
HAL Id: hal-01417004
https://hal.inria.fr/hal-01417004

Submitted on 15 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reachability and Error Diagnosis in LR(1) Parsers
François Pottier

To cite this version:
François Pottier. Reachability and Error Diagnosis in LR(1) Parsers. CC 2016 - 25th International
Conference on Compiler Construction, Mar 2016, Barcelone, Spain. pp.11, �10.1145/2892208.2892224�.
�hal-01417004�

https://hal.inria.fr/hal-01417004
https://hal.archives-ouvertes.fr

Reachability and Error Diagnosis in LR(1) Parsers

François Pottier
Inria, Paris, France

Francois.Pottier@inria.fr

Abstract
Given an LR(1) automaton, what are the states in which an error can
be detected? For each such “error state”, what is a minimal input
sentence that causes an error in this state? We propose an algorithm
that answers these questions. This allows building a collection of
pairs of an erroneous input sentence and a (handwritten) diagnostic
message, ensuring that this collection covers every error state, and
maintaining this property as the grammar evolves. We report on an
application of this technique to the CompCert ISO C99 parser, and
discuss its strengths and limitations.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Parsing

Keywords Compilers, parsing, error diagnosis, reachability

1. Introduction
LR parsers are powerful and efficient, but traditionally have done a
poor job of explaining syntax errors. Although it is easy to report
where an error was detected, it seems difficult to explain what has
been understood so far and what is expected next.

This is due in part to the fact that an LR parser is fundamentally
a non-deterministic machine. Several possible interpretations of
what has been read so far are explored in parallel, and with each
such interpretation, comes a view of what is expected next.

This is due also to the fact that information about possible
pasts and futures is partly static (encoded in the current state of
the automaton) and partly dynamic (encoded in its stack). When
constructing an error message, static information is easy to exploit,
whereas dynamic information seems more difficult to exploit, as it
is not obvious how to walk the stack and summarize its contents.

Jeffery’s Approach It seems tempting to select an error message
based purely on static information, that is, based solely on the
state in which the error is detected, regardless of the stack. Jef-
fery [9] describes such an approach. He suggests manually setting
up and maintaining a collection of erroneous input sentences, each
of which is accompanied with a diagnostic message. From this data,
his tool, merr [8], automatically produces a mapping of states to di-
agnostic messages1.

1 Jeffery argues in favor of considering not only the current state, but also
the next input symbol. However, in his Unicon parser, he seems to make
little use of this feature. We restrict our attention to just the current state.

[Copyright notice will appear here once ’preprint’ option is removed.]

This collection of erroneous input sentences should ideally be
correct (i.e., every sentence is erroneous), irredundant (i.e., no two
sentences lead to the same state), and complete (i.e., every state
where an error can occur is reached by some sentence).

Enforcing correctness and irredundancy is straightforward, and
indeed, merr offers these features. However, it offers no support for
achieving completeness, or determining whether completeness has
been achieved. In fact, merr is independent of the parser generator,
and does not have access to the grammar or automaton. All it does
is run the generated parser and find out in what state the parser fails.

Faced with this problem, Jeffery advocates manually “growing”
the collection over time. The collection is initially built by an
expert, who studies the grammar and the automaton, and grown
as end users report erroneous inputs that are not covered.

In this paper, we improve on Jeffery’s approach by providing
a way of enforcing completeness. Furthermore, we experimentally
evaluate this approach via a real-world case study.

Improving Jeffery’s Approach We believe that it is important to
have automated ways of (1) initially building a complete collection
of erroneous sentences and (2) testing whether a collection of
erroneous sentences is complete. We leave it up to the human expert
to write the accompanying diagnostic messages and (if needed) to
alter the grammar so as to make errors easier to explain.

In order to provide the facilities described above, we need the
ability to produce a complete set of error states, together with input
sentences that cause an error in each of these states. This in turn
reduces to the problem of reachability in an LR(1) automaton,
which can be stated as follows:

Given: A state s and a terminal symbol z.
Find: A minimal sentence w such that, when presented
with the input wz, the automaton consumes w (leaving z
unconsumed) and reaches state s. Or report that no such
sentence exists.

The automaton is not necessarily canonical (see §2.5 for details),
otherwise the problem would be trivial (§6). We note that there is
an obvious semi-algorithm for this problem: try all sentences w in
turn, by increasing order of length, until one is found that satis-
fies the desired property. This procedure terminates if and only if
state s with lookahead symbol z is reachable. It does not solve the
reachability problem.

After an informal look at the problem (§2), we present a novel
algorithm that solves it (§3). We have implemented this algorithm
in the Menhir parser generator [14]. We present experimental data
suggesting that the algorithm, although expensive, can be applied to
real-world grammars with tolerable time and space requirements.

Evaluating Jeffery’s Approach With the help of this algorithm,
we handcraft a complete collection of diagnostic messages for the
CompCert ISO C99 parser [12]. We draw several lessons from this
experience.

1 2016/2/12

We find that, given a sentence w that causes an error in state s,
it is a nontrivial task to come up with a correct diagnostic message,
let alone a “good” one. The message must not be specific of the
particular input sentence w, but must reflect all sentences that lead
to an error in state s. It must explain what it means to be in state s,
and nothing else. It must recall the past (what has been recently
read) and explain what are the valid futures (what is expected next).
A key problem is that, based on the current state alone, giving an
accurate list of the valid futures is not only difficult, but in fact
impossible in some cases.

This is a weakness of Jeffery’s static approach, which does not
seem to have been previously pointed out. In an LR(1) automaton,
there may be certain states where, without consulting the stack, one
cannot avoid an over-approximation in the set of valid futures. Yet,
such an over-approximation sounds rather undesirable. It would
seem quite strange if the parser said: “Either I expect a closing
parenthesis or I expect a closing bracket, but I can’t tell you which”.
This problem is frequent in noncanonical LR(1) automata, but also
arises in canonical automata, if one wishes to describe the valid
futures beyond one terminal symbol.

We explain this problem (§4) and offer two ways of working
around it. One way involves transforming the grammar, and relies
on Menhir’s existing support for parameterized rules. The other
way involves adding reduction actions to the automaton, and is
made possible by a new declaration, %on_error_reduce, which
we add in Menhir. In CompCert, we exploit both ways (§5) and
successfully work around the problem: our diagnostic messages
never over-approximate the set of valid futures. Thus, Jeffery’s
approach is workable after all, but requires care.

The dual issue, whereby a diagnostic message may under-
approximate the set of valid futures, also arises, due to “spurious re-
ductions”. We explain this phenomenon (§4). Under-approximation
seems difficult to avoid, but (we believe) is tolerable, and in fact
profitable, in many situations.

For instance, in missing.c (Figure 7), on line 2, after reading
an incomplete expression, one encounters an invalid token, a semi-
colon. Instead of listing the dozens of ways in which this expression
could be continued, it seems preferable to point out that a closing
parenthesis is eventually required. Our diagnostic message uses the
hypothetical form “If this expression is complete, then . . . ”. This
is our conventional way of pointing out that the list of futures pro-
posed in the message is incomplete. In comparison, clang 3.6.0
and gcc 5.3.0 achieve a similar result, but (perhaps intentionally)
do not point out that there are valid futures other than a closing
parenthesis.

As we worked on a list of diagnostic messages for CompCert’s
parser, we made a series of changes to the grammar and automaton
(without affecting the language), so as to limit the number of error
states and so as to ensure that an accurate diagnostic message
could be written for every error state. The reachability algorithm
in Menhir was a key help in understanding the landscape of the
error states, in guessing which changes to the grammar would be
helpful, and in maintaining the partial list of messages built so far,
by pointing out which error states were not yet covered and which
were covered several times. In the end, we believe that this case
study provides some evidence that, with appropriate tools, Jeffery’s
approach to error diagnosis in LR parsers is viable.

We do not attempt to offer an exhaustive comparison between
CompCert’s diagnostic messages and (say) clang’s and gcc’s.
Such a comparison would inevitably be lengthy and subjective. We
believe it is fair to say that the quality of CompCert’s diagnostic
messages is now on par with that of clang and gcc. (We consider
only syntax errors; type errors and semantic errors are outside the
scope of this paper.) This should help dispel the myth that “LR
parsers (or: generated parsers) cannot produce good syntax error

messages”. In fact, not only do we obtain arguably good diagnostic
messages, but, furthermore, we retain the comfort of generating
the parser from two separate declarative specifications (namely, the
grammar and the collection of diagnostic messages).

