
HAL Id: hal-01417662
https://hal.inria.fr/hal-01417662

Submitted on 15 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Denotational Semantics for Parameterised Networks
of Synchronised Automata

Siqi Li, Eric Madelaine

To cite this version:
Siqi Li, Eric Madelaine. A Denotational Semantics for Parameterised Networks of Synchronised Au-
tomata. The 6th International Symposium on Unifying Theories of Programming, Universite de
reykjavik, Jun 2016, Reykjavik, Iceland. pp.20. �hal-01417662�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/80467724?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01417662
https://hal.archives-ouvertes.fr

A Denotational Semantics for Parameterised
Networks of Synchronised Automata

Siqi Li† and Eric Madelaine§

†Shanghai Key Laboratory of Trustworthy Computing, ECNU, China
§INRIA Sophia-Antipolis Méditérannée,

Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, France

Abstract. Parameterised Networks of Synchronised Automata (pNets)
is a machine-oriented semantic formalism used for specifying and veri-
fying the behaviour of distributed components or systems. In addition,
it can be used to define the semantics of languages in the parallel and
distributed computation area. Unlike other traditional process calculi, p-
Nets only own one pNet node as an operator which composes all subnets
running in parallel. Using this single synchronisation artifact, it is capa-
ble of expressing many operators or synchronisation mechanisms. In this
paper, we explore a denotational semantics for parameterised networks.
The denotational semantics of parameterised networks we investigate is
based on the behaviours of their subnets. The behaviour of a subnet is
determined by both its state and the actions it executes. Based on the
traces of a set of subnets, the behaviour of a pNet consisting of those
subnets can be deduced. A set of algebraic laws is also explored based
on the denotational semantics.

1 Introduction

With the rapid development of network technology, a number of software envi-
ronments or middlewares emerge for facilitating the development of applications
distributed over networks. These tools can be used in a variety of contexts,
ranging from multiprocessors or clusters of machines, to local or wide area net-
works, to pervasive and mobile computing. In order to describe the behaviour
of distributed systems and to verify properties of such systems, several formal
languages and process calculi have been proposed in [3, 9, 11].

Parameterised Networks of Synchronised Automata, abbreviated as pNet-
s, is an element of a pragmatic approach based on graphical specifications for
communicating and synchronised distributed objects, in which both events (mes-
sages) and agents (distributed objects) can be parameterised. In this framework,
pNets is a low level semantic model used for expressing the operational seman-
tics of dedicated programming languages or high-level formalisms for distributed
systems. The pNet model is based on the general notion of labelled transition
systems, and on hierarchical networks of communicating systems (synchroni-
sation networks), with explicit handling of data parameters in communication

2 S. Li et al.

events and in the topology of processes. The agents in pNets can also be parame-
terised to encode sets of equivalent agents running in parallel. In order to realize
communications and synchronisation among the agents in the networks, we use
a notion of synchronisation vectors inherited from Arnold [1], but augmented
with explicit data values. It provides a general and flexible way to compose any
number of components, which matches the expressiveness of many different usual
process algebras [2]. Recently we have extended the model towards open pNets,
that contain Holes playing the role of process variables. Open pNets are able
to express operators of process algebras or distributed systems, and provides us
with a methodology to prove properties of program skeletons, or generic algo-
rithms where we don’t care about the details of some parts of the system. They
are endowed with an operational semantics and a bisimulation based symbolic
equivalence [5].

The concept of pNets was targeted towards the behavioural specification of
distributed systems. In the last decade, (closed) pNets have been used to mod-
el the behaviours of a number of distributed systems featuring queues, futures,
component systems, one-to-many communications, or fault-tolerance protocols
Also, the pNets model offers good properties as a formalism for defining the
semantics of distributed and heterogeneous systems: it provides a compact hi-
erarchical format, easy to produce from source code. It can also be transformed
using abstract interpretation of data domains, and the authors use this approach
to construct finite pNets that can be analysed by model-checking [2].

Some research has been done on the formal semantics for distributed com-
puting in order to provide a strong theoretical foundation for those languages
or frameworks used in this area. R. Koymans proposed a denotational semantics
for a real-time distributed language called Mini CSP-R in [7]. A formal seman-
tics was developed for a distributed programming language named LIPS using
Dijkstra’s weakest preconditions [10] . Both of the works focus on the parallel
execution of the processes but put little emphasis on the hierarchy. As for the
pNets model, the study on formalism has just started. An operational semantics
and a bisimulation theory for closed pNets are proposed in [4]. Their work also
employs some examples to illustrate the expressiveness of pNets. Based on these
discussions on formal semantics for pNets, the model checking technology that
has been applied to verify the correctness of distributed applications or systems
can be improved. Also, it becomes more persuasive and reasonable to be used
on safety-critical systems.

This paper proposes a denotational semantics for pNets using UTP theory
[6], which can provide another understanding of the formalism complementing
the operational approach, and help deduce interesting algebraic properties of pa-
rameterised networks. A process (a subnet) in pNets is formalized by a predicate
with structured traces and process states. Similar to traditional programming
languages, the execution state of a pNet has completed state, waiting state and
divergent state to represent the current status and control of the behaviour. A
trace is introduced to record the interactions among subnets in the pNets system.
The behaviour of a pNets system can be deduced by merging the behaviours of

A Denotational Semantics for Parameterised Networks 3

all subnets together. Besides, we investigate the behaviours of pNets composi-
tion with sub-pNets filling some holes by merging the traces of the sub-pNet into
the upper-level pNet. Based on the formalized denotational semantics, a set of
algebraic laws is obtained.

The rest of this paper is organized as follows. Section 2 recalls the formal
definition of pNets with the explanation on the notations and term algebra.
Section 3 presents the semantic model of parameterised networks. Section 4
explores a denotational semantics defined structurally on the different elements
of the pNet model. Section 5 investigates a set of algebraic laws, including a set of
laws concerning parallel composition and pNets composition. Also, we show how
we prove properties of various constructs from other languages that we encode
using pNets.

2 Parameterised Networks (pNets)

In this section, we recall the formal definition of pNets and the notations that
are used in the definition. pNets are tree-like structures. Nodes of the tree (p-
Net nodes) are synchronising artifacts, using a set of synchronisation vectors
that express the possible synchronisation between the parameterised actions of
a subset of the sub-trees. The leaves of the tree are either pLTSs or Holes. pLTSs
(parameterised labelled transition systems), are transition graphs with explicite
data values and assignments. Holes are placeholders for unknown processes, only
specified by their set of possible actions, named the sort. A pNet tree with at
least one hole is called an open pNet.

Notations In the following definitions, indexed structures are extensively used
over some countable sets, which are equivalent to mapping over the countable
set. We use ai∈Ii to denote a family of elements ai indexed over the set I. ai∈Ii

defines both I the set over which the family is indexed (called range), and ai the
elements of the family. An empty family is denoted ∅.] is the disjoint union on
indexed sets (meaning both indices and elements should be distinct).

