
HAL Id: hal-01418396
https://hal.inria.fr/hal-01418396

Submitted on 16 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A hierarchical approach to minimum-time control of
industrial robots

Saed Al Homsi, Alexander Sherikov, Dimitar Dimitrov, Pierre-Brice Wieber

To cite this version:
Saed Al Homsi, Alexander Sherikov, Dimitar Dimitrov, Pierre-Brice Wieber. A hierarchical approach
to minimum-time control of industrial robots. ICRA 2016 - IEEE International Conference on Robotics
and Automation, May 2016, Stockholm, Sweden. pp.2368-2374, �10.1109/ICRA.2016.7487386�. �hal-
01418396�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/80466879?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01418396
https://hal.archives-ouvertes.fr


A hierarchical approach to minimum-time control

of industrial robots

Saed Al Homsi∗, Alexander Sherikov†, Dimitar Dimitrov† and Pierre-Brice Wieber†

∗Adept Technology France

saed.al-homsi@adept.com

†INRIA Rhône-Alpes, 38334 Montbonnot Cedex, France

{alexander.sherikov, dimitar.dimitrov, pierre-brice.wieber}@inria.fr

Abstract— A novel approach to minimum-time control is
presented. It is stated in terms of a hierarchical optimization
problem, which is standard in the field of robotics. This is
advantageous as already existing tools can be used to approach
its solution. Our formulation is applied to the online genera-
tion of trajectories for industrial robots performing pick and
place operations in the presence of obstacles. Model predictive
control is used in order to achieve reactive system behavior
and to obtain accurate local approximations of the collision
avoidance constraints (which are nonconvex). Our approach
has the capacity to suppress high frequency chattering in the
control signal in the presence of noise: a common drawback
of aggressive control strategies. Experiment using two SCARA
robots that share the same working environment is used to
evaluate the presented approach.

I. INTRODUCTION

This work addresses the problem of online trajectory

generation for an industrial manipulator performing pick and

place operations in the presence of dynamic obstacles. Since

in many mechatronic applications the control input cost is

less important than the task execution time [1], we focus

on fast transitions by attempting to achieve time-optimality.

The user input for the proposed scheme is simply the

desired endpoints without the need to specify an intermediate

trajectory. This can simplify greatly deployment of industrial

technology, leading to decreased cost and thus may have

impact on various industrial applications [2]. Accounting for

the full-body dynamics when generating this intermediate

trajectory is usually not essential as most industrial robots

are position controlled. That is why we model the evolution

of the joint positions and velocities of the manipulator using

a discrete-time linear dynamical system while accounting for

input and state constraints.

Since the collision avoidance constraints are in general

nonconvex, we employ a Sequential Quadratic Programming

(SQP) type of approach [4] where a sequence of linearized

sub-problems is solved. Each sub-problem1 identifies a

minimum-time trajectory from the current state of the robot

with respect to local linear approximations of the collision

avoidance constraints. While such a sequence of problems

is not guaranteed to converge to a time-optimal solution for

the original nonconvex problem, it provides a practical way

1For clarity of presentation, and due to computational restrictions, we
consider only one such sub-problem per control sampling time, even though
being able to solve multiple sub-problems may lead to improved results.

Fig. 1: Experimental setup. Two Adept Cobra SCARA [3]

robots sharing the same working environment.

of generating locally optimal solutions, which is sufficient

for most applications [5], [6]. Due to its local nature, our

approach scales well with the number of manipulators and

their degrees of freedom. In particular, we avoid the “curse

of dimensionality” of global approaches (which usually rely

on offline computations) [7], [8]. Our approach is applied in

a Model Predictive Control (MPC) setting, which not only

improves reactivity of the system but presents a possibility to

obtain accurate local linear approximations of the collision

avoidance constraints.