2. Approaching the LR(1) Reachability Problem
The LR(1) reachability problem is as follows: given a state s and
a terminal symbol z, determine whether the automaton can reach
a configuration (s, z) where the current state is s and the first
unconsumed symbol is z. As in our earlier statement of the problem
(§1), one may additionally ask for a minimal sentence w such that,
when presented with the input wz, the automaton consumes w and
reaches the configuration (s, z). One should also define exactly
what is meant by “an LR(1) automaton”; this is done in §3.

2.1 Why Solve this Problem?
Once this problem is solved, it is easy to test whether a state s is
an error state (that is, whether an error can be detected in state s).
Indeed, it suffices to test if there exists a symbol z such that the
configuration (s, z) is reachable and this configuration causes an
error. Therefore, once this problem is solved, it is easy to build a
complete list of error states and to test whether a given list of error
states is complete.

2.2 Why we Must Care about the Lookahead Symbol
Reachability in an ordinary finite-state automaton coincides with
graph reachability in the automaton’s state diagram. In that setting,
the reachability problem can be solved, say, by breadth-first search.

An LR(k) automaton, too, gives rise to a state diagram. Figure 2
offers an example2. An edge in this diagram is labeled either with
a terminal symbol z ∈ Σ or with a nonterminal symbol A ∈ N .

In the restricted case where the grammar is LR(0) and every
terminal symbol generates a nonempty language, reachability still
coincides with graph reachability: that is, the LR(0) automaton can
reach a state s if and only if there is a path towards s in the state
diagram. Indeed, suppose there is such a path. The labels found
along this path compose a sentential form α ∈ (Σ ∪ N)?. Let
w ∈ Σ? be some sentence generated by α. (There must be one.)
It is not difficult to see that, when presented with the input w, the
LR(0) automaton will transition (in several steps) from its initial
state to the state s, regardless of the remaining input. Therefore,
s is reachable.

In general, unfortunately, we are not interested just in LR(0)
grammars and LR(0) automata. Our grammars may lie outside the
class LR(1): that is, they may exhibit LR(1) conflicts. Our automata
are LR(1) automata: that is, their reduction actions depend on the
lookahead symbol.

In such a setting, the problem can no longer be cast as a graph
reachability problem. When there is an edge from s to s′ labeled
with a nonterminal symbol A, we cannot simply ask: “to take
the edge from s to s′, which sentence w should the automaton
consume?”. A more sensible question could be: “to take the edge
from s to s′, which sentence w should the automaton consume,
assuming that the input symbol following w is z?”.

2.3 Why we Must Care about the First Symbol
A further complication arises when we look at a sequence of two
nonterminal edges, from s through s′ to s′′. To choose a sentencew

2 The grammar, shown in Figure 1, is in the syntax of Menhir [14]. The
braces {} denote empty semantic actions. This grammar is ambiguous;
precedence declarations are used to “solve” conflicts. In the state diagram,
the states where a reduction is permitted are doubly circled. The diagram
does not show under which lookahead hypothesis each reduction is permit-
ted, so this is really a diagram of the underlying LR(0) automaton.

2 2016/2/12

(* The terminal symbols. *)
%token<int> INT
%token PLUS TIMES LPAREN RPAREN EOL
(* Precedence declarations. *)
%left PLUS %left TIMES %nonassoc UPLUS
(* The start symbol. *)
%start <unit> main
%%
(* The productions. *)
main: expr EOL {}
expr:
| INT {}
| LPAREN expr RPAREN {}
| expr PLUS expr {}
| expr TIMES expr {}
| PLUS expr %prec UPLUS {}

Figure 1. A grammar.

00 01
PLUS

02

LPAREN

03

INT

11

main 12

expr

PLUS

LPAREN

INT

10

expr

PLUS

LPAREN

INT

04expr

05

TIMES

07

RPAREN

08

PLUS

PLUS

LPAREN

INT

06
expr

PLUS

LPAREN

INT

09
expr

TIMES

TIMES

PLUS

13

EOL

Figure 2. An LR(1) automaton for the grammar of Figure 1.

00 01
PLUS

02

LPAREN

03

INT

11

main 12

expr

PLUS

LPAREN

INT

10

expr

PLUS

LPAREN

INT

04expr

05

TIMES

07

RPAREN

08

PLUS

PLUS

LPAREN

INT

06
expr

PLUS

LPAREN

INT

09
expr

TIMES

TIMES

PLUS

13

EOL

Figure 3. The star rooted at state 02 (§2.4).

that takes us through the first edge, we need to know which input
symbol z follows w. Here, z is the first symbol of the sentence w′

that takes us through the second edge. (More precisely, because w′

could be empty, z must be the first symbol of the sentence w′z′,
where z′ is the input symbol that follows w′.) Thus, our choices
of w and w′ are interdependent. If somehow we have examined the
first edge and chosenw and z, then the next question that we should
ask is: “to take the edge from s′ to s′′, which sentencew′ should the
automaton consume, assuming that the input symbol following w′

is z′, and under the constraint that the first symbol of w′z′ must
be z?” This leads us to ask a family of questions whose parameters
are a nonterminal edge and two terminal symbols z and z′. (The
edge facts of §3 are answers to these questions.)

2.4 Why we Must Ask about Paths
We must account for reductions. In order to take an edge labeled A
from s to s′, the automaton must first follow a path labeledα, where
A→ α is a production. This path must lead from s to some state s′′

where reduction is permitted (subject to a lookahead hypothesis).
Reduction takes the automaton back to state s, where it follows
the edge labeled A towards s′. Thus, we must ask questions not
just about individual edges, but about paths: “to follow the path
labeled α from s to s′, which sentence w should the automaton
consume, . . . ?” This leads us to ask a family of questions whose
parameters are a path and two terminal symbols. (The facts of §3
are answers to these questions.)

For every state s, we are interested only in certain paths whose
source is s. More precisely, a path labeled α, whose source is s, is
of interest if (1) this path exists in the automaton and (2) s has
an outgoing edge labeled A and (3) A → α is a production.
(Furthermore, a prefix of a path of interest is of interest too.) We
refer to the set of these paths as the star rooted at s.

For example, Figure 3 shows the star rooted at state 02. The
vertices and edges in bold are part of the star, while the dashed
vertices and edges are not. By finding out how to travel through
this star, we can tell how the nonterminal edge from state 02 to
state 04 can be taken. Because the symbol expr has five produc-
tions, this star has five branches. Because a star is a set of paths,
one can think of it as a tree; however, once projected onto the
automaton’s state diagram, it can have sharing and cycles, as in
this example, where the branch that corresponds to the production
expr → LPAREN expr RPAREN goes from state 02 to itself, then
to states 04 and 07.

We define the size of the star rooted at s as the sum of the lengths
of the paths that compose it. In Figure 3, the size of the star rooted
at state 02 is 12 (the sum of the sizes of the productions for the
symbol expr), even though, once projected onto the graph, this
star involves only 10 graph edges. We define the total star size S as
the sum of the sizes of the stars rooted at every state s. This is the
number of paths of interest, as defined above. This parameter plays
a role in the complexity of the algorithm (§3). An upper bound on
it is S ≤ n.|G|, where n is the number of states of the automaton
and |G| is the size of the grammar, which we define as the sum of
the sizes of all productions.

2.5 Why we Must Tolerate Non-Canonical Automata
A practical parser generator does not usually build a canonical
LR(1) automaton. Instead, it may (1) merge several states together,
(2) introduce default reductions, (3) “solve” shift/reduce and re-
duce/reduce conflicts. Points (1) and (2) introduce new reduction
actions, whereas (3) removes shift actions and reduction actions
(possibly making certain states unreachable). Our algorithm toler-
ates these alterations. It accepts any LR(1) automaton that is sound,
but not necessarily complete, with respect to the grammar.

3. An LR(1) Reachability Algorithm
We assume that the automaton is described by two tables, which
indicate which transitions exist and which reductions are permitted.
On paper, we write:

A ` s c−→ s′

if there is a transition from state s to state s′ labeled with the
terminal or nonterminal symbol c; and we write:

A ` s reduces A→ α on z

if in state s it is permitted to reduce the production A → α when
the first unconsumed input symbol is z.

We very briefly recall the small-step dynamic semantics of LR
automata. A stack σ is a nonempty sequence of states. At every

3 2016/2/12

time, the automaton has a “current” stack. If the current stack is σ,
then its topmost element top(σ) is considered the “current” state.
When a (terminal or nonterminal) transition is taken, the target state
of the transition is pushed onto the stack, and therefore becomes
the current state. When a production A → α is reduced, |α| states
are popped off the stack, where |α| is the length of the sentential
form α. Thus, the stack that existed before α was recognized is
restored. Then, a transition labeled A is taken.

