
HAL Id: hal-01423924
https://hal.inria.fr/hal-01423924

Submitted on 1 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Applied Pi Calculus: Mobile Values, New Names,
and Secure Communication

Martín Abadi, Bruno Blanchet, Cédric Fournet

To cite this version:
Martín Abadi, Bruno Blanchet, Cédric Fournet. The Applied Pi Calculus: Mobile Values, New Names,
and Secure Communication. [Research Report] ArXiv. 2016, pp.110. �hal-01423924�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/80461111?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01423924
https://hal.archives-ouvertes.fr

The Applied Pi Calculus: Mobile Values,

New Names, and Secure Communication∗

Mart́ın Abadi
Google†

Bruno Blanchet
Inria

Cédric Fournet
Microsoft Research

September 13, 2016

Abstract

We study the interaction of the programming construct “new”, which generates
statically scoped names, with communication via messages on channels. This interac-
tion is crucial in security protocols, which are the main motivating examples for our
work; it also appears in other programming-language contexts.

We define the applied pi calculus, a simple, general extension of the pi calculus
in which values can be formed from names via the application of built-in functions,
subject to equations, and be sent as messages. (In contrast, the pure pi calculus
lacks built-in functions; its only messages are atomic names.) We develop semantics
and proof techniques for this extended language and apply them in reasoning about
security protocols.

This paper essentially subsumes the conference paper that introduced the applied
pi calculus in 2001. It fills gaps, incorporates improvements, and further explains
and studies the applied pi calculus. Since 2001, the applied pi calculus has been the
basis for much further work, described in many research publications and sometimes
embodied in useful software, such as the tool ProVerif, which relies on the applied
pi calculus to support the specification and automatic analysis of security protocols.
Although this paper does not aim to be a complete review of the subject, it benefits
from that further work and provides better foundations for some of it. In particular,
the applied pi calculus has evolved through its implementation in ProVerif, and the
present definition reflects that evolution.

1 A Case for Impurity

Purity often comes before convenience and even before faithfulness in the lambda calcu-
lus, the pi calculus, and other foundational programming languages. For example, in the
standard pi calculus, the only messages are atomic names [81]. This simplicity is extremely
appealing from a foundational viewpoint, and helps in developing the theory of the pi calcu-
lus. Furthermore, ingenious encodings demonstrate that it may not entail a loss of generality.
In particular, integers, objects, and even higher-order processes can be represented in the
pure pi calculus. Similarly, various encodings of cryptographic operations in the pi calculus
have been considered [11, 40, 21, 75].

∗Draft. An extended abstract appeared at POPL’01 [8].
†This work was started while Mart́ın Abadi was at Bell Labs Research, and continued while he was at

the University of California at Santa Cruz and at Microsoft Research.

1

On the other hand, this purity has a price. In applications, the encodings can be futile,
cumbersome, and even misleading. For instance, in the study of programming languages
based on the pi calculus (such as Pict [86] or JoCaml [46]), there is little point in pretending
that integers are not primitive. The encodings may also hinder careful reasoning about
communication (for example, because they require extra messages), and they may complicate
static analysis and proofs.

These difficulties are often circumvented through on-the-fly extensions. The extensions
range from quick punts (“for the next example, let’s pretend that we have a datatype of
integers”) to the laborious development of new calculi, such as the spi calculus [11] (a
calculus with cryptographic operations) and its variants. Generally, the extensions bring us
closer to a realistic programming language or modeling language—that is not always a bad
thing.

Although many of the resulting calculi are ad hoc and poorly understood, others are
robust and uniform enough to have a rich theory and a variety of applications. In partic-
ular, impure extensions of the lambda calculus with function symbols and with equations
among terms (“delta rules”) have been developed systematically, with considerable success.
Similarly, impure versions of CCS and CSP with value-passing are not always deep but often
neat and convenient [79].

In this paper, we introduce, study, and use an analogous uniform extension of the pi
calculus, which we call the applied pi calculus (by analogy with “applied lambda calculus”).
From the pure pi calculus, we inherit constructs for communication and concurrency, and for
generating statically scoped new names (“new”). We add functions and equations, much as
is done in the lambda calculus. Messages may then consist not only of atomic names but also
of values constructed from names and functions. This embedding of names into the space of
values gives rise to an important interaction between the “new” construct and value-passing
communication, which appears in neither the pure pi calculus nor value-passing CCS and
CSP. Further, we add an auxiliary substitution construct, roughly similar to a floating “let”;
this construct is helpful in programming examples and especially in semantics and proofs,
and serves to capture the partial knowledge that an environment may have of some values.

The applied pi calculus builds on the pure pi calculus and its substantial theory, but it
shifts the focus away from encodings. In comparison with ad hoc approaches, it permits a
general, systematic development of syntax, operational semantics, equivalences, and proof
techniques.

Using the calculus, we can write and reason about programming examples where “new”
and value-passing appear. First, we can easily treat standard datatypes (integers, pairs,
arrays, etc.). We can also model unforgeable capabilities as new names, then model the
application of certain functions to those capabilities. For instance, we may construct a pair
of capabilities. More delicately, the capabilities may be pointers to composite structures,
and then adding an offset to a pointer to a pair may yield a pointer to its second component
(e.g., as in [70]). Furthermore, we can study a variety of security protocols. For this purpose,
we represent fresh channels, nonces, and keys as new names, and primitive cryptographic
operations as functions, obtaining a simple but useful programming-language perspective on
security protocols (much as in the spi calculus). A distinguishing characteristic of the present
approach is that we need not craft a special calculus and develop its proof techniques for each
choice of cryptographic operations. Thus, we can express and analyze fairly sophisticated
protocols that combine several cryptographic primitives (encryptions, hashes, signatures,
XORs, . . .). We can also describe attacks against the protocols that rely on (equational)
properties of some of those primitives. In our work to date, security protocols are our main
source of examples.