Our main contribution is the introduction of a hierarchical

formulation [9] which guarantees time-optimal trajectories

for the above mentioned SQP sub-problems. In more abstract

terms, we address the problem of driving the state of an

arbitrary discrete-time linear dynamical system to the origin

in minimal time in the presence of linear constraints on

inputs and states. Even though, in special cases, analytical

solutions to this problem have been proposed [10], [11],

[12], the general case that we consider here necessitates the

use of numerical techniques. In contrast to other numerical

approaches [13], we pose a problem that: (i) does not

rely on the ad hoc selection of weighting factors (which

is highly non-trivial), (ii) does not lead to any approxi-

mation and results in time-optimal behavior for arbitrary

linear constraints (iii) and yet it is tractable in real-time.

Our formulation hinges on recent developments of efficient



hierarchical solvers in the field of robotics [14], [15] and

can be integrated seamlessly in existing hierarchical control

frameworks.

Apart from introducing our hierarchical formulation to

minimum-time trajectory generation, we discuss practical

issues related to its application. One such issue is the high

frequency chattering in the control signal in the presence of

noise when the setpoint has been reached [16]: a common

drawback of aggressive control strategies. Following the

ideas in [1] we formulate our controller in a way that leads

to smooth behavior in the vicinity of the goal state.

We present an experimental evaluation of the proposed

approach using a typical industrial setup where two manip-

ulators share the same working environment (see Fig. 1).

Each manipulator has its own controller and considers the

other manipulator as a potential obstacle. This is a problem

of practical interest and presents a very good test bed for

our approach due to the limited computational resources

(the underlying optimization problem for each manipulator

is solved on a CPU of 400 MHz under the constraint that

not more than half of the CPU power can be utilized).

The paper is organized as follows. Section II reviews a

classical approach to the minimum-time control problem and

introduces our hierarchical formulation. Section III includes

a numerical comparison with an analytical solution in a

simplified setting. Section IV discusses the effect of noise in

the state estimates and how it can be ameliorated. Section V

considers the nonconvex collision avoidance constraints and

their linearization. Finally, Section VI presents the experi-

mental evaluation.

II. THE MINIMUM-TIME PROBLEM

A. A classical formulation

We consider a discrete-time linear dynamical system

xk+1 = Axk +Buk,

to model the evolution of the joint angles q of a manipulator

system, where xk ∈ R
nx and uk ∈ R

nu are the state vari-

ables and control inputs, respectively. The system matrices

A ∈ R
nx×nx and B ∈ R

nx×nu could be arbitrary (however,

we assume that the origin is reachable). In this paper we

consider xk = (qk, q̇k) and uk = q̈k, i.e., a double integrator.

Note that the use of alternative dynamical systems might be

beneficial, e.g., a triple integrator [12], [17]. Transferring a

given initial state x(c) (at discrete sampling time c) to the

origin in minimal time can be achieved by solving [1], [18]

minimize N

subject to xk+1 = Axk +Buk

x0 = x(c)

xN = 0

uk ∈ Uk

g(x1, . . . , xN ) ≥ 0

N ∈ {Nmin, . . . , Nmax},

(1)

with k = 0, . . . , N − 1 and Uk being a closed and bounded

set containing zero in its interior (we assume it to be convex).

The decision variables are x1, . . . , xN , u0, . . . , uN−1 and

the number of discrete-sampling intervals N . Note that, by

design, we are not interested in reaching the origin faster

than Nmin sampling intervals in order to avoid aggressive

behavior near the origin (as we will discuss in Section IV).

g(x1, . . . , xN ) ≥ 0 includes collision avoidance constraints,

which are in general nonconvex, as well as possibly other

state related constraints, e.g., joint position and velocity lim-

its. Note that this is a mixed integer programming problem.

We will use N⋆
c to denote the value of N at the solution

of (1) (the subscript emphasizes the dependence on x(c)).

B. A hierarchical formulation

The approach introduced in this paper is based on an

equivalent reformulation of (1) as a hierarchical optimiza-

tion problem: a standard multi-objective problem, where

objectives can be assigned with different levels of priority.

Hierarchical formulations are popular in robotics because

they ensure that objectives with lower priority are optimized

as far as they do not interfere with the optimization of

objectives with higher priority [19], [20].