3.1 Specification
We begin with a specification of our algorithm, that is, a high-
level description of what the algorithm is supposed to compute. The
algorithm computes and accumulates facts of the following form:

s
α/w
−−−� s′ [z]

Let us recall that s and s′ are states; α is a sentential form, that
is, a sequence of terminal and nonterminal symbols; w is a sen-
tence, that is, a sequence of terminal symbols; z is a terminal sym-
bol. Let us note also that, because the automaton is deterministic,
the state s and the sequence of edge labels α together determine
at most one path in the automaton’s state diagram. We are inter-
ested in such a fact only if it is of interest, that is, only if the path
labeled α out of s is of interest (§2.4). Such a fact is informally
interpreted as follows:

The path determined by s and α, which leads to s′, is taken
by consuming w, provided the next input symbol is z.

or, put another way:

If the automaton is in state s and the remaining input begins
with wz, then the automaton makes a series of transitions
along the path α, consuming w and ending up in state s′.

This informal interpretation does not mention the automaton’s
stack. In order to make the meaning of a fact completely clear, let us
explicitly state how the stack evolves. When the automaton makes
a series of transitions along a path labeled α, the |α| states found
along this path are pushed onto the stack. Thus, in full detail, the
interpretation of a fact is:

INTERPRETATION OF s
α/w
−−−� s′ [z].

Let s0 . . . sn be the states found along the path labeled α
out of s. (Thus, s0 is s and n is |α| and sn is s′.)

For every stack σ,
if the current stack is σ where top(σ) = s0
and if the remaining input begins with wz,
then w is consumed and the current stack becomes σs1 . . . sn.

It may be worth noting that s and α together determine s′. Thus,
we could have chosen not to mention s′ at all in our notation for
facts. Yet, it seems preferable, for the sake of readability, to include
it. Conversely, one may wonder whether s and s′ determine α.
If that were the case, then we could omit α in our notation for
facts. However, this is not true: there can be several distinct paths,
carrying distinct sequences of edge labels, from s to s′.

The algorithm also computes and accumulates edge facts of the
following form:

s
A/w−−−→ s′ [z]

This looks very much like a fact, and indeed, its informal inter-
pretation is the same: we take such an edge fact to mean that the
edge labeled A from s to s′ is taken by consuming the input w,
provided the next input symbol is z. Yet, formally, we distinguish
the “fact” and “edge fact” predicates: notice the double arrowhead
in a fact, versus the single arrowhead in an edge fact. On paper, this
leads to a simple (mutually inductive) characterization of these two

predicates. Furthermore, in the implementation, we actually keep
track of facts and edge facts in two separate data structures.

The “fact” and “edge fact” predicates can be inductively charac-
terized: they are the least predicates that satisfy the deduction rules
in Figure 4. The first three rules characterize the “fact” predicate,
whereas the last rule characterizes the “edge fact” predicate.

Rule INIT asserts a zero-transition fact. It asserts that, regardless
of the next input symbol z, we can go from state s to itself via
an empty path and by consuming nothing. (ε stands for the empty
word.) Rule STEP-TERMINAL extends a fact with one new transition,
labeled with a terminal symbol z. It asserts that, if we can reach
state s′ under the assumption that the next input symbol is z,
and if the automaton has a transition labeled z from s′ to s′′,
then we can reach state s′′. This holds regardless of the input
symbol z′ that follows z. Rule STEP-NONTERMINAL extends a fact
with one new transition, labeled with a nonterminal symbol A.
Its first two premises are analogous to those of STEP-TERMINAL.
Some complication stems from the fact that A is a nonterminal
symbol. In order to take the transition labeled A from s′ to s′′, we
must consume an input fragment w′ and beyond it see a lookahead
symbol z′ that cause this transition to be taken. This is expressed
by the third premise, which is an edge fact. We would then like
to conclude that, by consuming ww′ and beyond it seeing z′, we
move all the way from state s to state s′′. For this to be the case,
one condition remains to be checked, which is expressed by the
fourth premise. Indeed, the first premise contains the hypothesis
that the first input symbol beyond w is z. We must ensure that this
hypothesis is satisfied: hence, we must check that the first symbol
of the sentence w′z′ is z. (We write first(w′z′) for the first symbol
of the nonempty sentence w′z′. This has nothing to do with the
notion of a “FIRST set”.) Finally, rule REDUCE spells out when
an edge fact holds, that is, under which conditions a nonterminal
transition can be taken. In short, we can take a transition labeled A
from s to s′′ if and only if (premise 2) we are able to travel from s,
along a path labeled α, to some state s′ where (premise 3) the
production A→ α can be reduced.

The “fact” and “edge fact” predicates can be viewed as a big-
step dynamic semantics of LR automata. In contrast with the small-
step dynamic semantics, it does not mention the stack. (It need
not mention it, because it treats the stack in a uniform way: the
interpretation of facts begins with “For every stack σ, . . . ”) Thus,
it has a “finite-state” flavor that is of critical importance in the
algorithm.

In this paper, we take it for granted that this big-step dynamic
semantics is correct and complete with respect to the small-step
semantics. In principle, one should prove the two semantics equiv-
alent. We anticipate no difficulty in this proof.

The purpose of our algorithm should now begin to be apparent:
roughly speaking, the algorithm computes all valid facts (and edge
facts), that is, all possible ways of traveling in the automaton’s
state diagram. Of course, there may be (and there usually is) an
infinite number of them. We limit the set of facts (and edge facts)
that the algorithm gathers by introducing a subsumption relation on
facts (and edge facts). The subsumption relation between two facts,
written f1 ≤ f2, means that f1 is “better” than f2. This implies
that, if we have already discovered and recorded f1, then we do not
need to record f2. This relation is defined as follows:

SUBSUMPTION
first(w1z) = first(w2z) |w1| ≤ |w2|

s
α/w1−−−−� s′ [z] ≤ s

α/w2−−−−� s′ [z]

(The subsumption relation between two edge facts is defined simi-
larly.) This definition implies that two facts can be in the subsump-
tion relation only if they concern the same path (namely, the path
labeled α out of s to s′), the same lookahead hypothesis (namely, z)

4 2016/2/12

INIT

s
ε / ε
−−−� s [z]

STEP-TERMINAL

s
α/w
−−−� s′ [z] A ` s′ z−→ s′′

s
αz /wz
−−−−−� s′′ [z′]

STEP-NONTERMINAL

s
α/w
−−−� s′ [z] A ` s′ A−→ s′′

s′
A/w′
−−−−→ s′′ [z′] z = first(w′z′)

s
αA/ww′

−−−−−−� s′′ [z′]

REDUCE

A ` s A−→ s′′ s
α/w
−−−� s′ [z]

A ` s′ reduces A→ α on z

s
A/w−−−→ s′′ [z]

Figure 4. Inductive characterization of the “fact” and “edge fact” predicates.

and the same first input symbol (namely, first(w1z), also known as
first(w2z)). Under these conditions, the sentences w1 and w2 are
just two ways of achieving exactly the same effect, so it suffices to
record one of them. We record one whose length is minimal.

The purpose of the algorithm can now be reformulated in a more
precise manner. The algorithm constructs a set F of facts of interest
that is complete up to subsumption. In other words, if some fact f2
is of interest and can be obtained by applying the rules of Figure 4,
then F contains a fact f1 such that f1 ≤ f2 holds. Similarly, the
algorithm constructs a set of edge facts E that is complete up to
subsumption.

We can bound the size of the sets F and E, as follows. Thanks
to subsumption, for every path labeled α out of s, for every first
input symbol first(wz), and for every lookahead hypothesis z, the
set F contains at most one fact. Furthermore, the number of paths
of interest is at most S, the total star size (§2.4). Thus, we have
|F | ≤ S.|Σ|2. Similarly, we have |E| ≤ m.|Σ|2, where m is the
number of edges labeled with a nonterminal symbol.

3.2 Algorithm
Pseudocode for the algorithm is given in Figure 5. It follows the
rules of Figure 4 quite closely, so we do not explain it in detail. In
addition to the sets F and E, which have been mentioned already,
the algorithm uses a priority queue Q to store a set of facts that
await further examination. The priority of a fact is the length of
its component w, so facts that concern shorter input sentences are
examined (and, if not already known, recorded) first.

