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Abstract
Memoization is the technique of saving the results of computa-
tions so that future executions can be omitted when the same in-
puts repeat. Recent work showed that memoization can be applied
to dynamically linked pure functions using a load-time technique
and results were encouraging for the demonstrated transcendental
functions. A restriction of the proposed framework was that memo-
ization was restricted only to dynamically linked functions and the
functions must be determined beforehand. In this work, we propose
function memoization using a compile-time technique thus extend-
ing the scope of memoization to user defined functions as well as
making it transparently applicable to any dynamically linked func-
tions. Our compile-time technique allows static linking of memo-
ization code and this increases the benefit due to memoization by
leveraging the inlining capability for the memoization wrapper. Our
compile-time analysis can also handle functions with pointer pa-
rameters, and we handle constants more efficiently. Instruction set
support can also be considered, and we propose associated hard-
ware leading to additional performance gain.

Categories and Subject Descriptors D.4.3 [Programming Lan-
guages]: Processors—Compilers; D.4.3 [Programming Languages]:
Processors—Optimization; B.3 [Hardware]: Memory Structures

Keywords compilation, optimization, memoization, performance,
instruction set extension

1. Introduction
Memoization – saving the results of a sequence of code execution
for future reuse – is a time-old technique to improve the run time
of programs. Over the years, memoization has been proposed at
various levels of implementation ranging from function level in
software to instruction level in hardware. Function memoization
– where the granularity of memoization is a function – aims at
limiting repeated function executions, thereby saving CPU cycles.
As with other memoization schemes, there is a trade-off between
saved CPU cycles and increased data storage. Overheads come

∗ This work was completed while the author was at Inria/IRISA, France.

from storing function results in a table, and looking-up the table at
the next invocation. The challenge with memoization is to minimize
these overheads and gain maximum performance. The smaller the
amount of code being saved by memoization, even smaller must
be the overhead. This implies a very fast lookup mechanism and a
table usage which should not hamper the normal execution of the
program. Further, identifying the functions for memoization and
applying a suitable memoization technique is also important.

Though function memoization have been proposed long back,
there was no pure software approach with performance benefit,
until recent work by Suresh et al. [27] where dynamically linked
functions were targeted for memoization and performance benefit
was demonstrated for a variety of transcendental functions. Their
main advantage is that they intercept functions at load-time and
they provide a way for memoizing dynamically linked functions
without the need of source code and recompilation. However, their
technique is restricted to dynamically linked functions, and the
target functions must be determined beforehand.

We found that most of the pure function codes are either tran-
scendental functions or are inlined by the compiler due to very
small size (like expressions used for indexing arrays). Still, pure
and expensive functions are present in case of recursions and appli-
cations which are critical to numerical computation (cases where
a closed form solution is not available). Also there are cases of
function usage with pointers and the pointed value can be used for
memoization. Further, by capturing constants at call site, we can
optimize and handle more functions (by reducing arguments for
memoization) for memoization. Thus we propose a compile-time
memoization technique which can handle all these cases. We also
propose a hardware model for our memoization scheme which can
increase the potential benefit of memoization.

The remaining part of the paper is organized as follows: Section
2 first reviews related work. We then present the advantages of our
compile-time approach in Section 3. Section 4 then describes our
implementation, how we identify potential candidates for memo-
ization and the involved challenges. Section 5 details the experi-
mental setup used and the results of our memoization technique.
Section 6 details our hardware proposal for memoization and esti-
mates the additional performance gain. Section 7 concludes.

2. Related Work
Memoization has been implemented at various levels of execution:
instruction level, block level, trace level and function level, using
both hardware and software techniques. At functional level the term
“memo function” was coined by Donald Michie [21] in 1968.

At instruction level Richardson [23] dealt with trivial and re-
dundant computations. Citron et al. [9] propose a hardware-based
technique that enables multi-cycle computation in a single-cycle.



In a follow up paper on memoization, Citron et al. [10] showed the
scope of memoizing trigonometric functions (sin, cos, log, exp . . . )
on general purpose or application specific floating-point proces-
sors. To enable memoization for user written function they propose
two new instructions – to lookup and update a generic MEMO TA-
BLE. By doing such a hardware implementation they achieved a
computation speedup greater than 10 %. They also compared the
same using a software mechanism which could not yield a speed
up but gave a slowdown of 7 %.

González et al. [13] explore hardware techniques for trace-
level reuse. In instruction-level memoization a single instruction
is reused while in trace-level memoization a dynamic sequence of
instructions are reused. At block level Huang et al. [16] investigate
the input and output values of basic blocks and find that these
values can be quite regular and predictable, suggesting that using
compiler support to extend value prediction and reuse to a coarser
granularity may have substantial performance benefits.

Memoization has been used in programming languages such as
Haskell 1 and Perl 2. The presence of closure [22] in functional
programming languages like Lisp, Javascript etc. give a ready-to-
use mechanism for the programmer to write the memoization code.
McNamee and Hall [19] propose automatic memoization at source
level in C++.

