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Abstract. The programming environment FoCaLiZe allows the user to
specify, implement, and prove programs with the help of the theorem
prover Zenon. In the actual version, those proofs are verified by Coq. In
this paper we propose to extend the FoCaLiZe compiler by a backend
to the Dedukti language in order to benefit from Zenon Modulo, an
extension of Zenon for Deduction modulo. By doing so, FoCaLiZe can
benefit from a technique for finding and verifying proofs more quickly.
The paper focuses mainly on the process that overcomes the lack of local
pattern-matching and recursive definitions in Dedukti.

1 Introduction

FoCaLiZe [15] is an environment for certified programming which allows the
user to specify, implement, and prove. For implementation, FoCaLiZe provides
an ML like functional language. FoCaLiZe proofs are delegated to the first-order
theorem prover Zenon [3] which takes Coq problems as input and outputs proofs
in Coq format for independent checking. Zenon has recently been improved to
handle Deduction modulo [9], an efficient proof-search technique. However, the
Deduction modulo version of Zenon, Zenon Modulo, outputs proofs for the De-
dukti proof checker [17] instead of Coq [6].

In order to benefit from the advantages of Deduction modulo in FoCaLiZe,
we extend the FoCaLiZe compiler by a backend to Dedukti called Focalide3

(see Figure 1). This work is also a first step in the direction of interoperability
between FoCaLiZe and other proof languages translated to Dedukti [8, 1, 2].
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Fig. 1. FoCaLiZe Compilation Scheme

3 This work is available at http://deducteam.gforge.inria.fr/focalide



This new compilation backend to Dedukti is based on the existing backend
to Coq. While the compilation of types and logical formulae is a straightforward
adaptation, the translation of FoCaLiZe terms to Dedukti is not trivial because
Dedukti lacks local pattern-matching and recursive definitions.

In the following, Section 2 contains a short presentation of Dedukti, Zenon
Modulo, and FoCaLiZe. Then Section 3 presents the main features of the com-
pilation to Dedukti. In Section 4, the backend to Dedukti is evaluated on bench-
marks. Section 5 discusses related work and Section 6 concludes the paper by
pointing some future work.

2 Presentation of the tools

2.1 Dedukti

Dedukti [17] is a type checker for the λΠ-calculus modulo, an extension of
a pure dependent type system, the λΠ-calculus, with rewriting. Through the
Curry-Howard correspondence, Dedukti can be used as a proof-checker for a
wide variety of logics [8, 2, 1]. It is commonly used to check proofs coming from
the Deduction modulo provers Iprover Modulo [4] and Zenon Modulo [6].

A Dedukti file consists of an interleaving of declarations (such as O : nat)
and rewrite rules (such as [n] plus O n --> n.).

Declarations and rewrite rules are type checked modulo the previously defined
rewrite rules. This mechanism can be used to perform proof by reflection, an ex-
ample is given by the following proof of 2+2 = 4 (theorem two plus two is four

below):

nat : Type. O : nat. S : nat -> nat.

def plus : nat -> nat -> nat.

[n] plus O n --> n

[m,n] plus (S m) n --> S (plus m n).

equal : nat -> nat -> Type. refl : n : nat -> equal n n.

def two_plus_two_is_four :

equal (plus (S (S O)) (S (S O))) (S (S (S (S O)))).

[] two_plus_two_is_four --> refl (S (S (S (S O)))).

For correctness, Dedukti requires this rewrite system to be confluent. It does
not guarantee to terminate when the rewrite system is not terminating.

2.2 Zenon Modulo

Zenon [3] is a first-order theorem prover based on the tableaux method. It is
able to produce proof terms which can be checked independently by Coq.

Zenon Modulo [9] is an extension of Zenon for Deduction modulo, an exten-
sion of first-order logic distinguishing computation from reasoning. Computation
is defined by a rewrite system, it is part of the theory. Reasoning is defined by
a usual deduction system (Sequent Calculus in the case of Zenon Modulo) for
which syntactic comparison is replaced by the congruence induced by the rewrite



system. Computation steps are left implicit in the resulting proof which has to
be checked in Dedukti.

Zenon (resp., Zenon Modulo) accepts input problems in Coq (resp., Dedukti)
format so that it can be seen as a term synthesizer: its input is a typing context
and a type to inhabit, its output is an inhabitant of this type. This is the mode
of operation used when interacting with FoCaLiZe because it limits ambiguities
and changes in naming schemes induced by translation tools between languages.

2.3 FoCaLiZe and its compilation process

This subsection presents briefly FoCaLiZe and its compilation process (for details
please see [15] and FoCaLiZe reference manual). More precisely we adress here
the focalizec compiler that produces OCaml and Coq code.