At a high level of abstraction, the algorithm can be viewed as
a variant of Dijkstra’s shortest paths algorithm. In Dijkstra’s algo-
rithm, there is a single source vertex, and the graph edges are fixed
and known ahead of time. Here, every vertex s is a source: one
could say that we are running, in parallel, one instance of Dijk-
stra’s algorithm out of every source s. Furthermore, these instances
communicate with one another: when a path to a certain vertex is
discovered in one instance, a new edge may be created (indeed, this
is one reading of rule REDUCE), which becomes immediately visi-
ble to all instances. Fortunately, in rule REDUCE, the weight of the
newly-created edge is no less than the weight of the path that caused
its creation. (Both weights are |w|.) This allows us to properly syn-
chronize all instances via a single priority queue and maintain the
key property that a fact, once recorded, can never be subsumed by
a newly discovered fact.

The time complexity of the algorithm is clearly polynomial in
|Σ|, the size of the input alphabet, n, the number of states of the
automaton, and |G|, the size of the grammar. An informal analysis
suggests that it is O(S.|G|.|Σ|3), where the total star size S is
bounded by n.|G| (§2.4).

3.3 Implementation Details
We assume |Σ| ≤ 28 and represent a terminal symbol as an 8-
bit character and a sentence w as a character string. (This is not
essential. We could remove this assumption and use lists of integers
instead of strings.) On top of this, we impose maximal sharing
(i.e., hash-consing) of sentences. In practice, the number of unique
sentences is small. (For instance, in one run of the algorithm,

3.7 million facts were recorded in F , but the number of unique
sentencesw was less than 3.104.) We assign a unique index (a small
integer) to each sentence: this allows us to encode a reference to a
sentence in less than one word of memory.

We precompute the star rooted at every state s. This yields a trie,
that is, a tree structure where each edge towards a child is labeled
with a terminal or nonterminal symbol. The total number of trie
nodes thus constructed is S, the total star size. In the grammars that
we have seen, this number is under 105. We assign a unique index
to each trie node: this allows us to encode a reference to a path of
interest (that is, a triple of s, α and s′) in less than one word of
memory.

A fact is in principle a record of three fields: a path (s, α, s′), a
sentence (w), and a lookahead symbol (z). Thanks to the encodings
described above, we are able to pack this information in one 64-bit
word of memory, thus avoiding the need to allocate facts as records.
Compared to heap allocation of facts, this low-level encoding saves
roughly a factor of two in space.

Since priorities are low nonnegative integers, a simple-minded,
array-based priority queue can be used. Priorities serve as array
indices. The total worst-case complexity of k insertion and k ex-
traction operations is O(k) + O(p), where p is the largest priority
that is ever used. In practice, p is very small (say, 15) while k is
very large (in the millions), so the amortized complexity of the pri-
ority queue operations is effectivelyO(1). This data structure beats
a binary heap (stored in an array) by a significant factor: the global
impact of this choice is a factor of roughly two in execution time.

The set of facts F must support the following operations.

1. Test whether a fact s
α/w
−−−� s′ [z] is new (i.e., not subsumed by

some fact already in F) and if so, add it to F . This is used in
the main loop.

2. Given s′ and z, enumerate all facts in F of the form s
α/w
−−−�

s′ [z]. This is used in procedure STEP-NONTERMINAL-RIGHT.

The set of edge facts E must support the following operations:

1. Test whether an edge fact s
A/w−−−→ s′ [z] is new (i.e., not

subsumed by some edge fact already in E) and if so, add it
to E. This is used in procedure REDUCE.

2. Given s,A, z, z′, enumerate all sentences w such that s
A/w−−−→

s′ [z′] is in E and z = first(wz′). This is used in procedure
STEP-NONTERMINAL-LEFT.

An efficient implementation of F and E requires a little thought,
but can be built (in several ways) with off-the-shelf data structures
(arrays, association maps, hash tables, bit sets).

3.4 Optimizations
We implement two optimizations that are not reflected in the pseu-
docode of Figure 5.

We construct and examine a fact s
α/w
−−−� s′ [z] only if z does

not cause an error in state s′, that is, only if the state s′ has a
(shift or reduce) action on z. It would be useless to consider a fact

5 2016/2/12

procedure STEP-TERMINAL(s
α/w
−−−� s′ [z])

for each s′′ such that A ` s′ z−→ s′′ do
— there is at most one such s′′

for each z′ do
insert the fact s

αz /wz
−−−−−� s′′ [z′] into Q

procedure STEP-NONTERMINAL-LEFT(s
α/w
−−−� s′ [z])

for each A and s′′ such that A ` s′ A−→ s′′ do
for each edge fact s′

A/w′
−−−−→ s′′ [z′] in E

such that z = first(w′z′) do

insert the fact s
αA/ww′

−−−−−−� s′′ [z′] into Q

procedure STEP-NONTERMINAL-RIGHT(s′
A/w′
−−−−→ s′′ [z′])

for each fact of the form s
α/w
−−−� s′ [z] in F

such that z = first(w′z′) do

insert the fact s
αA/ww′

−−−−−−� s′′ [z′] into Q

procedure REDUCE(s
α/w
−−−� s′ [z])

if A ` s′ reduces A→ α on z then
for each s′′ such that A ` s A−→ s′′ do
— there is exactly one such s′′

let e be the edge fact s
A/w−−−→ s′′ [z]

if e is not subsumed by any edge fact in E then
insert e into E
call STEP-NONTERMINAL-RIGHT(e)

procedure REACHABILITY()
Q,F,E ← ∅
for each s and z do

insert the fact s
ε / ε
−−−� s [z] into Q

while Q is nonempty do
take out of Q a fact f of minimal sentence length
if f is not subsumed by any fact in F then

insert f into F
call STEP-TERMINAL(f)
call STEP-NONTERMINAL-LEFT(f)
call REDUCE(f)

Figure 5. The reachability algorithm.

that violates this property, as such a fact could not possibly lead
to a successful reduction. In practice, this optimization reduces the
number of facts that go through the priority queue by a factor of
roughly two.

We note that rule STEP-TERMINAL has a terminal symbol z′ in
its conclusion, which does not appear in the premises. Provided
its premises are satisfied, the rule can be applied to every terminal
symbol z′, thus producing |Σ| similar-looking conclusions. In the
implementation, instead of actually generating and recording |Σ|
distinct facts, we record just one summary fact, whose lookahead
hypothesis takes the form [_]. This complicates the code, but saves

●

●

●●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●
●

●

●

●●

●

●

●

●CompCert

●Unicon

100

1000

100 1000

grammar size

#
 s

ta
te

s

●
●

●●
●

●

●●

●●
●

●

●●

●

●●

●

●

●

●●

●

●

●

●●

●●

●

● ●
●●
●●

●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●●● ●●●
● ●

●
●●
●
●● ●

●● ●●●●●
●

●●
● ●

●
●

● CompCert

●Unicon

10

1000

1e+05 1e+06 1e+07

recorded facts

ti
m

e
 (

s
e

c
o

n
d

s
)

●

●
●

●
●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●
●●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●●●

●
●● ●

●● ●●●●●
●

●
●

●
●●

●

●
CompCert

●Unicon

100

10000

1e+05 1e+06 1e+07

recorded facts

m
a

x
 h

e
a

p
 s

iz
e

 (
M

b
)

●

●

●
●

●

●

●

●

● ●
●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●
●

●
●
● ●
●●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

● ●
●

●
●

●● ●●
●

●
●

●
●

● ● ●●

●● ●
●
●

● ●

●CompCert

●Unicon

1e+05

1e+06

1e+07

1e+07 1e+08 1e+09

total star size * # terminals ^ 2

#
 r

e
c
o

rd
e

d
 f
a

c
ts

Figure 6. Performance aspects of the reachability algorithm.

time and space: we observe a reduction of a factor of up to two in
the number of facts that we record.

3.5 How to Build a Complete Collection of Erroneous Inputs
Once the reachability algorithm has run, the edge facts in the set E
tell us exactly how each nonterminal transition can be taken. Based
on this information, we define an (implicit) graph whose vertices
are pairs of a state s and a lookahead symbol z, and whose edges
are labeled with sentences w. This graph has an edge labeled w
from (s, z) to (s′, z′) if and only if either:

1. A ` s z−→ s′ holds and w is the singleton sentence z; or

2. E contains an edge fact s
A/w−−−→ s′ [z′] and z = first(wz′).

We then run Dijkstra’s shortest paths algorithm on this graph. The
source vertices are (s, z), where s is an initial state. The target
vertices are (s, z), where s has an error on z. If we find that a target
vertex (s, z) can be reached via a (shortest) path whose labels form
the sentence w, then the sentence wz is a (minimal) sentence that
causes an error in state swith lookahead symbol z. If a target vertex
(s, z) cannot be reached, then it is impossible to cause an error in
state swith lookahead symbol z. This computation seems relatively
cheap. In our measurements, it is typically 10 times faster than the
reachability algorithm.