Let us consider Nmax ≥ N⋆
c , and define a sequence

of states x = (x1, . . . , xNmax) and control inputs u =
(u0, . . . , uNmax

−1). We introduce the following hierarchical

problem

lex minimize
x,u

v = (‖xNmax‖
2
, . . . , ‖xNmin‖

2
)

subject to xk+1 = Axk +Buk

x0 = x(c)

u ∈ U

g(x) ≥ 0,

(2)

with k = 0, . . . , Nmax−1 and U being a closed and bounded

set containing zero in its interior. The “lex minimize ” op-

erator is standard and implies that the vector v is to be

minimized according to lexicographic order [21], that is,

minimizing vi (in a least-squares sense) is infinitely more

important than minimizing vj , for i < j. We will use Pc to

refer to (2) when we want to emphasize the dependence on

the initial state x(c).

The novelty of formulation (2) is in the particular choice

of lexicographic objective. It states that the most important

thing, after satisfying the constraints, is to reach the origin

in Nmax number of sampling intervals. Then, if possible, try

to reach the origin in Nmax − 1 sampling intervals, and so

on until Nmin intervals. This formulation ensures that each

state xNmin , . . . , xNmax would be as close as possible to the

origin (in Euclidean norm), and once the origin has been

reached, the states xN⋆
c
, . . . , xNmax would remain there. Note

that we have chosen the origin as the target state only for

convenience. An arbitrary target state can be used by a simple

change of variable [22]. Furthermore, if necessary, target

regions can be considered by using a similar formulation.

As already discussed in the Introduction, problem (2)

is nonconvex due to the collision avoidance constraints



−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Control input joint 1 [rad/s2]

C
o

n
tr

o
l

in
p

u
t

jo
in

t
2

[r
ad

/s
2
]

Fig. 2: Coupling constraint (diamond) and box constraints

with dashed line. Blue and red dots depict the control profiles

from Fig. 4.

g(x) ≥ 0. We approach its solution by adopting an SQP type

of scheme in an MPC context. That is, problem (2) with

linearized collision avoidance constraints is solved during

each control sampling interval c and only u(c) = u⋆
0 is

applied to propagate the state from x(c) to x(c+1) (more

details on the linearization are provided in Section V).

Note that by a proper choice of Nmin and Nmax (which

will be discussed in Section IV) one can ensure time-

optimality for the linearized sub-problem. Each sub-problem

can be integrated seamlessly in existing hierarchical control

frameworks in robotics. Furthermore, its solution can be

approached using already existing tools [15], [14], [23].

III. COMPARISON WITH THE ANALYTICAL SOLUTION

FOR A DOUBLE INTEGRATOR

In special cases the minimum-time problem for discrete-

time linear dynamical systems subject to linear constraints

has an analytical solution. One such case is when using a

double integrator subject to simple bounds on the accelera-

tions [10], [11]. Here, numerical results from our hierarchical

formulation are compared to this analytical solution. The

purpose of this comparison is not so much to demonstrate

the equivalence (which should be apparent from the analysis

in Section II-B) but to emphasize the potential advantages

of using numerical techniques for approaching the solution

of the minimum-time problem. We consider the joint-space

behavior of a two Degree of Freedom (DoF) manipulator and

omit the constraint g(x) ≥ 0.

Let the optimal policy from [11] be denoted by u⋆
k =

π(xk). Using this policy is attractive because: (i) for any

given state xk it gives us the control actions that ensure time-

optimal transition towards the goal and (ii) evaluating π(xk)
is computationally very cheap. Assuming that x0 = x(c) and

Nmax ≥ N⋆
c , the recursion

xk+1 = Axk +Bπ(xk), k = 0, . . . , Nmax − 1 (3)

−1 −0.5 0 0.5
−0.5

0

0.5

1
1 2 3 4 5 6 7 8 9 10 11

Angle joint 1 [rad]

A
n

g
le

jo
in

t
2

[r
ad

]

Fig. 3: Eleven joint-space trajectories. Each trajectory starts

with zero joint velocity and converges to the origin.