2

The next section defines the applied pi calculus. Section 3 introduces some small, in-
formal examples. Section 4 defines semantic concepts, such as process equivalence, and
develops proof techniques. Sections 5 and 6 treat larger, instructive examples; they concern
a Diffie-Hellman key exchange, cryptographic hash functions, and message authentication
codes. (The two sections are independent.) Many other examples now appear in the liter-
ature, as explained below. Section 7 discusses related work, and Section 8 concludes. The
body of the paper contains some proofs and outlines others; many details of the proofs,
however, are in appendices.

This paper essentially subsumes the conference paper that introduced the applied pi
calculus in 2001. It fills gaps, incorporates various improvements, and further explains and
studies the applied pi calculus. Specifically, it presents a revised language, with a revised
semantics, as explained in Sections 2 and 4. It also includes precise definitions and proofs;
these address gaps in the conference paper, discussed in further detail in Section 4. Finally,
some of the examples in Sections 3, 5, and especially 6 are polished or entirely new.

Since 2001, the applied pi calculus has been the basis for much further work, described
in many research publications (some of which are cited below) and tutorials [3, 49, 87].
This further work includes semantics, proof techniques, and applications in diverse contexts
(key exchange, electronic voting, certified email, cryptographic file systems, encrypted Web
storage, website authorization, zero-knowledge proofs, and more). It is sometimes embodied
in useful software, such as the tool ProVerif [31, 32, 35]. This tool, which supports the
specification and automatic analysis of security protocols, relies on the applied pi calculus
as input language. Other software that builds on ProVerif targets protocol implementations,
Web-security mechanisms, or stateful systems such as hardware devices [30, 22, 17]. Finally,
the applied pi calculus has also been implemented in other settings, such as the prover
Tamarin [76, 68].

Although this paper does not aim to offer a complete review of the subject and its growth
since 2001, it benefits from that further work and provides better foundations for some of it.
In particular, the applied pi calculus has evolved through its implementation in ProVerif,
and the present definition reflects that evolution.

2 The Applied Pi Calculus

In this section we define the applied pi calculus: its syntax and informal semantics (Sec-
tion 2.1), then its operational semantics (Section 2.2). We also discuss a few variants and
extensions of our definitions (Section 2.3).

2.1 Syntax and Informal Semantics

A signature Σ consists of a finite set of function symbols, such as f, encrypt, and pair, each
with an arity. A function symbol with arity 0 is a constant symbol.

Given a signature Σ, an infinite set of names, and an infinite set of variables, the set of
terms is defined by the grammar:

L,M,N, T, U, V ::= terms
a, b, c, . . . , k, . . . ,m, n, . . . , s name
x, y, z variable
f(M1, . . . ,Ml) function application

where f ranges over the functions of Σ and l matches the arity of f .

3

Although names, variables, and constant symbols have similarities, we find it clearer to
keep them separate. A term is ground when it does not contain variables (but it may contain
names and constant symbols). We use meta-variables u, v, w to range over both names and

variables. We abbreviate tuples u1, . . . , ul and M1, . . . ,Ml to ũ and M̃ , respectively.
The grammar for processes is similar to the one in the pi calculus, but here messages

can contain terms (rather than only names) and names need not be just channel names:

P,Q,R ::= processes (or plain processes)
0 null process
P |Q parallel composition
!P replication
νn.P name restriction (“new”)
if M = N then P else Q conditional
N(x).P message input
N〈M〉.P message output

The null process 0 does nothing; P |Q is the parallel composition of P and Q; the replication
!P behaves as an infinite number of copies of P running in parallel. The process νn.P makes
a new, private name n then behaves as P . The conditional construct if M = N then P else Q
is standard, but we should stress thatM = N represents equality, rather than strict syntactic
identity. We abbreviate it if M = N then P when Q is 0. Finally, N(x).P is ready to input
from channel N , then to run P with the actual message replaced for the formal parameter
x, while N〈M〉.P is ready to output M on channel N , then to run P . In both of these, we
may omit P when it is 0.

Further, we extend processes with active substitutions:

A,B,C ::= extended processes
P plain process
A |B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

We write {M/x} for the substitution that replaces the variable x with the term M . Consid-
ered as a process, {M/x} is like let x = M in . . ., and is similarly useful. However, unlike
a “let” definition, {M/x} floats and applies to any process that comes into contact with it.
To control this contact, we may add a restriction: νx.({M/x} | P) corresponds exactly to
let x = M in P . The substitution {M/x} typically appears when the term M has been sent
to the environment, but the environment may not have the atomic names that appear in
M ; the variable x is just a way to refer to M in this situation. Although the substitution
{M/x} concerns only one variable, we can build bigger substitutions by parallel composition,
and may write

{M1/x1
, . . . ,Ml/xl

} for {M1/x1
} | · · · | {Ml/xl

}

We write σ, {M/x}, {M̃/̃x} for substitutions, xσ for the image of x by σ, and Tσ for the
result of applying σ to the free variables of T . We identify the empty substitution and the
null process 0.