3.6 Performance Aspects
We ran the reachability algorithm (including the postprocess-
ing phase of §3.5) on a 40-core Intel Xeon running at 2.4GHz,
equipped with 1Tb of RAM3. We tried over 200 grammars found
in Menhir’s test suite, using LALR as the construction method. Of
these, 85 required at least 0.25 seconds of processing time. All of
these are “real-world” grammars. We measured several aspects of
the algorithm’s performance, a few of which appear in Figure 6.
Every plot uses logarithmic scales.

The top-left plot shows that n, the number of states in the
LALR automaton, is correlated with |G|, the size of the grammar,
which we define as the sum of the sizes of the productions. The
estimated slope in the log-log diagram is 0.99, which shows that
the correlation is linear. This experimental data confirms Purdom’s
findings [15].

3 The algorithm is sequential, so does not benefit from multiple cores.
By today’s standards, this is a relatively slow machine. The large amount
of RAM and the ability to process many grammars in parallel are our
motivations for using this machine.

6 2016/2/12

The top-right plot shows that the time consumption is correlated
with the number of facts that are recorded in the set F upon com-
pletion. The estimated slope is 1.25: the running time grows super-
linearly with the number of facts. For the most difficult grammar in
our test suite, a PHP grammar, over 28 million facts are recorded,
and the time requirement is 1600 seconds.

The bottom-left plot shows that the space consumption is cor-
related with the number of facts. The estimated slope in the log-
log diagram is 1.05, so the correlation seems linear. The estimated
slope in the original diagram is 5.10−4, that is, about 500Mb per
million facts. For instance, for Unicon, (a newer version of) the
grammar considered by Jeffery [9], 12.6 million facts are recorded,
and the space requirement is 8Gb. For the PHP grammar mentioned
above, the space requirement is 21Gb.

The data points for CompCert and Unicon show that the size
of the grammar alone cannot be used to predict the resources re-
quired by the algorithm. Unicon’s grammar is smaller than Comp-
Cert’s; yet, it requires 20x as much time and leads to gathering 5x
as many facts. Furthermore, the time required to process Comp-
Cert’s grammar varies widely depending on which version of the
grammar one analyzes. The data shown here concerns the current
version. We note that we suffered a 3x slowdown after we added
%on_error_reduce declarations (§4).

The bottom-right plot shows |F |, the final number of facts, as a
function of S.|Σ|2. The estimated slope in the log-log diagram is
0.97, which suggests a linear correlation. This seems to echo the
theoretical bound |F | ≤ S.|Σ|2. That said, the fit does not seem
very good. We would like to better understand how to predict |F |
and (therefore) the algorithm’s space and time requirements.

4. Crafting Accurate Diagnostic Messages
A diagnostic message should describe the past (that is, how the
input so far has been interpreted) and the future (that is, what
is expected next). Ideally, one might think, a diagnostic message
should be correct (i.e., propose only valid futures) and complete
(i.e., propose all valid futures). One may decide to intentionally
abandon completeness, because listing all valid futures would lead
to verbose and complicated messages; but (we claim) one should
not inadvertently lose completeness.

Ideally, a future should be described using both terminal and
nonterminal symbols: saying that “an expression is expected” is
preferable to listing the dozens of terminal symbols that could
be the beginning of an expression. A future should sometimes
have length greater than one: saying “a comma, followed with an
expression, is expected” may be preferable to saying just “a comma
is expected”.

In our setting, where a fixed mapping of states to diagnostic
messages is established, and where the automaton is noncanonical,
ensuring that diagnostic messages are correct and complete can be
difficult. Indeed, the presence of spurious reductions compromises
both correctness and completeness. It is worth understanding this
phenomenon, not only in order to try and preserve one or both of
these properties, but also because (we claim) spurious reductions
can be exploited to our advantage and help produce concise and
correct diagnostic messages.

Loss of Correctness Correctness is compromised as follows. Say
a sentence wz leads to an error in state s, and this state has a reduc-
tion action on the terminal symbol z′. When writing a diagnostic
message for the state s, one might naively decide to list z′ as a
possible future. Yet, it may well be the case that the sentence wz′

causes an error, too! Then, this diagnostic message is incorrect.
(The reduction, in this case, is spurious; the error is detected only
after this reduction.)

For a concrete example of this phenomenon, take the gram-
mar of Figure 1 and extend it with a second kind of delimiters,
say, brackets. That is, add the production expr → LBRACK expr
RBRACK. The LALR automaton for this extended grammar con-
tains a state where reducing the production expr → expr PLUS
expr is permitted on both RPAREN and RBRACK. Yet, the diagnostic
message: “Either a closing parenthesis or a closing bracket is ex-
pected”, which the user interprets as: “You may choose between a
closing parenthesis and a closing bracket”, is incorrect. Depending
on what has been read previously, either a parenthesis is definitely
expected, or a closing bracket is definitely expected, but it is never
the case that both are accepted.

In a canonical automaton, if one describes a future by just one
terminal symbol, then this issue does not arise, as the lookahead
sets are never over-approximated. Yet, if one wishes to describe a
future beyond one terminal symbol, then the issue arises again. For
instance, in C99, imagine the parser detects an error while read-
ing a list of declaration-specifiers, such as static const. This
list could be the beginning of (1) a declaration, (2) a function-
definition, or (3) a parameter-declaration. In order to explain what
can come after this list, if it is finished, the parser needs to know
(and the user expects the parser to know) in which subset of these
three cases we are. For instance, if we are within a block, then
static const must be the beginning of a declaration: we are in
case {1}. On the other hand, if we are the top level, static const
could be the beginning of a declaration or function definition: we
are in case {1, 2}. Unfortunately, the answer to the question: “Are
we in a block, or at the top level?” is not static, that is, not encoded
in the current state of the automaton. Indeed, even a canonical au-
tomaton distinguishes only as many states as is necessary to stati-
cally tell which terminal symbols are permitted next. Here, the set
of permitted terminal symbols in cases {1} and {1, 2} is the same,
namely “variable identifier, type identifier, star, or opening paren-
thesis”. In summary, even in a canonical automaton, knowledge of
the current state is not sufficient to accurately describe what must
come next, beyond the first input symbol.

Loss of Completeness Completeness is compromised as follows.
Say a sentence wz′ leads to an error in state s′, and this state has
no action on some terminal symbol z. When writing a diagnostic
message for the state s, one might naively decide not to list z as a
possible future. Yet, it may well be the case that the sentence wz
does not cause an error! Then, this diagnostic message is incom-
plete. (The state s′, in this case, must have been reached via wz′

because of a spurious reduction; it may be the case that the sen-
tence wz does not cause this spurious reduction and does not lead
to the state s′.)

For a concrete example of this phenomenon, again take the
grammar of Figure 1, extend it with brackets, as above, and further
extend it so as to allow a comma-separated list of expressions,
abbreviated as snl(COMMA, expr)4, to appear between a pair of
matching parentheses or brackets. We now have the productions:

expr→ LPAREN snl(COMMA, expr) RPAREN
expr→ LBRACK snl(COMMA, expr) RBRACK

The LALR automaton for this grammar has a state (namely, state 7)
whose LR(1) items are as follows:

expr→ expr • PLUS expr [. . .]
expr→ expr • TIMES expr [. . .]

snl(COMMA, expr)→ expr • [RPAREN, RBRACK]
snl(COMMA, expr)→ expr • COMMA snl(COMMA, expr) [. . .]

In this state, reducing the production snl(COMMA, expr)→ expr
is permitted on both RPAREN and RBRACK. Because of this over-
approximation, some errors that “should” be detected in state 7

4 Menhir offers a parameterized nonterminal separated_nonempty_list
(sep, elem), which we abbreviate as snl(sep, elem).

7 2016/2/12

are detected elsewhere. For instance, the incorrect sentence LBRACK
INT RPAREN, where the wrong closing delimiter is used, first leads
the automaton into state 7, where a spurious reduction takes place,
leading the automaton to state 5, whose LR(1) items are as follows:

expr→ LBRACK snl(COMMA, expr) • RBRACK [. . .]

In state 5, the automaton “thinks” that the list of expressions is
finished and that the only valid future is a closing bracket, RBRACK.
Yet, the diagnostic message: “A closing bracket is expected” would
be incomplete. Indeed, it is clear that, after reading LBRACK INT,
the symbol RBRACK is not the only valid future: a complete list of
permitted terminal symbols at this point is PLUS, TIMES, COMMA,
and RBRACK. The symbols PLUS and TIMES are permitted because,
although INT forms an expression, perhaps this expression is not
finished. The symbol COMMA is permitted because, although INT
forms a list of expressions, perhaps this list of expressions is not
finished.

