
HAL Id: hal-01419366
https://hal.archives-ouvertes.fr/hal-01419366

Submitted on 21 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic OpenCL Task Adaptation for Heterogeneous
Architectures

Pierre Huchant, Marie-Christine Counilh, Denis Barthou

To cite this version:
Pierre Huchant, Marie-Christine Counilh, Denis Barthou. Automatic OpenCL Task Adaptation for
Heterogeneous Architectures. Euro-Par, Aug 2016, Grenoble, France. pp.684 - 696, �10.1007/978-3-
319-43659-3_50�. �hal-01419366�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/80465819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01419366
https://hal.archives-ouvertes.fr

Automatic OpenCL Task Adaptation for
Heterogeneous Architectures

Pierre Huchant, Marie-Christine Counilh, and Denis Barthou

Inria / LaBRI, University of Bordeaux, Bordeaux INP, France
pierre.huchant@inria.fr, counilh@labri.fr, denis.barthou@inria.fr

Abstract. OpenCL defines a common parallel programming language
for all devices, although writing tasks adapted to the devices, managing
communication and load-balancing issues are left to the programmer.
In this work, we propose a novel automatic compiler and runtime tech-
nique to execute single OpenCL kernels on heterogeneous multi-device
architectures. The technique proposed is completely transparent to the
user, does not require off-line training or a performance model. It han-
dles communications and load-balancing issues, resulting from hardware
heterogeneity, load imbalance within the kernel itself and load variations
between repeated executions of the kernel, in an iterative computation.
We present our results on benchmarks and on an N-body application
over two platforms, a 12-core CPU with two different GPUs and a 16-
core CPU with three homogeneous GPUs.

1 Introduction

Heterogeneous parallel architectures are ubiquitous, from supercomputers to cell
phones. Developing an application for a heterogeneous, multi-devices system,
taking advantage of all available devices is extremely challenging. OpenCL is a
standard language for the development of code on heterogeneous architectures. It
leverages part of this difficulty by defining one language for all platforms, and by
structuring parallelism into a task graph, where tasks are parallel computations
to be mapped onto one device. However, this implies that the developer has
to design as many tasks as there are devices, with tasks adapted in terms of
parallelism and memory granularity: There should be enough parallelism for all
devices, and communications between devices have to be explicit.

OpenCL kernels describe tasks as parallel work-groups. To transform one
kernel into as many kernels as devices, these work-groups have to be partitioned
among devices. This raises load balancing issues, stemming from device hetero-
geneity and from workload variation between work-groups. As many kernels are
executed in iterative computation, the workload may change from one iteration
to the other, requiring a constant adaptation of the work-group partitioning.
Moreover, data has to be split among partitioned work-groups in order to re-
duce communication time and written data has to be merged upon kernel com-
pletion. Achieving adaptive work-group partitioning, with no training, handling
load balancing and data movements has never been conducted before.

We propose in this paper a static/dynamic approach for the execution of any
given OpenCL kernel on a multi-device heterogeneous architecture. The method
tackles, without training, load balancing issues coming from device heterogene-
ity and from varying computational intensity inside the kernel, when the kernel
is called multiple times. The load-time analysis computes how to partition data
for the execution of work-groups as a function of the work-group partitioning.
The dynamic method evaluates from previous runs how to partition work-groups
and splits/merges data accordingly. We show with two different runtime meth-
ods that only a few iterations are required to reach the optimal granularity.
Finally, when the kernel computational intensity changes with each execution,
the method dynamically adapts the load and stays close to the optimal load.

Section 2 shows causes for load balancing issues when splitting a kernel into
subkernels. Section 4 presents our method, generating partition-ready kernels
and instantiating with the appropriate granularity, for each device. Computation
of granularities is described in Section 5. Related works and experimental results
are given in Sections 6 and 7.