As usual, names and variables have scopes, which are delimited by restrictions and
by inputs. We write fv(A) and fn(A) for the sets of free variables and free names of A,
respectively. These sets are inductively defined, as detailed in Figure 1. The domain dom(A)
of an extended process A is the set of variables that A exports (those variables x for which

4

fv(x)
def
= {x}

fv(n)
def
= ∅

fv(f(M1, . . . ,Ml))
def
= fv(M1) ∪ · · · ∪ fv(Ml)

fv(0)
def
= ∅

fv(P |Q)
def
= fv(P) ∪ fv(Q)

fv(!P)
def
= fv(P)

fv(νn.P)
def
= fv(P)

fv(if M = N then P else Q)
def
= fv(M) ∪ fv(N) ∪ fv(P) ∪ fv(Q)

fv(N(x).P)
def
= fv(N) ∪ (fv(P) \ {x})

fv(N〈M〉.P)
def
= fv(N) ∪ fv(M) ∪ fv(P)

fv(A |B)
def
= fv(A) ∪ fv(B)

fv(νn.A)
def
= fv(A)

fv(νx.A)
def
= fv(A) \ {x}

fv({M/x})
def
= fv(M) ∪ {x}

fn(·) is defined as fv(·), except that

fn(x)
def
= ∅

fn(n)
def
= {n}

fn(νn.P)
def
= fn(P) \ {n}

fn(N(x).P)
def
= fn(N) ∪ fn(P)

fn(νn.A)
def
= fn(A) \ {n}

fn(νx.A)
def
= fn(A)

fn({M/x})
def
= fn(M)

dom(P)
def
= ∅

dom(A |B)
def
= dom(A) ∪ dom(B)

dom(νn.A)
def
= dom(A)

dom(νx.A)
def
= dom(A) \ {x}

dom({M/x})
def
= {x}

Figure 1: Free variables, free names, and domain

5

u : τ

` u : τ

f : τ1 × · · · × τl → τ `M1 : τ1 . . . `Ml : τl
` f(M1, . . . ,Ml) : τ

` 0
` P ` Q
` P |Q

` P
` !P

` P
` νn.P

`M : τ ` N : τ ` P ` Q
` if M = N then P else Q

` N : Channel ` P
` N(x).P

` N : Channel `M : τ ` P
` N〈M〉.P

` A ` B
` A |B

` A
` νu.A

x : τ `M : τ

` {M/x}

Figure 2: Sort system

A contains a substitution {M/x} not under a restriction on x). Figure 1 also defines dom(A)
formally. We consider that expressions (processes and extended processes) are equal modulo
renaming of bound names and variables.

We always assume that our substitutions are cycle-free, that is, by reordering, they can
be written {M1/x1

, . . . ,Ml/xl
} where xi /∈ fv(Mj) for all i ≤ j ≤ l. For instance, we exclude

substitutions such as {f(y)/x,f(x)/y}. We also assume that, in an extended process, there
is at most one substitution for each variable, and there is exactly one when the variable is
restricted, that is, dom(A)∩ dom(B) = ∅ in every extended process A |B, and x ∈ dom(A)
in every extended process νx.A. An extended process A is closed when its free variables are
all defined by an active substitution, that is, dom(A) = fv(A). We use the abbreviation νũ
for the (possibly empty) series of pairwise distinct binders νu1.νu2. . . . νul.

A frame is an extended process built up from 0 and active substitutions of the form {M/x}
by parallel composition and restriction. We let ϕ and ψ range over frames. Every extended
process A can be mapped to a frame ϕ(A) by replacing every plain process embedded in A
with 0. The frame ϕ(A) can be viewed as an approximation of A that accounts for the static
knowledge exposed by A to its environment, but not for A’s dynamic behavior. Assuming
that all bound names and variables are pairwise distinct, and do not clash with free ones,
one can ignore all restrictions in a frame, thus obtaining an underlying substitution; we
require that, for each extended process, this resulting substitution be cycle-free.

We rely on a sort system for terms and processes. It includes a sort Channel for channels.
It may also include other sorts such as Integer, Key, or simply a universal sort for data Data.
Each variable and each name comes with a sort; we write u : τ to mean that u has sort
τ . There are an infinite number of variables and an infinite number of names of each sort.
We typically use a, b, and c as names of sort Channel, s and k as names of some other
sort (e.g., Data), and m and n as names of any sort. Function symbols also come with the
sorts of their arguments and of their result. We write f : τ1 × · · · × τl → τ to mean that f
has arguments of sorts τ1, . . . , τl and a result of sort τ . Figure 2 gives the rules of the sort
system. It defines the following judgments: `M : τ means that M is a term of sort τ ; ` P
means that the process P is well-sorted; ` A means that the extended process A is well-
sorted. This sort system enforces that function applications are well-sorted, that M and N
are of the same sort in conditional expressions, that N has sort Channel in input and output
expressions, that M is well-sorted (with an arbitrary sort τ) in output expressions, and that
active substitutions preserve sorts. We always assume that expressions are well-sorted, and
that substitutions preserve sorts.