In summary, a spurious reduction can take the automaton into
a state where the set of possible futures is under-approximated. In
other words, a spurious reduction causes the automaton to commit
to a certain interpretation of the past and reduces the set of permit-
ted futures. The human expert must be aware of this phenomenon,
if she wishes to avoid (or, at least, control) incompleteness.

We believe that a good diagnostic message, in this case, could
be: “Up to this point, a list of expressions has been recognized. If
this list is complete, then a closing bracket is expected”. Such a
diagnostic message explicitly proposes only one future, namely a
closing bracket, but acknowledges the existence of others.

Spurious Reductions Considered Beneficial Spurious reductions
are not all that bad, after all. In the previous example, a spurious
reduction takes us out of state 7, where it is impossible to produce
a correct list of futures (because both RPAREN and RBRACK seem
legal), and (after looking up the stack) takes us to state 5, where it
is possible to produce such a list (because it is evident there that
RBRACK is legal, whereas RPAREN is not). By allowing a reduction
to take place, we are able to exploit dynamic information (that
is, we let the diagnostic message to depend on the contents of
the stack), and we recover correctness. The price to pay is that in
state 5, as explained above, we cannot produce a complete list of
futures.

In this light, spurious reductions seem helpful. So much so,
in fact, that we suggest artificially causing more of them. In the
previous example, in state 7, if the invalid token is RPAREN or
RBRACK, then a spurious reduction of the production snl(COMMA,
expr)→ expr takes place, but if the invalid token is INT, LPAREN,
or LBRACK, then it does not: there is no action on these symbols.
If reduction was allowed in these cases, too, then an error would
never be detected in state 7. Instead, the automaton would go to
state 5, where the error would be detected. We extend Menhir
with a new declaration, %on_error_reduce snl(COMMA, expr),
whose effect is precisely to add the missing reduction actions to the
automaton. This does not affect the language that is accepted by
the automaton, but affects the set of states in which errors can be
detected. For a more detailed explanation of this mechanism, see
Menhir’s documentation [14].

Selective Duplication Another way of recovering correctness,
without resorting to spurious reductions, is to split some states,
so as to make more information static. This is done by duplicat-
ing the definition of certain nonterminal symbols. We achieve this
by macro-expansion, without any actual duplication in the gram-
mar. The trick is to parameterize certain nonterminal symbols with
a phantom parameter, which encodes contextual information. For
instance, in C99, we equip declaration-specifiers with a parameter
that indicates whether we are within a block, at the top level, or
within a parameter declaration. As Menhir expands away param-

eterized nonterminal symbols, the effect is the same as if we had
defined three identical copies of declaration-specifiers. We obtain
an automaton where more states are distinguished, so that, in every
error state where a list of declaration-specifiers has just been read,
it is now possible to correctly list the valid futures. For a more de-
tailed explanation of selective duplication, see Menhir’s documen-
tation [14].

5. Application to CompCert C
We extend Menhir [14] with several commands for: (1) producing
from scratch a complete collection of erroneous sentences and
diagnostic messages; (2) checking that such a collection is correct,
irredundant, and complete; (3) maintaining this collection as the
grammar evolves; (4) compiling this collection down to an OCaml
function that maps a state number to a diagnostic message. More
details can be found in the reference manual [14].

The CompCert compiler [12] contains two C parsers, both of
which are constructed by Menhir. The “pre-parser”, which runs
first, is somewhat more complex, as it is in charge of distinguishing
type names and variable names; for this purpose, it contains a “lexer
hack”. It is currently unverified. Because it runs first, it is in charge
of detecting syntax errors. The “parser”, which runs next, is based
on the grammar found in the C99 standard. It is verified [10].

Using Menhir’s new features, we develop diagnostic messages
for CompCert’s pre-parser. We find at first that, due to a lack
of static information, there are error states for which it is not
possible to write a good diagnostic message. We work around
this issue via the static and dynamic techniques mentioned ear-
lier (§4), namely (1) selective duplication of nonterminal symbols
and (2) introduction of on %on_error_reduce declarations. Thus,
we modify the grammar and the automaton, without affecting the
language that is accepted. The pre-parser is described in the file
cparser/pre_parser.mly.

After fine-tuning, the grammar has 138 nonterminal symbols,
94 terminal symbols, and 353 productions. It gives rise to a 597-
state automaton. Our %on_error_reduce declarations cause re-
ductions to be added in 101 states, thus preventing the detection
of an error in any of these states. The reachability algorithm, ap-
plied to this automaton, gathers 2.4 million facts and 1.5 million
edge facts in approximately 29 seconds, using 550Mb of memory.
It reports that an error can occur in 212 states.

We manually inspect each of these states and write a collection
of 157 distinct diagnostic message templates, which is stored in the
file cparser/handcrafted.messages. Menhir compiles it to an
OCaml function that maps a state number to a message template.
This function is called from the file cparser/ErrorReports.ml,
where we construct and display a full-fledged diagnostic message.

We allow a message template to contain the special form $i,
where i is a literal integer index into the parser’s stack. We replace
this special form with the source text fragment that corresponds
to this stack entry. This feature is not built into Menhir; it is
implemented in CompCert using Menhir’s stack inspection API.
It helps explain how the input up to the error was interpreted.

For instance, in index.c (Figure 7), on line 3, a closing bracket
is missing after the first occurrence of the array index i. This error
is detected only upon reaching the semicolon. It is detected in a
state which contains the LR(0) item postfix_expression →
postfix_expression LBRACK expression . RBRACK among
others. This implies that an opening bracket and a well-formed
expression have been recognized, and that a closing bracket is
a valid continuation (although not the only one). The expression
that has just been recognized is currently the topmost entry in the
parser’s stack. Thus, we may use the special form $0 in the message
template: it is replaced at runtime with the underlying expression,
namely ’i = b[i] = 0’. In this example, although an error is

8 2016/2/12

https://github.com/AbsInt/CompCert/tree/master/cparser/pre_parser.mly
https://github.com/AbsInt/CompCert/tree/master/cparser/handcrafted.messages
https://github.com/AbsInt/CompCert/tree/master/cparser/ErrorReports.ml

int convert (float c) {
return (int) (c * 255.0;

}

$ ccomp -c missing.c
missing.c:2:26: syntax error after ’255.0’ and before ’;’.
Ill-formed expression.
Up to this point, an expression has been recognized:

’c * 255.0’
If this expression is complete,
then at this point, a closing parenthesis ’)’ is expected.

$ gcc -c missing.c
missing.c: In function ’convert’:
missing.c:2:26: error: expected ’)’ before ’;’ token

return (int) (c * 255.0;
^

$ clang -c missing.c
missing.c:2:26: error: expected ’)’

return (int) (c * 255.0;
^

missing.c:2:16: note: to match this ’(’
return (int) (c * 255.0;

^
void f (void) {

int a[50], b[50], i = 0;
a[i = b[i] = 0;

}

$ ccomp -c index.c
index.c:4:19: syntax error after ’0’ and before ’;’.
Ill-formed expression.
Up to this point, an expression has been recognized:

’i = b[i] = 0’
If this expression is complete,
then at this point, a closing bracket ’]’ is expected.

$ gcc -c index.c
index.c: In function ’f’:
index.c:3:17: error: expected ’]’ before ’;’ token

a[i = b[i] = 0;
^

$ clang -c index.c
clang -c index.c
index.c:3:17: error: expected ’]’

a[i = b[i] = 0;
^

index.c:3:4: note: to match this ’[’
a[i = b[i] = 0;
^

void f (void) { return; }|

$ ccomp -c bar.c
bar.c:1:26: syntax error after ’}’ and before ’|’.
At this point, one of the following is expected:

a function definition; or
a declaration; or
a pragma; or
the end of the file.

$ gcc -c bar.c
bar.c:1:26: error: expected identifier or ’(’

before ’|’ token
void f (void) { return; }|

^

$ clang -c bar.c
bar.c:1:26: error: expected identifier or ’(’
void f (void) { return; }|

^
void f (void) { return; }}

$ ccomp -c braces.c
braces.c:1:26: syntax error after ’}’ and before ’}’.
At this point, one of the following is expected:

a function definition; or
a declaration; or
a pragma; or
the end of the file.