Term algebra The pNets model relies on the notion of parameterised actions, that
are symbolic expressions using data types and variables. We leave unspecified
the constructors of the algebra that will allow building actions and expressions.
Moreover, we use a generic action interactionmechanism, based on (some sort of)
unification between two or more action expressions, to express various kinds of
communication or synchronisation mechanisms. We denote P the set of variables
and TP the term algebra over the set of variables P. Within TP , we distinguish
a set of action terms (parameterised actions) AP and a set of expression terms
EP including a set of Boolean expressions (guards) denoted as BP (with: EP ∩
AP = ∅ ∧ BP ⊆ EP ∧ AP ∪ EP = TP). Naturally action terms will use data
expressions as subterms. To be able to reason about the data flow between
pLTSs, we distinguish input variables of the form ?x within terms. The function
vars(t) identifies the set of variables in a term t ∈ T , and iv(t) returns its input
variables.

4 S. Li et al.

0

1l r

P Q

δ

<δ(x2), acc(x2), δ> -> τ

{<-, a2, r> -> a2}a2∈Sort(Q)

C1

{<a1, -, l> -> a1}a1∈Sort(P),a1 6=δ(x1)Enable1

0

P Q
<δ(y2), acc(y2), δ> -> τ

{<-, b2, r> -> b2}b2∈Sort(Q)

C2

{<b1, -, l> -> b1}b1∈Sort(P),b1 6=δ(y1)

l [s0=0]

δ [s0=0] s0:=1

r [s0=1]

Enable2

s0:=0

Fig. 1. Two pNets encodings for Enable

0

l

1

r

0

l

1

r

P

Q R

<δ(x3), acc(x3), δ> -> τ

{<-, a4, r> -> a4}a4∈Sort(Q)∪Sort(R)

{<a3, -, l> -> a3}a3∈Sort(P),a3 6=δ(x3)

δ

C4

δ

C3

<δ(y3), acc(y3), δ> -> τ

{<-, b4, r> -> b4}b4∈Sort(R)

{<b3, -, l> -> b3}b3∈Sort(Q),b3 6=δ(y3)

C3

EnableCompL

Fig. 2. Composed pNet for "P»(Q»R)"

pNets can encode naturally the notion of input actions in value-passing CCS
[8] or of usual point-to-point message passing calculi, but it also allows for more
general mechanisms, like gate negotiation in Lotos, or broadcast communica-
tions. Using our notations, value-passing actions à la CCS would be encoded as
a(?x1, ..., ?xn) for inputs, a(v1, .., vn) for outputs (in which vi are action terms
containing no input variables). Our action algebras also include a notion of local
actions, that cannot be further synchronised; to simplify the notations in this
paper we shall simply denote them as τ as in CCS.

Example 1. As a running example, we use pNets representing the Enable op-
erator of the Lotos specification language. In the Lotos expression “P»Q”, an
exit(x) statement within process P terminates P, carrying a value x that is
captured by the accept(x) statement of Q. In Fig. 1 we show two possible pNet
encodings for the Lotos operator in a graphical format. Fig. 2 show a hierarchical
pNet representing the expression “P»(Q»R)”. A pNet is graphically represented
by a box, containing circles with a process name, empty circles connected to a
subnet and triangles with a line pointing to a box containing a pLTS.

We use a simple action algebra, containing two constructors δ(x) and acc(x),
for any possible value of the variable x, corresponding to the statements exit(x)
and accept(x). Both δ(x) and acc(x) actions are implicitely included in the sorts
of all processes. The rest of the graphical elements will be explained below.

To begin with, we present the definition of pLTS: a pLTS is a labelled tran-
sition system with variables; variables can be manipulated, defined, or accessed
inside states, actions, guards, and assignments. Without loss of generality and
to simplify the formalisation, we suppose here that variables are local to each
state: each state has its set of variables disjoint from the others, denoted vars(s).
Transmitting variable values from one state to the other is done by explicit as-
signment. Note that we make no assumption on finiteness of the set of states nor
on finite branching of the transition relation.

A Denotational Semantics for Parameterised Networks 5

We first define the set of actions a pLTS can use, let a range over action
labels, op are operators, and xi range over variable names. Action terms are:

α ∈ A ::= a(p1, . . . , pn) action terms
pi ::= ?x | Exp parameters (input variable or expression)

Exp ::= Value | x | op(Exp∗) Expressions

We suppose that each input variable does not appear somewhere else in the
same action term: pi =?x ⇒ ∀j 6= i. x /∈ vars(pj). Input variables are only used
as binders local to a pLTS, capturing data values coming from synchronisation
with other pNets. They will not appear in the action alphabets of pLTSs and
pNets, nor in the synchronisation mechanism.

Definition 1 (pLTS). A pLTS is a tuple pLTS , 〈〈S, s0,→〉〉 where:
• S is a set of states.
• s0 ∈ S is the initial state.
• →⊆ S × L × S is the transition relation and L is the set of labels of the
form 〈α, eb, (xj := ej)

j∈J〉, where α ∈ A is a parameterised action, eb ∈ B
is a guard, and the variables xj ∈ P are assigned the expressions ej ∈ E.
If s

〈α, eb, (xj:=ej)
j∈J 〉−−−−−−−−−−−−−→ s′ ∈→ then iv(α)⊆ vars(s′), vars(α)\iv(α)⊆ vars(s),

vars(eb)⊆vars(s), and ∀j∈J. vars(ej)⊆vars(s) ∧ xj ∈vars(s′).
Example 2. Both pNets in Fig. 1 have a pLTS acting as a controller, in a state-
oriented style at the top, and a data-oriented style at the bottom. In a pLTS,
states have names, and transitions have labels, written as "action [guard]
assignment∗". The initial state can also have an initial assignment, marked
with an arrow. Variables assigned are those of the target state, while variables
used in guards or expressions are those of the source state, and input variables
of the action. For example the pLTS C2 has a single state, with a state variable
s0, its transitions include guards (e.g. [s0 = 0]) and assignments (e.g. s0 := 1).

Remark that the conditions on variable sets imply that the local variables of a
state s include all input variables received in incoming transitions of s, as well
as all local variables explicitely assigned in incoming transitions of s. We denote
Trans(s) the set of outgoing transitions of s and tgt(t) the target state of t.

Hierarchy and Synchronisation : Now we define the hierarchical operator, called
pNet node that is the only constructor required for building complex pNets. A
pNet node has a set of sub-pNets that can be either pNets or pLTSs, and a set
of Holes, playing the role of process parameters. The synchronisation between
action of sub-nets is given by a set of synchronisation vectors: a synchronisation
vector synchronises one or several internal actions, and exposes a single resulting
global action. Communication of data between the partners of a synchronisation
is done by unification. This synchronisation method is very flexible and generic.
It allows to model classical synchronous communication The selection of specific
vectors in the set (depending on the actions offered by subnets) models nonde-
terminism and interleaving. Channels or queues are not handled directly, they

6 S. Li et al.

SVBuffer

Buffer

P2

i(?x2)
o(x2)

P1

Buffer

o(x1)i(?x1)

Buffer
0

1

0

1

SVBuffer = {< i(x),− >→ gi(x)}
∪ {< o(y), i(y) >→ τ(y)}
∪ {< −, o(z) >→ go(z)}

Fig. 3. A pNet showing data flow

have to be modelled using a pLTS, that will be synchronised with the subnets
involved. This is a very versatile and expressive schema, as shown in [4].