0 1 2 3 4 5 6 7
−1.5

−1

−0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7
−1.5

−1

−0.5

0

0.5

1

1.5

C
o

n
tr

o
l

in
p

u
t

jo
in

t
1

[r
ad

/s
2
]

C
o

n
tr

o
l

in
p

u
t

jo
in

t
2

[r
ad

/s
2
]

Simulation time [s]

Simulation time [s]

Fig. 4: Evolution of the control inputs for trajectory number

6 in Fig. 3. Blue and red correspond to formulation (4) and

heuristics (5), respectively.

would reach the origin in minimal time (while taking into

account the simple bounds on the controls) and remain there.

The optimal sequence of control actions

u⋆ = (u⋆
0, . . . , u

⋆
Nmax

−1)

generated from (3) coincides with the solution of

lex minimize
x,u

v

subject to xk+1 = Axk +Buk

x0 = x(c)

u ∈ U ,

(4)

for an appropriately chosen U .

Note that, in the above setting, the simple bounds on

u essentially decouple the joint motions. In our envisioned



1 2 3 4 5 6 7 8 9 10 11

−1

0

1

2

3

4

5

6

7

Trajectory number

T
ra

je
ct

o
ry

d
u

ra
ti

o
n

[s
]

Fig. 5: Duration of each of the eleven trajectories in Fig. 3.

The minimal time as computed using (4) is depicted in blue,

while the time required when using the heuristics (5) is

depicted in red (a more than two times difference can be

observed).

scenario, however, we expect to have additional linear con-

straints coupling the motion of the links (e.g., due to the

linearization of the collision avoidance constraints). One

possible option for still using the analytical solution would

be to find u⋆
k by solving

minimize
uk

‖uk − π(xk)‖
2

subject to uk ∈ Uk.
(5)

The motivation behind (5) is to stay as close as possible (in

Euclidean norm) to π(xk) while respecting the additional

constraints defined by Uk. In order to evaluate the perfor-

mance of (5) we compare it to (4) on a simple example, with

more restrictive constraints on uk that couple the motion of

the joints.

Figure 2 depicts these constraints as a gray diamond

(contained in the box defined by the simple bounds). Figure 3

depicts in blue eleven minimum-time joint-space trajectories

converging to the origin generated using (4). The effect of

using heuristics (5) for the 6-th trajectory can be seen in red

(the corresponding control inputs are given in Fig. 4). For all

trajectories we have used Nmin = 1 and Nmax = 29 ≥ N⋆
i ,

i = 1, . . . , 11 (e.g., N⋆
6 = 25), with a control sampling time

∆t = 0.1 s. The duration of each trajectory is depicted in

Fig. 5. As can be seen, using the heuristics (5) may result

in more than twice slower transitions.

Based on these results we could conclude that even small

modification of the constraints may render the analytical

solution unsatisfactory. Since finding an analytical solution

for arbitrary linear constraints is not straightforward it is

beneficial to consider the numerical approach introduced

here.

0 5 10 15
1

2

3

4

5

6

7

8

Nmax

T
ra

je
ct

o
ry

d
u

ra
ti

o
n

[s
]

Fig. 6: Duration of trajectory number 6 in Fig. 3 for varying

Nmax. Similar pattern can be observed across all trajectories.

Note that N⋆
6 = 25, hence even though in theory time-

optimality is guaranteed only for Nmax ≥ N⋆
6 , it appears

that in practice satisfactory results can be obtained with much

smaller Nmax.

IV. CHOOSING Nmin AND Nmax

Formulation (2) involves the parameters Nmin and Nmax

which should be specified by the user. The choice of Nmax

reflects the length of the preview horizon and thus can be

used to influence the reactivity of the system to dynamic

obstacles. If it satisfies Nmax ≥ N̂ = max(N⋆
1 , N

⋆
2 , . . . ),

time-optimality would be guaranteed withing each SQP sub-

problem. Even though N̂ is not known beforehand, a rea-

sonable guess for an upper bound can be made based on the

particular industrial setting (e.g., by considering factors like

types of obstacles, sampling time, velocity and acceleration

limits). Note, however, that Nmax should not be chosen to

be too large as it directly impacts the size of the problem to

be solved.

