_Send (in red) and MPI_Wait (in
yellow). Such operations typically take few microseconds to
less than a millisecond, yet here they take 200 milliseconds.
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We theorize that, due to high congestion, the switch drops
packets and slows (at least) one process to the point where it
stops sending until a timeout of 200 milliseconds is reached.
Because of the communication pattern of the CG bench-
mark, blocking one process impacts all the other processes,
hence the phenomenon in Figure 11b. This issue is likely to
be related to the TCP incast problem [45], and the TCP re-
transmission timeout, which is equal to 200 milliseconds by
default in Linux.

It is interesting to note that if we subtract these undesired
delays from the measured execution time we obtain a value
extremely close (within a few percents) to the simulated
time given by SMPI. If we managed to fix this undesired
TCP behavior inducing network collapse, our prediction
would thus be quite faithful. Note that the speedup pre-
diction has a quite surprising shape since it shows a linear
increase from 8 to 32 followed by a plateau between 32 and
64 and finally a linear increase from 64 to 128. This non-
convex shape can be explained by the hierarchical structure
of the graphene cluster and by the fact that network load
is better balanced when using the whole cluster than when
restricting to only two cabinets.

7.5 MPI Runtime Tuning

As explained in Section 4, the optimization of the perfor-
mance of MPI collective operations has received a lot of
attention [8], [32], [46] and to ensure a faithful modeling, we
have implemented in SMPI all the collective algorithms and
selection logics of several standard MPI implementations.
This effort allowed for better understanding of the differ-
ences between these implementations, and let us to consider
whether the default choices for a given application on a
given machine are optimal. As an illustration we investigate
the performance of the MPI_Alltoall operation on a hy-
pothetical version of the graphene cluster with 4 cabinets of
256 nodes each. Since we had no a priori on which region of
the parameter space was the most interesting, we sampled
the message size in [32 kB; 2 MB] and the number of nodes
in [1; 1,024] and test each of the 15 implementations of this
collective operation. Some of them being simple variations
on a theme and thus having very similar performance, we
only report the performance of the 10 most interesting traces
in Figure 12. Durations are normalized by the message size.

First, it is easy to see that for most algorithms, the
performance of the collective operation is linear with the
number of processes and that a sharp behavior change
can be observed when using more than a single cabinet
(above 256 nodes). The graphs on the left hand-side thus
show a zoom on the single cabinet scenario. Three groups
of collective operations can then be distinguished. Some
(2dmesh, 3dmesh, and rdb) are clearly inappropriate for
such topology and have very bad performance while two
others (basic_linear and bruck) achieve systematically op-
timal and stable performance. Interestingly, the method
selected by all MPI implementations only achieves near
optimal performance. In most scenarios the performance is
excellent but for some combinations of message size and
number of processes, it can be up to twice as bad as what
could be achieved with the bruck algorithm. Although such
an outcome may have easily been forecast by an expert

algo 2dmesh 3dmesh rdb impi mpich mvapich2 ompi ring basic_linear bruck
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Figure 12: Evaluation of various algorithms for the
MPI_Alltoall operation.

on such algorithms, we think it is not that trivial even for
an advanced MPI user. We thus contend that SMPI-based
simulation could allow typical users to determine reliably
and at low cost which MPI configuration is the best for a
given application on a given machine.

7.6 Using SMPI in Teaching Contexts

Teaching MPI programming to post-graduate students is
both very important to avoid any future shortage of spe-
cialists, and very challenging if the students need to be
granted an access to HPC systems. Indeed relying on real
parallel platforms is often inadequate for "beginners". First,
this teaching usage competes with the usual production
workloads and misguided experimentation from students
often disrupts these systems. Second, as an instructor, it is
often very tempting to build on the student’s observations
and wish they could experiment on a machine with a better
network, more nodes, a different topology, or more hetero-
geneous nodes. This would undoubtedly allow the students
to better understand some principles, but reminding them
they have only access to limited resources is not great
pedagogy. Another issue issue is that transient network
problems and hardware failures can negatively affect the
performance of applications, clouding the intended lesson.
As a final consideration, often before an assignment is due
students will compete for the machine with other users and
with each other, which leads to frustration if the machine is
small or quite busy.

Relying on a simulator presents many advantages to
teach HPC systems to post-graduate students [47]. Students
do not have to experience all the burden of using a real
platform, which facilitates their education. Simulations are
repeatable, reliable, and fast and allow students to explore
many scenarios, which is a huge pedagogical advantage.
SMPI is now used in a curriculum at University of Hawai‘i
at Manoa. One of the typical assignments2 consists in imple-
menting several broadcast algorithms, using SMPI to eval-
uate their performance on several topologies, and compare

2. https://simgrid.github.io/SMPI_CourseWare/

https://simgrid.github.io/SMPI_CourseWare/
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them with classical implementations. In such context, the
on-line simulation capability of SMPI is extremely precious
as students can run all these experiments directly on their
own laptop without having to resort at any time to a parallel
computer (unlike what would be required with off-line
simulation). Being able to easily change network parameters
and topology helps students grasp the different tradeoffs at
stake. The native tracing capability of SMPI and its ability
to also trace the internals of collective operations was also
reported to be very helpful.

8 CONCLUSION

In this paper we have argued that the complexity of cur-
rent and next-generation large-scale distributed systems
mandates a simulation-based approach to modeling the
behavior of these systems and the algorithms that run on
them. We proposed a number of use-cases that should be
supported by a unified system for simulating distributed
systems, and discussed the problems inherent in creating
computationally efficient simulations that accurately model
real-world behavior. Finally, we showed how SMPI supports
these use cases, validated the network models used by
SMPI through a series of experiments, and discussed the
similarities and differences between SMPI and a number of
competing projects for simulating distributed systems.

We left other HPC use cases that are not strictly related to
the SMPI framework out of the scope of this paper. We refer
the reader interested in the use of SimGrid for the formal
verification of HPC applications to [48] or in the support of
higher-level HPC runtimes for hybrid (multi-core and multi-
GPUs) platforms to [49]. Simulating applications leveraging
both MPI and CUDA at a larger scale than what is presented
in this article is part or our ongoing work.
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