
HAL Id: hal-01419860
https://hal.inria.fr/hal-01419860

Submitted on 20 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Oracle-based Differential Operational Semantics (long
version)

Thibaut Girka, David Mentré, Yann Régis-Gianas

To cite this version:
Thibaut Girka, David Mentré, Yann Régis-Gianas. Oracle-based Differential Operational Semantics
(long version). [Research Report] Université Paris Diderot / Sorbonne Paris Cité. 2016. �hal-01419860�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/80465343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01419860
https://hal.archives-ouvertes.fr

Oracle-based Di�erential Operational Semantics

(long version)

Thibaut Girka1,2, David Mentré1, and Yann Régis-Gianas2

1Mitsubishi Electric R&D Centre Europe, F-35708 Rennes, France
2Univ Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126 CNRS, PiR2, INRIA

Paris-Rocquencourt, F-75205 Paris, France

Abstract. Program di�erences are pervasive in software development

and understanding them is crucial. However, such changes are usually

represented as textual di�erences with no regard to the syntactic nature

of programs or their semantics. Such a representation may be hard to

read or reason about and often fails to convey insight on the semantic

implications of a change. In this paper, we propose a formal framework

to characterize the di�erence of behavior between two close programs�

equivalent or not�in terms of their small-step semantics. To this end, we

introduce small-step-prediction oracles that consume one reduction step

of one program and produce a sequence of reduction steps of the other.

Such oracles are operational, handle diverging or stuck computations,

and are well-suited for describing local changes, while expressive enough

to describe arbitrary ones. They can also be composed, to character-

ize a di�erence as a sequence of simpler di�erences. Last but not least,

small-prediction-step oracles can be explained to programmers in terms

of evaluation of the compared programs. We illustrate this framework

by instantiating it on the Imp imperative language, with oracles ranging

from trivial equivalence-preserving syntactic transformations to charac-

terized semantic di�erences. Through these examples, we show how our

framework can be used to relate syntactic changes with their e�ect on

the semantics, or to describe higher-level changes by abstracting away

from the small-step semantics presentation. We have de�ned and proved

the framework and the presented examples in the Coq proof assistant,

and implemented a proof-of-concept inference tool for the Imp language.

1 Introduction

1.1 A foundational framework for semantic di�erences

How should we formally describe and characterize the di�erence between the
behaviors of two close programs? This question encompasses the concerns of
both programmers and semanticists.

In software development, this question is essential for the programmer to
understand the impact of a change made on a program source code: Does this
change introduces a bug or, on the contrary, does it �x one? Does it preserve
the semantics of the original program? Does it extend or restrict the features

of the original program? In the current practice, programmers compare two
close programs using textual di�erences between their source codes. These tex-
tual di�erences are manually reviewed, applied as patches, composed, compared,
merged and versioned. But, because textual di�erences are both low-level and
unstructured, none of these operations have a clear characterization in terms
of program semantics and therefore the tools that implement these operations
cannot be trusted. The programmer has to manually interpolate the impact of
some textual change to understand if these operations are licit. This interpolat-
ing proccess is error-prone, especially on large software. What if the programmer
was given semantically grounded and high-level di�erence languages? Using these
languages, the intent behind patches could be expressed, mechanically checked
and reviewed in a high-level and semantic-aware setting, paving the way for
certi�ed evolution of software.

The working semanticist must answer this question when studying program
transformations that do not preserve the semantics of the source program. Un-
fortunately, in that situation, the semanticist is not well equipped. Indeed, while
there are plenty of foundational frameworks to deal with equivalence between
programs, very few attempts [1, 11, 3, 18] have been made to provide general
frameworks to characterize how two close programs di�er semantically. The ver-
satility of the notion of closedness between programs may explain this: saying
something relevant about two programs that compute di�erently has no general
answer and mainly depends on the application. What if the semanticist learnt
how to formally devise di�erence languages and prove meta-properties about
them? These di�erence languages, de�ned in a common logic, could be helpful
to formally express relations between program traces that are not equivalent, to
measure edition distance between programs or to prove the soundness of di�er-
ential static analyses [24, 21, 27, 18], impact analyses or automatic bug-�xing
process.

1.2 Di�erential operational semantics

In this paper, we propose a foundational framework�implemented in the Coq
proof assistant�to de�ne di�erence languages. The design of this framework
has been highly inspired by the seminal work of Plotkin on operational seman-
tics [20]. An operational semantics de�nes a set of syntactical rules to assign
meaning to a program written in a programming language L. In other words, an
operational semantics de�nes a program�an interpreter�that maps a program
to its behavior (be it a single value or a potentially in�nite chain of reduction
steps). By analogy, a di�erential operational semantics de�nes a program�a dif-
ference interpreter�that maps a di�erence between two programs to a relation
between the behaviors of these two programs.

For a given programming language, there may be a lot of useful di�erence
languages. A di�erence language may characterize pairs of programs that are
semantically equivalent modulo some implementation details: such di�erence
languages capture pairs of programs that are related by a renaming of their
variables, that produce the same results but using di�erent algorithms, that

reorder independent instructions, etc. . . A di�erence language may also charac-
terize pairs of programs that are not semantically equivalent but whose di�erence
of behaviors falls into well-de�ned categories: that kind of di�erence languages
captures pairs of programs (P1, P2) for which P2 includes the execution traces
of P1 but has also other behaviors (program re�nement, features extension or
bug �xing), for which P2 and P1 interpret their inputs similarly but di�er on the
way they produce their outputs, etc. . .

In this work, we present basic properties about semantic di�erences and,
when possible, we prove that these properties hold for all the di�erences written
in speci�c di�erence languages. Amongst these properties, we characterize the
di�erences that are (i) sound for a given pair of programs, (ii) applicative, and
(iii) that can be composed together while still remaining informative. To ease the
mechanization of this metatheoretical work, we follow an operational approach
explained in the next paragraphs.

1.3 Small-prediction-steps oracles

Just like any standard interpreter, a di�erence interpreter de�nes the meaning
of its input in a computational way. Even if any computable function may be
used to implement a di�erence interpreter, we chose to restrict ourselves to
di�erence interpreters that follow a discipline that we call small-prediction-steps:
roughly speaking, at each interpretation step, the interpretation of a di�erence δ
between P1 and P2 must consume one reduction step of P1 or P2 and produce
a (potentially empty) �nite sequence of reduction steps of the other program. In
other words, the interpretation of a di�erence acts as a di�erence oracle O(δ)
predicting at each step the behavior of one program given the behavior of the
other. Hence, the relation between the two program behaviors is computed along
the two evaluations of these programs as depicted by the following diagram:

P1 c11 c12 c13 · · ·

P2 c21 c22 c23 · · ·

δ1

∼ ∼ ∼

δ2

O(δ1) O(δ2)

In this diagram, the plain arrows (→) correspond to execution steps of one
program given as input to the oracle while the dashed arrows (99K) correspond to
the oracle prediction of zero, one or several execution steps of the other program.
The vertical lines correspond to the relation between the program con�gurations
built along the execution of the oracle. In the sequel though, we will not mention
the oracle explicitly as in this diagram since the nature of the arrows is enough
to determine the direction in which the oracle has been used.

Like small-step operational semantics, they can handle diverging or stuck
computations. Di�erence languages can be made precise enough to distinguish
programs that only di�er on a single instruction ; or on the contrary, abstract
enough to equate extensionally equivalent but distinct algorithms. Besides, a
small-prediction-step can be made local in the sense that it does not depend

on the evaluation contexts of the two programs it compares. This property is
important because if accumulated along multiple iterations, a small simple dif-
ference between two versions of a program may become complex, as shown in
the following example:

1 while (1) {
2 x = x + 1;
3 }

1 while (1) {
2 x = x * x + 1;
3 }

To characterize the di�erences between the states of the two programs at
each loop iteration, it is more convenient to say that each time P1 increments x,
P2 squares and increments x than trying to �nd a general term for the di�erences
between the values of x in the two programs.

Small-prediction-steps oracles have another nice property: they can be com-
posed. This is important because two (even seemingly close) programs may di�er
in various and complex ways depending on what we are observing on their op-
erational behavior and depending on how close the two program traces are. To
deal with this complexity, a complex semantic di�erence between two programs
should be decomposable into a sequence of atomic semantic di�erences.

Finally, small-prediction-steps oracles can be informally explained to pro-
grammers: a precise enough informal documentation of a di�erence language
can be expressed in terms of the evaluations of compared programs, which are
usually well apprehended by programmers.

Contributions The �rst contribution of this paper is to introduce a notion of dif-
ferential operational semantics based on small-prediction-steps oracles in a lan-
guage agnostic way. For the clarity of exposition, we instantiate the framework on
a standard toy imperative language Imp equipped with arithmetic expressions,
mutable variables, conditional statements and unbounded iterations. Yet, our
general de�nitions only assume that the programming language is deterministic.
(We come back on this restriction to deterministic languages in Section 5.2.)
Several examples of di�erence languages on Imp are introduced and several of
their properties are proved along the presentation.

The second contribution of this paper is to classify di�erence languages and
small-prediction-steps oracles with respect to the metaproperties they enjoy:
checking if an oracle realizes a valid semantic di�erence between two programs
may or may not be decidable for a given di�erence language ; inferring a valid
oracle to relate two programs may also be undecidable; the composition of two
oracles is possible under some speci�c conditions.

As a third contribution, a prototype implementation of the framework has
been developed using the Coq proof assistant. It contains the language-independent
de�nitions as module functors and the di�erence languages presented in this pa-
per (both de�nitions, theorems and their proofs). The framework is already able
to serve as a target for the certi�cates produced by a toy semantic di�erence en-
gine we developed in OCaml for the Imp programming language. A companion

technical report, the full Coq development and the OCaml tool can be found
online1 along with examples.