Figure 6 depicts the influence of Nmax on the duration

of joint-space trajectory number 6 from Fig. 3 (for which

N⋆
6 = 25 with corresponding time of 2.5 s). As can be seen,

in this particular case, time-optimality is achieved even for

values considerably smaller than N⋆
6 . Even Nmax ∈ [7, 8, 9]

appears to be acceptable, as the impact on the trajectory

duration is rather small. We have observed that such behavior

is very common even when additional state constraints are

considered.

The choice of Nmin has an impact on the behavior of (2)

in the vicinity of the setpoint when state measurement noise

is present. On one hand, using Nmin = 1 results in a rather

aggressive controller that always attempt at reaching the

setpoint in one step. In the presence of noise this would

result in high frequency chattering in the control signal. On

the other hand, a too high value for Nmin might have a

significant impact on the time optimal behavior. Finding



0 1 2 3 4 5 6 7
−1.5

−1

−0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7
−0.6

−0.4

−0.2

0

0.2

Simulation time [s]

Simulation time [s]

A
n

g
le

jo
in

t
1

[r
ad

]
C

o
n

tr
o

l
in

p
u

t
jo

in
t
1

[r
ad

/s
2
]

Fig. 7: Test with joint-space trajectory 6 from Fig. 3 when the

state measurement is corrupted by Gaussian noise with zero

mean and standard deviation 0.005. The blue and red curves

represent cases with Nmin = 6 and Nmin = 1, respectively

(Nmax = 29).

a proper trade-off has been considered as an important

problem [16], [18].

Note that when the setpoint can be reached in m sampling

intervals, using Nmin > m leads to redundancy (the solution

of (2) is not unique) which can be exploited to optimize

additional criteria (that can be used to formulate a desired

trade-off). This can be achieved by simply adding more

hierarchical levels to (2).

Figure 7 depicts the influence of Nmin on joint-space

trajectory number 6 from Fig. 3, when the state measurement

is corrupted by Gaussian noise with zero mean and standard

deviation 0.005. The objective of (4) is modified to

lex minimize (‖xNmax‖2 , . . . , ‖xNmin‖2 , ‖u‖2),

i.e., an additional optimization criterion is introduced.

The blue and red curves represent cases with Nmin = 6
and Nmin = 1, respectively. The top plot illustrates the

profile of the control input of joint 1. As can be seen,

the minimization of ‖u‖
2

has a filtering effect on the high

frequency chattering (which is desirable in practice). The

lower plot depicts the resultant profiles of the angle of

joint 1: they are hardly distinguishable. This implies that

a proper choice of Nmin can have a smoothing effect on the

control profiles without degrading the time-optimal behavior

significantly.

In summary, the parameters Nmin and Nmax can be

used to achieve a trade-off between time-optimality, problem

size and smoothness of the solution (in the vicinity of the

setpoint).

V. COLLISION AVOIDANCE CONSTRAINTS

Collision avoidance constraints g(x) ≥ 0 can be defined

in terms of various primitive shapes [24], [25]. We consider

a standard model that approximates the shape of the robot

and the obstacles using a composition of spheres and swept

sphere lines [24]. Due to the nature of the envisioned appli-

cation, the collision avoidance constraints are dynamically

changing i.e., not known in advance, and are moreover

nonconvex. The MPC scheme that we have adopted here

can be used to address both issues. Not only it increases the

reactivity of the controller but also it can be used to develop

accurate local linear approximations of g(x) ≥ 0. This last

point is precised next.

For clarity, first we consider collision avoidance con-

straints between a given link of the manipulator and a static

circular obstacle. Suppose that the obstacle is centered at

position h ∈ R
3. Let p

(c)
k be the point on the link that is

closest to the obstacle during the k-th sampling interval of the

preview associated with Pc. Then, in order to avoid collision,

the Euclidean distance between p
(c)
k and h:

d
(c)
k = a

(c)
k ·

(

p
(c)
k − h

)

, a
(c)
k =

p
(c)
k − h

∥

∥

∥
p
(c)
k − h

∥

∥

∥

,

must remain greater than a minimal safety distance ds:

d
(c)
k ≥ ds. (6)

This is a nonconvex constraint and accounting for it explicitly

can be computationally costly. That is why, we approximate

it by observing that Pc is closely related to Pc−1. This fact

is heavily used in the field of predictive control not only to

formulate simple and expressive constraints but to warm-start

each optimization process with an adequate initial guess [26].