$ gcc -c braces.c
braces.c:1:26: error: expected identifier or ’(’

before ’}’ token
void f (void) { return; }}

^

$ clang -c braces.c
braces.c:1:26: error: extraneous closing brace (’}’)
void f (void) { return; }}

^
int f(void) { int x;) }

$ ccomp -c extra.c
extra.c:1:21: syntax error after ’;’ and before ’)’.
At this point, one of the following is expected:

a declaration; or
a statement; or
a pragma; or
a closing brace ’}’.

$ gcc -c extra.c
extra.c: In function ’f’:
extra.c:1:21: error: expected statement before ’)’ token
int f(void) { int x;) }

^

$ clang -c extra.c
extra.c:1:21: error: expected expression
int f(void) { int x;) }

^
int convert (float c) {

return (int (c * 255.0));
}

$ ccomp -c render.c
render.c:2:16: syntax error after ’(’ and before ’c’.
Ill-formed declaration.
The following identifier is used as a type,
but has not been defined as such:

’c’

$ gcc -c render.c
render.c: In function ’convert’:
render.c:2:16: error: expected ’)’ before ’c’

return (int (c * 255.0));
^

$ clang -c render.c
render.c:2:16: error: expected ’)’

return (int (c * 255.0));
^

render.c:2:15: note: to match this ’(’
return (int (c * 255.0));

^

Figure 7. Examples of diagnostic messages produced by CompCert, gcc 5.3.0, and clang 3.6.0. (For the latter two, only one error shown.)

9 2016/2/12

detected past the location of the actual mistake, the fact that the
parser shows how it has interpreted the recent past suffices for
the user to quickly locate and fix the mistake. clang produces a
message of similar quality, whereas gcc does not say where the
matching opening bracket is found.

In bar.c (Figure 7), an error is detected at the top level. We
choose to explicitly list the possible futures at this point. clang
and gcc suggest two terminal symbols as possible futures. This is
low-level and incomplete, resulting (in our opinion) in a distinctly
inferior diagnostic message. The next example, braces.c, differs
only in the nature of the erroneous token, which is now a closing
brace. This does not affect CompCert or gcc. clang recognizes this
special case and reports the second closing brace as “extraneous”.
This is a situation where allowing the diagnostic message to depend
on the erroneous symbol seems useful.

In extra.c (Figure 7), an error is detected inside the body of
a function. Again, we explicitly list the possible futures at this
point. clang and gcc both produce a correct yet incomplete list
of futures: gcc requests a statement, whereas clang requests an
expression, which is one particular kind of statement.

In render.c (Figure 7), one closing parenthesis is misplaced.
The error is detected only upon looking ahead at the identifier c.
(Indeed, “int (” appears to be the beginning of a function type.)
In CompCert, due to the manner in which the “lexer hack” is set
up, this error is detected in a state where a type name is the only
valid future, yet one can tell that the parser has just looked ahead at
a variable name. Our diagnostic message places emphasis on this
problem. Furthermore, we indicate that we think we are engaged in
a (parameter) declaration, which (with luck!) might help the reader
understand that we have interpreted “int (” as the beginning of
a function type. In comparison, clang and gcc request a closing
parenthesis. This is correct, but incomplete (a parameter declaration
would be a valid future), and also does not clearly indicate that the
parser is trying to recognize a function type.

6. Related Work
Determining whether an error can occur in state s with lookahead
symbol z amounts to determining whether the error entry at (s, z)
in the action table is “inessential”. Aho and Ullman [1] prove that,
in a canonical LR(1) automaton, this is the case if and only if s is
the target of a transition labeled with a non-terminal symbol A.
In an SLR(1) automaton, one must add the condition that z is not
in FOLLOW(A). Soisalon-Soininen [16] gives an algorithm for
determining which error entries are inessential in all deterministic
LR parsers of a grammar. These papers assume that the grammar is
in the class LR(1). We do not make this hypothesis. We tolerate
conflicts, and study reachability in the deterministic automaton
obtained after conflict resolution. (In such an automaton, some
states may be entirely unreachable.) To the best of our knowledge,
this problem has not been previously studied.

Reachability (and, more generally, model-checking of temporal
logics) in pushdown systems has been studied by several authors,
including Bouajjani et al. [2]. A pushdown system is a pushdown
automaton without an input. Bouajjani et al.’s algorithm for com-
puting pre∗ seems to bear some resemblance to our reachability
algorithm. In fact, as noted by a reviewer, the lookahead behavior
of an LR(1) automaton can be simulated by a pushdown system: a
buffer of size 0 or 1 can be encoded in the control state. In summary,
in principle, Bouajjani et al.’s algorithm can be used to solve the
LR(1) reachability problem in polynomial time. More work would
be required in order to assess its complexity in this particular case
and compare it to the ad hoc algorithm that we have developed.

Gupta and Nandivada [6] analyze LL grammars where the lexer
has multiple “lexical states” and may transition from one state to
another either on its own or upon request by the parser. They detect

dead (unreachable) productions, or in other words, situations where
the parser expects a token that the lexer will never produce because
it is in an inappropriate state. In comparison, Menhir does not have
a notion of lexical state. The user is free to write semantic actions
that influence the lexer (this is known as a “lexer hack”, and is
used in CompCert), but Menhir does not know about it. As noted
by Gupta and Nandivada, this may lead Menhir to think that a
configuration is reachable, when in fact it is not.

Following Horning [7] as well as later authors, such as Grune
and Jacobs [5], one may distinguish error detection, error diagnosis,
error recovery, and error repair. Detection consists in stopping when
a syntax error is encountered. Quite obviously, every parser is able
to do this, since it must accept the language generated by the
grammar and nothing more. (However, not all parsing algorithms
have the correct-prefix property, that is, the property of detecting
an error as early as possible in a left-to-right scan of the input. LL
and LR parsers have this property.) Diagnosis consists in detecting
the earliest syntax error and explaining it, or more accurately,
explaining the state of the parser at the point where the error is
detected. Recovery consists in continuing beyond the first error, so
as to be able to detect multiple errors, without attempting to deliver
a parse tree. Repair consists in somehow fixing the input so as to
continue beyond multiple errors and deliver a parse tree in the end.

We are interested in error diagnosis, which, as pointed out
by Grune and Jacobs, seems to have received surprisingly little
attention in the literature.

One relatively simple approach to error diagnosis is to compute
and display the “acceptable set”, that is, the set of terminal sym-
bols that would have been valid at the error site. In recursive de-
scent parsers, this idea has been studied by Wirth [18], Topor [17],
and Kantorowitz and Laor [11], among others. The acceptable set
can be used not just for diagnosis, but also for recovery. The parser
generators ELL [4] and ANTLR [13] exploit this idea. In an LR
parser produced by Menhir, computing the acceptable set at run-
time would be straightforward, too. Indeed, provided the semantic
actions are side-effect-free, the parsers generated by Menhir sup-
port taking a checkpoint and restarting from a checkpoint. So, the
acceptable set can be computed by feeding the parser every termi-
nal symbol and testing which ones are accepted. That said, in our
opinion, printing the acceptable set as part of a diagnostic message
is not a good idea (except perhaps when it is a singleton set). This
set may contain many elements. For instance, in the CompCert C
grammar, an expression can begin with one of 15 different terminal
symbols; a statement can begin with one of 29 different symbols.
This results in a low-level, overwhelming diagnostic message. It is
desirable to describe the future at a higher level (“a statement is
expected”) and possibly beyond one symbol (“an expression, fol-
lowed with a closing parenthesis, is expected”).

The LALR parser generator yacc and its descendants, including
bison [3] and Menhir itself, offer a special terminal symbol error,
which can be used to program error diagnosis and error recovery
strategies. When an error is detected, the generated parser first
discards states from the stack until it gets back to a state in which
the error symbol is acceptable. It consumes this symbol, entering
a new state. (In a Menhir-generated parser, this may involve zero
or more reductions, followed with shifting.) Then, it discards input
symbols until it finds one that is acceptable in this state. At this
point, it resumes parsing.

This mechanism can be used for error diagnosis. One extends
the grammar with productions whose right-hand side ends in an
error symbol and whose semantic action displays a diagnostic
message and aborts. Used in this way, this mechanism appears
to bear some similarity with %on_error_reduce, insofar as both
mechanisms give access to dynamic information: that is, they allow
the diagnostic message to depend on the contents of the stack.

10 2016/2/12

However, the error symbol is notoriously difficult to use. It is hard
to understand under which circumstances an error production is
reduced, and (therefore) what the message should say. Furthermore,
lacking tool support, it is impossible to ascertain that enough error
productions have been added to cover all error situations. Finally,
adding productions to the grammar could cause new conflicts to
appear; one must be careful to avoid them.