Outline In Section 2, we illustrate that the framework can characterize the dif-
ference between two close programs. Section 3 introduces a change-based presen-
tation of standard small-step operational semantics on top of which the general
de�nitions for di�erence languages and small-prediction-steps oracles are built
in Section 4. The metaproperties about di�erence languages are introduced in
Section 5. We focus on the properties needed to compose oracles in Section 6.
Section 7 describes the implementation of a semantic di�erence engine for Imp.
Related work is discussed in Section 8 and our research agenda in Section 9.

Preliminaries The formal development of this paper have been conducted in
Type Theory but, we will sometimes abusively use the vocabulary of mathe-
matics based on Set Theory in our statements and de�nitions. For instance, the
expression �partial function� from A to B, written A 7→ B, must be understood
as a function of type �A→ option B�. Similarly, we use the word �subset of A�
to denote a predicate of type A→ Prop. When some inductive type A de�nes a
set of �rst-order terms, its de�nition will be given by a BNF grammar and we
will use A both as a type and as a metavariable ranging over terms of this type.
We also write A to range over vectors of A. Most of the time, functions over A
are silently lifted to A when the context su�ces to deduce how.

2 Overview of di�erential oracles

In this section, we informally illustrate how the framework of di�erential oper-
ational semantics can be used to relate two imperative program fragments. The
two following programs come from the gallery of veri�ed programs of Why3 [4].

1 sum = 0;
2 x = -x;
3 y = 0;
4 while (sum < x) {
5 y = y + 1;
6 sum = sum + 1 + 2 * y;
7 }
8 sum = 0;
9

10

11

12

Original program P0

1 x = -x;
2 count = 0;
3 if (x < 4) { count = 1; }
4 else {
5 count = x;
6 sum = (x + 1) / 2;
7 while (sum < count) {
8 count = sum;
9 sum = ((x / sum) + sum) / 2;

10 }
11 }
12 sum = 0;

Modi�ed program P3

The �rst program P0 computes the square root of the opposite of a negative
integer x using a simple iterative algorithm that looks for the integer y such that
y2 ≤ (−x) < (y + 1)2 = y2 + 2y + 1. The second program P3 also computes the
square root of −x but using a Newton-Raphson-like root searching algorithm.

1 https://www.irif.fr/~thib/oracles/

https://www.irif.fr/~thib/oracles/

Contrary to P0, P3 stores the �nal result into the variable count rather than into
the variable y.

In both programs, the variable sum is set to zero at the end of the square
root calculation to simulate a form of variable scoping in the Imp programming
language. Indeed, the variable sum is morally a temporary variable and it should
not intervene in the comparison of the �nal results. By setting the same value
to sum in both programs, we force the two �nal memories to be compared only
with respect to the variable containing the square root.

To formally relate P0 and P3, we introduce in Figure ?? two intermediate
programs P1 and P2 such that for each i, there exist a di�erence δi written
in a well-chosen di�erence language ∆i

Imp
that characterizes the di�erence be-

tween the behaviors of Pi and Pi+1. The di�erence between P0 and P3 is©2
i=0δi,

i.e. the composition of all these di�erences.

1 sum = 0;
2 x = -x;
3 count = 0;
4 while (sum < x) {
5 count = count + 1;
6 sum = sum + 1 + 2 * count;
7 }
8 sum = 0;

Intermediate program P1

1 x = -x;
2 sum = 0;
3 count = 0;
4 while (sum < x) {
5 count = count + 1;
6 sum = sum + 1 + 2 * count;
7 }
8 sum = 0;

Intermediate program P2

Variable renaming Variable renamings is one of the simplest di�erence lan-
guages. In this language, a di�erence is denoted by a bijection between the
variables of the two programs. In our example, to have P0 and P3 agree on the
variable used to store the square root, we use P1 which is related to P0 by a
di�erence written �rename y ↔ count� in the language ∆Ren

Imp
(de�ned in Sec-

tion 4.2). The semantics of this di�erence is the oracle that renames, for each
execution step of P0, the identi�er y into count in the con�guration of P0 to
produce the predicted con�guration for P1. This di�erence is sound because the
predicted con�guration e�ectively corresponds to the next execution step of P1.

Notice that in ∆Ren
Imp

, the traces of P0 and P1 correlated by the oracle are
synchronized : for each input step, a single step is predicted. Besides, the oracle
is bidirectional because a renaming between P0 and P1 can be interpreted both
ways: to predict a step of P1 from a step of P0 or to predict a step of P0 from a
step of P1.

Assignment commutation The programs P1 and P3 are still quite di�erent but
one can notice that they both start with variable initializations. More pre-
cisely, the �rst instruction P3 initializes x while this initialisation only hap-
pens in the second instruction of P1. To get a bit closer to P3 we introduce P2

which is related to P1 by the di�erence �swap assignments at line 1� from the
language ∆SwapAssign

Imp
(de�ned in Section 4.2). For the semanticist, the oracle

for this di�erence language is a bit more di�cult to de�ne than the previous
one since it cannot return one prediction for each execution step of P1: after
the execution of the �rst assignment of P1, the oracle cannot provide a valid

prediction yet because there is no con�guration of P2 in which sum is initialized
but x is not. Hence, the oracle must wait for another step of P1 before returning
the state of P2 that results in the execution of the �rst two instructions.

When it relates two assignments in opposite order in the two programs, the
oracle is desynchronized: it may predict zero, one or two execution steps of
one program after it has consumed one execution step of the other program.
Furthermore, the oracle is not bidirectional in that case: when it is between two
commuted assignments predicting P2 from P1, it cannot be asked to predict P1

from P2.

Abstraction After the initialization of count, the di�erence between P2 and P3 is
di�cult to express if we stay at the level of a single execution step because the
algorithm to compute the square root is di�erent in each program. This situation
illustrates one powerful aspect of di�erential operational semantics: a di�erence
language can be used to abstract away irrelevant implementation details. An
oracle can skip one of the two algorithms and relate extensionnally the states of
the two programs as found after the execution of the two algorithms.

The di�erence language ∆AbstractEquiv
Imp

(de�ned in Section 4.2) captures such
high-level program comparison. In our example, the program P2 would be related
to P3 by the di�erence written �abstract equivalence between lines 2−8 and lines 2−
12�. In that case, the oracle abstracts away the instructions of P3 from line 2
to line 12 by a single prediction asserting that the con�guration of P3 will be
equivalent to the con�guration of P2 when it reaches line 12. This prediction is
valid only if there is a proof that these two algorithms are equivalent and that
a bound on the number of steps needed to skip the instructions is given. More
generally, the soundness of an oracle can be conditioned by proof obligations.

Note that we could have avoided describing the previous change since∆SwapAssign
Imp

is subsumed by ∆AbstractEquiv
Imp

. In general, the di�erence language ∆AbstractEquiv
Imp

is a sledgehammer solution to express di�erences between equivalent programs,
but requires the user to provide proofs, and may not relate intermediate states of
the two program's execution states as precisely as specialized oracle languages.

Putting it all together In the end, a sound di�erence between P0 and P3 is
obtained by the following composition of the atomic di�erences we explicited:

1 rename y ↔ count;
2 swap assignments at line 1;
3 abstract equivalence between lines 2-8 and lines 2-12.

One can imagine this concise di�erence to be written by a programmer as a
formal description of their intent, to be checked by a di�erential static analyser,
or even to be inferred by a semantic comparison tool. In any case, the well-
de�ned semantics of di�erence languages make them amenable to an integration
to development and certi�cation tools.

The semantics of this composition is given by an oracle which is obtained
by composing the prediction of the oracles of each atomic di�erence. As the
oracle for �swap assignments at line 1� is not always bidirectional, the composed

oracle cannot be always bidirectional either. More generally, the composed oracle
inherits the directionality constraints from the oracles it is composed of.

3 Change-indexed operational semantics

As coined in the introduction, di�erence languages are built on top of change-
indexed presentations of small-step operational semantics. This presentation of
small-step operational semantics is extensionally equivalent to the usual ones ex-
cept that it describes the relation between program con�gurations more precisely,
intentionally speaking. Indeed, a standard small-step relation usually written
�c1 → c2� is a binary relation between a con�guration c1 before the evaluation
step and a con�guration c2 after the evaluation step. In comparison, a change-
indexed small-step relation describes how c2 has been produced from c1 using
a change d taken in a so-called �change structure� [6] such that �c1 ⊕ d = c2�.
In other words, the purpose of change-indexed operational semantics is to reify
execution steps as �rst-class values so that they can be given as input to oracles.
In Section 3.1, we formally de�ne change structures and change-indexed small-
step operational semantics. These presentations of operational semantics are
necessary to write context-independent oracles. Section 3.2 contains the change-
indexed small-step operational semantics for Imp.

3.1 Change-based interpretation of programs

Change structure For a given value v of type A, a change dv over A is a value of
type ∆A that can be applied to v to get a new value of type A using the change
application operator ⊕. Two changes can be composed using the operator �.

De�nition 1. Given a type A, a change structure over A is a 4-uple (∆A,⊕,�, 0)
such that:

� ∆A is the type for change and we have 0 : ∆A ; ⊕ : A → ∆A → A and
� : ∆A→ ∆A→ ∆A ;

� ∀x : A, x⊕ 0 = x ;
� ∀x : A, d1, d2 : ∆A, (x⊕ d1)⊕ d2 = x⊕ (d1 � d2).

This de�nition of change structure di�ers from Cai et al's in several aspects.
First, in the original formulation of change structure, a change for a value v has
a dependent type ∆v. We use a simple type ∆A instead. As a consequence, a
well-typed application of a change to a value can be unde�ned. We will sim-
ply make sure that this case never happens in our inference rules. Second, the
original de�nition of a change structure includes a substraction operator 	 such
that v 	 u is a change from u to v. We do not need such an operation in our
framework. Third, we introduce the operator � which allows the composition of
changes. This is required to represent the e�ect of several reduction steps on a
con�guration.

C ::= skip | x = e | C;C | if (b) C else C | while (b) C
e ::= n | x | e+ e | e ∗ e | e− e | e/e
b ::= true | false |!b | b && b | b || b | e = e | e ≤ e
c ::= (M,κ) M ::= • |M [x := n] κ ::= halt | C;κ

Fig. 1. Syntax of Imp.