Action terms for pNets are simpler than for pLTSs, and defined as follows:
α ∈ AS ::= a(Expr1, . . . , Exprn)

Definition 2 (pNets). A pNet is a hierarchical structure where leaves are
pLTSs and holes:
pNet , pLTS | 〈〈pNeti∈Ii , Sj∈Jj ,SVk∈Kk 〉〉 where

• I ∈ I is the set over which sub-pNets are indexed.
• pNeti∈Ii is the family of sub-pNets.
• J ∈ IP is the set over which holes are indexed. I and J are disjoint: I∩J = ∅,
I ∪ J 6= ∅
• Sj ⊆ AS is a set of action terms, denoting the Sort of hole j.
• SVk∈Kk is a set of synchronisation vectors (K ∈ IP). ∀k∈K,SVk=αl∈Ik]Jkl →
α′k where α′k ∈ AP , Ik ⊆ I, Jk ⊆ J , ∀i ∈ Ik. αi ∈ Sort(pNeti), and ∀j ∈
Jk. αj ∈Sj. The global action of a vector SVk is Label(SVk) = α′k.

Definition 3 (Sorts and Holes of pNets).

– The sort of a pNet is its signature: the set of actions it can perform. For a
pLTS we do not need to distinguish input variables. More formally1:

Sort(〈〈S, s0,→〉〉) = {α{{x←?x|x ∈ iv(α)}}|s 〈α, eb, (xj:=ej)
j∈J 〉−−−−−−−−−−−−−→ s′ ∈→}

Sort(〈〈pNet,S,SV〉〉) = {α′k|αj∈Jkj → α′k ∈ SV}

– The set of holes of a pNet is defined inductively; the sets of holes in a pNet
node and its subnets are all disjoint:

Holes(〈〈S, s0,→〉〉)=∅
Holes(〈〈pNeti∈Ii , Sj∈Jj ,SV〉〉) = J ∪

⋃
i∈I

Holes(pNeti)

∀i ∈ I. Holes(pNeti) ∩ J = ∅
∀i1, i2 ∈ I. i1 6= i2 ⇒ Holes(pNeti1) ∩Holes(pNeti2) = ∅

A pNet Q is closed if it has no hole: Holes(Q) = ∅; else it is said to be open.
1 {{xk ← ek}}k∈K is the parallel substitution operation.

A Denotational Semantics for Parameterised Networks 7

Graphical syntax: When describing examples, we usually deal with pNets with
finitely many sub-pNets and holes, and it is convenient to have a more concrete
syntax for synchronisation vectors. When I∪J=[0..n] we denote synchronisation
vectors as < α1, .., αn >→α, and elements not taking part in the synchronisation
are denoted − as in: < −,−, α,−,− >→α.

Example 3. Back to Fig. 1, the first synchronisation vector of pNet Enable1
means: for every action a1 in the sort of P with a1 6= δ(x1) for some x1, this a1 ac-
tion can synchronise with the l action of the controller, and this synchronisation
is seen as a global action a1 of Enable1. Vectors are defined in a parameterised
manner, using variables universally quantified, and local to each vector.

More examples can be found in [4].

Composition operator: Open pNets can be composed by replacing one hole (at
some arbitrary position in the tree) by a pNet with a compatible sort:

Definition 4 (pNet Composition). Let N1 =� pNeti∈Ii , Sj∈Jj , SV � and
N2 be two pNets, ho a hole of N1 such that Sort(N2) ⊆ Sh0, their composition
denoted N1[N2]ho is:

if ho ∈ J then N1[N2]ho =� (pNeti)
i∈I]N2, S

j∈J\{ho}
j , SV �

else ∃i0 ∈ I.ho ∈ Holes(pNeti0)
and N1[N2]ho =� (pNeti)

i∈I [pNeti0 ← pNeti0[N2]ho] , S
j∈J
j , SV �

Remark that the composition operation does not change synchronisation vec-
tors at any level in the pNet structure: only the hole involved is replaced by a
subnet, and the sort inclusion condition ensures the actions of the subnets are
properly taken into account by the synchronisation vectors. This is essential for
keeping the compositional features of the model.

Example 4. Figure 2 shows that the hole Q in the pNet Enable1 in Figure 1 is
instantiated by another instance of Enable1 where Sort(Enable1) ⊆ Sort(Q).
The composed pNet represents the Lotos process expression “P � (Q � R)”,
denoted as Enable(P,P’)[Enable(Q,R)]P ′ . Both C3 and C4 contain instances of
the controller pLTS. Here a3, a4, b3 and b4 in the synchronisation vectors are
variables that can take any value in the sort of their corresponding holes.

3 The Semantic Model

Now we define the denotational semantic model for pNets based on the UTP the-
ory [6] in this section. UTP uses relational calculus as a unifying basis to define
denotational semantics for programs across different programming paradigms.
In the semantic models, different programming paradigms are equipped with
different alphabets and a selection of laws called healthiness conditions. An al-
phabet is a set of observational variables recording external observations of the
program behaviour. The healthiness conditions are kind of invariants, imposing

8 S. Li et al.

constraints on the values and evolution of variables. The observational variables
are defined in a structural manner, using relational predicates relating the pos-
sible values of the variables of a given program construct with those of its parts.

In our semantic model, we use the notion of process, which is widely used in a
number of process algebra and calculus, to denote the various forms of processes
in the pNet formalism, namely pLTS, sub-pNets, holes and even a whole pNet
system. We say that a process fires a transition, that means a transtion of a
pLTS, an action of a hole, or a “global action” generated by the execution of a
synchronisation vector in the case of a pNet node.

The predecessor of a pNet process is a process executed just before the current
execution step. This process may either have terminated successfully so that the
current process can start, or it may have not terminated and its final values are
unobservable.

With the understanding of the specific meaning of these notions, we introduce
the following variables defined for the alphabet to observe the behaviours of
pNets processes.

– Status st, st′: express the execution state of a process before and after a
transition is fired, with values in {comp,wait, div}.
• completed state: A process may complete all its execution and terminate

successfully. “st = comp” means that the predecessor of the process has
terminated successfully and the control passes into the process for activa-
tion. “st′ = comp" means that the process itself terminates successfully.

• waiting state: A process may wait for receiving messages from its envi-
ronment. “st = wait" indicates that the predecessor of the process is at
waiting state. Hence the considered process itself cannot be scheduled.
“st′ = wait" indicates that the current process is at waiting state.

• divergent state: A process may perform an infinite computation and enter
into a divergent state. “st = div" indicates that the predecessor of the
process has entered into a divergent state, whereas “st′ = div" indicates
that the process itself has entered into a divergent state.

– Current state cs, cs′: denote the state (corresponding to the set of states
in pLTS) where the current execution begins and terminates. This is used
to help relate all the transitions and figure out which transition should be
fired.