When memoization is used in procedural languages, special
techniques are needed to handle procedures with side effects. Rito
et al. [25] used Software Transactional Memory (STM) for function
memoization, including impure functions. Their scheme provides a
memoization framework for object oriented languages which are
traditionally difficult for memoization as the outcome of a method
often depends not only on the arguments supplied to the method but
also on the internal state of objects. Tuck et al. [28] used software-
exposed hardware signatures 3 to memoize functions with implicit
arguments (such as a variable that the function reads from mem-
ory). An extension of simple memoization is used by Alvarez et al.
[1] in their work on fuzzy memoization of floating point operations.
Here, multimedia applications which can tolerate some changes in
output are considered and memoization is applied for similar in-
puts instead of strictly identical (several inputs produce the same
result). A similar technique is also used by Esmaeilzadeh et al. [11]
in their work about neural accelerators to accelerate programs us-
ing the approximation technique. The basic idea is to offload code
regions (marked as approximatable by the programmer) to a low
power neural processor. Since approximation enhances the scope
of memoization, the technique gave them very good results.

Memoization is also used in graphical domains and in a re-
cent work, [2] Arnau et al. proposed a hardware scheme in GPUs
for saving redundant computations across successive rendering
of frames. Long et al. [18] propose a multi-threading micro-
architecture, Minimal Multi-Threading (MMT), that leverages reg-
ister renaming and the instruction window to combine the fetch
and execution of identical instructions between threads in SIMD
applications. The main idea in MMT is to fetch instructions from
different threads together and only splitting them if the computa-
tion is unique.

In this work, we propose function memoization at software level
which can be applied across different languages using a compile-
time approach. Our framework uses large memoization tables to

1 http://www.haskell.org/haskellwiki/Memoization
2 http://perldoc.perl.org/Memoize.html
3 a signature is a hardware register that can represent a set of addresses

capture longer intervals of repetition that benefit computationally
intensive pure functions at the software level without programmer
intervention and we evaluate the benefit on current architecture.
Our experimental results show that software memoization is ca-
pable of producing speed-up in current architectures over current
compiler techniques. We also propose a hardware scheme for addi-
tional performance gain of our memoization approach.

The most closely linked work to ours is the work by Suresh et
al. [27] where memoization is shown to be working effectively for
dynamically linked math functions. We outline the major difference
as follows:

1. our technique applies to any function: part of the executable or
from a dynamically linked library;

2. memoized function are identified automatically, without the
need to manually predetermine them;

3. memoization code is combined with the source code, and
hence usually inlined by the compiler resulting in significant
speedups;

4. we handle global variables, pointers and constants;

5. we propose hardware scheme for additional improvement of the
memoization benefit.

3. Compile-Time Memoization
Doing memoization at compile-time enables both user written as
well as library functions to be memoized. It also provides a way
to handle some impure functions such as those which read/update
global variables, have pointer arguments etc. Also, constants can be
identified at call sites and possibly optimized out. Inlining the mem-
oization wrapper is another advantage given by enabling memo-
ization at compile-time. Though small pure functions in user code
are usually inlined by the compiler, there are cases like recursion
with large/unknown depth, dynamic linking, different object mod-
ules without inter-procedural optimization etc. where inlining fails.
To leverage inlining for memoization, we provide a small inline
wrapper for memoization that performs the table lookup and re-
sorts to a function call only in case of a miss. This increases the
effect of memoization and lowers the threshold needed for memo-
izing a function. As an example, a call to function float pure_foo(

float arg) is replaced by a call to the following wrapper, potentially
inlined.

1 float _memoized_pure_foo(float arg) {
2 if (lookup(&result, arg))
3 return result;
4 else {
5 result = pure_foo(arg); /* call original function */
6 update_table(arg, result);
7 return result;
8 }
9 }

In addition to providing compiler optimizations, inlining also
saves a function call whenever there is a hit in the table. In order
to measure the performance impact of saving this call we put a
dummy call to a dynamically linked function in a custom code hav-
ing 100 million function calls. The run time of the inlined memo-
ization code made a time difference of 400 ms which would mean
400.10−3

100.106
= 4ns on average for a single call. We ran our experi-

ment on a CPU running at 2.3 GHz and hence the run time amounts
to 4 × 2.3 ≈ 9, which means that approximately 9 clock cycles
are saved on average for a single call. So, even without considering
possible compiler optimizations on the wrapper code, we expect to



Figure 1. Profitability: load-time vs inlining

save 9 clock cycles by inlining during a hit in the memoization ta-
ble. Suresh et al. [27] performed a profitability analysis to quantify
the required repetition rate H based on the function execution time
(see Equation 1), where tmo is the miss overhead, Tf the original
execution time, and th the hit time. Figure 1 shows how inlining
the wrapper increases the applicability of memoization, in partic-
ular for short function (say, under 100 ns). In particular, when the
load-time approach reaches its limit (100 % repetition required to
have a benefit), inlining lowers the requirement to 75 %, a more
feasible threshold.

H >
tmo

Tf + tmo − th
(1)

In our work, we aim to provide memoization capability to a
code using a compile-time technique. During compilation stage
we should identify which functions are potential candidates for
memoization and then provide memoization capability for them
which is done by adding a memoization wrapper for them. The
memoization wrapper must have inlining capability in order to get
the potential benefit of avoiding a dynamic function call during a
hit in the memoization table. Impurities for function memoization
in the form of global variable usage, pointer arguments are also to
be handled.