Change-indexed reduction rules A programming language L is a set of program
source codes. A (deterministic) small-step operational semantics is de�ned by a
set of con�gurations C, a subset I (resp. F) of initial (resp. �nal) con�gurations
and a partial function step from C to C such that step(c) is the con�guration
reached from c after a single execution step. We assume that there is a unique
initial con�guration for each program. So, we can write I(P) to denote the initial
con�guration of program P .

De�nition 2. The change-indexed presentation of a small-step operational se-
mantics (C, I,F , step) is a change structure over C and a partial function ∆step

from C to ∆C such that ∀c, step(c) = c ⊕ ∆step(c). The con�guration is stuck
when ∆step(c) is unde�ned.

3.2 Change-based interpretation of Imp programs

A program in the Imp programming language is written using the standard syn-
tax of commands and expressions as described in Figure 1. We consider the small-
step operational semantics of Imp whose con�gurations c are pairs of a store M
and a continuation κ. For every program C, the con�guration (•, C;halt) is
initial and for every storeM , the con�guration (M,halt) is �nal. The step func-
tion is de�ned as usual: we omit the obvious de�nitions as well as expressions
evaluation rules. (They can be �nd in appendix though.)

There exist many change structures over Imp con�gurations. We choose the
syntax for changes over continuations, stores and con�gurations described in
Figure 2. The semantics of these changes is speci�ed by the action of ⊕ on their
corresponding values. The function ∆step simply rei�es the change made by the
standard evaluation function on the con�gurations. The change pop removes the
current command (the one at the top of the continuation). The changes starting
with u represents all the transformations of the current command that can occur
during evaluation.

In the sequel, we will use the standard notation �c1 → c2� when the change
is not relevant to the context. We will also write c1 < c2 if c2 appears after c1
in the reduction chain or if c1 and c2 are both �nal con�gurations.

Syntax for changes

δκ ::= pop | useq | uthen | uelse | uwhile
δM ::= x := n

δC ::= (δκ, δM)

Change semantics

C;κ ⊕ pop = κ
(C1;C2);κ ⊕ useq = C1; (C2;κ)

if (b) C1 else C2;κ ⊕ uthen = C1;κ
if (b) C1 else C2;κ ⊕ uelse = C2;κ

while (b) C;κ ⊕ uwhile = C;while (b) C;κ
M ⊕ x := n = M [x := n]

Change-indexed operational semantics

∆step(M, skip;κ) = (ε,pop)
∆step(M,x = e;κ) = (x := n,pop) where M ` e ⇓ n

∆step(M, (C1;C2);κ) = (ε, useq)
∆step(M, if (b) C1 else C2;κ) = (ε, uthen) where M ` b ⇓ true
∆step(M, if (b) C1 else C2;κ) = (ε, uelse) where M ` b ⇓ false

∆step(M,while (b) C;κ) = (ε, uwhile) where M ` b ⇓ true
∆step(M,while (b) C;κ) = (ε,pop) where M ` b ⇓ false

Fig. 2. Change-based presentation of Imp semantics

4 Di�erence languages

4.1 How to de�ne a di�erence language?

From a change-based presentation of the semantics of a programming language,
the semanticist can de�ne a di�erence language. As usual, the formalization of a
language is made of a syntax and a semantics for the terms of this syntax. The
speci�city of di�erence languages is their interpretation function which maps a
di�erence to its prediction function, which itself realizes the so-called di�erence
oracle. In this section, we �rst explain the type of prediction functions, how they
interact with converging, diverging and stuck programs and we �nally give the
formal de�nition of what a di�erence language is.

What is the type of a prediction function? The type we assign to prediction
functions is a bit complex: the purpose of this section is to explain this complexity
layer-by-layer by gradually re�ning this type.

As a �rst approximation, a di�erence between P1 and P2 is interpreted as a
prediction function of type

d× δc 7→ δc

It takes a prediction direction and an input execution step and produces a pre-
dicted execution step. A prediction direction can be either � to predict from P1

to P2, or � to predict from P2 to P1. Notice that a prediction function is par-
tial because the input execution step might not be compatible with the current
con�guration of the input program and as any program, an oracle can be stuck.
The invariants required for an oracle to be sound will prevent such situations.

The previous type gives the raw idea of what a prediction function is. Yet,
the reality is more complex than that as we have noticed in the overview of
Section 2. First, the executions of the two programs may not be synchronized.
Sometimes, it is necessary to wait for the consumption of two or more input
execution steps before being able to produce a prediction. This was the case for
oracles of assignments swapping: when the oracle is in-between two assignments
to be swapped, producing a prediction would not make sense.

Furthermore, when some parts of one reduction chain must be abstracted
away, a potentially large number of intermediate execution steps of one of the
two programs must be skipped. In the overview section, this was the case when
we used the di�erence language of abstract equivalence: the oracle had to skip all
the instructions of the second algorithm by exploiting a proof of its equivalence
to the �rst one. To take care of the desynchronization of some oracles, we made
a �rst re�nement step leading to the following type for prediction functions:

d× δc 7→ (N \ {0} × δc) +wait

With this type, an oracle is asked to produce either a prediction carrying an
upper bound on the number of steps it predicts, or the answer wait. In the �rst
case, the oracle abstracts away intermediate steps irrelevant to the comparison
into a single prediction. In the second case, the oracle acknowledges that it needs
to accumulate more input execution steps to produce a meaningful prediction.

This last point makes it necessary to introduce a notion of state in the oracle
function which we assumed realized by the values of a type s:

s× d× δc 7→ s× ((N \ {0} × δc) +wait)

Being in a purely functional settings, we follow the usual state-passing style:
the current state of the oracle is transmitted to the prediction function which
produces a new version of this state. To start this process, an oracle must have an
initial state. Notice that the oracle state can be arbitrarily rich: any contextual
information can in�uence the prediction. As discussed in the related work, this
aspect also raises the expressivity of the framework with respect to the one of
prior work like di�erential symbolic execution or re�nement mappings.

Finally, when the oracle is in the middle of a prediction that needs multiple
input steps, the direction of prediction cannot be changed. We already witnessed
this situation in the overview section when we considered the di�erence language
of assignments swapping.

The prediction is also constrained when one of the program has converged
but the other did not: the only way to apply the oracle is to consume a step of

the program that has not converged and to produce wait as the prediction for
the second program.

The �nal re�nement of the prediction function type introduces this direction-
ality constraint on the next request as a new output of the prediction function:

predict δc s = s× d× δc 7→ s× ḋ× ((N \ {0} × δc) +wait)

where ḋ can be � to only allow the next request to be from P1 to P2, � to only
allow the next request to be from P2 to P1 and �� to allow both directions in the
next request. In Section 6, we will explain why this directionality imposed by
the internal state of the oracle has important consequences on its composability
with other oracles.

De�nition 3. The compatibility relation � between allowed directions is de�ned
as follows (i) �� �� ; (ii) �� �� ; (iii) ∀ḋ, ḋ � ḋ.

Dealing with convergence, divergence and crash The prediction func-
tion is always terminating and, as seen above, is to be called in an appropriate
direction with a reduction step of the program to predict from. It is the respon-
sibility of the caller�which is not required to terminate, thus covering in�nite
executions�to compute this reduction step and call the the prediction function
with the appropriate program states, oracle state, reduction step and compatible
direction.

By convention, if one of the two program has converged, the only valid pre-
diction about its reduction is wait. In addition, to witness the fact that one
of the two programs will be stuck in less than k steps, the prediction is writ-
ten (k, stuck).

A formal de�nition for di�erence languages

De�nition 4. A di�erence language for a language equipped with a change-
indexed operational semantics over δc is a tuple (∆, s, i,O) such that ∆ is a set
of terms, s is the type of oracle states, i is the initial oracle state of s and O is
a function of type ∆→ predict δc s.

An oracle is a program. Hence, proving properties about this program gives
properties about the di�erence it describes. Proving properties about the func-
tion O of a di�erence language gives properties about all the di�erences of this
language.

Universal di�erence language For any language, one can de�ne a universal dif-
ference language that relates any pair of programs. Indeed, it su�ces to embed
one interpreter per program in the prediction function so that there is no pre-
diction at all but simply a standard evaluation to produce the oracle output. An
alternate universal oracle language could be achieved by predicting wait at each
step.

Of course, this di�erence language is not interesting. First, the design of a
di�erence language is precisely not to interpret programs but deduce one execu-
tion from the other one with a minimal amount of dynamic information. Second,
the existence of a di�erence between two programs should witness some form of
closeness between these two programs: if each program is close to all the others,
then this notion of closeness is trivial and not informative.

Identity di�erence language For any language, it is also possible to de�ne a
trivial di�erence language�the so-called identity language�that relates every
program only to itself. The prediction function for this language simply returns
the input steps as a prediction.

This di�erence language is a bit more interesting than the universal di�erence
language since it relates all the programs that produce the same reduction chains
whatever their source code is.

In the case of Imp though, the initial con�guration stores the entire program
in its continuation which implies that only syntactically equal programs will be
related by an oracle of the identity di�erence language.

4.2 Di�erence languages on Imp

In this section, we sketch several formalizations of simple di�erence languages
that we found interesting to compare programs written in the Imp programming
language. These di�erence languages fall into two categories: the �rst category
consists in di�erence languages that relate extensionally equivalent programs
which di�er intentionally ; the second category includes di�erence languages
that relate programs which are observationally distinct but whose di�erence of
behavior can be �nitely captured. By lack of space, these formal de�nitions
are only sketched. We encourage the reader to look at the Coq development
to get more details about the de�nitions and the properties of these di�erence
languages.

Equivalences up-to

Renamings The di�erence language of renamings characterizes programs that
are equivalent up to a well-chosen renaming of their variables.

In that case, a di�erence is fully characterized by a renaming φ. Its inter-
pretation is the oracle that simply rewrites with φ the variables that appear
in the memory change of the input step while reusing the continuation change.
Such an oracle is global: it has no state and is independent from the current
con�gurations of programs.