– Data store ds(s)s∈S , ds(s)′s∈S : record the values of the local variables of
the state s in the set S before and after an observation. We will use the
notations ds and ds

′
to denote the full set of Stores for simplicity.

– Trace tr, tr′: record a sequence of observations on the interaction among the
subnets. The elements in the trace variable are in the form of α(v1, . . . , vn)
where n ≥ 1 or just a value v. Here, v1, . . . , vn can be values either recorded
directly from the message transmission or computed from the expressions.

Notations for traces. In the following, t[i] is the ith element in the trace t;
t1 � t2 denotes that sequence t1 is a prefix of sequence t2; 〈lk〉 is the trace where
the element l is repeated k times; 〈l∗〉 the trace where l is repeated in any finite

A Denotational Semantics for Parameterised Networks 9

number of times; tat′ the concatenation of traces t and t′; and s � A means trace
s is restricted to the elements in set A.

Before we present the denotational semantics of each process in pNets, we
will define some healthiness conditions that a pNet process should satisfy. The
first point is that the trace variable introduced to our semantics cannot be short-
ened: an execution step can only add an event to the trace. This is encoded as
the H1 law below: a predicate P defining the semantics of any pNet process
must satisfy :

(H1) P = P ∧ Inv(tr) where Inv(tr) =df tr � tr′.
The next point deals with divergent processes: “st = div" means that the

predecessor process has entered the divergent state and the current process will
never start. Therefore, a pNets process P has to meet the healthiness condition
below:

(H2) P = P ∨ (st = div ∧ Inv(tr))
A process may wait for receiving message from other subnets or the envi-

ronment. If the subsequent process is asked to start in a waiting state of its
predecessor, it leaves all the states unchanged, including the trace and all its
other observational variables. It should satisfy the following healthiness condi-
tion:

(H3) P = II / (st = wait) . P

where we denote the logical choice: P / b . Q =df b ∧ P ∨ ¬b ∧Q,

the II relation: II =df Inv(tr) / st = div . Id.

and the identity relation: Id =df (st′ = st) ∧ (tr′ = tr) ∧ (cs′ = cs) ∧ (ds
′
= ds).

Now we give the definition for H-function:
H(X) =df (X ∧ Inv(tr)) / st = comp . (Inv(tr) / st = div . II)

From the definition ofH-function, we know thatH(X) satisfies all the health-
iness conditions. This function can be used in defining the denotational semantics
for pNets model.

The definitions here are similar to the one in [6], with the following correspon-
dance with the variables ok and wait from the original UTP theory: st = comp
corresponding to the situation that ok ∧ ¬wait, st = wait corresponding to
ok ∧ wait and st = div corresponding ¬ok.

4 Denotational Semantics

In this section, we present the denotational semantics for the four constructs
of pNets: pLTSs, Holes, pNet nodes and pNet composition. We use beh(P) to
describe the behaviour of a pNet process after it is activated. Here P can be any
type of pNet or a transition of a pLTS.

10 S. Li et al.

4.1 Parameterised Labelled Transition System

The order of execution in a pLTS relies on the relations between states and
transitions, encoded in its transition relation. The variable cs is used to keep
tracking the execution of the pNets processes so that we know at which step the
execution will continue. The denotational semantics of a pLTS is given below.

beh(〈〈S, s0,→〉〉) =df beh(Init((xj := ej)
j∈J), s0) # beh(〈〈S, s0,→〉〉s0)

beh(〈〈S, s0,→〉〉cs) =df
∨
t∈Trans(cs)

(
beh(t) # beh(〈〈S, s0,→〉〉tgt(t))

)
where P #Q denotes the sequential composition in the form of relational calculus,
meaning that P #Q = ∃obs0.P [obs0/obs′]∧Q[obs0/obs]. The term obs (resp. obs0,
obs′) represents the set of variables st, cs, ds and tr.

The behaviour of a pLTS is the set of traces computed from its initial state.
The set of traces computed from an arbitrary state cs is the union of all traces
obtained using its set of outgoing transitions Trans(cs), followed by the traces
of their target states.

beh(Init((xj := ej)
j∈J), s0) =df

H
(
st′ = comp ∧ ds(s0)′ = {xj := ej}j∈J) ∧ tr′ = 〈 〉 ∧ cs′ = s0

)
The above semantics deals with the initialisation on the local variables of the

initial state as well as other observational variables.
Now we look into the details of the execution of a transition. For the actions,

as we defined in the action terms, we will mainly use action algebras in this form:
α(?x1, . . . , ?xn1

, e1, . . . , en2
). For simplicity, we will use the notation α(?x, e)

instead when giving our semantics. Note that the forms of the actions are not
limited to this, but are out of the scope of this paper. The execution of one single
transition is atomic without interruption by the other processes. If the guard
evaluates to false, then the trace remains unchanged and the variables stay in
the initial state. Otherwise there will be two stages. One stage is the waiting
state, at which the process is waiting for input values and all other observational
variables stay unchanged. The other stage is the terminating state. If there are
input variables in the action, they will be assigned input values. Then, the values
of the local variables in the assignments will be updated accordingly.

beh(t)=beh(s
〈α(?x,e),eb,(xj :=ej)

j∈J 〉−−−−−−−−−−−−−−−−→ s′) =df

H




st′ = wait ∧ tr′ = tr ∧ cs′ = cs ∧ ds(s′)′ = ds(s′)
∨
st′ = comp ∧ ∃m ∈ Value .(

tr′ = tra〈α(m, e)〉 ∧ cs′ = s′∧
ds(s′)′ = ds(s′)[m/x, (ej/xj)

j∈J]

)


/ eb .
st′ = comp ∧ tr′ = tr ∧ cs′ = cs ∧ ds(s′)′ = ds(s′)


Here, Value stands for all possible values which can be transmitted by sub-

nets in the whole pNet. In the action α(?x, e), there is an input variable x, an

A Denotational Semantics for Parameterised Networks 11

expression e whose value will be sent. It is obvious that a value (denoted m here)
is assigned to x, thus we have α(m, e) recorded in the trace and the value of x
changed in the local variables of the target state s′. Each transition produces a
single action, and a single step in the relational semantics. After the execution of
the transition, the pLTS moves to the target state at which the next execution
will start.

Example 5. Recall the pLTS C1 from Figure 1. There are three transitions in
the pLTS and we would like to show how its semantics is obtained.
We start unfolding the definitions for Initialization,

beh(C1) = H (st′ = comp ∧ ∅ ∧ tr′ = 〈 〉 ∧ cs′ = 0) # beh((C1)0)

Then the definition for states:
beh((C1)0) = beh(0 l−→ 0) # beh((C1)0) ∨ beh(0 δ−→ 1) # beh((C1)1)

beh((C1)1) = beh(1 r−→ 1) # beh((C1)1)
and for each transition, e.g.:

beh(0 l−→ 0) = H(st′ = comp ∧ tr′ = tra〈l〉 ∧ cs′ = 0)

Now we apply the semantics of the sequence (#) operator, producing recursive
equations on the value of the observational variables:

beh((C1)0) = H(B) such that
B = ∃st1, tr1, cs1.(st1 = comp∧tr1 = tra〈l〉∧cs1 = 0)∧B[st1/st, tr1/tr, cs1/cs]

Unfolding this equation k times, eliminating intermediate variables, and adding
the initialisation step finally gives us:

B = ∃st0, st1, ..., stk, trk, csk. ∨ (stk = comp ∧ trk = tra〈lk〉 ∧ csk = 0) ∧
B[stk/st, trk/tr, csk/cs].