4. Implementation
We implemented our technique in the LLVM compiler [17]. To sup-
port Fortran applications, we relied on the dragonegg GCC plugin.
It uses the GCC front-end to parse the source code, but replaces op-
timizers and code generators by those of LLVM. We developed an
LLVM optimizer pass at module level since we are analyzing all
functions in a module and possibly modifying them. This pass iter-
ates through each function and marks them if they are memoizable.
If so, we create a template for memoization wrapper and replace
each call site of the function, with a call to the corresponding mem-
oization wrapper. The prototype of the wrapper memoization func-
tion is same as that of the original function except the name being
prefixed with __memoized_ and parameter order possibly being
changed under the condition detailed in Section 4.1. The pseudo-
code for our approach is given in Algorithm 1.

We considered functions with up to three parameters as the
chance of repetition goes down and the overhead increases when

Algorithm 1 LLVM Module Pass
Require: Source Module
Ensure: Function calls replaced by their memoized wrapper and produces

function meta for memoization
for each function f do

if ISMEMOIZABLE(f) then
MAKEMEMOIZEDFUNC(f); .

Copies the function prototype and create a new function (name starting
with memoized _) prototype with empty body

REPLACECALLSITE(f); . Replaces all calls
to original function with calls to new function (the function body will be
available only during link time)

OUTPUTFUNMETA(f); . For input to IFM
end if

end for
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Figure 2. Flow Diagram of Memoization

Algorithm 2 Identifying memoizable functions
Require: Function
Ensure: Identifies if input function can be memoized

function ISMEMOIZABLE(f)
if ISDECLARATION(f) OR ISINTRINSIC(f) OR ISVARARG(f) OR

MAYBEOVERRIDDEN(f) then
return false;

end if
if ISMEMOIZABLELIB(f) then

return true;
end if
count = 0; . Initializing count for keeping track of recusive calls
if ISPROPERARGUMENTS(f) AND ISGLOBALSAFE(f) AND

CHECKFUNCTIONCALLS(f) then
return true;

end if
return false

end function

the number of parameters increases. Constant arguments at call
sites do not count towards this limit as per the algorithm detailed in
Algorithm 6.

4.1 Function Templates and Parameter Ordering
To avoid a combinatorial explosion of the number of function types
to be handled, we sort the parameters by type and our function
prototype is generated as per this new order. We generate the call
string for the original function during this stage itself and hence it
preserves the actual call order. This is exemplified as follows.

Let the original function prototype be:

1 void foo(float arg1, int* arg2, int arg3)



Algorithm 3 Identifying if function is safe for memoization
function CHECKFUNCTIONCALLS(f)

for each instruction I in f do
if ISCALLINSTRUCTION(I) then

calledFunction, f← GETCALLEDFUNCTION(I)
if ISPURE(f) OR I = f then

continue
end if
count++
if count = 10 then .

We only check up to 10 levels of function calls as more than 10 levels of
distinct pure function calls is highly unlikely

return false
end if
if ISMEMOIZABLE(f) then

continue
end if
return false

end if
end for

end function

Algorithm 4 Identifying if input function has safe arguments

function ISPROPERARGS(f)
for each argument A of f do

if ISPOINTERTYPE(A) then
if ISMEMOIZABLEPOINTER(A) then

continue
end if
return false

end if
end for

end function

function ISMEMOIZABLEPOINTER(P)
for each use I of P do

if I 6= LoadInstruction AND I 6= StoreInstruction then
return false

end if
return true

end for
end function

Now, after sorting, suppose their order becomes arg2, arg3,
arg1. Our generated prototype for function foo will be:

1 _memoized_foo(int arg1, float arg2, int* arg3)

which, in turn, calls:

1 foo(arg2, arg3, arg1);

i.e., the call string is generated based on the relative ordering of the
parameters before sorting and there is no impact on the parameters
of the actual function. Algorithm 6 details this mechanism.

4.2 Handling Pointers
Pointers introduce a complication for memoization. A pointer can
be used to read memory (READ case), but the value stored at that
location can change from one call to another. A pointer can also be
used to write memory (WRITE case), essentially producing a return
value. In either case, we are interested in the pointed-to value, not
the address.

So, we have taken a conservative approach and handle only
one READ Only or READ/WRITE pointer while allowing up to

Algorithm 5 Checking if function is Global Variable safe
Require: Function F
Ensure: If input function is safe from global variable usage for memoiza-

tion
function ISGLOBALSAFE(f)

count← 0
global← Null
for each instruction I in f do

for each operand O of I do
if ISGLOBALVARIABLE(O) then . All global variables are

pointers in LLVM
ptype = GETTYPE(O)
optype← GETTYPE(ptype)
if optype = Integer OR optype = float OR optype = Double

then
if global = Null then

global← O
continue

end if
if global = O then . Only 1 global variable is

considered to be useful for memoization
continue

end if
return false;

end if
return false

end if
end for

end for
end function

Algorithm 6 Replacing Memoizable Function Calls
Require: Function F
Ensure: Calls to Input function is replaced by calls to its memoized version

globals← GETGLOBALS(F)
proto← GETPROTOTYPE(F)
SORT(proto)
for each use cs of F do

if ISCALLSITE(cs) then
args← GETARGS(cs)
ARGS.ADD(globals)
argsnew←SORT(args)
for each argument x in args do

if isPresent thenglobals,x
continue

end if
index← ARGSNEW.FINDI(x)
if ISCONSTANT(x) then

PROTO.REMOVEFROMINDEX(index)
ARGSNEW.REMOVEFROMINDEX(index)
CALLSTRING.ADD(x.value)

end if
end for
if HASUSE(F) then

newF ← MAKENEWFUNCTION(F.returntype,
argsnew,F.parent)

REPLACEALLUSESWITH(F, newF)
PRINTTOFILE(callString)

end if
end if

end for



two WRITE Only pointers. Also we only handle cases where the
pointed value is of type int, float or double – arrays, struc-
tures and pointer to pointers are skipped and not considered for
memoization.