6

2.2 Operational Semantics

We give an operational semantics for the applied pi calculus in the now customary “chemical
style” [29, 80]. At the center of this operational semantics is a reduction relation → on
extended processes, which basically models the steps of computations. For example, a〈M〉 |
a(x).b〈x〉 → b〈M〉 represents the transmission of the message M on the channel a to a
process that will forward the message on the channel b; the formal x is replaced with
its actual value M in this reduction. The axioms for the reduction relation →, which are
remarkably simple, rely on auxiliary rules for a structural equivalence relation≡ that permits
the rearrangement of processes, for example the use of commutativity and associativity of
parallel composition. Furthermore, both structural equivalence and reduction depend on an
underlying equational theory. Therefore, this section introduces equational theories, then
defines structural equivalence and reduction.

Given a signature Σ, we equip it with an equational theory, that is, with a congruence
relation on terms that is closed under substitution of terms for variables and names. (See for
example Mitchell’s textbook [82, chapter 3] and its references for background on universal
algebra and algebraic data types from a programming-language perspective.) We further
require that this equational theory respect the sort system, that is, two equal terms are of
the same sort, and that it be non-trivial, that is, there exist two different terms in each sort.

An equational theory may be generated from a finite set of equational axioms, or from
rewrite rules, but this property is not essential for us. We tend to ignore the mechanics of
specifying equational theories, but give several examples in Section 3.

We write Σ ` M = N when the equation M = N is in the theory associated with Σ.
Here we keep the theory implicit, and we may even abbreviate Σ ` M = N to M = N
when Σ is clear from context or unimportant. We write Σ 6` M = N for the negation of
Σ `M = N .

As usual, a context is an expression with a hole. An evaluation context is a context
whose hole is not under a replication, a conditional, an input, or an output. A context E[]
closes A when E[A] is closed.

Structural equivalence ≡ is the smallest equivalence relation on extended processes that
is closed by application of evaluation contexts, and such that:

Par-0 A ≡ A | 0
Par-A A | (B | C) ≡ (A |B) | C
Par-C A |B ≡ B |A
Repl !P ≡ P | !P
New-0 νn.0 ≡ 0
New-C νu.νv.A ≡ νv.νu.A
New-Par A | νu.B ≡ νu.(A |B) when u 6∈ fv(A) ∪ fn(A)

Alias νx.{M/x} ≡ 0
Subst {M/x} |A ≡ {M/x} |A{M/x}
Rewrite {M/x} ≡ {N/x} when Σ `M = N

The rules for parallel composition and restriction are standard. Alias enables the in-
troduction of an arbitrary active substitution. Subst describes the application of an active
substitution to a process that is in contact with it. Rewrite deals with equational rewrit-
ing. Subst implicitly requires that x : τ and ` M : τ for some sort τ . In combination,

7

Alias and Subst yield A{M/x} ≡ νx.({M/x} |A) for x /∈ fv(M):

A{M/x} ≡ A{M/x} | 0 by Par-0
≡ A{M/x} | νx.{M/x} by Alias
≡ νx.(A{M/x} | {M/x}) by New-Par
≡ νx.({M/x} |A{M/x}) by Par-C
≡ νx.({M/x} |A) by Subst

Using structural equivalence, every closed extended process A can be rewritten to consist
of a substitution and a closed plain process with some restricted names:

A ≡ νñ.({M̃/̃x} | P)

where fv(P) = ∅, fv(M̃) = ∅, and {ñ} ⊆ fn(M̃). In particular, every closed frame ϕ can be
rewritten to consist of a substitution with some restricted names:

ϕ ≡ νñ.{M̃/̃x}

where fv(M̃) = ∅ and {ñ} ⊆ fn(M̃). The set {x̃} is the domain of ϕ.
Internal reduction → is the smallest relation on extended processes closed by structural

equivalence and application of evaluation contexts such that:

Comm N〈x〉.P |N(x).Q → P |Q
Then if M = M then P else Q → P

Else if M = N then P else Q → Q
for any ground terms M and N such that Σ 6`M = N

Communication (Comm) is remarkably simple because the message concerned is a variable;
this simplicity entails no loss of generality because Alias and Subst can introduce a variable
to stand for a term:

N〈M〉.P |N(x).Q ≡ νx.({M/x} |N〈x〉.P |N(x).Q)

→ νx.({M/x} | P |Q) by Comm

≡ P |Q{M/x}

(This derivation assumes that x /∈ fv(N) ∪ fv(M) ∪ fv(P), which can be established by
renaming as needed.)

Comparisons (Then and Else) directly depend on the underlying equational theory.
Using Else sometimes requires that active substitutions in the context be applied first,
to yield ground terms M and N . For example, rule Else does not allow us to reduce
{n/x} | if x = n then P else Q.

This use of the equational theory may be reminiscent of initial algebras. In an initial
algebra, the principle of “no confusion” dictates that two elements are equal only if this
is required by the corresponding equational theory. Similarly, if M = N then P else Q
reduces to P only if this is required by the equational theory, and reduces to Q otherwise.
Initial algebras also obey the principle of “no junk”, which says that all elements correspond
to terms built exclusively from function symbols of the signature. In contrast, a fresh name
need not equal any such term in the applied pi calculus.

8

2.3 Variants and Extensions

Several variants of the syntax of the applied pi calculus appear in the literature, and further
variants may be considered. We discuss a few:

• In the conference paper, there are several sorts for channels: the sort Channel〈τ〉 is the
sort of channels that convey messages of sort τ . The sort Channel without argument
is more general, in the sense that all processes well-sorted with Channel〈τ〉 are also
well-sorted with Channel. Moreover, by using Channel as only sort, we can encode
an untyped version of the applied pi calculus. The tool ProVerif also uses the sort
Channel without argument.