2 Motivating Example

Given an OpenCL kernel, we define a subkernel as a code executing only part
of the kernel computation. As OpenCL kernel executions are characterized by
the number of parallel work-groups, the ratio of work-groups of a subkernel over
the total number of work-groups is called granularity, a granularity of 1 meaning
the whole kernel is executed. We study the performance variation of a kernel on
one device, decreasing manually its granularity. The granularity is indicated as
a percentage of the total number of work-groups, and performance is indicated
as the mean time per work-group (lower is better). Figure 1 shows performance
of AESEncrypt and EP from SNU NPB Suite [13] for different granularities
on a 16-core Intel Xeon E5-2650 2.00GHz with 64GB (CPU) and on an Nvidia
Tesla M2075 (GPU). For AESEncrypt, the average time per work-group is nearly
constant for all granularities, and very different on CPU and on GPU. For EP,
we observe large performance drops (higher average time/work-group) at regular
intervals of granularities on both CPU and GPU. This may come from compiler
optimizations (such as unrolling), cache effects, and inefficient occupancy of the
parallel resources due to a low number of work-groups within subkernels.

Work-groups are indexed in OpenCL by a vector of indices among a rectangu-
lar space (from 1D to 3D) called the NDRange. Selecting a granularity boils down
to defining a subvolume of indices. In this paper, the subvolumes we consider are
obtained by selecting one smaller interval in one dimension of the NDRange. The
offset is the first index of this interval of indices, the granularity defining the size
of this interval. Figure 1c shows for a Sparse Matrix Vector Multiply (SpMV)
the influence of the offset on performance when, for a kernel of 1/4 granularity,
the offset is changed. In the chosen sparse matrix, rows with a high index have
more non-0 elements than those with a low index. This accounts for the execu-

 0.1

 1

 10

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
g
e
 T

im
e
 /
 w

o
rk

g
ro

u
p
 (

m
s)

Granularity

CPU
GPU

(a) AESEncrypt

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
g
e
 T

im
e
 /
 w

o
rk

g
ro

u
p
 (

m
s)

Granularity

CPU
GPU

(b) EP

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60 70 80

Ti
m

e
 (

m
s)

Starting offset in % of the dimension size

CPU
GPU

(c) SpMV

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50 60

ti
m

e
 p

e
r

it
e
ra

ti
o
n
 (

m
s)

iteration number

kernel1 [0,999]
kernel2 [1000,1999]
kernel3 [2000,2999]
kernel4 [3000,3999]

(d) OTOO

Fig. 1. (a) and (b): Impact on performance of architectural heterogeneity and granu-
larity on AESEncrypt and EP benchmarks. Performance is given as an average time
per work-group, granularity as a percentage of the total number of work-groups. (c)
Impact on performance of the offset (starting index) for SpMV kernel, with a fixed
granularity of 1/4. (d) Impact of iteration count on performance for OTOO applica-
tion. Granularities are set to 1/4 for all devices, and offset is fixed on all devices.

tion time increase for large offsets, more than 7× the time of a 0-offset. When
splitting a kernel into subkernels, this is a possible source of load-imbalance.

Many OpenCL kernels are executed in iterative computations. For instance,
OTOO [11] is an astrophysics particle N-Body simulation and the same kernel
is called repeatedly to compute forces and move the different particles. Figure
1d shows how the execution time changes for different iterations, for different
offsets, for each iteration of the computation. The kernel is split into 4 subkernels,
each one is given a granularity of 1/4 and executed on one GPU. The input set
corresponds to a non-uniform distribution of the masses in space. As this space
is partitioned among the work-groups, this results in a non-homogeneous load
distribution among the work-groups, changing with iteration number.

These results advocate for a method able to cope with the heterogeneity of
the hardware, but also with the performance variations associated to different
granularities, depending on the offset and varying with each execution of the
kernel. Adapting a single OpenCL kernel to an heterogeneous architecture with
any number of devices, taking into account these four sources of imbalance has
never been tackled before.