The FoCaLiZe (http://focalize.inria.fr) environment provides a set of
tools to formally specify and implement functions and logical statements together
with their proofs. A FoCaLiZe specification is a set of algebraic properties de-
scribing relations between input and output of the functions implemented in a
FoCaLiZe program. For implementing, FoCaLiZe offers a pure functional pro-
gramming language close to ML, featuring a polymorphic type system, recursive
functions, data types and pattern-matching. Statements belong to first-order
logic. Proofs are written in a declarative style and can be considered as a bunch
of hints that the automatic prover Zenon uses to produce proofs that can be
verified by Coq for more confidence [3].

FoCaLiZe developments are organized in program units called species. Species
in FoCaLiZe define types together with functions and properties applying to
them. At the beginning of a development, types are usually abstract. A species
may inherit one or several species and specify a function or a property or im-
plement them by respectively providing a definition or a proof. The FoCaLiZe
language has an object oriented flavor allowing (multiple) inheritance, late bind-
ing and redefinition. These characteristics are very helpful to reuse specifications,
implementations and proofs.

A FoCaLiZe source program is analyzed and translated into OCaml sources
for execution and Coq sources for certification. The compilation process be-
tween both target languages is shared as much as possible. The architecture of
the FoCaLiZe compiler is shown in Figure 1. The FoCaLiZe compiler integrates
a type checker, inheritance and late binding are resolved at compile-time (OO
on Figure 1), relying on a dependency calculus described in [15]. The process
for compiling proofs towards Coq is achieved in two steps. First the statement
is compiled with a hole for the proof script. The goal and the context are trans-
mitted to Zenon. Then when the proof has been found, the hole is filled with
the proof output by Zenon.

3 From FoCaLiZe to Focalide

As said previously, Focalide is adapted from the Coq backend. In particular it
benefits from the early compilation steps. In this section, we brievly describe the



input language we have to consider and the main principles of the translation
and then focus on the compilation of pattern-matching and recursive functions.
A more detailed and formal description can be found in [7].

3.1 Input language

Focalide input language is simpler than FoCaLiZe, in particular because the ini-
tial compilation steps get rid of object oriented features (see Figure 1). So for
generating code to Dedukti, we can consider that a program is a list of type
definitions, well-typed function definitions and proved theorems. A type defini-
tion defines a type à la ML, in particular it can be the definition of an algebraic
datatype in which value constructors are listed together with their type. When
applied, a function must receive all its parameters. So partial application must
be named. FoCaLiZe supports the usual patterns found in functional languages
such as OCaml or Haskell. In particular patterns are linear and tried in the
order they are written. A logical formula is a regular first order formula where
an atomic formula is a Boolean expression. Its free variables correspond to the
functions and constants introduced in the program.

3.2 Translation

Basic types such as int are mapped to their counterpart in the target proof
checker. However there is no standard library in Dedukti, so we defined the
Dedukti counterpart for the different FoCaLiZe basic types. It means defining the
type and its basic operations together with the proofs of some basic properties.

The compilation of types is straightforward. It is also quite immediate for
most of the expressions, except for pattern-matching expressions and recursive
functions because Dedukti, contrary to Coq, lacks these two mechanisms. Thus
we have to use other Dedukti constructions to embed their semantics. The com-
pilation of pattern-matching expressions and recursive functions is detailed in
next sections. Other constructs of the language such as abstractions and appli-
cations are directly mapped to the same construct in Dedukti.

The statement of a theorem is compiled in the input format required by
Zenon Modulo, which is here Dedukti itself [6].

3.3 Compilation of pattern-matching

Pattern-matching is a useful feature in FoCaLiZe which is also present in De-
dukti. However pattern-matching in Dedukti is only available at toplevel (rewrite
rules cannot be introduced locally) and both semantics are different. FoCaLiZe
semantics of pattern-matching is the one of functional languages: only values are
matched and the first branch that applies is used. In Dedukti however, reduc-
tion can be triggered on open terms and the order in which the rules are applied
should not matter since the rewrite system is supposed to be confluent.

To solve these issues, we define new symbols called destructors, using toplevel
rewrite rules and apply them locally.



If C is a constructor of arity n for some datatype, the destructor associated
with C is λa, b, c. match a with | C(x1, . . . , xn) ⇒ b x1 . . . xn | ⇒ c. We
say that a pattern-matching has the shape of a destructor if it is a fully applied
destructor.

Each FoCaLiZe expression is translated into an expression where each pattern-
matching has the shape of a destructor. This shape is easy to translate to Dedukti
because we only need to define the destructor associated with each constructor.
It is done in two steps: we first serialize pattern-matching so that each pattern-
matching has exactly two branches and the second pattern is a wildcard, and we
then flatten patterns so that the only remaining patterns are constructors ap-
plied to variables. Serialization and flattening terminate and are linear; moreover
they preserve the semantics of pattern-matching.