De�nition 5. The di�erence language ∆Ren
Imp

is the tuple (∆, s, i,O) such that
∆ is the set of bijective variable mappings φ, the type of oracle states s is 1, the
initial oracle state i is () and the function O is such that:

O(φ)((), d, δc) = ((), ��, (1, φ(δc)))

where φ is extended to con�guration changes the obvious way.

Branch permutation The di�erence language of branch permutation character-
izes programs that are equivalent up to the following equation:

if (b) C1 else C2 = if (!b) C2 else C1

Contrary to the previous di�erence language, a di�erence in the language of
branch permutations witnesses a local modi�cation. Hence, the di�erence is de-
scribed by a path π in the abstract syntax tree which locates the application of
the equation and a condition modi�er ♦ that indicates if the condition must be
negated or if the already present negation must be removed.

A path π is a sequence of natural numbers: each natural number corresponds
to the subterm to go through to reach the point where the modi�cation takes
place.

π ::= ε | 0 · π | 1 · π
As the number of children of an Imp syntactic construction never exceeds 2, the
case 0 and 1 are enough to reach any subterm of an Imp program from the root
of its abstract syntax tree. A condition di�erence ρ is simply the identity or a
condition modi�er located at some path of the source code:

ρ ::= Id | ♦[π] ♦ ::= ¬ | ¬−1

This path is static. Thus, it must be rewritten by the oracle along the evaluation
to be rephrased in terms of the current continuation so that the oracle can
dynamically detect where it has reached the modi�cation point. The image of
this translation is called a continuation modi�er. It is a list of di�erences ρ of
the same length as the current continuation.

The oracle maintains a continuation modi�er in its internal state to deter-
mine its behavior with respect to the current continuation. By inspection of the
input steps, the continuation modi�er is decomposed until it has the shape ♦[ε]·ρ
which means that the modi�cation ♦ must be applied immediately. Notice that
the modi�cation may be done several times during the oracle evaluation since the
modi�cation point may be enclosed in a loop. The decomposition rules are real-
ized by the partial function Ξ(δκ, ρ · ρ) speci�ed in Figure 3. Roughly speaking,
this function mimicks the function ∆step except that it pushes the change ♦ to
the subcontinuations speci�ed by the path π. In the case for while, the change
is duplicated for each iteration of the loop.

The interpretation of a di�erence ♦ switches selections of then-branches and
selections of else-branches:

uelse↔ = uthen
uthen↔ = uelse

δκ↔ = unde�ned otherwise

Formally, this oracle is de�ned as follows:

O(♦[π])(ρ, d, (δM, δκ)) = (ρ′, ��, (1, δc))

where

(ρ′, δc) =

{
(ρ′′, (δM, δκ↔)) if ρ = ♦[ε] · ρ′′

(Ξ(δκ, ρ), (δM, δκ)) otherwise

Ξ(pop, ρ · ρ) = ρ
Ξ(useq, Id · ρ) = Id · Id · ρ

Ξ(useq,♦[0 · π] · ρ) = ♦[π] · Id · ρ
Ξ(useq,♦[1 · π] · ρ) = Id · ♦[π] · ρ
Ξ(uwhile, Id · ρ) = Id · Id · ρ

Ξ(uwhile,♦[1 · π] · ρ) = ♦[π] · ♦[1 · π] · ρ

Ξ(uthen, Id · ρ) = Id · ρ
Ξ(uthen,♦[0 · π] · ρ) = ♦[π] · ρ
Ξ(uthen,♦[1 · π] · ρ) = Id · ρ

Ξ(uelse, Id · ρ) = Id · ρ
Ξ(uelse,♦[0 · π] · ρ) = Id · ρ
Ξ(uelse,♦[1 · π] · ρ) = ♦[π] · ρ

Fig. 3. Updating a continuation modi�er.

De�nition 6. The di�erence language ∆SwapBranches
Imp

is the tuple (∆, s, i,O)
such that ∆ is the set of localized condition modi�cations ρ, the type of ora-
cle states s is ρ, the initial oracle state i is ♦[π] and the function O is de�ned
as above.

Example 1. The ∆SwapBranches
Imp

oracle ¬[1 · ε] describes the di�erence between
the two following programs:

1 x = 12;
2 if (x < 0)
3 y = 42;
4 else
5 y = 0;

1 x = 12;
2 if (! (x < 0))
3 y = 0;
4 else
5 y = 42;

Assignment swappings The di�erence language of assignment swappings char-
acterizes programs that are equivalent up to reordering of successive indepen-
dent assignments. The location of the assignment reordering is represented by a
path π in the abstract syntax tree. Tracking down the place where the modi�-
cation takes place is implemented using the same mechanism as in the previous
section except that the local change ♦ is now an assignment swapping.

As pointed out in the Section 2, when the oracle is given an assignment of one
program P1 that is swapped with another assignment in the other program P2,
it must retain this assignment in its state until the next assignment of P1 is
provided. Therefore, in addition to the continuation modi�er machinery, the
oracle must also implement a two-state machine:

� In State �S0�, the oracle looks at the command C at the top of the contin-
uation, if it is an assignment that is swapped in the modi�ed program then
it stores this assignment step δc, goes to state �S1(δc)�, returns wait as a
prediction ; otherwise if C is any other command, it simply produces the
input execution step as a prediction and stays in State S0.

� In State �S1(δc)�, the oracle takes the next input step δc
′ of P1 and returns

the composition of δc′ followed by δc as a prediction for P2. Then, the oracle
goes to State S0.

When the oracle goes from State S0 to State �S1(δc)� with a wait prediction,
it also returns a directionality constraint to force the subsequent request to be

done in the same direction (from P1 to P2 in our case). On the contrary, when the
oracle goes from State �S1(δc)� to State S0 or stays in State S0, no directionality
constraints is imposed.

De�nition 7. The di�erence language ∆SwapAssign
Imp

is the tuple (∆, s, i,O) such
that ∆ is the set of paths π where the assignment swapping occurs, the type for
oracle states s is ρ× (S0 + S1 : δc), the initial states i is (♦[π], S0) and O is an
oracle that implements the informal description given above.

Reparenthesized sequences The di�erence language of sequences reparenthesizing
characterizes programs that are equivalent up to the following equation:

C1; (C2;C3) = (C1;C2);C3

This di�erence language is similar to the language of assignment swappings in
the sense that the two compared programs are locally desynchronized when the
input execution step is in the middle of the sequence to be reparenthesized. This
time though, the oracle does not generate commands that are late in the modi�ed
programs but modi�cations of the (modi�ed or source) program continuation to
align the two programs continuations.

More precisely, in State S0, the oracle is consuming a path π to reach the
point where the equation is to be applied. Then, there are two possible states
S1 and S2 depending on the orientation of the equation application.

In State S1, if P1 is the program with the command of the shape C1; (C2;C3)
and if the request to the oracle is to predict P2 from P1, then the oracle is given
a useq as input and must returns two useq as a prediction to lift C1 at the top
of the continuation in P2.

In State S2, if P1 is the program with the command of the shape (C1;C2);C3

and if the request to the oracle is to predict P2 from P1, then the oracle is given a
�rst useq as input. It cannot produce anything butwait because the next step of
P2 consists in the execution of C1. The oracle also forbids the prediction direction
to change so that when the oracle is given the second useq, the continuations of
P1 and P2 are aligned. Afterwards, the oracle can behaves like the identity.

De�nition 8. The di�erence language ∆SeqAssoc
Imp

is the tuple (∆, s, i,O) such
that ∆ is the set of paths π where a sequence is reparenthesized. the type of
oracle states s is ρ × (S0 + S1 + S2), the initial oracle state i is (♦[π], S0) and
O is an oracle that implements the informal description given above.

Abstract equivalence Given two programs with distinct commands C1 and C2

at path π but otherwise identical, if there exists a proof Π that the commands
C1 and C2 are functionally equivalent, then the di�erence language of abstract
equivalences has a di�erence whose interpretation witnesses this fact.

As long as the path π is not reached by the oracle in the reduction chains
of the two compared programs, the oracle behaves as the identity. When the
path π is reached, if an execution step of P1 is provided as input, the oracle
starts consuming all the execution steps corresponding to the command C1 of

P1 and produces the prediction wait and the allowed direction � (so that the
oracle is only called in this direction until the command C1 is entirely executed).

After the execution of C1, the change δc performed by the command C1 is
known to the oracle and it can use it to produce a prediction for P2 that simply
pops the command C2 from the top of P2's continuation and applies δc on the
resulting con�guration.

A problem remains since a prediction must provide an upper bound on the
number of steps needed to execute δc on the predicted program. How to compute
such an upper bound? There are several answers to this question. One possibility
is to assume that the proof of functional equivalence comes with constructive
termination proofs for the two commands C1 and C2. As we are in Type Theory,
concrete bounds on the number of execution steps can be extracted from these
proofs. Actually, there is another possibility: we can do without any termination
proofs by only allowing predictions from P2 to P1, so that the caller is forced
to execute C2. If the execution of C2 does not converge, then the oracle will
produce an in�nite sequence of wait, which testi�es that nothing can be said
about how the �nal con�gurations of the two programs can be compared.

In our Coq development, we o�er the two possibilities as two distinct di�er-
ence languages ∆AbstractEquiv

Imp
and ∆AbstractEquivNoBound

Imp
. Of course, a di�erence

in ∆AbstractEquivNoBound
Imp

is a weaker result than a di�erence in ∆AbstractEquiv
Imp

.