The READ/WRITE property of a parameter is analyzed by going
through the use chain of the parameter and analyzing each instruc-
tion. If only STORE instructions use a parameter it is marked as
WRITE Only. If no instruction with memory write capability uses
a parameter, it is marked as READ Only. Otherwise, the parameter
is marked as READ/WRITE.

4.2.1 Read Only Pointers
READ Only pointers are those which are used in a function but the
pointed value is not modified. Hence, we handle them like a normal
argument. The pointed value is used for indexing the memoization
table and also as tag.

4.2.2 Write Only Pointers
These parameters are not used for indexing into the memoization
table, but only for passing back the return value. They require stor-
age space in the memoization table, but cause no direct overhead
for indexing into the table. A typical case for this is the libm func-
tion sincos, where two WRITE Only pointers are used for returning
simultaneously the sin and cos values for the input argument.

4.2.3 Read/Write pointers
READ/WRITE pointers are the most difficult to handle. They require
both storage space and also cause extra lookup overhead, also
reducing the chances of repetition.

4.3 Global Variables
Global variable usage can make an otherwise pure function impure
because they can change across function invocation and thus affect
the result of the function call (when it is used in function com-
putation). Global variables can also be used to store a state of the
program by the function. We handle global variable like a normal
argument – in our memoized wrapper we add one extra argument
for each global variable in use in the function. Global variables have
pointer type in LLVM and hence our technique for handling pointers
is re-used. We have considered a maximum of one global variable
use and correspondingly only one extra parameter in the memo-
ized wrapper. Global variables are not considered while generating
the call string and hence this has no effect in the call to the origi-
nal function. The algorithm for detecting global variables is given
in Algorithm 5 and the procedure for adding it in the memoized
wrapper function is given in Algorithm 6.

4.4 Constants
There are cases where one or more parameters to a function call
might be constants. In such cases, it is unnecessary to consider
these as regular parameters since, by definition, they are guaranteed
to repeat and hence no need to be saved in the memoized table.
Further, we can avoid passing these constants to the actual call,
as long as there is a hit in the memoization table. This is made
possible by passing the constants directly to the call string and
omitting them from the memoization wrapper. The disadvantage
of this approach is that the memoization wrapper becomes call
site specific (a separate memoization table is needed per constant,
though different call sites using the same constant use the same
table) but our results show that this is not a problem. Refer to
Section 5.3.2 for an example in the histo benchmark.

4.5 Memoization Table and Indexing
For comparison purposes, we use the same memoization table im-
plementation as Suresh et al. [27] where a direct mapped table is be-
ing used, indexed using XOR operator on the arguments (repeated
folding of argument bits to get the required number of bits for in-
dex) and tagged using the arguments.

5. Experimental Results
5.1 System Configuration
We carry out our experiments on an Intel Core i7 Ivy Bridge
clocked at 2.3 GHz, equipped with 8 GB of RAM and 8 MB of L3
cache, and running Linux 3.19. Benchmarks are compiled at the
-O3 optimization level. We use LLVM version 3.19. We made sure
that Turbo Boost is turned off and CPU clock frequency was set at
2.3 GHz to ensure reproducible measurements. For our experiments
we have used a 64 k-entry memoization table per function. This
size is empirically determined to be the best on our experimental
machine.

5.2 Benchmarks
Based on our criteria for memoization – pure critical functions,
we selected a variety of applications both from real life as well
as standard benchmark suites that extensively call transcendental
functions. Applications with no, or few calls to these functions are
not impacted (neither speedup nor slowdown), they are not reported
here. Our experimental benchmark applications include:

SPEC CPU 2006. We chose five benchmarks: bwaves, povray,
GemsFDTD, tonto and wrf from SPEC CPU 2006 suite [15]
with ref inputs, which have a reasonable number of calls to
transcendental functions. wrf and bwaves extensively use powf
and pow functions respectively. tonto makes extensive use of
exp and sincos calls, while povray has many calls to sin and
cos.

SPEC OMP 2001 [3]. Two applications match the criteria for
memoization – gafort and equake. gafort has calls to sin
in its critical region and equake has both sin as well as cos
calls in its critical region.

ATMI [20] is a C library for modeling steady-state and time-
varying temperature in microprocessors. It is provided with a
set of examples and all of them have a large number of calls to
Bessel functions j0 and j1.

Population Dynamics [8] is a model of aphid population
dynamics at the scale of a whole country. It is based on
convection-diffusion-reaction equations. The reaction function
makes heavy use of exp and log and uses armadillo library.