3 Principle of Adaptive Granularity

The method proposed is threefold. First the kernel is analyzed and a new version,
partition-ready, is generated at compile time. Then each time the original kernel
has to be executed, a granularity is chosen for each device, based on previous
executions if any, and the partition-ready kernel is instantiated on each device
with the chosen granularity. More precisely: (i) When the kernel code is first
loaded, it is analyzed. This step is more thoroughly described in Section 4. The
objective is the generation of a parametric and partition-ready kernel, executing
only a slice of the NDRange space. The analysis is performed once on the OpenCL
code (no host code analysis) but the code generated can be instantiated at run-
time for many different granularities and offsets. The slicing of the rectangular
volume corresponding to the NDRange is done in any of the dimensions of the
volume and does not require to flatten it. The memory region accessed by each
work group is computed, parametrically w.r.t. the work-group id and the scalar
parameters of the kernel; (ii) Each time the original kernel is launched, a granu-
larity for each device is determined. This granularity determines the number of
work-groups to execute on a particular device. The array regions are instanti-
ated with the granularities and the actual parameters of the kernel. Depending
on the result, all arrays are communicated to the devices or only the region they
require. The same occurs for bringing back data from the devices. This kernel
instantiation is described in Section 4.2; (iii) The execution time of each kernel
execution is collected for refining the granularity in the possible following runs.
This iterative granularity optimization is described in Section 5.

4 Automatic Adaptation of Data and Parallelism

We describe in this section how a kernel is analyzed and transformed into a
parametric partition-ready kernel, function of the granularity.

4.1 Static Analysis and Transformation

The analysis determines for each array passed to the kernel how this array can
be split among the different devices. For arrays that are read-only, a safe over-
approximation is to broadcast the whole array to all devices. A more precise
analysis can determine a finer partition, allowing shorter communication times
and for some extreme case, may be the only possible way to execute the kernel
if the initial array is too large for any of the devices. Finding how to partition
arrays written by the kernel is essential: When the written region is precisely
known and there is no overlap with other device regions, bringing back this
data to the host can be done in parallel. On the contrary, if the analysis is not
able to precisely determine which region has been written, a merge operation
is necessary to build the output array [12, 8]. The analysis only handles arrays
(buffer objects) but could be extended to OpenCL images. We describe in this
section how to determine precisely the array regions accessed by each work-item.
The case where the analysis fails is discussed in the next section.

We first identify in the kernel all statements accessing arrays passed as a
parameter. In OpenCL, arrays can be cast into other types (from 1D to 3D
for instance), with possible offsets. All accesses through the cast arrays are also
accesses to the initial array. Likewise, array accesses may occur inside functions
called by the kernel. We therefore resort to an inter-procedural alias analysis,
following assignments and use-def chains on arrays. In the following example,

void KERNEL(float *A) {
...

S1: double(* B)[3][5][5] =(double (*) [3][5][5])&A[offset];
...

S2: B[1][0][0]=..
}

the analysis detects that statement S1 defines the 3D array B, aliasing A. S2
accesses B[1][0][0], corresponding to A[25+offset]. Only constant offsets
are handled so far. It generates a list of statements accessing input arrays, with
their mapping function turning the index into an index of the input array.

For each array that is a parameter of the kernel and for each statement, we
compute the array region accessed by this statement. The idea is to consider the
index expression and to replace the variables in it by their values, repeatedly.
Assuming the code is in SSA-form, this repeated substitution may lead to several
cases: The resulting expression only uses scalar parameters of the kernel and
work-item ids (local, group or global). In such case, the substitution process stops
and the exact region will be evaluated dynamically, when these ids and parameter
values are known. When a variable is defined by a Φ-function, if this is an
induction variable and its interval of values can be determined, then the variable
is replaced by its interval, the index expression becoming an interval expression.
For other cases of Φ-functions or variables that are defined by loads, the region
accessed is assumed to be unknown. Therefore, the array regions computed are
interval expressions of the scalar inputs of the kernel and of the work-item ids,
or unknown. We compute additionally the conditions on the ids for which this
region is accessed. The abstraction we use for these conditions is an interval
on ids. A similar analysis is therefore conducted on the conditionals (or loop
bounds) governing the execution of the statement considered. Out of simplicity,
only uniform expressions on ids are kept, i.e. inequalities of the form: ±id ≤ expr
where expr is an expression independent of the work-item ids. Conditionals that
are not uniform expressions are assumed to be true. The conjunction of such
conditionals define intervals of ids. To wrap-up, the array region accessed by a
statement is either unknown, or represented by a guarded region of the form:

if id ∈ [lb(s), ub(s)] : [expr1(id, s), expr2(id, s)]

with s the scalar parameters of the kernel and id a work-item id. Note that the
expressions expr1, expr2, lb and ub have no restriction and can use any operator
allowed by the language. For a given array, the region accessed by the kernel is
defined by the union of array regions accessed by all statements.

Kernel modification When executing a kernel with a fraction of the original
NDRange, some syntactic modifications are needed in order to keep the correct

OpenCL Call

User Buffer Libsplit Buffer

Host Devices

clEnqueueWriteBuffer(clBuffer, User Buffer)

memcpy

device 1

clEnqueueWriteBuffer()

device 2

clEnqueueWriteBuffer()

sub-kernel 1 execution on device 1

sub-kernel 2 execution on device 2

clEnqueueNDRangeKernel()

device 1
clEnqueueReadBuffer()

device 2

clEnqueueReadBuffer()

memcpy

clEnqueueReadBuffer(clBuffer, User Buffer)

Fig. 2. Buffer management

semantics. Indeed, the global size is different from the original kernel, the num-
ber of work-groups has changed and their id has changed too. Two additional
parameters are added to the partition-ready kernel: splitdim (1,2 or 3) accounts
for the dimension of the NDRange that is split, and numgroups is the number of
work-groups in this dimension. Then the following function calls are changed:
Expression Rewritten into
get global size(expr) (expr == splitdim?numgroups*get local size(expr):get global size(expr))
get num groups(expr) (expr == splitdim?numgroups:get num groups(expr))
get group id(expr) (get global id(expr)/get local size(expr))

All analyses and transformations are performed once at compile-time within
the LLVM compiler [6]. The granularities are determined later at runtime.

4.2 Kernel Instantiation and Communication Generation

OpenCL function calls from the host are intercepted by our runtime library
Libsplit. When the kernel is called in the OpenCL code, the values of the
scalar parameters and the size of the NDRange are known. The array regions can
then be evaluated and the range of work-item ids is determined according to the
chosen granularity and the size of work-groups. The runtime kernel instantiation
evaluates the dimension of the NDRange that allows to distribute written data
among devices, with no need for a merge operation, if possible.

Array regions are defined as union of guarded intervals. In order to reduce
the number of communications, we evaluate for a given interval of ids and for
each array an interval including the array region.

Figure 2 shows the different steps, assuming a copy is performed with a
WriteBuffer command. Calls to WriteBuffer are deferred communications:
Our library registers the commands, write protects the buffers to prevent any
modification until the kernel execution. If one buffer is modified before kernel
execution, the modification access is trapped, so that the copies occur first and
then the modification occurs. If the buffers are not modified, this additional
copy is not done. When the kernel is called, the granularity for each device is
computed and the devices execute a subkernel, with its associated data. The

runtime analysis keeps information related to data distribution. When multiple
kernel executions are performed, communications are only performed for data
not already present on the device.

Limits of the analysis The previous analysis is not always able to precisely
compute the regions accessed by a work-item, in particular when indirections
occur or when the region accessed depends on control flow too complex for the
analysis. When this happens, the array is not split between devices. If the array
is written, a merge operation is required after the kernel execution in order
to fuse the different contributions computed by each device. The operation we
propose is based on a diff, similarly to [12]. Such operation degrades the overall
performance for communication/memory bound kernels.