The type of the oracle state in ∆AbstractEquiv
Imp

is

s = S0 : ρ+ S1 : d× N× ρ× δM

In the state S0(ρ), the oracle consumes the input steps until it reaches C1 and
C2, then it enters state S1(d, n, ρ, ε) where d is the direction of the request that
reached the modi�cation point, n is the depth of the continuation representing
the execution of C1, ρ is the remaining continuation modi�ers and ε is the empty
con�guration change. Once in the state S1(d, n, ρ, δM), the oracle forces the di-
rection d for further requests until it has n = 0, that is to say until the command
C1 is entirely executed. During these silent predictions, the oracle accumulates
the memory changes in δM . When n = 0, the oracle produces (m, (pop, δM))
as a prediction and goes back to state S0(ρ). The natural number m is an upper
bound on the number of steps needed for the convergence of C2 : we assume that
it is provided by the proof accompanying the di�erence.

De�nition 9. The di�erence language ∆AbstractEquiv
Imp

is the tuple (∆, s, i,O)
such that ∆ is the set of pairs made of a path π, a proof of equivalences be-
tween the commands at this path and two proofs of termination for these com-
mands. The type of oracle states s is de�ned as above. The initial oracle state
i is S0(♦[π]) and O is an oracle that implements the informal description given
above.

The type of the oracle state in ∆AbstractEquivNoBound
Imp

is

s = S0 : ρ+ S1 : d× N× ρ× δM + S2 : d× N× ρ

In addition to the two states already present in the oracles of ∆AbstractEquiv
Imp

, the
extra state S2(d,m, ρ) is activated when the oracle waits for the convergence of
the execution of C2. As long as the execution of C2 is not �nished, the oracle
maintains the depth m of the part of the continuation containing the remaining
commands of C2. When m = 0, the command C2 has converged and the oracle
goes back to state S0(ρ) producing the same prediction as in ∆AbstractEquiv

Imp
.

De�nition 10. The di�erence language ∆AbstractEquivNoBound
Imp

is the tuple (∆, s, i,O)
such that ∆ is the set of pairs made of a path π and a proof of equivalences be-
tween the commands at this path. The type of oracle states s is de�ned as above.
The initial oracle state i is S0(♦[π]) and O is an oracle that implements the
informal description given above.

Characterized inequivalences

Crash avoidance A large class of programming errors are induced by not re-
specting preconditions. Typically, the following instruction

1 z = x / y;

assumes that y is not equal to zero. If the preceding instructions do not satisfy
this condition, the program will crash. To solve that class of bug, the programmer
can defensively introduce an if -statement:

1 if (not (y = 0)) {
2 ...
3 z = x / y;
4 } else
5 ...

which avoid the behavior of the original program that crashes in the then-
branch. Notice that the instructions in the else-branch may also crash but in a
di�erent con�guration.

The di�erence language of crash avoidance characterizes pair of programs
related by such a bug �x. The oracles of this language behaves as the identity
until the location of the bug �x is reached by the evaluation. Then, once the
location is reached, the countdown begins: the buggy program will crash soon.
More precisely, the di�erence comes with a proof that the crash will happen
in less than n steps for some n. In this state, if the oracle is asked to predict
the crashing program's behavior, it will predict a delta of stuck with an upper
bound of n steps.

In this di�erence language, the type of oracle state is

s = S0 : ρ+ S1 : N+ S2

In the state S0(ρ), the oracle is waiting for the point where the bug �x is applied.
Once it has reach this point, the oracle enters S1(n) decrementing n each time
the caller provides an execution step of the buggy program as input. In less than
n of such input steps or predictions of execution steps of the buggy program, the
failure leads the oracle to the �nal state S2 in which only a prediction of stuck
can be issued.

De�nition 11. The di�erence language ∆CrashFix
Imp

is the tuple (∆, s, i,O) such
that ∆ is the set of triples made of a path π, a tuple (b, C) to describe the if

statement implementing a �x, and a proof of that one of the programs will be
stuck at most n steps after reaching path π if the condition b is not met. The
type of oracle states s is de�ned as above. The initial oracle state i is S0(♦[π])
and O is an oracle that implements the informal description given above.

Example 2. The ∆CrashFix
Imp

oracle (1 · ε, (y 6= 1, y = 0; sum = 42), H) where H
is a proof of a crash within 4 steps, describes the di�erence between the two
following programs:

1 x = x + 2;
2

3 y = y - 1;
4 count = x / y;
5 sum = x * count;
6

7

8

9

1 x = x + 2;
2 if (y != 1) {
3 y = y - 1;
4 count = x / y;
5 sum = x * count;
6 } else {
7 y = 0;
8 sum = 42;
9 }

Distinct output values The previous di�erence language of crash avoidance char-
acterizes some form of temporal di�erence between two programs: before the
crash, the two programs behave similarly; after the crash, only one program can
be reduced.

It is also possible to characterize pairs of programs that have reduction chains
of same length but holding di�erent con�gurations. Indeed, consider two pro-
grams with the same control-�ow but di�erent assignments: these two programs
will compute distinct output values but in somewhat �the same way�.

The di�erence language of distinct output values assume that variables are
split into two di�erent categories: the input variables and the output variables.
The input variables in�uence the control-�ow whereas the output variables do
not. Two programs are related by this di�erence language if they share the
same classi�cations of their variables and the same boolean expressions on if -
statements and while-statements. As said earlier, the assignments of the output
variables can be di�erent in each program (provided that two assignments at the
same path either get stuck together or executes without error).

More precisely, a di�erence in this language is a pair formed by a path to an
assignment that di�ers in the two programs and a list of variables, namely the
output variables, that are impacted by this change.

Once the oracle has reached the path where the assignment modi�cation
occurs the oracle maintains two stores in parallel, one for each program. Given
an input execution step δc which is not an assignment, the oracle behaves as the
identity. Otherwise, it executes the two distinct assignments separately in their
dedicated store.

In this di�erence language, the type of oracle state is

s = S0 : ρ+ S1 :M ×M

In the state S0(ρ), the oracle is waiting for the point where the two programs
di�er. Once there, it moves to the state S1(M,M) and it assigns output variables
in the two distinct stores depending on the considered program.

De�nition 12. The di�erence language ∆ValueChange
Imp

is the tuple (∆, s, i,O)
such that ∆ is the set of pairs made of a path π and a list of output variables. The
type of oracle states s is de�ned as above. The initial oracle state i is S0(♦[π])
and O is an oracle that implements the informal description given above.

Example 3. The ∆ValueChange
Imp

oracle (0 · ε, [x; pow]) describes the di�erence be-
tween the two following programs:

1 x = 42;
2 count = 5;
3 pow = 1;
4 while (0 < count) {
5 count = count - 1;
6 pow = pow * x;
7 }

1 x = 10;
2 count = 5;
3 pow = 1;
4 while (0 < count) {
5 count = count - 1;
6 pow = pow * x;
7 }

Abstract inequivalence Much like with ∆AbstractEquiv
Imp

, it is possible to abstract
from the small-step semantics presentation to reason about two semantically
di�erent commands C1 and C2 of two otherwise identical programs. The di�er-
ence language of abstract inequivalences describes such changes, given a proven
bijection translate between the stores resulting from an execution of C1 and C2.

Just like ∆AbstractEquiv
Imp

, the oracle behaves as the identity as long as the
path π is not reached. When the path π is reached, if an execution step of
P1 is provided as input, the oracle starts consuming all the execution steps
corresponding to the command C1 of P1 and produces the prediction wait and
the allowed direction �.

When C1 has been completely executed, the oracle uses the given bijection to
compute the result of executing C2, and produce a prediction for P2 that simply
pops the command C2 and applies the computed changes on stores. After this,
the oracle does not know how to relate the programs further, and will simply
return wait.

The type of the oracle state in ∆AbstractInequiv
Imp

is

s = S0 : ρ+ S1 : d× N× ρ× δM + S2

In the state S0(ρ), the oracle consumes the input steps until it reaches C1 and
C2, then it enters state S1(d, n, ρ, ε) where d is the direction of the request that
reached the modi�cation point, n is the depth of the continuation representing
the execution of C1, ρ is the remaining continuation modi�ers and ε is the empty
con�guration change. Once in the state S1(d, n, ρ, δM), the oracle forces the
direction d for further requests until it has n = 0, that is to say until the
command C1 is entirely executed. During these silent predictions, the oracle
accumulates the memory changes in δM . When n = 0, the oracle produces

(m, (pop, δM ′)) as a prediction, where δM ′ is a change on stores such that
M ⊕ δM ′ = translate(M ⊕ δM), and the natural number m is an upper bound
on the number of steps needed for the convergence of C2 : we assume that it is
provided by the proof accompagnying the di�erence. The oracle then switches
to state S2 in which it returns wait no matter the input.

De�nition 13. The di�erence language ∆AbstractInequiv
Imp

is the tuple (∆, s, i,O)
such that ∆ is the set of pairs made of a path π, a proven bijection between
the stores resulting from execution of the commands at this path, and proofs of
termination for these commands. The type of oracle states s is de�ned as above.
The initial oracle state i is S0(♦[π]) and O is an oracle that implements the
informal description given above.

Example 4. The di�erence between the following two programs can be described
by an oracle of ∆AbstractInequiv

Imp
relating the sub-programs at path 1 · 1 · ε using

translateM0M =

M if M0[count] < 1

M ′0 if M0[count] < 2

M ′0[sum :=M [x]] otherwise

where M ′0 =M0[count := 1, y :=M [x], x :=M [y]−M [x]]:

1 x = 1;
2 y = 1;
3 // Inequivalent part:
4 x = x;
5 y = y;
6 while (0 < count) {
7 sum = x + y;
8 x = y;
9 y = sum;

10 count = count - 1;
11 }

1 x = 1;
2 y = 1;
3 // Inequivalent part:
4 x = x;
5 y = y;
6 while (1 < count) {
7 sum = x + y;
8 x = y;
9 y = sum;

10 count = count - 1;
11 }

5 Properties over di�erence languages

5.1 Soundness

Given a di�erence δ ∈ ∆ and two programs P1 and P2, we formally de�ne in
this section under which conditions the di�erence δ is a sound di�erence for P1

and P2.