Barsky [5] is a partial differential equation solver, it contains
many calls to sin.

Splash2x. water_spatial [14] of Parsec benchmark suite [6]
can benefit from memoization as it makes extensive use of exp
and sqrt functions.

blacksholes [7] is also taken from Parsec [6] benchmark suite.
This involves option pricing with Black-Scholes partial differ-
ential equation. Black-Scholes equation does not have a closed
form solution and hence must be computed numerically.

histo is a histogram application taken from Parboil benchmark
suite [26] which accumulates the number of occurrences of each
output value in the input set.



5.3 Discussion of Results
The result of memoization on the selected benchmark applications
is shown in Table 1. We also reproduced the load-time approach
[27] for comparison purposes. We obtained access to their code
to guarantee fairness of comparison. The speedups are shown in
Figures 4 and 5.

First of all, thanks to the inlining of the wrapper, more (math)
library functions benefit from memoization, compared to the plain
load-time approach.

Compile-time memoization delivers much better speedup com-
pared to the load-time approach. A major part of this is coming
from the memoization wrapper getting inlined, thus providing more
optimization opportunities. This cannot be achieved by the dynam-
ically linker.

We are also able to catch more memoization opportunities
as marked by boxed functions in Table 1. Note that histo and
blackscholes do not benefit from load-time memoization (speedup
1.0). The case of equake is detailed below in Section 5.3.1.

In equake we capture phi0, phi1 and phi2 functions where a
global variable is being used. With our scheme, we capture them
as extra argument and hence these functions are getting memoized.
In histo, HSVtoRGB is a user function taking in three arguments
of type float and returning a structure to three variables of type
char, as shown below. But this is converted to an int return type
by LLVM as per the x64 Linux ABI [12] and in the call site we
avoid the constants and replace the call ignoring the constants to
the memoization wrapper. Now in the call to the original function
inside our memoization wrapper we include these constants as
arguments.

1 // Source Code
2 typedef struct {
3 unsigned char B;
4 unsigned char G;
5 unsigned char R;
6 } RGB;
7 RGB HSVtoRGB(float h, float s, float v)
8
9 // LLVM IR

10 define i32 @HSVtoRGB(float %h, float %s, float %v)

5.3.1 equake
In equake, we have three critical user defined functions – phi0,
phi1 and phi2 – all of which have similar code structures. The code
of phi0 is given below:

1 double phi0(double t) {
2 if (t <= Exc.t0) {
3 return value = 0.5 / PI * (2.0 * PI * t / Exc.t0
4 - sin(2.0 * PI * t / Exc.t0));
5 }
6 else
7 return 1.0;
8 }

There is only one input argument, and the global variable
Exc.t0 is read inside the function. So, we include the global vari-
able as an extra argument and generate our memoization wrapper
as follows:

1 double _memoized_phi0(double arg1, double* arg2)

The second argument is used for passing the global variable,
and global variables have pointer type in LLVM IR. Now, this func-
tion provides a challenging case for memoization. There is just an
if-then-else block inside the function with the then block being ex-
pensive and the else block being very simple (just a return state-
ment). During execution, we found that the else block has taken

90 % of the total time – 284 million calls to then block compared
to a total number of calls of 3.7 billion – and hence memoization is
getting a benefit of only 10 % of the time, causing slight overhead
during every execution of else case. So, this causes the speedup to
come down. In order to avoid this, we tried applying memoization
only for the then part of the function, resulting in a performance
gain of 3.5 % over the normal compile-time approach, showing a
further enhancement which could be applied for our approach.

The phi functions could not be memoized by the load-time
approach, but the sin could. This explains why load-time produces
a speedup.

5.3.2 histo
In histo, we have a call to HSVtoRGB:

1 HSVtoRGB(0.0, 1.0,
2 cbrt(1 + 63.0 * ((float)value)/((float)UINT8_MAX))/4);

The first two arguments are constants, hence removed. We mod-
ify the call site to __memoized_HSVtoRGB_0_1(double) keeping
a single argument:

1 __memoized_HSVtoRGB_0_1(cbrt(1+
2 63.0 * ((float)value)/((float)UINT8_MAX))/4);

and we call HSVtoRGB from inside __memoized_HSVtoRGB_0_1
as follows:

1 HSVtoRGB(0.0, 1.0, arg1)

thus we have saved the passing of first two parameters and
avoided their use in indexing the memoization table.

5.3.3 blackscholes
In blackscholes, the function CNDF (Cumulative Normal Dis-
tribution Function) performs numerical computation on an input
floating point data and is expensive as well as critical. The func-
tion is using a macro defined type to handle both double as well as
float types as per definition during compile-time. Our experiments
were run using double type. The code involves numerous floating-
point computations in addition to a call to exp function making it
expensive.

5.3.4 wrf
In wrf we observe a performance loss due to a low repetition rate
for powf. The performance achieved by Suresh et al. is reported
to be caused by a performance bug in the libm implementation of
powf. This bug is partially fixed in the version of libm we used
for our current experiments. We discuss in Section 5.4 a turn-off
mechanism to disable memoization in case of slowdowns.