Following the exposition in [27], we use an approximation:

a
(c)
k ≈

p
(c−1)
k−1 − h

∥

∥

∥
p
(c−1)
k−1 − h

∥

∥

∥

, p
(c)
k ≈ p

(c−1)
k−1 + J

(c−1)
k−1 q̇

(c)
k ,

where J
(c−1)
k−1 is the Jacobian matrix associated with p

(c−1)
k−1 .

This way, the constraint (6) can be approximated using

a
(c)
k ·

(

J
(c−1)
k−1 q̇

(c)
k + p

(c−1)
k−1

)

≥ ds, (7)

which is linear in q̇
(c)
k (a part of the decision variables of

Pc). Alternatively one can use

q̇
(c)
k =

q
(c)
k − q

(c−1)
k−1

∆t
,

with ∆t being the sampling time, to reformulate (7) in

terms of q
(c)
k . Approximating g(x) ≥ 0 by using linear

constraints like (7) for each link of the manipulator for

k = 1, . . . , Nmax, renders problem (2) with only linear

constraints and a lexicographic least-squares objective, which

is a class of problems commonly solved in robotics.

The only modification needed in case of a dynamic ob-

stacle, assuming that its position over the preview horizon is

known, is that one has to consider a time-varying h in the

above derivations. Using other primitive shapes instead of

a sphere to model obstacles is readily possible (this would

only alter how the closest point is computed [28]). Note that



(a) (b) (c) (d)

Fig. 8: Snapshots from a typical pick and place operation (a) → (b) → (c) → (d).

0 0.25 0.5 0.75 1

−100

0

100

0 0.25 0.5 0.75 1

−600

−322

0

322

600

0 0.25 0.5 0.75 1

−3000

−2000

0

2000

3000

Time [s]

q
[d

eg
]

q̇
[d

eg
/s

]
q̈

[d
eg

/s
2
]

(a)

0 0.25 0.5 0.75 1

−100

0

100

0 0.25 0.5 0.75 1

−600

−322

0

322

600

0 0.25 0.5 0.75 1

−3000

−2000

0

2000

3000

Time [s]

q
[d

eg
]

q̇
[d

eg
/s

]
q̈

[d
eg

/s
2
]

(b)

Fig. 9: (a) Typical joint profiles of one pick and place cycle from the experiment in the video (for one of the robots) with

Nmax = 5. (b) A simulation result for the same endpoints as in (a), however, with Nmax = 7 (the associated snapshots are

depicted in Fig. 8). Profiles of joints 1 and 2 are depicted using red and blue, respectively.

joint 1 joint 2

angle [deg ] [-105, 105] [-150, 150]

velocity [deg/s] [-322, 322] [-600, 600]

acceleration [deg/s2] [-2000, 2000] [-3000, 3000]

TABLE I: Bounds on joint angles, velocities and accelerations.

generating collision avoidance constraints between a given

manipulator link and all present obstacles is not necessary,

as indicated by state of the art collision detection approaches.

VI. EXPERIMENTAL VERIFICATION

We consider the industrial setup in Fig. 1. Two Adept

Cobra s600 SCARA robots are performing pick and place

operations while sharing the same working environment.

Each manipulator has a dedicated controller and considers

the other manipulator as a dynamic obstacle. Snapshots from

a typical operation are depicted in Fig. 8.

In such industrial applications, the typical approach is

for a programmer to specify intermediate paths between a

large number of endpoints (for each robot). On these paths,

acceleration profiles must then be defined. This process

requires a lot of experience and takes considerable time

and effort which prevents many manufacturers from using

multi-robot systems. In contrast, the approach proposed here

requires simply the desired endpoints to be specified by the

user, while the intermediate trajectory is generated online.