Con�gurations correlated by an oracle As coined in the introduction, the be-
havior of an oracle is characterized by all the possible sequences of directed
predictions it can perform. Each prediction is either performed from a known
con�guration c1 of P1 to a con�guration c2 of P2 or from a known con�gura-
tion c2 of P2 to a con�guration c1 of P1. Besides, as we have seen earlier, at some
point, the oracle may force a speci�c direction for the next prediction. The pairs

C-Start

I(P1) ∼δ I(P2) ⇓ (i, ��)

C-StepFromLeft

c1 ∼δ c2 ⇓ (s2, ḋ1) �� ḋ1
Oδ(s2, �,∆step(c1)) = (s3, ḋ2, (n, δc2))

c1 ⊕∆step(c1) ∼δ c2 ⊕ δc2 ⇓ (s3, ḋ2)

C-StepFromRight

c1 ∼δ c2 ⇓ (s2, ḋ1) �� ḋ1
Oδ(s2, �,∆step(c2)) = (s3, ḋ2, (n, δc1))

c1 ⊕ δc1 ∼δ c2 ⊕∆step(c2) ⇓ (s3, ḋ2)

C-StopRight

c1 ∼δ c2 ⇓ (s2, ḋ1) �� ḋ1
Oδ(s2, �,∆step(c1)) = (s3, ḋ2,⊥)
c1 ⊕∆step(c1) ∼δ c2 ⇓ (s3, ḋ2)

C-StopLeft

c1 ∼δ c2 ⇓ (s2, ḋ1) �� ḋ1
Oδ(s2, �,∆step(c2)) = (s3, ḋ2,⊥)
c1 ∼δ c2 ⊕∆step(c2) ⇓ (s3, ḋ2)

Fig. 4. Con�gurations correlated by a di�erence.

of con�gurations related by the oracle through its (potentially non terminating)
interaction with the caller are called the con�gurations correlated by the oracle.
The set of these relations is the informative content of each oracle.

More formally, we say that �The two con�gurations c1 of P1 and c2 of P2 are
correlated by the oracle of δ and for the next prediction, the allowed directions
are ḋ and the oracle state is s2� if the judgment c1 ∼δ c2 ⇓ (s2, ḋ) can be
derivated from the rules of Figure 4.

The rule C-Start asserts that any sequence of correlated con�gurations
starts with two initial con�gurations and with an oracle whose state is also ini-
tial. The rule C-StepFromLeft states that from two con�gurations c1 and c2
whose correlation has been established by an oracle ending at state s2 and allow-
ing ḋ1. If ḋ1 is compatible with � then the oracle can be called in that direction
with the state s2 and with the input step δc1 of P1 to predict n reduction steps
of P2 represented by δc2. It su�ces to apply the two con�guration changes to get
the next correlated states. Besides, in addition to the prediction, the oracle has
returned the new state s3 as well as the allowed direction ḋ2 for the next pre-
diction. The rule C-StepFromRight is similar to the rule C-StepFromLeft
except that the prediction direction is � and hence the roles of δc1 and δc2 are ex-
changed. The rules C-StopRight and C-StopLeft account for the case where
the prediction has made no progress on the reduction chains targeted by the
request to the oracle. This can happen if the oracle needs more input steps to
make a decision about the prediction or because the reduction chains is ended,
either because the program has converged or because it is stuck.

Validation of predictions A prediction of the form wait is always valid. On the
contrary, the other forms of predictions must always correspond to actual future
con�gurations to be valid.

De�nition 14 (Valid predictions of execution). A prediction (ḋ, s, (n, δc))
is valid for a con�guration c if the natural number n is greater or equal to the
strictly positive number of reduction steps needed to reach the con�guration c⊕δc
from c.

De�nition 15 (Valid predictions of failure). A prediction (ḋ, s, (n, stuck))
is valid for a con�guration c if the natural number n is greater than the strictly
positive number of reduction steps needed to reach a stuck con�guration from c.

A valid prediction for a con�guration c can be concretized as an actual chain
of reductions starting from c using the following concretization function:

Rc
stuck

(c) = c Rcδc(ci) =
{
ci if ci = c⊕ δc
ci → Rcδc(ci ⊕∆step(ci)) otherwise

Lemma 1. If (ḋ, s, (n, p)) is a valid prediction for the con�guration c then the
execution of the concretization function Rcp(c) terminates in less than n steps.

Sound di�erences To prove that a di�erence δ is a sound di�erence between
two programs P1 and P2, it su�ces to show that the predicted con�gurations
appearing in a sequence of correlated con�gurations are actual con�gurations of
the programs reduction chains. We formulate this property as a local requirement
on each step of the correlation sequence.

De�nition 16. A di�erence δ is sound for P1 and P2 if c1 ∼δ c2 ⇓ (s2, ḋ)
implies that (i) if �� ḋ, then Oδ(s2, �, ∆step(c1)) is a valid prediction and (ii)
if �� ḋ, then Oδ(s2, �, ∆step(c2)) is a valid prediction.

Notice that this de�nition prevents O(δ) to be unde�ned on the states and
con�gurations reachable from a pair of correlated states.

De�nition 17. A di�erence language is sound (resp. canonically sound) if for
all di�erence δ there exists a (resp. unique) pair of programs P1 and P2 such
that δ is sound for P1 and P2.

Decidability properties A language of di�erences can a priori characterize any
pointwise relation between the con�gurations of any pairs of reduction chains.
This high expressivity may jeopardize the practicability of the approach. We are
therefore interested in classes of di�erence languages with decidability results.

De�nition 18. A language of di�erences has a decidable checking problem if
there exists an algorithm that decides for any triple (δ, P1, P2) if δ is a sound
di�erence between P1 and P2.

De�nition 19. A language of di�erences has a decidable inference problem
if there exists a sound and complete algorithm that computes for any pair of
programs (P1, P2) a sound di�erence δ between P1 and P2 if such a di�erence
exists in that language.

Applicative di�erence languages Some languages of di�erences are inherently
static because they capture a source-to-source transformation.

De�nition 20. A language of di�erences is applicative if there exists a function
A of type P × δ → P such that for any sound di�erence δ between P1 and P2,
we have A(P1, δ) = P2.

Bijective di�erence languages Because of the directionality constraints that may
be imposed by an oracle, the existence of a di�erence δ between P1 and P2 might
not imply the existence of a di�erence between P2 and P1.

De�nition 21. A language of di�erences is bijective if there exists a function
•−1 of type δ → δ such that for any sound di�erence δ between P1 and P2, δ

−1

is a sound di�erence between P2 and P1.

5.2 About nondeterminism

The framework of di�erential operational semantics can probably be extended to
handle nondeterministic languages. Roughly speaking, oracles could have lived in
the nondeterministic monad, i.e. by predicting all possible execution steps out of
all possible input steps compatible with all possible con�gurations reachable after
every valid sequence of requests. In that case, the interpretation of a di�erence
would not be a single relation between the con�gurations of the two reduction
chains of the compared programs but instead a set of relations between the
con�gurations taken in two sets of reduction chains of the compared programs.
In our opinion, the combinatorial explosion induced in that context would have
made the mechanical proofs unfeasible and, what is more important, oracles
would have been too di�cult to grasp by programmers.

6 Composition of di�erences

6.1 Composition of oracles

Given a sound di�erence δ1 between P1 and P2 written in a language of dif-
ferences ∆1 and another sound di�erence δ2 between P2 and P3 written in po-
tentially distinct language of di�erences ∆2, how can a sound di�erence δ ∈ ∆
between P1 and P3 be constructed by using P2 as an intermediate program and
δ as the composition of δ1 and δ2? We de�ne the composition of two di�erences
δ1 and δ2 as an oracle that embeds the state of the two underlying oracles and
whose prediction function calls one of the underlying oracles' prediction function,
and then runs the other oracles' on each step of the concretization of the result,
returning the last prediction along with the largest allowed direction compatible
with both oracles. Unfortunately, the aforementionned prediction function is not
always de�ned. Indeed, if the �rst underlying oracle predicts a crash of P2, this
prediction cannot be concretized for use with the second oracle. Furthermore,
since the second oracle's prediction function is called repeatedly with the same

direction on all concretized steps of the �rst oracle's prediction, it may be un-
de�ned as a result of it imposing an incompatible direction. We provide two
su�cient conditions on oracles to prevent those issues and guarantee that their
compositions are sound (Section 6.2).

Assume that the oracle of a di�erence δ1 is a partial function of type predict δc s1
and the oracle of a di�erence δ2 is a partial function of type predict δc s2. From
these two types, we can formally construct the type predict δc (s1× s2). In other
words, we can implement an oracle that maintains the states of the two oracles
O(δ1) and O(δ2) side-by-side. Now, how would it relate the con�gurations of P1

and P3 using O(δ1) and O(δ2)?
Let us assume that the composition oracle is used in the direction �. The

composition oracle will apply the oracle O(δ1) on the input execution step and
concretize its prediction into a sequence of input execution steps for the second
oracle O(δ2): the composition of the predictions made by O(δ2) gives the predic-
tion of the composition oracle. In the direction �, the roles of O(δ1) and O(δ2)
are exchanged.

This way of composing di�erences imposes an obvious restriction on the
di�erences that can be composed: the intermediate program P2 cannot be stuck
as a result of a prediction from one of the two other programs. Indeed, no input
step can be concretized from the prediction stuck and thus, a request to the
second oracle would not be possible. Hence, the oracle of such a composition
would end up stuck itself. Anyhow, this restriction makes sense: it would be
surprising if a stuck program were an appropriate intermediate point to compare
two programs that run safely.

Unfortunately, this de�nition of composition has a more serious problem.
When the second oracle O(δ2) is processing the sequence of execution steps
coming from the prediction ofO(δ1), what would happen if it forces to reverse the
prediction direction for subsequent requests? In that situation, the composition
oracle could produce its prediction out of the predictions already produced by
O(δ2) but what should be done with the predictions of O(δ1) untouched by
O(δ2)? The following diagram illustrates this situation:

P1 c11 c12

P2 c21 c22

P2 c21 c′21 c22

P3 c31 c′31

∼ ∼ḋ

∼

a

∼�

In this diagram (and the next ones), if the allowed direction for the next predic-
tion is needed by the explanations, it is written in the center of the prediction
square. The double arrow represents the operation of concretization of the pre-
diction made by O(δ1) starting at c21. (The double arrow is technically not

between the two states but between the two arrows. Yet, such notation would
complicate the diagram). In this example, just after its �rst call with the exe-
cution step from c21 to c′21, the oracle O(δ1) only allows the next requests to
predict reduction steps of P2 from input steps of P3. Therefore, the transition a
from c′21 to c22 cannot be processed.