Building now the semantics of the full C1 pLTS yields to a set of mutually
recursive equations on predicate variables, with one such variable for each state
of the pLTS. Here the solution is {tr, cs}, where:
tr = 〈l∗〉, cs = s0 ∨ tr = 〈l∗〉a〈δ〉, cs = s1 ∨ tr = 〈l∗〉a〈δ〉a〈r∗〉, cs = s1.

Example 6. Consider now the pLTS C2 in Fig. 1, who has a state variable s0.
The initialization gives:

beh(C2) = H (st′ = comp ∧ ds′ = {s0 := 0} ∧ tr′ = 〈 〉 ∧ cs′ = 0)#beh((C2)0)
Its semantics is {tr, ds, cs}, where:

tr = 〈l∗〉, ds = {s0 := 0}, cs = 0.

∨ tr = 〈l∗〉a〈δ〉, ds = {s0 := 1}, cs = 0

∨ tr = 〈l∗〉a〈δ〉a〈r∗〉, ds = {s0 := 1}, cs = 0.

Example 7. Finally we give an example of a pLTS with value-passing, that is
using an input variable.
The set of solutions is {tr, ds, cs}, where traces
a formed by a sequence of i/o actions a finite
number of times, eventually followed by a s-
ingle i action (when moving to state 1). Nat-
urally in each cycle the value carried can be
different:

i(?x)

o(x)

0 1

A pLTS with a data store

12 S. Li et al.

tr = Cycles(l), ds = ∅, cs = 0

∨ tr = Cycles(l)a〈i(vl+1)〉, ds = {x := vl+1}, cs = 1, ∀vl+1 ∈ Value.
in which Cycles(l) = 〈(i(vk), o(vk))∗〉 with ∀k ∈ [1..l].vk ∈ Value

4.2 Holes

Now we investigate the semantics for the holes, where we benefit from the se-
mantics of transitions in pLTSs. For a hole H with sort Sort(H), we define the
maximum behaviour of H by building a single state pLTS, being able to perform
any sequence of actions of the sort.

MaxLTS(H) = 〈〈{s0}, s0,→〉〉, with ∀a ∈ Sort(H).s0
〈a〉−−→ s0

beh(H) =df beh(MaxLTS(H))

4.3 Parallel Composition

This section investigates the behaviour of a pNets system composed of a set of
subnets running in parallel. Let pNet =� pNeti∈Ii , Sj∈Jj , SV �. Its behaviour
is the composition of the behaviours of all the subnets by merging the traces
together.

We do not put any constraint on the finiteness of the pNets model - a pNets
system is able to compose an unbounded number of subnets. But for readabil-
ity we assume here I ∪ J = [1, n], thus n pairs of (st, tr) are used to observe
each subnet, working concurrently to contribute to the composition result. Also
remark that the internal states and stores (cs, ds) of subnets are not observed.
The composition is described by the following definition:

beh(� pNeti∈Ii , Sj∈Jj , SV �) =df

∃ st1, st′1, . . . , stn, st′n, tr1, tr′1, . . . , trn, tr′n, ds1, ds1
′
, . . . , dsn, dsn

′
.

tr1 = . . . = trn = tr ∧ st1 = . . . = stn = st∧
∀i ∈ I.beh(pNeti)[sti, st′i, dsi, dsi

′
, tri, tr

′
i/st, st

′, ds, ds
′
, tr, tr′]∧

∀j ∈ J.beh(Sj)[stj , st′j , dsj , dsj
′
, trj , tr

′
j/st, st

′, ds, ds
′
, tr, tr′]∧

Merge


in which theMerge predicate captures the behaviours of a parallel composition:

Merge =df

(∀i ∈ [1, n]. st′i = comp)⇒ st′ = comp∧
(∃i ∈ [1, n]. st′i = div)⇒ st′ = div ∧(
∃i ∈ [1, n] ·

(
st′i = wait∧
∀j ∈ [1, n] · st′j 6= div

))
⇒ st′ = wait∧

ds
′
=
⋃
i∈[1,n] dsi

′ ∧
∃u ∈ (tr′1 − tr1‖ . . . ‖tr′n − trn). tr′ = trau



A Denotational Semantics for Parameterised Networks 13

The status of the composed behaviour is determined by the n parallel com-
ponents together. The composition terminates if all the processes terminate and
diverges as long as one of the processes diverges. Then the composition stays at
waiting state if one of the processes waits and none of the others diverges. Fi-
nally, the composition of these n traces is produced by the trace synchronisation
operator ‖:

Trace synchronisation. This operator takes n arguments tr′i − tri, each being
a subsequence of arbitrary length of actions of the corresponding subnet. It
computes a set of subtraces thatMerge will append to the traces of the composed
pNet.
case-1 If all the input traces are empty, the result is a set of an empty sequence:

〈 〉|| . . . ||〈 〉 = {〈 〉}
case-2 If there is a synchronised action (τ in this paper) in the head of one of
the input traces, it is automatically visible at the upper level of the pNet, so we
directly record this action in the merged traces.

= ∃k ∈ [1..n]. ek = τ =⇒
〈e1〉at1|| . . . ‖〈en〉atn =

{
〈ek〉al | l ∈ 〈e1〉at1|| . . . ‖tk‖〈ek+1〉atk+1‖ . . . ‖〈en〉atn

}
case-3 In all other situations, we need to select one synchronisation vector
matching an event group within the set of the first observations of all the n
input traces (Definition 5) and then figure out a synchronised event. Remember
that a synchronisation vector concerns any (non-empty) subset of the subnets of
the current pNet node. Let us denote asValue the set of all possible values which
can be transmitted by subnets in the whole pNet and vars(SV) the variables of
a synchronisation vector SV .

Definition 5 (Events Match).
Given a set of events {eo, ep, ..., eq} ⊆ {e1, e2, ..., en}, we say that they match if
there exists a synchronisation vector SV = αl∈Ll → α′ ∈ SV and a valuation
function φ = {x→ Value|x ∈ var(SV)} that lets both (αl)

l∈Lφ = {eo, ep, . . . eq}
and L = {o, p, . . . , q} satisfied. We write EMatch(SV, α′, φ, eo, ep, . . . , eq).