• In a more refined version of the sort system, we could allow names only in a distin-
guished set of sorts. For instance, we could consider a sort of booleans, containing as
only values the constants true and false. Such a sort would not contain names.

• In the conference paper, channels in inputs and outputs are names or variables rather
than any term. Using any term as channel yields a more general calculus and avoids
some side conditions in theorems. The tool ProVerif also allows any term as channel.
Nevertheless, the sort system can restrict the terms that appear as channels: if no
function symbol returns a result of sort Channel, then channels can be only names or
variables.

• Function symbols can also be defined by rewrite rules instead of an equational theory.
This approach is taken in ProVerif [34]: a destructor g is a partial function defined by
rewrite rules g(M1, . . . ,Ml)→M ; the destructor application g(N1, . . . , Nl) fails when
no rewrite rule applies, and this failure can be tested in the process calculus.

A destructor g : τ1 × · · · × τl → τ with rewrite rule g(M1, . . . ,Ml) → M can be
encoded in the applied pi calculus by function symbols g : τ1 × · · · × τl → τ and
testg : τ1 × · · · × τl → bool with the equations

g(M1, . . . ,Ml) = M

testg(M1, . . . ,Ml) = true

The function testg allows one to test whether g(N1, . . . , Nl) is defined, by checking
whether testg(N1, . . . , Nl) = true holds. (See Section 3 for examples of such test
functions.) The function g may be applied even when its arguments are not instances
of (M1, . . . ,Ml), thus yielding terms g(N1, . . . , Nl) that do not exist in the calculus
with rewrite rules. These “stuck” terms may be simulated with distinct fresh names
in that variant of the calculus.

• An extension that mixes the applied pi calculus with ambients and with a built-in
primitive for evaluating messages as a program has also been studied [36].

• Our equational theories are closed under substitution of terms for names. This prop-
erty yields a simple and uniform treatment of variables and names. An alternative
definition, which may suffice, assumes only that equational theories are closed under
one-to-one renaming and do not equate names.

Some other variations concern the definition of the semantics:

• We can handle the replication by a reduction step !P → P | !P instead of the structural
equivalence rule !P ≡ P | !P . This modification prevents transforming P | !P into !P ,
and thus simplifies some proofs. This idea was used in a previous paper [35].

9

• As Section 2.2 indicates, we can rewrite extended processes by pulling restrictions to
the top, so that every closed extended process A becomes an extended process A◦ such
that

A ≡ A◦ = νñ.({M̃/̃x} | P1 | . . . | Pl)

where fv(P1 |. . .|Pl) = ∅, fv(M̃) = ∅, and P1, . . . , Pl are replication, conditional, input,
or output expressions. We can then modify the definitions of structural equivalence
and internal reduction to act on processes in the form above. Structural equivalence
says that the parallel composition P1 | . . . |Pl is associative and commutative and that
the names in ñ can be reordered. Internal reduction is the smallest relation on closed
extended processes, closed by structural equivalence, such that:

E[N〈M〉.P |N ′(x).Q] → E[P |Q{M/x}]◦ if Σ ` N = N ′

E[if M = N then P else Q] → E[P]◦ if Σ `M = N

E[if M = N then P else Q] → E[Q]◦ if Σ 6`M = N

E[!P] → E[P | !P]◦

for any evaluation context E. A similar idea appears in the intermediate applied pi
calculus [54, 73, 72].

• Pushing the previous idea further, we can represent the extended process

A ≡ νñ.({M̃/̃x} | P1 | . . . | Pl)

as a configuration (N , σ,P) = ({ñ}, {M̃/̃x}, {P1, . . . , Pl}), where N is a set of names, σ
is a substitution, and P is a multiset of processes. We can then define internal reduc-
tion on such configurations, without any structural equivalence. (Sets and multisets
allow us to ignore the ordering of restrictions and parallel processes.) This idea was
used in semantics of the calculus of ProVerif [4, 14, 34].

3 Brief Examples

This section collects several examples, focusing on signatures, equations, and some simple
processes. We start with pairs; this trivial example serves to introduce some notations
and issues. We then discuss lists, cryptographic hash functions, encryption functions, dig-
ital signatures, and the XOR function [77, 92], as well as a form of multiplexing, which
demonstrates the use of channels that are terms rather than names. Further examples ap-
pear in Sections 5 and 6. More examples, such as blind signatures [69] and zero-knowledge
proofs [20], have appeared in the literature since 2001.

Of course, at least some of these functions appear in most formalizations of cryptography
and security protocols. In comparison with the spi calculus, the applied pi calculus permits a
more uniform and versatile treatment of these functions, their variants, and their properties.
Like the spi calculus, however, the applied pi calculus takes advantage of notations, concepts,
and techniques from programming languages.