A natural�but, as we will see, unsatisfactory�answer to this problem con-
sists in extending the state of the composition oracle to remember the unpro-
cessed steps of the intermediate program and to process them in the subsequent
executions of the composition oracle. Indeed, if the composition oracle is called
in the other direction (which is � in our example) then the unprocessed steps
will coincide with the predicted steps of O(δ2). The unprocessed steps stored in
the internal state of the composition oracle will be consumed until new execu-
tion steps of P2 are produced by O(δ2) to resynchronize the reduction of the
intermediate program P2 with the reductions of two external programs P1 and
P3. During that resynchronization, the oracle of the composition will produce
wait as long as there are unprocessed steps remaining in the internal state of
the composition. This situation is depicted by the following diagram:

P1 c11 c12

P2 c21 c22

P2 c21 c′21 c22

P3 c31 c′31 c32

∼ ∼ḋ

∼

a

∼ ∼�

In this diagram, the transition a corresponds exactly to the prediction made
by the second oracle. The �rst oracle is not called at all because no new execution
step have been applied to P2. Thus, no new prediction is produced about P1

which forces the oracle of the composition to produce a wait (depicted using
the dotted loop on c12).

If the unprocessed steps are strictly included in the concretization of the
prediction made by the second oracle, then the extra execution steps of P2 are
provided as input to the �rst oracle to obtain a �nal prediction for P1:

P1 c11 c12 c13

P2 c21 c22 c23

P2 c21 c′21 c22 c23

P3 c31 c′31 c32

∼ ∼ ∼ḋ

∼

a

∼ ∼�

Now, let us imagine that, in the middle of the resynchronization process de-
scribed above, the �rst oracleO(δ1) forces the next prediction to go the other way
around. The second oracle O(δ2) can refuse to be used in the direction requested
by O(δ1). As a consequence, in spite of the resynchronization mechanism, the
oracle of the composition will be stuck again!

P1 c11 c12

P2 c21 c22 c23

P2 c21 c′21 c22 c23

P3 c31 c′31 c32

∼ ∼�

b

∼

a

∼ ∼�

In the situation depicted by this diagram, the two oracles choose to only allow
directions that are opposite to each other. Hence, when called in both directions,
none of the two oracles will accept the concretized predictions of the intermediate
program: the composition oracle is stuck.

Therefore, even though O(δ1) and O(δ2) are sound, an incompatibility be-
tween their allowed directions annihilates the soundness of their composition.

6.2 Preserving soundness through composition

We chose to restrict ourselves to two properties of oracles that su�ce to get the
preservation of the soundness by the composition. Our solution is not the �nal
answer to this problem but our restrictions were valid on the di�erence languages
we considered and tractable from the point of view of proof mechanization.

Cooperative oracles To avoid the case where the directions allowed by the
two composed oracles are opposite, one restriction is to forbid oracles that force
a reversal of prediction direction. Such oracles are called cooperative.

De�nition 22. An oracle O(δ) is cooperative if for all input direction d, the
direction ḋ allowed by the oracle for the next prediction is compatible with d, i.e.
if O(δ)(s, d, δc) = (s′, ḋ, p) then d � ḋ.

Theorem 1. If (i) δ1 is sound for P1 and P2, (ii) δ2 is sound for P2 and P3;
and (iii) O(δ1) and O(δ2) are cooperative and (iv) P2 never gets stuck, then their
composition O(δ1) · O(δ2) is sound and cooperative.

One-step oracle Remember that resynchronization happens when the second
oracle is stopped in the middle of the processing of the prediction concretization
produced by the �rst oracle. If the length of this sequence contains at most one
step, there is no middle to get stuck in.

R
en

S
eq
A
ss
oc

S
w
ap
A
ss
ig
n

S
w
ap
B
ra
n
ch

A
b
st
ra
ct
E
qu
iv

A
b
sE
qN
oB
ou
n
d

C
ra
sh
F
ix

V
al
u
eC
h
an
ge

A
b
st
ra
ct
In
eq
u
iv

Decidable Checking X X X X X1 X1 X1 X X1

Applicative X X X X X X X X X
Cooperative X X X X X × X X X

One-step & Bidirectional X × × X × × × X ×

Fig. 5. Properties of di�erence languages on Imp.

De�nition 23. An oracle O(δ) is a one-step oracle if the concretization of its
predictions consists in at most one reduction step.

Any composition with a one-step oracle preserves productivity.

Theorem 2. If (i) δ1 is sound for P1 and P2, (ii) δ2 is sound for P2 and P3;
(iii) O(δ1) is one-step and always bidirectional; and (iv) P2 never gets stuck,
then their compositions O(δ1) · O(δ2) and O(δ2) · O(δ1) are sound.

6.3 Synchronized composition

The two conditions described in the previous sections remove the need for an
internal state that remembers unprocessed execution steps of the intermediate
program. It is therefore possible to de�ne a restricted form of composition called
synchronized composition that is only de�ned on oracles that are cooperative or
one-step. In our Coq development, we actually focused on this simpler form of
composition because it was adapted to almost all our di�erence languages and
it was easier to prove properties about this composition.

Besides, from the programmer perspective, the synchronized composition has
an easier interpretation than the more general composition we proposed earlier.
Indeed, in the case of the general composition, because of the internal state of
the composed oracle, the states of the composed programs can be arbitrarily far
from the state of the intermediate program. As a consequence, the programmer
must explicit the intermediate program to interpret what the composed oracle
does: the programmer must consider each oracle separately to understand which
con�gurations are correlated. On the contrary, in the case of a synchronized
composition, the correlation relation between the states of the composed pro-
grams can be understood as a composition of the relations of the correlation
relation induced by the two oracles. Therefore, the programmer can directly cor-
relate the states of the composed programs without thinking of the states of the
intermediate program.

The Figure 5 synthesizes the properties of our di�erence languages on Imp

that have been proved in Coq (X), or that are known to be unsatis�ed (×).
1 Soundness checking for those oracles is only decidable given underlying proofs

7 Semantic diff for Imp programs

Even though automatically inferring program di�erences given a set of di�erence
languages is obviously undecidable in general (e.g. our abstract equivalence lan-
guage that would require deciding program equivalences), there are cases where
automatically computing program di�erences is achievable.

In particular, it is trivial for atomic di�erences expressed in most of the
di�erence languages we presented in this paper (e.g. ∆SeqAssoc

Imp
, . . .). Since our

framework provides a way to compose atomic changes, it is possible to monitor
changes to a codebase in real-time and detect atomic di�erences one after the
other, provided the code is indeed edited in an atomic fashion.

This last requirement is, however, largely unrealistic. Therefore, decompos-
ing bigger changes into atomic di�erences expressed in potentially di�erent lan-
guages is also a desirable operation. Unfortunately, the search space grows ex-
ponentially with the number of atomic changes considered, and an exhaustive
search is not realistic.

While devising algorithms to e�ciently decompose bigger changes to atomic
di�erences is an entire line of research that we have barely touched, we wrote a
proof-of-concept program that tries to decompose changes into a composition of
di�erences written in ∆Ren

Imp
, ∆SwapAssign

Imp
, ∆SwapBranches

Imp
, and ∆ValueChange

Imp
lan-

guages. This program makes use of many di�erent heuristics�mainly based on
structured syntactic di�erences [9]�to �nd sequences of oracles and associated
intermediate programs, and is neither complete nor particularly e�cient.

Actually, unlike the framework itself, this prototype is written in OCaml and
is not proven sound. However, and more importantly, it uses language de�nitions
extracted from Coq and any found decomposition is checked for soundness using
a validator extracted from Coq. Therefore, if an answer is issued by the tools, it
can be trusted.

8 Related Work

Equivalences of programs Program equivalence is probably one of the most stud-
ied topic in programming language theory. Even the notion of program equiva-
lence itself is subject to many variations depending on what is observed about
their evaluation: de�nitional [14], observational [19], intentional [2], experimen-
tal [10], bisimulation-based [15] equivalences and many more have been inten-
sively studied. As illustrated by our examples of di�erence languages, the gen-
eral notion of di�erence languages also captures some equivalence languages.
However, even if bisimulations are naturally represented by such an equivalence
language, it is not obvious how to de�ne a language for contextual equivalences.

Comparison of inequivalent programs Few general frameworks deal with pro-
gram comparison. Amongst them, re�nement mappings [1] and relational Hoare
logic [3] seem to capture the (strict) subset of di�erence languages whose predic-
tions skip no instruction. They are too concrete to relate two di�erent sorting

algorithms for instance. Formally proving that di�erential operational semantics
is strictly more expressive than these existing systems is for future work. Mu-
tual summaries [11] abstract away procedure implementations leading to more
abstract comparison of procedures. Nonetheless, oracles can dynamically choose
a speci�c comparison at each call site while mutual summaries are not aware of
call sites.

Quantitative vs qualitative comparison of behaviors Behaviors of distinct pro-
grams are measured by means of metric spaces [8], probabilistic bisimulations [12],
depth of Böhm trees, or probabilistic tests [13]. Our approach is di�erent from
these quantitative approaches since we are looking for qualitative comparisons
of program behaviors as syntactic di�erences, better-suited to programmers.

Semantic patches and refactoring tools Coccinelle's semantics patches [5] are
source code transformations speci�ed in a language called SmPL and designed
to perform collateral evolutions in system code. As source code transformations,
these patches work at the syntactic level but they try to abstract away as many
details as possible to augment their applicability. To that end, the process that
matches the source code with the patch takes the program control-�ow into
account thanks to temporal logic formulas. Even if we share similar motivations,
our approach is more general because we can model di�erences between programs
that cannot be expressed by static source code transformations as the oracle
can exploit the dynamic information stored in its internal state to generate
predictions that are context-dependent.