5 Adapting Granularity

This section proposes a method to dynamically adapt granularity to the devices
and to the kernel, assuming the same kernel is executed multiple times.

5.1 Formalization

Given a kernel and n devices, the problem consists in determining how to split
the computation among the devices so as to minimize the execution time. Each
device executes the same kernel, but possibly with a different number of work-
groups and different data. We formally define the granularity as a value xi in
[0, 1] corresponding to the ratio between the number of work-groups allocated
to the device i and the total number of work-groups (numgroups). numgroups
is known when the kernel is called. We define fi(xi, offseti, t) as the mean time
to execute one work-group on device i, when a subkernel of granularity xi is
executed at time step t, with an offset offseti. The total execution time of this
subkernel is therefore fi(xi, offseti, t) ∗ xi ∗ numgroups.

The solution to the problem consists in finding the time T and the granular-
ities xi and the offsets offseti such that the system in Fig. 3a is fulfilled.

minT
f1(x1, offset1, t) ∗ x1 ∗ numgroups ≤ T
. . .
fn(xn, offsetn, t) ∗ xnnumgroups ≤ T∑

i xi = 1

(a) Initial formulation

minT
f1(x1, t) ∗ y1 ∗ numgroups ≤ T
. . .
fn(x1 . . . , xn, t) ∗ yn ∗ numgroups ≤ T∑

i xi = 1,
∑

i yi = 1

(b) Generalized formulation

Fig. 3. Formulations of the granularity problem

The functions fi are not known precisely but they can be measured for a
given xi, offseti and t. We arbitrarily order the offsets by increasing id of device.

Thus, with offsets defined by values in [0, 1], offset1 = 0, . . . , offsetn =
∑

k<n xk
and fi no longer depends on offsets in Fig. 3b but on xi.

We generalize this formulation by introducing a new set of variables, yi ∈
[0, 1], as shown in Fig. 3b. Now it is possible to define a function F such that
Ft(x) = (y), with x = (xi)i the vector of all xi and y = (yi)i the vector of all
yi, satisfying conditions from Fig. 3b:

Ft(x) =

(
T

fi(x1, . . . , xi, t) ∗ numgroups

)
i

,

with T = numgroups∑
i 1/fi(x1,...,xi,t)

. The evaluation of Ft(x) requires O(n) basic arith-

metic operations with n the number of devices. A solution to the problem of
Fig. 3a can be found by computing a fixed point of the function F: Ft(x) = x or
similarly, by finding the 0 of the function Gt: Gt(x) = x− Ft(x)

5.2 Resolution Method

First assume the function Ft does not depend on t, the iteration count. Several
methods have been proposed in the literature for solving such problem, when the
function is not known analytically: The fixed point method consists in computing
the suite of granularity vectors xk = F (xk−1), k ≥ 1 from some initial value x0.
The evaluation of F (xk−1) requires to execute the kernel with the granularities
xk−1. When the suite converges, it converges linearly towards a vector of optimal
granularities satisfying the initial problem and achieving perfect load balance.
The convergence depends on F and on the initial value x0 but is in general
linear. The secant method, or its generalization for n-D space the Broyden’s
method, uses an approximate gradient to converge to the 0 of a function with
a near quadratic convergence rate. We implemented both methods to refine the
granularity assigned to each device. F is evaluated at each kernel instantiation
and provides the input necessary to instantiate the partition-ready kernel.

Finally, when the functions fi also depend on the iteration count t, the fixed
point equation becomes Ft−1(xk−1,t−1) = xk,t with F changing for each term of
the suite. For real applications, a good approximation of the solution at step t
remains a good approximation at step t+1. As the fixed point method converges
quickly when the approximation is close to the solution, we believe this approach
can be used for many real cases. We demonstrate for a N-Body application that
the fixed point method is able to stay close to the optimal, even when the optimal
granularity is varying with the iteration count (see Section 7).