With this definition, we can complete the definition of trace synchronisation:

EMatch(SV, α′, φ, eo, ep, . . . , eq) =⇒
〈e1〉at1|| . . . ‖〈en〉atn =

{
〈α′φ〉al | l ∈ 〈e1〉at1‖ . . . ‖ to ‖〈eo+1〉ato+1 ‖

. . . ‖ tp ‖〈ep+1〉atp+1 ‖ . . . ‖ tq ‖〈eq+1〉atq+1 ‖ . . . ‖〈en〉atn
}

Example 8. Now we use the pNets example in Fig. 3 with explicit data trans-
mission to present how its denotational semantics is computed by using our
definition. In this 2-places buffer, you can see two pLTSs with identical transi-
tions. It is easy to obtain one possible trace for P1, with an arbitrary number of
i/o cycles:

tP1 = 〈i(e1), o(e1), i(e2), o(e2), i(e3)〉.

14 S. Li et al.

And below is a corresponding trace of P2.

tP2 = 〈i(e′1), o(e′1), i(e′2)〉.
From the set of synchronisation vectors defined, we can figure out that on

the first execution step, P1 receives some value e1 assigned to its input variable
x1. This uses the first synchronisation vector of the Buffer pNet, and generates
the global action gi(e1). In the next step, P1 emits e1 of x1, synchronised with
action i(x2) of P2, thus the x2 in P2 is assigned the value e1, using the second
vector, and generating action τ(e1).

Then we can obtain one trace for the whole pNets by using the trace syn-
chronisation operator. We have omitted the values of variables st and ds, that
the reader will easily guess.

tP1 || tP2 = 〈gi(e1)〉al1.
where l1 ∈ 〈o(e1), i(e2), o(e2), i(e3)〉||〈i(e′1), o(e′1), i(e′2)〉.
There is only one choice in l1, matching the 2nd vector of the Buffer pNet:

tP1||tP2 = 〈gi(e1), τ(e1)〉al2.
where l2 ∈ 〈i(e2), o(e2), i(e3)〉||〈o(e′1), i(e′2)〉. Now there are two possible choices,
either use the first vector with event i(e2) (yielding gi(e2)), or the third one with
o(e′1) (yielding go(e1)).

Finally the full composition is given by the following regular expression:

tP1 || tP2 = 〈gi(e1), τ(e1), gi(e2), go(e1), τ(e2), gi(e3)〉
∨ 〈gi(e1), τ(e1), go(e1), gi(e2), τ(e2), gi(e3)〉,

after which both traces tP1 and tP2 are exhausted.

4.4 Composition operator

This section explores the behaviour of the composition of two pNets. In order
to simplify the notation, we only consider here a composition operator that
replaces a hole at the first (top) level of a pNet tree, that is less general than
the composition operator in Definition 4.

Let N1 =� pNeti∈I1i , Sj∈J1j , SV1 �, N2 =� pNeti∈I2i , Sj∈J2j , SV2 �. The
pNet composition N1[N2]ho indicates that a pNet N2 fills a hole indexed ho in
N1.

Now we describe the behaviour of N1[N2]ho:
beh(N1[N2]ho) =df

∃st1, st′1, st2, st′2, tr1, tr′1, tr2, tr′2, ds1, ds
′
1, ds2, ds

′
2.

st1 = st2 = st ∧ tr1 = tr2 = tr∧
beh(N1)[st1, st

′
1, tr1, tr

′
1, ds1, ds

′
1/st, st

′, tr, tr′, ds, ds
′
]∧

beh(N2)[st2, st
′
2, tr2, tr

′
2, ds2, ds

′
2/st, st

′, tr, tr′, ds, ds
′
]∧

NM(ho)


The first four predicates describe the two independent behaviours of pNets

N1 and N2 being composed (running in parallel in essence). The last predicate

A Denotational Semantics for Parameterised Networks 15

NM(ho) mainly does the merging of the contributed traces of the two behaviour
branches for recording the communication, which is defined below.

NM(ho) =df

st′1 = comp ∧ st′2 = comp⇒ st′ = comp∧
st′1 = div ∨ st′2 = div ⇒ st′ = div ∧
st′1 = wait ∧ st′2 6= div ⇒ st′ = wait∧
st′2 = wait ∧ st′1 6= div ⇒ st′ = wait∧
ds
′
= ds

′
1 ∪ ds

′
2 ∧

∃u ∈ (tr′1 − tr1)[tr′2 − tr2]ho. tr′ = trau


The control state of the composed behaviour of the pNet is determined by

the combination of the status of the two pNets, which is similar to parallel
composition. The trace of the composition is a member of the set of traces
produced by trace composition operator []ho.

Trace composition. Operator []ho models how to merge two individual traces
(under some constraints) of pNets N1 and N2 into a set of traces of N1[N2]ho.

case-1 If both input traces are empty, the result is a set of an empty sequence:

〈 〉[〈 〉]ho = {〈 〉}
case-2 If the trace of the subnet is empty, the result is determined by the first
observation of the non-empty trace:

〈e〉at[〈 〉]ho = {〈e〉al | l ∈ {〈 〉}} = {〈e〉}
case-3 In the situation where the inner input trace is not empty, we need to
check first whether these two traces match (see Definition 7). Only two matching
traces can be merged. Then we find out the first pair of matching events (see Def-
inition 6) from the matched traces respectively and compute the corresponding
action for the merged trace.

Let t1 and t2 be two traces of N1 and N2 respectively.

Definition 6 (Events Match for pNets Composition). Given a pair of
events e1 and e2, we say that they are matched for pNets composition if there
exists a synchronisation vector SV = αl∈Ll → α′ ∈ SV1, with ho ∈ L, and a
valuation function that lets αhoφho = e2. We have α′φ = e1 and we define an
updated valuation function φ′ = φ+φho which replaces some of the values defined
in φ by the ones in φho. We write < α′, φ′ >= CEMatch(e1, e2, ho).

Definition 7 (Traces Match).We say that the two traces t1 and t2 are matched
(denoted as TMatch(t1, t2, ho)() if they satisfy such conditions:

1) For each element e2 except synchronised action τ in t2, there exists an ele-
ment e1 in t1 (where e1 can be τ) that satisfies CEMatch(e1, e2, ho);
2) Matching pairs of events are ordered consistently: given two such pairs (t1[i] =
e1, t2[i

′] = e2) and (t1[j] = e3, t2[j
′] = e4) such that CEMatch(e1, e2, ho) and

CEMatch(e3, e4, ho) are satisfied, then i < j =⇒ i′ < j′.

16 S. Li et al.

Now we present how the []ho operator works under the third case.
Let t1 = s a

1 〈e1〉 ar1 and t2 = s a
2 〈e2〉 ar2, where we have TMatch(t1, t2),

¬TMatch(s1, s2) and < α′, φ′ >= CEMatch(e1, e2) all satisfied. Then:

s a
1 〈e1〉ar1[s a

2 〈e2〉ar2]ho = {l a1 〈α′φ′〉al2 | l1 ∈ s1 ||| s2 ∧ l2 ∈ r1[r2]ho}
where the shuffle operator ||| is defined as:

〈 〉 ||| 〈 〉 = {〈 〉}; 〈 〉 ||| 〈e2〉at2 = {〈e2〉al | l ∈ 〈 〉 ||| t2}
〈e1〉at1 ||| 〈e2〉at2 = {〈e1〉al | l ∈ t1 ||| 〈e2〉at2} ∪ {〈e2〉al | l ∈ 〈e1〉at1 ||| t2}

Example 9. Now we consider the semantics for Enable(P,P’)[Enable(Q,R)]P ′ ex-
pressing P � (Q � R) that we mentioned in Example 4. The behaviours of
the composed pNet is computed from the behaviours of two pNets, which may
contain a large number of observations. In order to make the illustration more
readable, we select single traces from the sets to show the merging of the traces.

