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Introduction

Multidimensional Data
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Introduction

Multidimensional data in R”

. . . .k
Data visualization in R Dimensionality reduction in R
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Introduction

Short reminder of the PCA method

@ Aim: Project the original data set in a reduced space by
preserving as much of the variance from the original data set
as possible.
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Introduction

Short reminder of the PCA method

@ Aim: Project the original data set in a reduced space by
preserving as much of the variance from the original data set
as possible.

@ Local quality: Squared cosine of angle between the principal
space and the vector of the point gives the local measure.

° in linear projection.
e unusable in non-linear projection.
e Not interpretable as distances.
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Presentation of the method

Our objective

Propose a new non-linear projection method taking into account
the local projection quality that is interpretable as distances.

@ The idea is to bound the distance dj; by a minimal and
maximal distances calculated on the projected points and the
radii.
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Basic of the method:
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@ The variables (r,...,r,) are called radii given for each point /

such that ;eR forall i=1,...,n.
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Characteristics of Radii

Radii are important elements introduced to assess how much
the distance |x; - x;| is far from dj;.

(ri,r;) are small = |x; — x;| is close to dj;.

Radii indicate to which extent the projection of each point is
accurate.

The local quality is then given by the values of the radii.
@ Both units of dj's and r;'s are identical.
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The projection under pairwise distance control problem can be
written as the following optimization problem:

n
min Zr,-
PYX:

r1,...,rneR,x1,...,xneRk i=1

s.it |dj—|xi—xj||<ri+r, for1<i<j<n

Problem P, « is a hard non-linear optimization problem.
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Simplification of problem P, :

@ (x1,...,xn) are fixed using PCA or any other projection
method.

@ Problem P, is a new linear optimization problem obtained
after fixing (x1,...,Xn).

@ It can easily be solved in (r,...,r,) using linear programming.

n
min Zr,-
Py :

r,...,rm€R =i
s.it |dj—|xi—xjll|<ri+r, forl<i<j<n

@ Solution of P, is not in general the optimum of problem P, .
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Different ways to find a solution of problem P :
@ Lower bound.
o Optimization.

@ Simulation.
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Lower Bound of problem P,

@ Let xq,:+,Xn; 11, Iy a feasible solution of P, x, and M e R
such that:
M = max{|l xi - x; [}
ij)
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Lower Bound of problem P,

@ Let xq,:+,Xn; 11, Iy a feasible solution of P, x, and M e R
such that:
M = max{|l xi - x; [}
ij)

@ The objective is to find three functions noted f, g, h
depending on M such that:

n
3" 2Pt > min max{f(M); g(M); h(M)} for all feasible solutions.

Projection under pairwise distance control



Projection under pairwise distance control method

Computation of the functions

Function f(M): This function is obtained by:
o summing all the squared constraints d2 < (||x; — x;| + ri + r;)?.

i <
n(n-1)

e bounding >’ Ixi - x;|? by M? after maximizing

1<i<j<n
the inertia of the projected points x; under constraints:
[xi = x| < M for all (i,)).
Indeed, we consider:
@ (C) be the smallest circle containing the n points

@ A, B and C belong to (C) and ||xg — x¢| = M.
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@ We have proved that the maximum of the inertia

> || vi— g |I?, under the constraint that yi,...,y, are inside
2

M
(C), is equal to nr? = n—-.

@ Thus,

n MZ
Z | xi— g < ’7?-
i=1
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Function g(M): This function is obtained using the maximal
distance of dj;.

g(M) = |M_ dmax|
Function h(M): This function is obtained by taking four distinct
points 7, j, k and / such that:

e For couple (i,j), |xi —xj| = M and x; or x; is equal to zero.
@ We consider the following linear combinations:
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[llustration of the three function f, g and h.
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Simulation algorithm

Stochastic optimization method = Metropolis-Hastings algorithm .
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Simulation algorithm

Stochastic optimization method = Metropolis-Hastings algorithm .

Target distribution

@ The target distribution is related with the objective function of
problem P, .
@ An application E is given by:

£ - M pxp — R
X=(x1,...,x,) +— E(X) =Solution of P, with x fix.

@ The target distribution is: 7(s) o< exp (-E(x)/T).
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The proposal distribution g(X — .) has been constructed by giving
priority to the selection of points involved in saturated constraints.
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The proposal distribution g(X — .) has been constructed by giving
priority to the selection of points involved in saturated constraints.

Proposal distribution

@ For each point i, choose a point j(i) with probability equal to:

exp (=A(ri + rioy = ldijor = Ixi = X0 1))
i = 5 ’
Y. e (A + = |di = X = )
k=1,k+i

@ Choose a constant c;;() using Gaussian distribution N(0,0).

o Generate a matrix X* by moving each vector x; of matrix Xt
as follows:
o If d,-j(f) = HX,' = )(j(i) H >0 then Xl-* =X; + |Cij(i)|Li.
o else x* = x; —|c;m|Li.
. Xi = X0
with L; = J

Ixi - X;(7) I
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Algorithm 1 Metropolis-Hastings Algorithm:
for t=1to N do
Generate X* from the proposal distribution q(X*™! - X*).
Solve linear optimization problem P,.

syax o xS

g(st (Xt - Xx*) ~

Calculate a = - .
g(s*HIIP"
if =1 then o
Take Xt = X*.
else
u=U(0;1).
if u<a then
Take Xt = X*
else
Xt - Xt_l.
end if
end if
end for
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Application

Application

o Different types of real data sets are used.
o For example: Quantitative data( Iris data set).
@ Parameters of Metropolis-Hastings:

o Parameter )\ = 100.
o The standard deviation o = 0.01.
o Temperature T =100

Projection under pairwise distance control



Application

7
o1 0976
e o 0.993 1
039
097
0 .
or x0807 0957 -
0956 0.959
i %”nqﬁwﬁwu%‘ﬂw
Bars Wazors
5 %5931)969 #g‘xamxanﬁ“ﬂszawﬂﬂw 7 0956
551 0. X!
0966 s *x0.71 0.4
'mgggi ez * 087 o
o o anxmzingoxa ” 263995
o ?@;ﬂn mx@a@ﬂé’fﬁ&iﬁ;“ "
o gt I ot
se 0988 . <ol o 58 i
05 hsE J0g0® .osh
#0308 09% g0 s
g7 osd e xuwomamgsaf
X097 905% 0942
R .
“ *x0.999 -
0385
00887
o719
B il | | | |
: ¢ s 6 7 8 9 10

Projection under pairwise ce control



Application

Projection under pairwise distance

Projection under pairwise distance control



Conclusions & Perspectives

Conclusions & Perspectives

Conclusions

@ new non-linear projection method based on a new local measure
of projection quality.

@ The quality of projection is given here by additional variables
called radii.

o Radii enable to give a bound on the original distances.

@ The idea can be written as an optimization problem in order to
minimize the sum of the radii under some constraints.

o Different algorithms and a lower bound for the objective
function are developed.
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Conclusions

@ new non-linear projection method based on a new local measure
of projection quality.

@ The quality of projection is given here by additional variables
called radii.

o Radii enable to give a bound on the original distances.

@ The idea can be written as an optimization problem in order to
minimize the sum of the radii under some constraints.

o Different algorithms and a lower bound for the objective
function are developed.

@ Improvement of the lower bound in order to assess how close
the algorithms are from the minimum.
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