6 Related Works

Several works focus on kernel splitting. Kim et al. [3] are making one OpenCL de-
vice unifying multiple uniform GPUs. The OpenCL NDRange and array regions
are split according to the values recorded by sampling. They do not handle
conditionals as we do and assume that array indices are all linear in the ker-
nel parameters. Moreover, they assume subkernels have the same load. Luk et

al. [10] propose an heterogeneous programming system that provides an adap-
tive mapping technique based on execution-time projections stored in a database
during training runs. The technique we propose does not require training runs.
Li et al. [9] present STEPOCL, a tool which takes as input kernels along with
a configuration file and generates automatically an OpenCL multi-devices ap-
plication. The configuration file describes how to split data, the control flow of
the program, and allow to have specialized kernels for different architectures.
The work partitioning between devices is based on offline profiling. Grewe et
al.[2] propose a pure static task partitioning method, based on predictive mod-
eling and program features. They do not collect data dynamically however and
cannot adapt to differences in terms of computing efficiency, depending on gran-
ularity, as shown in the motivating example. Kim et al.[4] propose to solve the
load imbalance problem on CPUs by dynamically assigning sets of work-groups
with decreasing sizes to an idle compute unit thread. It manages data across
different devices in a cluster, however mapping tasks and data to these devices
is left to the programmer. Seo et al. [14] propose an automatic work-group size
selection technique for OpenCL kernels on multicore CPUs. Their method uses a
profiling-based algorithm. Heterogeneity is not handled however and kernels are
assumed to be work-group size independent. Kofler et al. [5] present a method
for OpenCL task partitioning relying on offline generated model. This model is
based on artificial neural networks, relying on the features of the kernels, includ-
ing their input sizes. In [1], the authors propose a dynamic method to partition
OpenCL tasks and perform load balancing. Their approach generates chunks of
work-groups with increasing size to execute on different devices and selects the
best partition of these chunks on the devices. The chunks are manually generated
and there is no automatic scheme to partition data for the OpenCL kernels.

In [12], the authors propose an OpenCL runtime that takes a single device
kernel and executes it on CPU and GPU. Load balancing is managed at run-
time. While their approach dynamically balance work between one CPU and
one GPU, it cannot be easily generalized for any number of devices. Besides,
data is not split between subkernels, all arrays are transferred to all devices. Fi-
nally, the kernel transformation is achieved by hand, and not with an automatic
compiler optimization. In [15], Shen et al. present a method for heterogeneous
platforms and imbalanced applications. They propose a model integrating both
the workload of the application, determined by sampling, and the architecture.
When the workload has an irregular shape, it is reshaped by sorting to obtain
a regular shape with a peak and a bottom part. Based on this model and after
profiling, a predictor determines the optimal partitioning between CPUs and
GPUs. The work described in [8] relies on complex training, resorting to linear
regression techniques in order to predict the correct load balance. They do not
handle dynamic load changes, such as the SpMV or OTOO case shown in the
motivating example. In [7], the authors extend the previous work to complete
task graphs. It is still based on offline training and assumes performance per
work-group is constant, while we have shown there can be large variations.

7 Performance Evaluation

Experiments are conducted on two platforms: conan — 16-core Intel Xeon E5-
2650 2.00GHz with 64GB, 3 Nvidia Tesla M2075; happyCL — 12-core Intel Xeon
E5-2680 2.80GHz with 64GB, Nvidia Tesla K20c, Nvidia Quadro K5000.

Detailed Load Balancing: Figure 4 shows the speed-up obtained on conan with
AESEncrypt and EP compared to the best single device performance, when
these kernels are repeated 10 times. The speed-up shown here are per iteration.
For the first iteration, the granularity is the same for all devices (uniform hy-
pothesis), explaining poor performance compared to the GPU performance. For
EP, Figure 4a, the fixed point method requires 6 iterations to reach a maximum
speed up of 2.8, whereas the Broyden’s method converges in only 4 iterations
leading to a better global speedup. For AESEncrypt, Figure 4b shows there is
no such difference and both methods are similar, reaching a peak speed-up of
2.15 in 3 iterations only. The variations are due to the fact that the optimal
granularity does not correspond to a round number of work-groups, hence there
are granularity adjustments and communications at each step.