5.3.5 water_spatial
Our compile-time approach produces a significant speedup of 8 %
in water_spatial. This is however less than the load-time ap-
proach. On a machine with a larger instruction cache size (64 KB
vs 32 KB for our experimental machine), compile-time is slightly
better than load-time, as for other benchmarks. We hence attribute
the slowdown to an increase in miss rate for L1 instruction cache
caused by inlining which increases the code size from 36 KB to
38 KB.

5.3.6 Transcendental Functions
For transcendental functions in all other applications, we obtain
better performance than the load-time approach, (shown in Figures
4 and 5). This increase in speedup comes from saving a call in case



Table 1. Memoization results. Boxed names indicate functions that cannot be caught by a load-time technique. The first two columns report
benchmarks names and memoizable functions. For each function, we report the number of calls. The following two columns report the total
execution time, and fraction of the time spent in the memoizable functions. The last three groups report results. First, we reproduce Suresh et
al.’s results with a load-time approach. We then cover the pure compile-time approach, reporting the percentage of lookup hits per function
and the overall speedup. Finally, we describe the results of the hardware-assisted memoization, showing percentage of hits in the hardware
table, misprediction rates, and overall speedup.

Applications Memoized Num calls Exec. Time Mem. Fraction Speedup S/w hits Speedup H/w hits Mispred. Speedup
Functions (s) (%) load-time (%) compile (%) (%) hardware

cf. [27] cf. Section 4 cf. Section 6

bwaves pow 216M 550.0 39.2 1.14 60.1 1.29 51.8 28.8 1.25
sqrt 54M 43.3 35.8 23.2

gems.FDTD exp 711M 495.0 6.7 1.04 99.9 1.04 99.7 0.3 1.07

equake phi0 3.7G 227.7 96.1 1.07 100.0 1.08 100.0 0.0 1.16

phi1 3.7G 100.0 99.9 0.0

phi2 3.7G 100.0 99.9 0.0

tonto exp 569M 777.0 35.3 1.25 80.02 1.26 13.8 9.5 1.31
sincos 452M 100 99.7 0.3
sqrt 1.3G 73.2 15.8 13.8

wrf log10f 33M 467.0 37.6 1.0 16 0.99 15.9 2.2 1.04
logf 80M 45 22.0 15.3
powf 1.5G 14.7 11.2 4.9

povray sin 5.2M 203.0 6.1 1.0 0.0 1.0 0.0 0.0 1.01
sqrt 212.8M 13.6 12.5 0.1
pow 30.7M 23.7 14 0.0

gafort gfortran_pow 36G 1653.0 60.4 1.05 100.0 1.20 100.0 0.0 2.82
exp 2.2G 97.2 53.4 14.8
sin 2.2G 97.1 54.8 14.1

barsky sin 26M 21.2 6.1 1.03 97.7 1.04 96.1 3.9 1.06

ATMI exp 140M 36.0 99.1 1.06 71.2 1.06 19.2 5.4 1.31
j0 69M 20.3 4.9 4.9
j1 135M 84.4 40.1 15.6
log 127M 77.4 47.0 15.0
sqrt 35M 54.2 20.7 9.8

Population exp 28M 8.8 50.6 1.20 100.0 1.24 100.0 0.0 1.96
dynamics log 28M 100.0 100.0 0.0

histo HSVtoRGB 5M 4.7 13.2 1.0 100.0 1.12 100.0 0.0 1.48

blackscholes CNDF 2G 151.0 51.4 1.0 94.1 1.28 76.2 20.6 1.39

water spatial acos 5M 245.0 47.4 1.13 77.2 1.08 73.5 4.0 1.40
exp 1G 98.2 72.2 21.8
pow 9M 98.5 98.5 0.2
sqrt 1.9G 96.7 66.3 25.0

of hit in the lookup table (Section 3) as well as potential further
compiler optimization after inlining.

5.4 Turning off Memoization
With a load-time scheme, turning off memoization amount to over-
writing the address of a function in the process’ GOT (global offset
table). In our compile-time scheme, the wrapper is inlined in the
caller and its code is likely to be optimized by the compiler and
mixed up with the surrounding code, making it impossible to dis-
able in a simple manner. Instead, we can keep an original (i.e. with-
out memoization) version of the caller of the memoized function,
and substitute versions at run-time whenever memoization proves
to be counterproductive. As in the load-time case, the monitoring is
performed by a lightweight helper thread that periodically checks
statistics and makes decisions based on repetition rates and exe-
cution times. Substituting code at the granularity of a function is

easily accomplished by dynamic binary optimizers, such as Dy-
namoRIO [4] or Padrone [24]. To avoid the impact on code size,
the backup versions can be stored in a special section of the ELF
file, possibly compressed, to be retrieved only as needed.

5.5 Memory Overhead
In our experiments, we used a 64 k-entry table size for each func-
tion. This requires 64 tag bits and 64 data bits for a function taking
a double argument and returning a double. It amounts to 128 ×
64k = 8 Mbits = 1 MB memory per function. For functions taking
two double arguments, we need 1.5 MB. And for 32-bit arguments
(i.e. int or float) this corresponds to 512 KB and 768 KB respec-
tively.

Note that these tables are one-time allocated and initialized, but
they cause contention in the memory hierarchy only when their
content is actively used (hence useful). The initial overhead consists



Figure 3. Code size change due to Memoization

in calling malloc and writing the data. It is in the order of tens of
microseconds per table. As shown in the results, there are a few
tables per benchmark.