There have been many other attempts to formalize patches as found in con-
trol version systems [16]. However, as far as we know, none of them takes the
operational semantics of the programming language into account.

The implementation of refactoring tools is an active research topic in soft-
ware engineering. Except for a simple renaming refactoring tool based on Com-
pCert [7], none of these tools is mechanically certi�ed and unfortunately, none
is exempt of bugs as shown by a recent study [25].

Di�erential static analysis Di�erential static analysis is an emergent topic in
program veri�cation [26, 24]. Di�erential static analysers typically ensure the
preservation of some properties through the evolution of software [23, 22] or try
to infer relations between two close versions of the same program [17, 9, 18].

In this work, we do not focus on the problems of inferring or checking dif-
ferences between programs but on more foundational aspects that will hopefully
make it possible to mechanize the proofs of di�erential static analyzers in the
future or to serve as a language for certi�cates produced by such tools. The line
of work about Di�erential Symbolic Execution [18] is probably the approach to
comparison of program behaviors which is the closest to ours since these stud-
ies are looking for formal characterizations of program di�erences generated by
summaries-directed symbolic interpreters. DSE exploits functional deltas and
partition-e�ects deltas: from our perspective, these deltas are di�erence writ-
ten in a low-level di�erence language expressed by execution paths and variable

mappings. Other di�erence languages may help summarize the same amount
of information and may also turn low-level di�erences into higher-level ones.
Consider:

1 P1: if (x > 0) return 1; else if (x < 0) return -1; else return 0
2 P2: if (y > 0) return 1; else if (y <= 0) return -1;

By exploiting the renaming x <-> y, DSE could identify more paths to produce:

1 x renamed into y, P1: (x == 0), RETURN=0, P2: (y == 0), RETURN=-1

9 Future work

In this paper, we introduced the theoretical framework of di�erential opera-
tional semantics to give a formal meaning to (qualitative) di�erences between
programs. A term of a di�erence language is a sound syntactic and declarative
representation of a di�erence of behaviors between two programs if its inter-
pretation by an oracle produces a relation between con�gurations that actually
appear in the reduction chains of the two programs. Di�erences and di�erence
languages can be composed which make it possible for complex semantic di�er-
ences to be expressed in terms of more atomic semantic di�erences. Our �rst
experiments in mechanizing this framework in the Coq proof assistant suggest
that it is an appropriate foundational framework for certi�cation.

The study of di�erential operational semantics is at an early stage: we now list
several challenges that should in our opinion be tackled both on the theoretical
and practical sides.

Di�erence languages over realistic programming languages Our experimentation
on the Imp programming language was simple enough for us to focus on the
design of the theoretical framework. As claimed earlier, we conjecture that our
general de�nitions will be adapted to more realistic languages like functional
and object-oriented languages as long as they are deterministic. Of course, new
technical devices will be needed to design interesting di�erence languages and
their de�nitions will probably be at a higher level of complexity than the ones
for Imp. We are especially interested in designing di�erence languages for lan-
guages equipped with contract assertions because, as already noticed in existing
work [23, 5, 27], formally capturing the semantic evolution of programming in-
terfaces (API) is a key aspect to build useful tools for developpers. Another chal-
lenge is to extend our framework to deal with non determinism while preserving
an interpretation of oracles that remains understandable to programmers.

Taxonomy of di�erence languages The di�erence languages on Imp presented
here were meant to illustrate key aspects of the framework. One challenge is
to invent more sophisticated di�erence languages and to have a way to classify
them in a systematic way so that one can determine if a di�erence language is
really new or if it is subsumed by an existing one.

Decision procedures and automatic analysis Our main practical motivation is to
build (preferably certi�ed) tools to give a qualitative account on the impact of
changes on program implementations, interfaces and speci�cations. To achieve
such goals, the challenge is to design di�erence inference algorithms over lan-
guages that actually correspond to the semantic patches programmers have in
mind and that remains responsive in practice. Techniques and heuristics im-
ported from di�erential static analysis will certainly be helpful.

Bibliography

[1] Abadi, M., Lamport, L., Lamport, L., Abadi, M.: The existence of re�ne-
ment mappings. In: Proceedings of the 3rd Annual Symposium on Logic in
Computer Science. pp. 165�175 (July 1988)

[2] Asperti, A.: The intensional content of rice's theorem. In: ACM SIGPLAN
Notices. vol. 43, pp. 113�119. ACM (2008)

[3] Benton, N.: Simple relational correctness proofs for static analyses and pro-
gram transformations (revised, long version) (2005)

[4] Bobot, F., Filliâtre, J.C., Marché, C., Melquiond, G., Paskevich, A.: The
Why3 platform 0.81 (Mar 2013), tutorial and Reference Manual

[5] Brunel, J., Doligez, D., Hansen, R.R., Lawall, J.L., Muller, G.: A foundation
for �ow-based program matching: using temporal logic and model checking.
In: Acm Sigplan Notices. vol. 44-1, pp. 114�126. ACM (2009)

[6] Cai, Y., Giarrusso, P.G., Rendel, T., Ostermann, K.: A theory of changes for
higher-order languages: Incrementalizing Λ-calculi by static di�erentiation.
In: Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation. pp. 145�155. PLDI '14, ACM, New
York, NY, USA (2014)

[7] Cohen, J.: A Correct Refactoring Operation to Rename Global Variables in
C Programs. Research report, LINA-University of Nantes (Dec 2015)

[8] Ferns, N., Panangaden, P., Precup, D.: Bisimulation metrics for continuous
markov decision processes. SIAM Journal on Computing 40(6), 1662�1714
(2011)

[9] Girka, T., Mentré, D., Régis-Gianas, Y.: A mechanically checked generation
of correlating programs directed by structured syntactic di�erences. In:
International Symposium on Automated Technology for Veri�cation and
Analysis. pp. 64�79. Springer (2015)

[10] Gordon, A.D., Hankin, P.D., Lassen, S.B.: Compilation and equivalence of
imperative objects. In: International Conference on Foundations of Software
Technology and Theoretical Computer Science. pp. 74�87. Springer (1997)

[11] Hawblitzel, C., Kawaguchi, M., Lahiri, S., Rebelo, H.: Mutual summaries:
Unifying program comparison techniques. Tech. rep. (August 2011)

[12] Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing (pre-
liminary report). In: Proceedings of the 16th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. pp. 344�352. ACM
(1989)

[13] Mardare, R., Priami, C., Quaglia, P., Vagin, O.: Model checking biological
systems described using ambient calculus. In: International Conference on
Computational Methods in Systems Biology. pp. 85�103. Springer (2004)

[14] Martin-Lef, P.: Intuitionistic type theory (1984)

[15] Milner, R.R.: A calculus of communicating systems. Lecture notes in com-
puter science, Springer-Verlag, Berlin, New York (1980)

[16] Mimram, S., Di Giusto, C.: A categorical theory of patches. Electronic
Notes in Theoretical Computer Science 298, 283�307 (2013)

[17] Partush, N., Yahav, E.: Abstract semantic di�erencing via speculative cor-
relation. In: ACM SIGPLAN Notices. vol. 49-10, pp. 811�828. ACM (2014)

[18] Person, S., Dwyer, M.B., Elbaum, S., P�as�areanu, C.S.: Di�erential symbolic
execution. In: Proceedings of the 16th ACM SIGSOFT International Sym-
posium on Foundations of software engineering. pp. 226�237. ACM (2008)

[19] Pitts, A.M.: Operationally-based theories of program equivalence. Seman-
tics and Logics of Computation 14 (1997)

[20] Plotkin, G.D.: A structural approach to operational semantics (1981)

[21] Ramos, D.A., Engler, D.R.: Practical, low-e�ort equivalence veri�cation of
real code. In: Proceedings of the 23rd International Conference on Computer
Aided Veri�cation. pp. 669�685. CAV'11, Springer-Verlag, Berlin, Heidel-
berg (2011)

[22] Shuvendu Lahiri, Kenneth McMillan, C.H.: Di�erential assertion checking.
ACM (August 2013)

[23] Shuvendu Lahiri, Chris Hawblitzel, M.K.a.H.R.: Symdi�: A language-
agnostic semantic di� tool for imperative programs. Springer (July 2012)

[24] Shuvendu Lahiri, Kapil Vaswani, T.H.: Di�erential static analysis: Opportu-
nities, applications, and challenges. Association for Computing Machinery,
Inc. (November 2010)

[25] Soares, G., Gheyi, R., Massoni, T.: Automated behavioral testing of refac-
toring engines. IEEE Transactions on Software Engineering 39(2), 147�162
(2013)

[26] Strichman, O., Godlin, B.: Regression veri�cation-a practical way to verify
programs. In: Working Conference on Veri�ed Software: Theories, Tools,
and Experiments. pp. 496�501. Springer (2005)

[27] Yi, J., Qi, D., Tan, S.H., Roychoudhury, A.: Expressing and checking in-
tended changes via software change contracts. In: Proceedings of the 2013
International Symposium on Software Testing and Analysis. pp. 1�11. ACM
(2013)

A Appendix

A.1 Step function for Imp

step(M, skip;κ) = (M,κ)
step(M,x = e;κ) = (M [x := n], κ)

where M ` e ⇓ n
step(M, (C1;C2);κ) = (M,C1; (C2;κ))

step(M, if (b) C1 else C2;κ) = (M,C1;κ)
where M ` b ⇓ true

step(M, if (b) C1 else C2;κ) = (M,C2;κ)
where M ` b ⇓ false

step(M,while (b) C;κ) = (M,C;while (b) C;κ)
where M ` b ⇓ true

step(M,while (b) C;κ) = (M,κ)
where M ` b ⇓ false

	Oracle-based Differential Operational Semantics