3.4 Compilation of recursive functions

Recursion is a powerful but subtle feature in FoCaLiZe. When certifying re-
cursive functions, we reach the limits of Zenon and Zenon Modulo because the
rewrite rules corresponding to recursive definitions have to be used with parsi-
mony otherwise Zenon Modulo could diverge.

In FoCaLiZe backend to Coq, termination of recursive functions is achieved
thanks to the high-level Function mechanism [10]. This mechanism is not avail-
able in Dedukti. Contrary to Coq, Dedukti does not require recursive functions
to be proved terminating a priori. We can postpone termination proofs.

As we did in a previous translation of a programming language in Dedukti [5],
we express the semantics of FoCaLiZe by a non-terminating Dedukti signature.

In FoCaLiZe, recursive functions can be defined by pattern-matching on al-
gebraic types but also with regular conditional expressions. For example, if lists
are not defined but axiomatized, we might define list equality as follows:

let rec list_equal (l1 , l2) = (is_nil (l1) && is_nil (l2)) ||

(~ is_nil(l1) && ~ is_nil(l2) && head(l1) = head(l2) &&

list_equal(tail(l1), tail(l2)))

In Dedukti, defining a recursive function f by a rewrite rule of the form
[x] f x --> g (f (h x)) x. is not a viable option because it breaks termination
and no proof of statement involving f can be checked in finite time.

What makes recursive definitions (sometimes) terminate in FoCaLiZe is the
use of the call-by-value semantics. The idea is that we have to reduce any
argument of f to a value before unfolding the recursive definition.

For efficiency reasons, we approximate the semantics by only checking that
the argument starts with a constructor. This is done by defining a combinator
CBV of type A:Type -> B:Type -> (A -> B) -> A -> B which acts as appli-
cation when its last argument start with a constructor but does not reduce
otherwise. Its definition is extended when new datatypes are introduced by giv-
ing a rewrite rule for each constructor. Here is the definition for the algebraic
type nat whose constructors are O and S:



[B,f] CBV nat B f O --> f O.

[B,f,n] CBV nat B f (S n) --> f (S n).

Local recursion is then defined by introducing the fixpoint combinator Fix

of type A:Type -> B:Type -> ((A -> B) -> (A -> B)) -> A -> B defined
by the rewrite rule [A, B, F, x] Fix A B F x --> CBV A B (F (Fix A B F)) x.

This does not trivially diverge as before because the term Fix in the right-hand
side is only partially applied so it does not match the pattern Fix A B F x.

If f is a FoCaLiZe recursive function, we get the following reduction be-
haviour: f alone does not reduce, f v (where v is a value) is fully reduced, and
f x (where x is a variable or a non-value term) is unfolded once.

The size of the code produced by Focalide is linear wrt. the input, the oper-
ational semantics of FoCaLiZe is preserved and each reduction step in the input
language corresponds to a bounded number of rewriting steps in Dedukti, so the
execution time for the translated program is only increased by a linear factor.

4 Experimental results

We have evaluated Focalide by running it on different available FoCaLiZe de-
velopments. When proofs required features which are not yet implemented in
Focalide, we commented the problematic lines and ran both backends on the
same input files; the coverage column of Figure 2 indicates the percentage of
remaining lines.

FoCaLiZe ships with three libraries: the standard library (stdlib) which de-
fines a hierarchy of species for setoids, cartesian products, disjoint unions, order-
ings and lattices, the external library (extlib) which defines mathematical struc-
tures (algebraic structures and polynomials) and the user contributions (con-
tribs) which are a set of concrete applications. Unfortunately, none of these li-
braries uses pattern-matching and recursion extensively. The other developments
are more interesting in this respect; they consist of a test suite for termination
proofs of recursive functions (term-proof), a pedagogical example of FoCaLiZe
features with several examples of functions defined by pattern-matching (ejcp)
and a specification of Java-like iterators together with a list implementation of
iterators using both recursion and pattern-matching.

Results4 in Figures 2 and 3, show that on FoCaLiZe problems the user gets
a good speed-up by using Zenon Modulo and Dedukti instead of Zenon and
Coq. Proof-checking is way faster because Dedukti is a mere type-checker which
features almost no inference whereas FoCaLiZe asks Coq to infer type arguments
of polymorphic functions; this also explain why generated Dedukti files are bigger
than the corresponding Coq files. Moreover, each time Coq checks a file coming
from FoCaLiZe, it has to load a significant part of its standard library which
often takes the majority of the checking time (about a second per file). In the
end, finding a proof and checking it is usually faster when using Focalide.