In addition to memory overhead for the memoization table,
inlining can also cause an increase in code size. Figure 3 shows
the percentage change in the code size (text segment) due to
memoization on our selected applications. The variabtion really
depends on the number of memoized call sites in a function and the
size of the function. Note that inlining is a decision taken by LLVM
based on its standard heuristics. We have not tried to change them.

6. Direct Hardware Memoization
This section evaluates a proposition to implement memoization
directly through the hardware. Such a hardware implementation
requires some ISA modification described in Section 6.1 and the
use of an extra hardware table described in Section 6.3. Hardware
can enable very fast hit/miss time, hence improving the profitability
of memoization.

The software implementation evaluated in the previous sections
necessitates to compute hash function, then to read the table stored
in the global memory and finally to check the tags. When the table
read misses through the whole memory hierarchy, the total access
time can reach hundred cycles. If dedicated hardware table is used
for memoization then one can get fixed hit/miss time on the memo-
ization table including hashing the index, effective table reads and
tag check. Moreover using a set-associative hardware memoization
table can be considered since this would only marginally increase
the hit/miss time.

The compile-time approach developed in the previous sections
is adapted to exploit this hardware memoization.

6.1 ISA Support for Hardware Memoization
Hardware memoization was discussed by Citron et al. [10]. For
hardware memoization of user defined functions they proposed two
new instructions LUPM and UPDM which respectively does the mem-
oization table lookup and memoization table update. Both instruc-
tions had two variants: one for single input functions and other for
double input functions. We consider a very similar ISA support
for hardware memoization that fits our compile-time approach. Our
proposal has a new CALL instruction, specific to each function pro-
totype supported by our compile-time approach.

We introduce the following two instructions.

MSCALL is used to call a memoized function. On such a call,
the hardware memoization table is read using a hardwired hash
function and on a success returns the value from the table. If the
lookup fails, a normal CALL instruction is invoked to execute the
original function. We assume different variants of MSCALL to handle
the different possible function templates. For pointer arguments,
we assume that they are WRITE Only since READ ONLY pointers
can be converted to corresponding type using a LOAD instruction
by the compiler. Similarly, READ/WRITE pointer arguments can
be converted to two arguments: one being the data, and another
WRITE Only pointer. Thus, we can restrict the required instruction
variants as follows:
• 1 data argument, 1 return value;

• 2 data arguments, 1 return value;

• 1 data argument, 1 pointer argument, no return value;

• 1 data argument, 1 pointer argument, 1 return value;

• 1 data argument, 2 pointer arguments, no return value.

Moreover, to support multiple functions, the MSCALL instruction
features an 8-bit function identifier.

MSUPDATE performs an update to the memoization table with
the function result, therefore the compiler must allocate it imme-
diately after MSCALL. In case of a hit of the MSCALL instruction in
the memoization table, the MSUPDATE must be skipped to avoid a
rewrite on the hardware memoization table. This is achieved by
MSCALL incrementing the program counter.

MSCALL is tightly integrated with the branch predictor. At in-
struction fetch time, the hit/miss in the hardware memoization table
is predicted so that the speculative execution engine is not impacted
by our additions.

6.2 Benefit of Reduced Latency
For the sake of simplicity, in the remainder of the paper, we will
assume that the overall lookup time tlo for hardware memoization
table is 5 cycles approximately corresponding to 1 cycle hash
computation, 3 cycles table read, and 1 cycle tag check and the
branch misprediction penalty tbmp is 20 cycles. These values are
consistent with current technology.

The overall execution cost of a call to a hardware memoized
function depends on 1) hit/miss on the hardware memoization
table, 2) correct/wrong branch prediction on the MSCALL instruction
and 3) execution time of the normal call.

The average execution cost of a call to a memoized function
is detailed in the following equation 2. Note that, if the memoiza-
tion table misses and the branch prediction is correct, there is no
significant execution overhead on a modern superscalar processor
over the normal execution overhead. This explains why the term
(1−H) is multiplied by tf , not tf + tlo.

H × tlo + (1−H)× tf +Mpred × tbmp (2)

Mpred is the misprediction ratio of the MSCALL branch.
A dynamic predictor built with a saturating counter (e.g. 4

bits) associated with each memoized function easily achieves a
misprediction rate in the same range or lower than min(H, 1−H).
Therefore, taking H (respectively 1-H) as a proxy for Mpred when
H < 0.5 (resp. H > 0.5), we can derive the condition when
memoization is beneficial.

• if H < 0.5, we need tlo+tbmp < Tf , i.e the average execution
time of the function is higher than 25 cycles.

• if H > 0.5, we need H×tlo+(1−H)×tbmp

H
< Tf . As an

example, if H=0.75, it is enough that Tf > 12 cycles.



As a result, memoization of any function with average execution
time over 25 cycles is potentially beneficial even if its hit rate on
the hardware memoization table is marginal. In particular, all the
functions considered in the previous sections fit in this category.

6.3 Hardware Memoization Table
In this paper, we assume a hardware memoization table with ap-
proximately the same size as the L1 data cache. This table can be
set-associative to allow higher hit rate. A single table is shared by
all memoized functions.