Pairs Algebraic datatypes such as pairs, tuples, arrays, and lists occur in many examples.
Encoding them in the pure pi calculus is not hard, but neither is representing them as
primitive. For instance, the signature Σ may contain the binary function symbol pair and

10

the unary function symbols fst and snd, with the abbreviation (M,N) for pair(M,N), and
with the evident equations:

fst((x, y)) = x (1)

snd((x, y)) = y (2)

(So the equational theory consists of these equations, and all the equations obtained by
reflexivity, symmetry, transitivity, applications of function symbols, and substitutions of
terms for variables.) These function symbols may for instance be sorted as follows:

pair : Data× Data→ Data

fst : Data→ Data

snd : Data→ Data

We may use the test (fst(M), snd(M)) = M to check that M is a pair before using the values
of fst(M) and snd(M). Alternatively, we may add a boolean function is pair that recognizes
pairs, defined by the equation:

is pair((x, y)) = true

With this equation, the conditional if is pair(M) = true then P else Q runs P if M is a pair
and Q otherwise. Using pairs, we may, for instance, define the process:

νs.
(
a〈(M, s)〉 | a(z).if snd(z) = s then b〈fst(z)〉

)
One of its components sends a pair consisting of a term M and a fresh name s on a channel
a. The other receives a message on a and, if its second component is s, it forwards the first
component on a channel b. Thus, we may say that s serves as a capability (or password)
for the forwarding. However, this capability is not protected from eavesdroppers when it
travels on a. Any other process can listen on a and can apply snd to the message received,
thus learning s. We can represent such an attacker within the calculus, for example by the
following process:

a(z).a〈(N, snd(z))〉

which may receive (M, s) on a and send (N, s) on a. Composing this attacker in parallel
with the process, we may obtain N instead of M on b.

Such attacks can be thwarted by the use of restricted channel names, as in the process

νa.νs.
(
a〈(M, s)〉 | a(z).if snd(z) = s then b〈fst(z)〉

)
Alternatively, they can be thwarted by the use of cryptography, as discussed below.

Lists We may treat lists similarly, with the following function symbols and corresponding
sorts:

nil : List

cons : Data× List→ List

hd : List→ Data

tl : List→ List

11

The constant nil is the empty list; cons(x, y) represents the concatenation of the element x
at the beginning of the list y, and we write it with infix notation as x :: y, where the symbol
:: associates to the right; and hd and tl are head and tail functions with equations:

hd(x :: y) = x tl(x :: y) = y (3)

Further, we write M ++ N for the concatenation of an element N at the end of a list M ,
where the function ++ : List×Data→ List associates to the left, and satisfies the equations:

nil ++ x = x :: nil (x :: y) ++ z = x :: (y ++ z) (4)

Cryptographic Hash Functions We represent a cryptographic hash function as a unary
function symbol h with no equations. The absence of an inverse for h models the one-wayness
of h. The fact that h(M) = h(N) only when M = N models that h is collision-free.

Modifying our first example, we may now write the process:

νs.
(
a〈(M, h((s,M)))〉 | a(x).if h((s, fst(x))) = snd(x) then b〈fst(x)〉

)
Here the value M is authenticated by pairing it with the fresh name s and then hashing
the pair. Although (M, h((s,M))) travels on the public channel a, no other process can
extract s from this message, or produce (N, h((s,N))) for some other N using the available
functions. Therefore, we may reason that this process will forward only the intended term
M on channel b.

This example is a typical cryptographic application of hash functions. In light of the
practical importance of those applications, our treatment of hash functions is attractively
straightforward. Still, we may question whether our formal model of these functions is not
too strong and simplistic in comparison with the properties of actual implementations based
on algorithms such as SHA. In Section 6, we consider a somewhat weaker, subtler model for
hash functions.

Symmetric Encryption In order to model symmetric cryptography (that is, shared-key
cryptography), we take binary function symbols enc and dec for encryption and decryption,
respectively, with the equation:

dec(enc(x, y), y) = x

Here x represents the plaintext and y the key. We often use fresh names as keys in examples;
for instance, the (useless) process:

νk.a〈enc(M,k)〉

sends the term M encrypted under a fresh key k.
In applications of encryption, it is frequent to assume that each encrypted message

comes with sufficient redundancy so that decryption with the “wrong” key is evident. Ac-
cordingly, we can test whether the decryption of M with the key k succeeds by testing
whether enc(dec(M,k), k) = M . Alternatively, we could also add a test function testdec
with the equation

testdec(enc(x, y), y) = true

Provided that we check that decryption succeeds before using the decrypted message, this
model of encryption basically yields the spi calculus [11].

12

On the other hand, in modern cryptology, such redundancy is not usually viewed as
part of the encryption function proper, but rather an addition. The redundancy can be
implemented with message authentication codes. We can model an encryption scheme
without redundancy with the two equations:

dec(enc(x, y), y) = x

enc(dec(z, y), y) = z

These equations model that decryption is the inverse bijection of encryption, a property
that is typically satisfied by block ciphers.

Asymmetric Encryption It is only slightly harder to model asymmetric (public-key)
cryptography, where the keys for encryption and decryption are different. We introduce two
new unary function symbols pk and sk for generating public and private keys from a seed,
and the equation:

dec(enc(x, pk(y)), sk(y)) = x

We may now write the process:

νs.
(
a〈pk(s)〉 | b(x).c〈dec(x, sk(s))〉

)
The first component publishes the public key pk(s) by sending it on a. The second receives
a message on b, uses the corresponding private key sk(s) to decrypt it, and forwards the
resulting plaintext on c. As this example indicates, we essentially view name restriction
(νs) as a generator of unguessable seeds. In some cases, those seeds may be directly used
as passwords or keys; in others, some transformations are needed.