4 The files can be obtained from http://deducteam.inria.fr/focalide



Library FoCaLiZe Coverage Coq Dedukti

stdlib 163335 99.42% 1314934 4814011
extlib 158697 100% 162499 283939
contribs 126803 99.54% 966197 2557024
term-proof 24958 99.62% 227136 247559
ejcp 13979 95.16% 28095 239881
iterators 80312 88.33% 414282 972051

Fig. 2. Size (in bytes) comparison of Focalide with the Coq backend

Library Zenon ZMod Coq Dedukti Zenon + Coq ZMod + Dedukti

stdlib 11.73 32.87 17.41 1.46 29.14 34.33
extlib 9.48 26.50 19.45 1.64 28.93 28.14
contribs 5.38 9.96 26.92 1.17 32.30 11.13
term-proof 1.10 0.55 24.54 0.02 25.64 0.57
ejcp 0.44 0.86 11.13 0.06 11.57 0.92
iterators 2.58 3.85 6.59 0.27 9.17 4.12

Fig. 3. Time (in seconds) comparison of Focalide with the Coq backend

These files have been developed prior to Focalide so they do not yet benefit
from Deduction modulo as much as they could. The Coq backend going through
Zenon is not very efficient on proofs requiring computation because all reduction
steps are registered as proof steps in Zenon leading to huge proofs which take a
lot of time for Zenon to find and for Coq to check. For example, if we define a
polymorphic datatype type wrap (’a) = | Wrap (’a), we can define the iso-
morphism f : ’a -> wrap(’a) by let f (x) = Wrap(x) and its inverse g :

wrap(’a) -> ’a by let g(y) = match y with | Wrap (x) -> x. The time
taken for our tools to deal with the proof of (g ◦ f)n(x) = x for n from 10 to 19
is given in Figure 4; as we can see, the Coq backend becomes quickly unusable
whereas Deduction modulo is so fast that it is even hard to measure it.

Value of n Zenon Coq Zenon Modulo Dedukti

10 31.48 4.63 0.04 0.00
11 63.05 11.04 0.04 0.00
12 99.55 7.55 0.05 0.00
13 197.80 10.97 0.04 0.00
14 348.87 1020.67 0.04 0.00
15 492.72 1087.13 0.04 0.00
16 724.46 > 2h 0.04 0.00
17 1111.10 1433.76 0.04 0.00
18 1589.10 > 2h 0.07 0.00
19 2310.48 > 2h 0.04 0.00

Fig. 4. Time comparison (in seconds) for computation-based proofs



5 Related work

The closest related work is a translation from a fragment of Coq kernel to De-
dukti [1]. Pattern-matching is limited in Coq kernel to flat patterns so it is
possible to define a single match symbol for each inductive type, which simpli-
fies greatly the compilation of pattern-matching to Dedukti. To handle recursion,
filter functions playing the role of our CBV combinator are proposed. Because of
dependent typing, they need to duplicate their arguments. Moreover, we define
the CBV operator by ad-hock polymorphism whereas filter functions are unrelated
to each other.

Compilation techniques for pattern-matching to enriched λ-calculi have been
proposed, see e.g. [16, 13, 12]. We differ mainly in the treatment of matching
failure.

A lot of work has also been done to compile programs (especially functional
recursive definitions [11, 14]) to rewrite systems. The focus has often been on
termination preserving translations to prove termination of recursive functions
using termination checkers for term rewrite systems. However, these translations
do not preserve the semantics of the programs so they can hardly be adapted
for handling translations of correctness proofs.

6 Conclusion

We have extended the compiler of FoCaLiZe to a new output language: Dedukti.
Contrary to previously existing FoCaLiZe outputs OCaml and Coq, Dedukti is
not a functional programming language but an extension of a dependently-typed
λ-calculus with rewriting so pattern-matching and recursion are not trivial to
compile to Dedukti.

However, we have shown that ML pattern-matching can easily and efficiently
be translated to Dedukti using destructors. We plan to further optimize the com-
pilation of pattern-matching, in particular to limit the use of dynamic error han-
dling. For recursion, however, efficiency comes at a cost in term of normalization
because we can not fully enforce the use of the call-by-value strategy without
loosing linearity. Our treatment of recursive definitions generalizes directly to
mutual recursion but we have not implemented this generalization.

Our approach is general enough to be adapted to other functional languages
because FoCaLiZe language for implementing functions is an ML language with-
out specific features. FoCaLiZe originality comes from its object-oriented mech-
anisms which are invisible to Focalide because they are statically resolved in
an earlier compilation step. Moreover, it can also easily be adapted to other
rewriting formalisms, especially untyped and polymorphic rewrite engines be-
cause features specific to Dedukti (such as higher-order rewriting or dependent
typing) are not used.

We have tested Focalide on existing FoCaLiZe libraries and have found it a
decent alternative to the Coq backend whose adoption can enhance the usability
of FoCaLiZe to a new class of proofs based on computation.



As Dedukti is used as the target language of a large variety of systems in
the hope of exchanging proofs; we want to experiment the import and export of
proofs between logical systems by using FoCaLiZe and Focalide as an interoper-
ability platform.
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