Let t1 and t2 be two traces of Enable(P,P’) and Enable(Q,R) respectively
where t1 = 〈α1, τ, α2, α3〉, t2 = 〈α2, τ, α3〉. We have here α1 ∈ Sort(P), α2 ∈
Sort(Q) and α3 ∈ Sort(R).

According to Definition 6, < α2, {a4 7→α2} >= CEMatch(α2, α2, P
′) and <

α3, {a4 7→α3} >= CEMatch(α3, α3, P
′) are satisfied, both firing the synchronisa-

tion vector {< −, a4, r >→ a4} in Figure 2. Also, a2 and a3 are well ordered
in t1 and t2 conforming with Definition 7. Then we can obtain one trace of the
newly constructed pNet by merging the two traces above:

t1[t2]P ′ = 〈α1, τ, α2, α3〉[〈α2, τ, α3〉]P ′

= 〈α1, τ〉a〈α2〉a〈α3〉[〈 〉a〈α2〉a〈τ, α3〉]P ′ = 〈l1, α2, l2〉
where l1 ∈ 〈α1, τ〉|||〈 〉 and l2 ∈ 〈α3〉[〈τ, α3〉]P ′ = 〈τ, α3〉.

So we get one trace for Enable(P,P’)[Enable(Q,R)]P ′ : 〈α1, τ, α2, τ, α3〉.

5 Algebraic Properties

The main purpose of the formalisation of a programming language is to prove
its interesting properties. Most of them are elegantly expressed in the form of
algebraic laws and equations. In this section, we explore a set of basic algebraic
laws for pNets, based on standard trace semantics: 2 pNets are equivalent if
they have same (potentially infinite) set of (finite) traces. pNets being a low
level model used to express the semantics of high level languages, we have two
categories of properties: general properties about pNets themselves, and specific
properties about operators encoded using pNets. We start with a property of
the Enable operator of Lotos encoded in Fig. 1.

Associativity of Enable. Consider the two pNets expressing (P � Q) � R (in
Fig 4(a)), built as Enable(P’,R)[Enable(P,Q)]P ′ , and P � (Q � R) (in Fig
4(b)), built as Enable(P,P’)[Enable(Q,R)]P ′ respectively. We would like to prove
the associativity law: (P � Q)� R = P � (Q� R).

A Denotational Semantics for Parameterised Networks 17

P Q C4

C3R SV>>

SV>>

EnableCompL1

(a) (P � Q)� R

P

Q R C6

C5 SV>>

SV>>

EnableCompL2

(b) P � (Q� R)

Fig. 4. Two pNets expressing Enable operators

Sketch of the proof: On the left we have traces of Enable(P,Q) and Enable(P’,R)
whose traces are given below, denoted as t1 and t2 respectively.

t1 = 〈an1
1 〉 ∨ t1 = 〈an1

1 〉a〈τ〉a〈an2
2 〉,∀n1, n2 ∈ N

t2 = 〈an2
2 〉 ∨ t2 = 〈an2

2 〉a〈τ〉a〈an3
3 〉,∀n2, n3 ∈ N.

Here, we can see that the traces from each set to be merged complying with
the form s a

1 〈a2〉at1[〈a2〉at2], where < α2, {a4 7→α2} >= CEMatch(α2, α2, P
′) is

satisfied. Also, TMatch(t1, t2, P ′) is satisfied if n2 = n3. Then we deduce the
traces for Enable(P’,R)[Enable(P,Q)]P ′ :

tPQ−R = 〈an1
1 〉 ∨ tPQ−R = 〈an1

1 〉a〈τ〉a〈a
n2
2 〉 ∨ tPQ−R = 〈an1

1 〉a〈τ〉a〈a
n2
2 〉a〈τ〉a〈a

n3
3 〉

and symmetrically for Enable(P,P’)[Enable(Q,R)]P ′ :

tP−QR = 〈an1
1 〉 ∨ tP−QR = 〈an1

1 〉a〈τ〉a〈a
n2
2 〉 ∨ tP−QR = 〈an1

1 〉a〈τ〉a〈a
n2
2 〉a〈τ〉a〈a

n3
3 〉

Thus, we can say that the behaviours of (P � Q)� R) and (P � (Q� R)) are
equivalent based on traces, and conclude that (P � Q) � R = P � (Q � R)
is satisfied. ut

Now we list a small number of typical laws that can be proved in a similar
manner. For most of them, the proofs are straightforward, but long and tedious.
Writing them formally requires a lot of notations that we have not introduced
in the paper, and we will not do it here.

Symmetry/permutation of pNet nodes. The pNet node as a general parallel op-
erator is symmetric.

For a pNet � pNeti∈Ii , Sj∈Jj , SV k∈Kk �, we assume that I ∪ J = [1, n]
and we abstract each subnet as a process P . Then we alter the pNet node
as:� P1, . . . , Pn, SV

k∈K
k �. It is easy to get

� P1, . . . , Pn, SV
k∈K
k �=� Pπ(1), . . . , Pπ(n), SV

′
k
k∈K �

where the structure for each SVk is < P1, . . . , Pn >, the structure for each SV ′k
is < Pπ(1), . . . , Pπ(n) >, and π is a permutation on [1, n].

Guarded Choice. We introduce a concept of guarded choice, which enriches the
language to support the algebraic laws. The guarded choice is expressed in the
form:

{h1 → P1}[] . . . []{hn → Pn}.

18 S. Li et al.

Each element h→ P of the guarded choice is a guarded component, where h can
be a guard in the form of either α(?x, e) or τ . After one of the hi is performed
or fired, the subsequent process is Pi.

(par-2) Let Pg = {ag → P ′g}[][]i∈Ig{τ → P ′ig},
where g ∈ [1, n] and ag is the action that will be synchronised with others ac-
cording to the synchronisation vectors while τig cannot be further synchronised.
We here put an index to τ to make it easy to be extended to be in a more flexible
form. Then we have:

� P1, . . . , Pg, Pg+1, . . . , Pn, SV �

= {m (ax1 , ay1 , ..., az1)
SV1 →� P1, ..., P

′
x1
, ..., P ′y1 , . . . , P

′
z1 , ..., Pn, SV �}

. . .

[]{m (axm , aym , ..., azm)SVm →� P1, ..., P
′
xm
, ..., P ′ym , ..., P

′
zm , ..., Pn, SV �}

[][]i∈I1{τi1 →� P ′i1, P2..., Pn, SV �}

. . .