Some encryption schemes have additional properties. In particular, enc and dec may
be the same function. This property matters in implementations, and sometimes permits
attacks. Moreover, certain encryptions and decryptions commute in some schemes. For
example, we have dec(enc(x, y), z) = enc(dec(x, z), y) if the encryptions and decryptions are
performed using RSA with the same modulus. The treatment of such properties is left open
in the spi calculus [11]. In contrast, it is easy to express the properties in the applied pi
calculus, and to study the protocols and attacks that depend on them.

Non-Deterministic (“Probabilistic”) Encryption Going further, we may add a third
argument to enc, so that the encryption of a plaintext with a key is not unique. This non-
determinism is an essential property of probabilistic encryption [64]. The equation for
decryption becomes:

dec(enc(x, pk(y), z), sk(y)) = x

With this variant, we may write the process:

a(x).
(
νm.b〈enc(M,x,m)〉 | νn.c〈enc(N, x, n)〉

)
which receives a message x and uses it as an encryption key for two messages, enc(M,x,m)
and enc(N, x, n). An observer who does not have the corresponding decryption key cannot
tell whether the underlying plaintexts M and N are identical by comparing the ciphertexts,
because the ciphertexts rely on different fresh names m and n. Moreover, even if the observer
learns x, M , and N (but not the decryption key), it cannot verify that the messages contain
M and N because it does not know m and n.

13

Public-Key Digital Signatures Like public-key encryption schemes, digital signature
schemes rely on pairs of public and private keys. In each pair, the private key serves for
computing signatures and the public key for verifying those signatures. In order to model
key generation, we use again the two unary function symbols pk and sk for generating public
and private keys from a seed. For signatures and their verification, we use a new binary
function symbol sign, a ternary function symbol check, and a constant symbol ok, with the
equation:

check(x, sign(x, sk(y)), pk(y)) = ok

(Several variants are possible.)
Modifying once more our first example, we may now write the process:(

νs.{pk(s)/y} | a〈(M, sign(M, sk(s)))〉
)
|

a(x).if check(fst(x), snd(x), y) = ok then b〈fst(x)〉

Here the value M is signed using the private key sk(s). Although M and its signature travel
on the public channel a, no other process can produce N and its signature for some other
N . Therefore, again, we may reason that only the intended term M will be forwarded on
channel b. This property holds despite the publication of pk(s) (but not sk(s)), which is
represented by the active substitution that maps y to pk(s). Despite the restriction on s,
processes outside the restriction can use pk(s) through y. In particular, y refers to pk(s) in
the process that checks the signature on M .

XOR We may model the XOR function, some of its uses in cryptography, and some of
the protocol flaws connected with it. Some of these flaws (e.g., [88]) stem from the intrinsic
equational properties of XOR, such as associativity, commutativity, the existence of a neutral
element, and the cancellation property that we may write:

xor(xor(x, y), z) = xor(x, xor(y, z))

xor(x, y) = xor(y, x)

xor(x, 0) = x

xor(x, x) = 0

Others arise because of the interactions between XOR and other operations (e.g., [93, 47]).
For example, CRCs (cyclic redundancy checks) can be poor proofs of integrity, partly be-
cause of the equation

crc(xor(x, y)) = xor(crc(x), crc(y))

Multiplexing Finally, we illustrate a possible usage of channels that are not names. Con-
sider for instance a pairing function for building channels pair : Data×Port→ Channel with
its associated projections fst : Channel→ Data and snd : Channel→ Port, and equations (1)
and (2) from our first example. We may use this function for multiplexing as follows:

νs.(pair(s, port1)〈M1〉 | pair(s, port2)〈M2〉
| pair(s, port1)(x1) | pair(s, port2)(x2))

In this process, the first output can be received only by the first input, and the second
output can be received only by the second input.

14

4 Equivalences and Proof Techniques

In examples, we frequently argue that two given processes cannot be distinguished by any
context, that is, that the processes are observationally equivalent. The spi calculus developed
the idea that the context represents an active attacker, and equivalences capture authenticity
and secrecy properties in the presence of the attacker. More broadly, a wide variety of
security properties can be expressed as equivalences.

In this section we define observational equivalence for the applied pi calculus. We also
introduce a notion of static equivalence for frames, a labelled semantics for processes, and a
labelled equivalence relation. We prove that labelled equivalence and observational equiva-
lence coincide, obtaining a convenient proof technique for observational equivalence.

4.1 Observational Equivalence

We write A ⇓ a when A can send a message on name a, that is, when A →∗≡ E[a〈M〉.P]
for some evaluation context E[] that does not bind a.

Definition 4.1 An observational bisimulation is a symmetric relation R between closed
extended processes with the same domain such that A R B implies:

1. if A ⇓a, then B ⇓a;

2. if A→∗ A′ and A′ is closed, then B →∗ B′ and A′ R B′ for some B′;

3. E[A] R E[B] for all closing evaluation contexts E[].

Observational equivalence (≈) is the largest such relation.

For example, when h is a unary function symbol with no equations, we obtain that
νs.a〈s〉 ≈ νs.a〈h(s)〉.

These definitions are standard in the pi calculus, where ⇓ a is called a barb on a, and
where ≈ is one of the two usual notions of weak barbed bisimulation congruence. (See [61]
for a detailed discussion.) In the applied pi calculus, one could also define barbs on arbitrary
terms, not just on names; we do not need that generalization for our purposes. The set of
closing evaluation contexts for A depends only on A’s domain; hence, in Definition 4.1, A
and B have the same closing evaluation contexts. In Definition 4.1(2), since R is a relation
between closed extended processes, we require that A′ also be closed. Being closed is not
preserved by all reductions, since structural equivalence may introduce free unused variables.
For instance, we have 0 ≡ νx.{y/x} by Alias and {M/x} ≡ {fst((M,y))/x} by Rewrite using
the equation fst((x, y)) = x.