Individually each entry has a valid bit, a process identifier field
(ASID) to support multi-process environments, a function identifier
field of 8 bits, two input arguments of 64 bits and two possible
results also of 64 bits.

In the evaluation, we use a 256 sets, 4-way associative (1024
entries) table, with pseudo LRU replacement. An entry corresponds
to 2 8-byte results, 2 8-byte tags, one 8-bit function identifier, an
ASID, a valid tag and a few tag bits for replacement. The total
storage is around 32 KB, i.e., approximately on-par with the L1D
cache.

6.4 Software Support
Function memoization necessitates software support. For our ex-
periments, we use the same scheme as for software memoization.
At link time, we no longer need to link to the memoized wrap-
per functions. Instead, the LLVM compiler generates the MSCALL
instruction variant as per the required prototype. Further, the func-
tions must now be numbered with its corresponding identifier
which are generated sequentially starting from 0. This identifier
is passed as the last parameter to the MSCALL instruction. If any
function is having more than two input parameters, the compiler
enables only software memoization as described previously.

6.5 Performance Evaluation
Due to the novel hardware, evaluating this proposal relies on mod-
els and simulation. We used the same set of benchmarks and the
same experimental setup as in our compile-time technique. The
methodology is the following.

We first instrument all memoized functions to obtain their exe-
cution times. This is achieved with Intel’s RDTSCP instruction that
returns the value of the time-stamp counter (monotonically incre-
mented at each clock cycle). We subtract the time spent in mem-
oized functions from the total execution time. We then estimate
the execution time of these functions in the presence of hardware
memoization, thanks to Equation 2. We obtain the hit rate (H) and
misprediction (Mpred) through simulation of the lookup table and
4-bit branch predictor (Table 1). Adding this time to the previous
intermediate result produces our estimate execution time. Speedups
are reported in Table 1. Figures 4 and 5 shows the comparative per-
formance of hardware and software memoization approaches on
our set of benchmarks.

As expected, substantial performance gains are encountered on
most benchmarks, with up to 2.82× speedup for gafort, and
1.96× for populationdynamics. Both have perfect hit rates in
their critical function, making efficient table lookup extremely ef-
fective.

The majority of benchmarks achieve speedups in the range
1.16× – 1.48×. These figures derive from the combination of sev-
eral factors. ATMI spends practically all its time in memoized func-
tions, but achieves only modest hit rates. equake has both excel-
lent coverage and hit rates, unfortunately the phi functions have
short execution time, thus reducing the impact of memoization. In

Figure 4. Memoization speedups for SPEC

Figure 5. Memoization speedups for selected applications

the case of histo, only modest amount of time is spent in the user
function HSVtoRGB, but the hit rate is perfect. We also benefit from
two additional effects which explain the 1.48× speedup: two pa-
rameters are constant, hence optimized out by memoization, and
the ABI convert the structure of char into an integer (see Section
5.3). bwaves, tonto, blackscholes, and water spatial com-
bine fair amount of time spent in memoized functions and good hit
rates, resulting in speedups in the upper range: 1.25× to 1.40×.

The least performing benchmarks, (speedups in the range 1.01×
– 1.07×) include barsky, gems.FDTD, povray and wrf. Barsky
and gems.FDTD have excellent hit rate, but suffer from insufficient
time spent in the memoized functions, in the order of 6 %. Con-
versely, wrf spends a significant amount of time in memoized func-
tions, but has bad hit rate, and to some extent, poor misprediction
rates. povray, impacted by both factors, has the worst speedup:
1.01× only.

Only bwaves experiences a smaller speedup than with the soft-
ware memoization. This is due to the relatively small hardware ta-
ble considered in the experiments resulting in a reduced hit rate,
combined with a high misprediction rate.



6.6 Energy Consideration
A hardware memoization table is not useful for every application.
To avoid static energy consumption on applications that do not use
it, power gating the table can be considered.

7. Summary and Further Extensions
In this work, we have first proposed a compile-time approach for
memoization as compared to [27] where a pure link time approach
was proposed. Doing memoization at compile-time captures more
candidate functions for memoization and enables memoization op-
portunity for user defined as well as library functions. With the help
of LLVM framework we are able to support pointers and global vari-
ables for the functions to be memoized. Simple struct objects can
also be handled as they are converted to int/double type and regis-
ters are used to pass them up to size 128 bytes as per x64 Linux
ABI [12]. Further we are able to optimize the function calls in case
of constants being passed, by enabling function memoization per
call site and passing constants directly to the original function call
– constant parameters are avoided in the calls to memoized wrap-
per. The results of function memoization at compile-time is better
compared to a load-time approach as shown in Figures 4 and 5.
By making a memoization wrapper at compile-time we provide in-
lining facility for the wrapper which improves the performance by
saving the cost of a call as well as by enabling other compiler op-
timization. Inlining causes a slight increase in code size but still is
good for performance. We used a 64k entry table for memoization
but these entries are used only when indexing happens to them and
hence in case of function being non-critical we would not be losing
any performance.

As a second contribution, we showed that hardware memoiza-
tion is also a valid approach. It necessitates minor additions in the
ISA and further increases the scope and efficiency of memoization.
This offers good benefit as it lowers the profitable minimum func-
tion execution time
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