Jeffery develops merr [8, 9] and equips Unicon with a set
of diagnostic messages. The grammar (uni/parser/unigram.y)
gives rise to a 453-state automaton, for which 70 messages are set
up, covering 60 states (uni/unicon/meta.err). Our reachability
algorithm reveals that the automaton has 224 states where an error
can occur. Similarly, Pippijn van Steenhoven re-implements merr
for (a slightly modified) Menhir and uses it to develop a C parser.
For a 1031-state automaton, he sets up a collection of 70 diagnostic
messages, which covers 55 states. Our algorithm reveals that the
automaton has 391 states where an error can occur. These figures
suggest that there is little hope of achieving complete coverage
without tool support.

We improve upon Jeffery’s technique by introducing an LR(1)
reachability algorithm, which allows Menhir to show in which
states an error may occur and how these states may be reached.
Furthermore, as the grammar evolves, Menhir checks that the set
of diagnostic messages remains correct, irredundant and complete
We draw attention to the danger of over- or under-approximating
the set of valid futures, and propose two ways of avoiding this
danger, namely %on_error_reduce and selective duplication. We
point out that adapting the grammar and automaton in such a way
requires expertise.

Jeffery [9] writes: “In the case of Unicon, the use of Merr elimi-
nated the initial, complete interpretation of some 360 states that was
needed, as well as the subsequent reexamination of those states ev-
ery time the grammar changes”. Though Menhir automatically pro-
poses a collection of input sentences that covers all error states, it is
of course necessary to examine each of the error states so as to write
a diagnostic message. Furthermore, when the grammar evolves,
though Menhir checks that the collection of diagnostic messages
remains correct, irredundant, and complete, there remains a small
risk that one of the messages becomes inappropriate. (Perhaps it
was associated with a sentence that led to a specific state, so the
diagnostic message was worded in a specific way; but this sentence
now leads to a state that can be reached in new ways, so the message
must now be more general.) Thus, it remains in principle necessary
to re-examine each of the error states after changing the grammar.

7. Conclusion
We have developed an algorithm for the reachability problem in
LR(1) automata, implemented this algorithm in the Menhir parser
generator, and used it to equip CompCert’s ISO C99 parser with a
collection of diagnostic messages that covers all of the states where
an error can be detected.

The algorithm has been invaluable in understanding the land-
scape of the error states. Without it, we would have had to blindly
write diagnostic messages for a set of supposedly common errors,
and we would have been unable to see that, by modifying the
grammar and automaton slightly, one can facilitate error diagno-
sis. Thanks to it, not only do we achieve completeness, but also
we gain the ability to immediately evaluate how a modification of
the grammar or automaton affects the set of error states. This has
allowed us to better understand the differences between canonical
and noncanonical automata, as well as the role of spurious reduc-
tions and the technique of selective duplication. This has led us
to propose and implement %on_error_reduce, a mechanism for
introducing more spurious reductions, therefore better controlling
where errors are detected.

Our implementation of the reachability algorithm has been
heavily optimized and can be used to analyze many real-world
grammars, including CompCert’s. Nevertheless, this algorithm is
fundamentally quite expensive. It would be desirable to find an
asymptotically more efficient algorithm, if one exists.

Acknowledgments
Gabriel Scherer provided motivation for this work. Jacques-Henri
Jourdan explained several subtle aspects of the CompCert pre-
parser. Arthur Charguéraud, Jean-Christophe Filliâtre, Jacques-
Henri Jourdan, Yann Régis-Gianas, Gabriel Scherer proof-read the
paper. The anonymous reviewers offered insightful remarks and
pointers to the literature.

References
[1] Alfred V. Aho and Jeffrey D. Ullman. A technique for speeding up

LR(k) parsers. SIAM Journal on Computing, 2(2):106–127, 1973.

[2] Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability anal-
ysis of pushdown automata: Application to model-checking. In In-
ternational Conference on Concurrency Theory (CONCUR), volume
1243 of Lecture Notes in Computer Science, pages 135–150. Springer,
1997.

[3] Charles Donnelly and Richard Stallman. Bison, 2015.

[4] Josef Grosch. Efficient and comfortable error recovery in recursive
descent parsers. Structured Programming, 11(3):129–140, 1990.

[5] Dick Grune and Ceriel J. H. Jacobs. Parsing techniques: a practical
guide, second edition. Monographs in computer science. Springer,
2008.

[6] Kartik Gupta and V. Krishna Nandivada. Lexical state analyzer for
JavaCC grammars. Software: Practice and Experience, 2015.

[7] James J. Horning. What the compiler should tell the user. In Compiler
Construction (CC), volume 21 of Lecture Notes in Computer Science,
pages 525–548. Springer, 1974.

[8] Clinton L. Jeffery. Merr User’s Guide, 2002.

[9] Clinton L. Jeffery. Generating LR syntax error messages from exam-
ples. ACM Transactions on Programming Languages and Systems,
25(5):631–640, 2003.

[10] Jacques-Henri Jourdan, François Pottier, and Xavier Leroy. Validating
LR(1) parsers. In European Symposium on Programming (ESOP),
volume 7211 of Lecture Notes in Computer Science, pages 397–416.
Springer, 2012.

[11] E. Kantorowitz and H. Laor. Automatic generation of useful syntax
error messages. Software: Practice and Experience, 16(7):627–640,
1986.

[12] Xavier Leroy. The CompCert C compiler. http://compcert.
inria.fr/, 2015.

[13] Terence Parr. The Definitive ANTLR 4 Reference, 2nd edition. Prag-
matic Bookshelf, 2013.

[14] François Pottier and Yann Régis-Gianas. The Menhir parser genera-
tor. http://gallium.inria.fr/~fpottier/menhir/.

[15] Paul Purdom. The size of LALR(1) parsers. BIT Numerical Mathe-
matics, 14(3):326–337, 1974.

[16] Eljas Soisalon-Soininen. Inessential error entries and their use in LR
parser optimization. ACM Transactions on Programming Languages
and Systems, 4(2):179–195, 1982.

[17] Rodney W. Topor. A note on error recovery in recursive descent
parsers. ACM SIGPLAN Notices, 17(2):37–40, 1982.

[18] Niklaus Wirth. Algorithms + Data Structures = Programs. Prentice
Hall, 1978.

11 2016/2/12

http://unicon.sourceforge.net/
https://github.com/pippijn/merr
https://github.com/pippijn/cparser
http://dx.doi.org/10.1137/0202010
http://dx.doi.org/10.1137/0202010
http://www-verimag.imag.fr/~maler/Papers/pda.pdf
http://www-verimag.imag.fr/~maler/Papers/pda.pdf
http://www.gnu.org/software/bison/manual/
http://www.cocolab.com/products/cocktail/doc.pdf/ell.pdf
http://www.cocolab.com/products/cocktail/doc.pdf/ell.pdf
http://www.cs.vu.nl/~dick/PT2Ed.html
http://www.cs.vu.nl/~dick/PT2Ed.html
http://dx.doi.org/10.1002/spe.2322
http://dx.doi.org/10.1002/spe.2322
http://dx.doi.org/10.1007/3540069585_64
http://unicon.sourceforge.net/merr/merrguid.pdf
http://doi.acm.org/10.1145/937563.937566
http://doi.acm.org/10.1145/937563.937566
http://gallium.inria.fr/~fpottier/publis/jourdan-leroy-pottier-validating-parsers.pdf
http://gallium.inria.fr/~fpottier/publis/jourdan-leroy-pottier-validating-parsers.pdf
http://dx.doi.org/10.1002/spe.4380160703
http://dx.doi.org/10.1002/spe.4380160703
http://compcert.inria.fr/
http://compcert.inria.fr/
http://gallium.inria.fr/~fpottier/menhir/
http://dx.doi.org/10.1007/BF01933232
http://doi.acm.org/10.1145/357162.357165
http://doi.acm.org/10.1145/357162.357165
http://doi.acm.org/10.1145/947902.947905
http://doi.acm.org/10.1145/947902.947905

	Introduction
	Approaching the LR(1) Reachability Problem
	Why Solve this Problem?
	Why we Must Care about the Lookahead Symbol
	Why we Must Care about the First Symbol
	Why we Must Ask about Paths
	Why we Must Tolerate Non-Canonical Automata

	An LR(1) Reachability Algorithm
	Specification
	Algorithm
	Implementation Details
	Optimizations
	How to Build a Complete Collection of Erroneous Inputs
	Performance Aspects

	Crafting Accurate Diagnostic Messages
	Application to CompCert C
	Related Work
	Conclusion