In the experiment presented here, in addition to bound-

ing the joint accelerations, constraints on the joint angles

and velocities were imposed (see Table I). The underlying

optimization problem for each manipulator was solved on

a PowerPC CPU of 400 MHz under the constraint that not

more than half of the CPU power can be utilized (32 ms

control sampling time was used). This poses a challenge

to our numerical approach (the hierarchical problems were

solved using an implementation of the method in [14]).

Collision avoidance constraints were formed by consider-

ing each link of one of the manipulators (modeled using a

swept sphere lines) as an obstacle for the other. We followed

the linearization procedure described in Section V. Since

there was no notable state estimation noise, Nmin = 1 was

used. Although we were aiming at having a preview length

Nmax = 7 (which was verified to lead to very satisfactory

results in a simulation study), due to the hardware limitations,

Nmax = 5 was considered.

Figure 9 (a) depicts typical joint profiles of one pick and

place cycle from the experiment (for one of the robots).



The actual experiment can be seen in the accompanying

video. The results demonstrate that online generation of fast

manipulator motions with the proposed hierarchical approach

is readily possible even with limited resources. Although

our choice of Nmax makes online computations feasible it,

however, leads to an undesired “velocity saturation”. Note

how the velocity of joint 2 saturates at approximately 400
deg/s during the interval [0.25, 0.5]. This is a good indicator

that by increasing Nmax one can expect to achieve faster

transitions. The results with Nmax = 7 (obtained in a

simulation) confirm this. As can be seen on Fig 9 (b), the

velocities of both joints are very close to the actual limits

and, in our experience, increasing further Nmax leads to only

a marginal gain. The resultant transition duration is 30%

faster compared to the case with Nmin = 5. Our current

efforts are in the direction of reducing this gap by means

of improving our numerical tools so that a larger Nmax can

be used or by enhancing our formulation. For example, we

are investigating the effects of non-uniform sampling of the

preview window and alternative warm-starting techniques.

In order to emphasize the online generation of the trajecto-

ries, the accompanying video includes a variant of the above

industrial setup where the targets are moving on conveyors.

VII. CONCLUSION

This paper introduced a hierarchical approach to

minimum-time control. It is applied in the context of online

trajectory generation for industrial robots performing pick

and place operations in the presence of dynamic obstacles.

In particular, we presented experimental evaluation using two

SCARA robots that share the same working environment.

The proposed formulation simplifies greatly the deployment

of industrial technology, as it does not rely on the tedious

and time consuming task of manually specify paths between

a large number of endpoints. We achieve a reactive behavior

by using model predictive control, and our approach has the

capacity to suppress high frequency chattering in the control

signal in the presence of noise: a common drawback of

aggressive control strategies. An important advantage of our

hierarchical formulation is that the solution of the underlying

problem can be approached using already existing tools in

robotics.

REFERENCES

[1] L. Van den Broeck, M. Diehl, and J. Swevers, “A model predictive
control approach for time optimal point-to-point motion control,”
Mechatronics, vol. 21, no. 7, pp. 1203 – 1212, 2011.

[2] H. Andreasson, A. Bouguerra, M. Cirillo, D. Dimitrov, D. Driankov,
L. Karlsson, and et al., “Autonomous transport vehicles: where we
are and what is missing,” IEEE Robotics and Automation Magazine

(IEEE-RAM), vol. 22, no. 1, pp. 64–75, 2015.
[3] “Omron Adept Technologies, Inc.” http://www.adept.com.
[4] J. Nocedal and S. Wright, Numerical Optimization. Springer, 2006.
[5] D. Kim and J. Turner, “Near-minimum-time control of asymmetric

rigid spacecraft using two controls,” vol. 50, no. 8, pp. 2084 – 2089,
2014.

[6] H. Kim, S. Lim, C. Iuraşcu, F. Park, and Y. Cho, “A robust, discrete,
near time-optimal controller for hard disk drives,” Precision Engineer-

ing, vol. 28, no. 4, pp. 459 – 468, 2004.
[7] D. Bertsekas, Dynamic Programming and Optimal Control. Athena

Scientific, 1995.
[8] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal

motion planning,” Int. Journal of Robotics Research, vol. 30, no. 7,
pp. 846 – 894, 2011.