Figure 5 shows how our method behaves when the load changes over 60
iterations. Figure 5a illustrates the time taken by each subkernel for OTOO
when the granularity is the same for all devices (Uniform strategy). From one
device to the other, the execution time differs by more than a factor 3 (iteration
15 for instance). Figure 5b shows how the same load is shared among the four
devices when it is continuously adapted by our technique (Adaptive strategy).
As the 4 plots are close to each other, this shows the execution time is nearly
optimal. We observe that convergence to the optimal only requires 2 iterations.

Overall Speedups: Figure 6 presents speed-ups compared to the best single de-
vice performance on the two target architectures, for a large number of bench-
marks when they are repeated 100 times. We observe the results of our method
(Adaptive) are close to the optimal, obtained when launching the kernel di-
rectly with the granularity obtained after convergence (Oracle). For Jacobi1D
and Jacobi2D, the gap is more important because these benchmarks consist in

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 2 3 4 5 6 7 8 9 10 Global

S
p

e
e

d
u

p
 p

e
r

it
e

ra
ti

o
n

CPU
GPU

Fixed Point Method
Broyden's Method

(a) EP

 0

 0.5

 1

 1.5

 2

 2.5

1 2 3 4 5 6 7 8 9 10

S
p

e
e

d
u

p
 p

e
r

it
e

ra
ti

o
n

CPU
GPU

Fixed Point Method
Broyden's Method

(b) AESEncrypt

Fig. 4. Speedup per iteration of EP and AESEncrypt

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50 60

ti
m

e
 p

e
r

it
e
ra

ti
o
n
 (

m
s)

iteration number

GPU1 [0,999]
GPU2 [1000,1999]
GPU3 [2000,2999]
CPU [3000,3999]

(a) Uniform

 0

 1000

 2000

 3000

 4000

 5000

 0 10 20 30 40 50 60

ti
m

e
 p

e
r

it
e
ra

ti
o
n
 (

m
s)

iteration number

GPU1
GPU2
GPU3
CPU

(b) Adaptive

Fig. 5. Performance of OTOO executed on conan (3GPUs+CPU) for 60 iterations.
Figure 5a shows the execution time of each subkernel with the Uniform splitting, same
granularity for all devices. Figure 5b shows the execution time of each subkernel with
the Adaptive splitting.

2 kernels, one stencil and one copy. Defining the same granularity for both copy
and stencil minimizes communication time. Our method handles only one kernel
at a time, and does not find the same granularity for both kernels.

 0

 0.5

 1

 1.5

 2

 2.5

 3

AESENCRYPT

EP M
ONTECARLO

SPM
V

2DCONV

2M
M

3M
M

ATAX
BICG

GEM
M

GESUM
M
V

JACOBI1D

JACOBI2D

SYRK
SYR2K

S
p

e
e
d

u
p

Original CPU
Original Tesla

Original Quadro
Uniform 2 GPUs + CPU

Adaptive 2 GPUs + CPU
Oracle 2 GPUs + CPU

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

AESENCRYPT

EP M
ONTECARLO

SPM
V

2DCONV

2M
M

3M
M

ATAX
BICG

GEM
M

GESUM
M
V

JACOBI1D

JACOBI2D

SYRK
SYR2K

S
p

e
e
d

u
p

Original CPU
Original GPU

Uniform 3 GPUs + CPU
Adaptive 3 GPUs + CPU

Oracle 3 GPUs + CPU

Fig. 6. Performance of AESEncrypt, EP, MonteCarlo, OTOO, SPMV and some Poly-
bench on happyCL (top) and conan (bottom). Original codes run only on one device.
Uniform and Adaptive are using subkernels automatically obtained by our method.