[][]i∈In{τin →� P1, ..., Pi(n−1), P
′
in, SV �}

where Card({x1, y1, ..., z1})2+...+Card({xm, ym, ..., zm}) = n and {x1, y1, . . . , z1}∩
. . .∩{xm, ym, . . . , zm} = ∅. The notation m (ax, ay, . . . , az)

SV is used to indicate
that the parallel execution of all the actions ax, ay, . . . , az can trigger a syn-
chronisation presented by SV , of which the result can be either an action to be
synchronised or one that cannot be further synchronised.

Identity operator. A pNet with only one hole indexed 0 of sort S is the identity
of pNet composition:

(ncomp-1) Is[N]0 = N where Is :=� ∅, (0 7→S), {(0 7→a)→ a|a ∈ S} �

Composition operator. If N2 and N3 instantiate two holes in N1 respectively
meaning that Sort(N2) ⊆ Sort(Sho1) and Sort(N3) ⊆ Sort(Sho2) are satisfied,
then we have:

(ncomp-2) (N1[N2]ho1)[N3]ho2 = (N1[N3]ho2)[N2]ho1

Proof. Sketch: expanding the definition of beh((N1[N2]h0), and removing parts
that are trivialy equal, the equation boils down to (here, obs stands for the set
of observational variables we defined for our semantics: {st, tr, ds}):

LHS =

∃obs1, obs′1, obs2, obs′2. obs1 = obs2 = obs∧
∃obs1, obs′1, obs2, obs′2.
beh(N1)[obs1, obs

′
1/obs, obs

′]∧
beh(N2)[obs2, obs

′
2/obs, obs

′]∧
∃u ∈ (tr′1 − tr1)[tr′2 − tr2]ho1 . tr′ = trau

 [obs1, obs
′
1/obs, obs

′]∧

beh(N3)[obs2, obs
′
2/obs, obs

′]∧
∃u ∈ (tr′1 − tr1)[tr′2 − tr2]ho2 . tr′ = trau

2 Card(A) returns the number of elements in the set A

A Denotational Semantics for Parameterised Networks 19

We suppose that any two traces we select to merge are matched according
to Definition 7, thus we can always find pairs of events that are matched. If the
two pairs of matched events (e, e2) and (e′, e3) (e2 and e3 are events in the trace
of N2 and N3 respectively, and e and e′ are events in the trace they are to be
merged.) does not fire the same synchronisation vector, it does not matter which
trace merge with the trace of N1 first. Otherwise, the event α′φ′ recorded in the
composed the trace is determined by both e2 and e3. Then we have the variables
commuted:

=

∃obs1, obs′1, obs2, obs′2. obs1 = obs2 = obs∧
∃obs1, obs′1, obs2, obs′2.
beh(N1)[obs1, obs

′
1/obs, obs

′]∧
beh(N3)[obs2, obs

′
2/obs, obs

′]∧
∃u ∈ (tr′1 − tr1)[tr′2 − tr2]ho2 . tr′ = trau

 [obs1, obs
′
1/obs, obs

′]∧

beh(N2)[obs2, obs
′
2/obs, obs

′]∧
∃u ∈ (tr′1 − tr1)[tr′2 − tr2]ho1 . tr′ = trau

= RHS

In a similar way, if N2 instantiates one hole in N1 and one of the holes in
N2 is instantiated by N3 indicating that Sort(N3) ⊆ Sort(Sho2) ⊆ Sort(Sho1) is
satisfied, then:

(ncomp-3) N1[N2[N3]ho2]ho1 = (N1[N2]ho1)[N3]ho2

6 Conclusions

In this paper we have formalized a denotational semantics for Parameterised
Networks of Processes. A pNet node is considered as an operator composing
a number of subnets running in parallel, which ensures the model’s flexibility
in expressing various operators, and we do not introduce any specific parallel
operator to weaken this feature in pNets model. In our semantics, the subnets
in the pNets are viewed as processes and the behaviours of each process are
investigated by the execution of a subnet. A trace has been introduced to record
the interactions among all the subnets in a pNets system. We have investigated
the behaviours of subnets including holes. Then the behaviour of a pNet system
can be achieved by merging the behaviours of a set of subnets. A set of algebraic
laws on both parallel composition and pNet composition has been achieved based
on the denotational semantics.

For the future, we plan to continue our formalisation of pNet systems. One
aspect of our future work is to explore the algebraic semantics of the pNets mod-
el and study the relations among the three semantics: denotational semantics,
operational semantics and algebraic semantics. Moreover, the pNets model can
be extended by adding other features such as time issues or probabilities. And
it is challenging to explore the semantics with these features.

20 S. Li et al.

Acknowledgment

This work was partially funded by the Associated Team FM4CPS between IN-
RIA and ECNU, Shanghai. It was also supported by the Danish National Re-
search Foundation and the National Natural Science Foundation of China (No.
61361136002) for the Danish-Chinese Center for Cyber Physical Systems, Na-
tional Natural Science Foundation of China (Grant No. 61321064) and Shanghai
Collaborative Innovation Center of Trustworthy Software for Internet of Things
(No. ZF1213).

References

1. Arnold, A.: Finite transition systems - semantics of communicating systems. Pren-
tice Hall international series in computer science, Prentice Hall (1994)

2. Barros, T., Ameur-Boulifa, R., Cansado, A., Henrio, L., Madelaine, E.: Behavioural
models for distributed fractal components. Annales des Télécommunications 64(1-
2), 25–43 (2009)

3. Baude, F., Caromel, D., Dalmasso, C., Danelutto, M., Getov, V., Henrio, L., Pérez,
C.: GCM: a grid extension to fractal for autonomous distributed components. An-
nales des Télécommunications 64(1-2), 5–24 (2009)

4. Henrio, L., Madelaine, E., Zhang, M.: pnets: An expressive model for parameterised
networks of processes. In: 23rd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, PDP 2015, Turku, Finland, March
4-6, 2015. pp. 492–496 (2015)

5. Henrio, L., Madelaine, E., Zhang, M.: A theory for the composition of concurrent
processes. In: 36th IFIP Int. Conference on Formal Techniques for Distributed
Objects, Components and Systems. Springer-Verlag (June 2016)

6. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall Interna-
tional Series in Computer Science (1998)

7. Koymans, R., Shyamasundar, R., de Roever, W., Gerth, R., Arun-Kumar, S.: Com-
positional semantics for real-time distributed computing. Information and Com-
putation 79(3), 210 – 256 (1988)

8. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA (1989)

9. Nierstrasz, O.: Piccola - A small composition language. In: Object-Oriented Tech-
nology, ECOOP’99 Workshop Reader, ECOOP’99 Workshops, Panels, and Posters,
Lisbon, Portugal, June 14-18, 1999, Proceedings. p. 317 (1999)

10. Rajan, A., Bavan, S., Abeysinghe, G.: Semantics for a distributed programming
language using sacs and weakest pre-conditions. In: Advanced Computing and
Communications, 2006. ADCOM 2006. International Conference on. pp. 434–439
(Dec 2006)

11. Schmitt, A., Stefani, J.: The kell calculus: A family of higher-order distributed pro-
cess calculi. In: Global Computing, IST/FET International Workshop, GC 2004,
Rovereto, Italy, March 9-12, 2004, Revised Selected Papers. pp. 146–178 (2004)