[9] D. Dimitrov, P.-B. Wieber, and A. Escande, “Multi-objective control
of robots,” Journal of the Robotics Society of Japan, vol. 32, no. 6,
pp. 512–518, 2014.

[10] Z. Gao, “On discrete time optimal control: a closed-form solution,” in
American Control Conference, pp. 52 – 58, 2004.

[11] R. Zanasi, C. Lo Bianco, and A. Toniellic, “Nonlinear filters for the
generation of smooth trajectories,” Automatica, vol. 36, no. 3, pp. 439
– 448, 2000.

[12] R. Zanasi and R. Morselli, “Discrete minimum time tracking problem
for a chain of three integrators with bounded input,” Automatica,
vol. 39, no. 9, pp. 1643 – 1649, 2003.

[13] D. Chen, L. Bako, and S. Lecoeuche, “The minimum-time problem
for discrete-time linear systems: a non-smooth optimization approach,”
in IEEE International Conference on Control Applications (CCA),
pp. 196 – 201, 2004.

[14] D. Dimitrov, A. Sherikov, and P.-B. Wieber, “Efficient resolution of
potentially conflicting linear constraints in robotics,” IEEE Transac-

tions on Robotics (under review).
[15] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic

programming: Fast online humanoid-robot motion generation,” The

International Journal of Robotics Research (IJRR), vol. 33, no. 7,
pp. 1006–1028, 2014.

[16] V. Zanotto, A. Gasparetto, A. Lanzutti, P. Boscariol, and R. Vidoni,
“Experimental validation of minimum time-jerk algorithms for indus-
trial robots,” Journal of Intelligent & Robotic Systems, vol. 64, no. 2,
pp. 197 – 219, 2011.

[17] O. Gerelli and C. Bianco, “A discrete-time filter for the on-line
generation of trajectories with bounded velocity, acceleration, and
jerk,” in IEEE International Conference on Robotics and Automation,
pp. 3989 – 3994, 2010.

[18] F. Borrelli, A. Bemporad, and M. Morar, Predictive Control for linear

and hybrid systems. version from June, 7, 2015.
[19] B. Siciliano and J.-J. Slotine, “A general framework for managing mul-

tiple tasks in highly redundant robotic systems,” in Fifth International

Conference on Advanced Robotics (ICAR), pp. 1211–1216, 1991.
[20] O. Khatib, L. Sentis, J. Park, and J. Warren, “Whole-body dynamic

behavior and control of human-like robots,” International Journal of

Humanoid Robotics, vol. 1, no. 1, pp. 29–43, 2004.
[21] H. Isermann, “Linear lexicographic optimization,” Operations Re-

search Spektrum, vol. 4, no. 4, pp. 223–228, 1982.
[22] H. Khalil, Nonlinear Systems. Prentice Hall, 2002.
[23] F. Flacco, A. De Luca, and O. Khatib, “Control of redundant robots

under hard joint constraints: Saturation in the null space,” IEEE

Transactions on Robotics, vol. 31, no. 3, pp. 637–654, 2015.
[24] H. Sugiura, M. Gienger, H. Janssen, and C. Goerick, “Real-time

collision avoidance with whole body motion control for humanoid
robots,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pp. 2053 – 2058, 2007.
[25] F. Flacco, T. Kroger, A. De Luca, and O. Khatib, “A depth space

approach to human-robot collision avoidance,” in IEEE International

Conference on Robotics and Automation (ICRA), pp. 338 – 345, 2012.
[26] Y. Wang and S. Boyd, “Fast model predictive control using online

optimization,” IEEE Transactions on Control Systems Technology,
vol. 18, no. 2, pp. 267 – 278, 2010.

[27] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” The International

Journal of Robotics Research (IJRR), vol. 33, no. 9, pp. 1251 – 1270,
2014.

[28] C. Ericson, Real-Time Collision Detection. Elsevier, 2004.


	Introduction
	The minimum-time problem
	A classical formulation
	A hierarchical formulation

	Comparison with the analytical solution for a double integrator
	Choosing Nmin and Nmax
	Collision avoidance constraints
	Experimental verification
	Conclusion
	References