8 Conclusion

We proposed in this paper the design and implementation of a method that sim-
plifies the development of OpenCL applications for heterogeneous, multi-device

systems. Our technique splits computation and data automatically across the
computing devices, handling all load-balancing issues, including load variations
when the kernel is executed iteratively. We have shown the optimal granularity
is obtained in a few iterations and the technique does not require profiling or
training. The approach is completely transparent to the user, and the same code
can be executed without modification on different machines.

References

1. Boyer, M., Skadron, K., Che, S., Jayasena, N.: Load Balancing in a Changing
World: Dealing with Heterogeneity and Performance Variability. In: Computing
Frontiers Conf. (2013)

2. Grewe, D., O’Boyle, M.F.: A Static Task Partitioning Approach for Heterogeneous
Systems Using OpenCL. In: Intl Conf. on Compiler Construction. Springer (2011)

3. Kim, J., Kim, H., Lee, J.H., Lee, J.: Achieving a single compute device image
in OpenCL for multiple GPUs. In: Principles and practice of Parallel Prog. pp.
277–288. PPoPP ’11, ACM, New York (2011)

4. Kim, J., Seo, S., Lee, J., Nah, J., Jo, G., Lee, J.: SnuCL: an OpenCL framework
for heterogeneous CPU/GPU clusters. In: ACM Intl Conf. on Supercomputing. pp.
341–352. ICS ’12, ACM, New York (2012)

5. Kofler, K., Grasso, I., Cosenza, B., Fahringer, T.: An Automatic Input-sensitive
Approach for Heterogeneous Task Partitioning. In: Intl Conf. on Supercomputing.
pp. 149–160. ACM, New York (2013)

6. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-
ysis and transformation. pp. 75–88. San Jose, CA, USA (Mar 2004)

7. Lee, J., Samadi, M., Mahlke, S.: Orchestrating Multiple Data-Parallel Kernels on
Multiple Devices. In: Parallel Arch. and Compilation Techniques. IEEE (2015)

8. Lee, J., Samadi, M., Park, Y., Mahlke, S.: SKMD: Single Kernel on Multiple De-
vices for Transparent CPU-GPU Collaboration. ACM Trans. Comput. Syst. 33(3),
9:1–9:27 (2015)

9. Li, P., Brunet, E., Trahay, F., Parrot, C., Thomas, G., Namyst, R.: Automatic
OpenCL Code Generation for Multi-device Heterogeneous Architectures. In: In-
ternational Conference on Parallel Processing. pp. 959–968 (2015)

10. Luk, C.K., Hong, S., Kim, H.: Qilin: exploiting parallelism on heterogeneous mul-
tiprocessors with adaptive mapping. In: Symp. on Microarchitecture. pp. 45–55.
MICRO 42, ACM, New York (2009)

11. Nakasato, N., Ogiya, G., Miki, Y., Mori, M., Nomoto, K.: Astrophysical Particle
Simulations on Heterogeneous CPU-GPU Systems. CoRR abs/1206.1199 (2012)

12. Pandit, P., Govindarajan, R.: Fluidic Kernels: Cooperative Execution of OpenCL
Programs on Multiple Heterogeneous Devices. In: Code Generation and Optimiza-
tion. pp. 273–283. ACM (2014)

13. Seo, S., Jo, G., Lee, J.: Performance Characterization of the NAS Parallel Bench-
marks in OpenCL. In: Workload Characterization. pp. 137–148 (2011)

14. Seo, S., Lee, J., Jo, G., Lee, J.: Automatic OpenCL work-group size selection
for multicore CPUs. In: Parallel Arch. and Compilation Techniques. pp. 387–397
(2013)

15. Shen, J., Varbanescu, A.L., Sips, H., Arntzen, M., Simons, D.G.: Glinda: a frame-
work for accelerating imbalanced applications on heterogeneous platforms. In:
Computing Frontiers Conf. p. 14. ACM (2013)