Although observational equivalence is undecidable in general, various tools support cer-
tain automatic proofs of observational equivalence and other equivalence relations, in the
applied pi calculus and related languages (e.g., [24, 35, 42, 43]).

4.2 Static Equivalence

Two substitutions may be seen as equivalent when they behave equivalently when applied
to terms. We write ≈s for this notion of equivalence, and call it static equivalence. In
the presence of the “new” construct, defining ≈s is somewhat delicate and interesting. For

15

instance, consider two functions f and g with no equations (intuitively, two independent
hash functions), and the three frames:

ϕ0
def
= νk.{k/x} | νs.{s/y}

ϕ1
def
= νk.{f(k)/x,g(k)/y}

ϕ2
def
= νk.{k/x,f(k)/y}

In ϕ0, the variables x and y are mapped to two unrelated values that are different from
any value that the context may build (since k and s are new). These properties also hold,
but more subtly, for ϕ1; although f(k) and g(k) are based on the same underlying fresh
name, they look unrelated. (Analogously, it is common to derive apparently unrelated keys
by hashing from a single underlying secret, as in SSL and TLS [62, 56].) Hence, a context
that obtains the values for x and y cannot distinguish ϕ0 and ϕ1. On the other hand, the
context can discriminate ϕ2 by testing the predicate f(x) = y. Therefore, we would like to
define static equivalence so that ϕ0 ≈s ϕ1 6≈s ϕ2.

This example relies on a concept of equality of terms in a frame, which the following
definition captures.

Definition 4.2 Two terms M and N are equal in the frame ϕ, written (M = N)ϕ, if and
only if fv(M)∪ fv(N) ⊆ dom(ϕ), ϕ ≡ νñ.σ, Mσ = Nσ, and {ñ}∩ (fn(M)∪ fn(N)) = ∅ for
some names ñ and substitution σ.

In Definition 4.2, the equality Mσ = Nσ is independent of the representative νñ.σ chosen
for the frame ϕ such that ϕ ≡ νñ.σ and {ñ} ∩ (fn(M) ∪ fn(N)) = ∅. (Lemma D.1 in
Appendix D establishes this property.)

Definition 4.3 Two closed frames ϕ and ψ are statically equivalent, written ϕ ≈s ψ, when
dom(ϕ) = dom(ψ) and when, for all terms M and N , we have (M = N)ϕ if and only if
(M = N)ψ.

Two closed extended processes are statically equivalent, written A ≈s B, when their
frames are statically equivalent.

For instance, in our example, we have (f(x) = y)ϕ2 but not (f(x) = y)ϕ1, hence ϕ1 6≈s ϕ2.
Depending on Σ, static equivalence can be quite hard to check, but at least it does not

depend on the dynamics of processes. Some simplifications are possible in common cases, in
particular when terms can be put in normal forms (for example, in the proof of Theorem 6.1
of Section 6.2). Decisions procedures exist for static equivalence in large classes of equational
theories [7], some implemented in tools [25, 44].

The next lemma establishes closure properties of static equivalence: it shows that static
equivalence is invariant by structural equivalence and reduction, and closed by application
of closing evaluation contexts. Its proof appears in Appendix A.

Lemma 4.1 Let A and B be closed extended processes. If A ≡ B or A→ B, then A ≈s B.
If A ≈s B, then E[A] ≈s E[B] for all closing evaluation contexts E[].

As the next two lemmas demonstrate, static equivalence coincides with observational
equivalence on frames, but is coarser on extended processes.

Lemma 4.2 Observational equivalence and static equivalence coincide on frames.

This lemma is an immediate corollary of Theorem 4.1 below. (See Corollary C.2 in Ap-
pendix C.3.)

16

Lemma 4.3 Observational equivalence is strictly finer than static equivalence on extended
processes: ≈ ⊂ ≈s.

To see that observational equivalence implies static equivalence, note that if A and B are
observationally equivalent then A | C and B | C have the same barbs for every C with
fv(C) ⊆ dom(A), and that they are statically equivalent when A | C and B | C have the
same barb ⇓a for every C of the special form if M = N then a〈n〉, where a does not occur
in A or B and fv(C) ⊆ dom(A). (See Lemma C.9 in Appendix C.3.) The converse does
not hold, as the following counter-example shows: letting A = a〈n〉 and B = b〈n〉, we have
A 6≈ B, but A ≈s B because ϕ(A) = ϕ(B) = 0.

4.3 Labelled Operational Semantics and Equivalence

A labelled operational semantics extends the chemical semantics of Section 2.2, enabling us
to reason about processes that interact with their context while keeping it implicit. The
labelled semantics defines a relation A

α−→ A′, where α is a label of one of the following
forms:

• a label N(M), which corresponds to an input of M on N ;

• a label νx.N〈x〉, where x is a variable that must not occur in N , which corresponds
to an output of x on N .

The variable x is bound in the label νx.N〈x〉, so we define the bound variables of labels

by bv(N(M))
def
= ∅ and bv(νx.N〈x〉) def

= {x}. The free variables of labels are defined by

fv(N(M))
def
= fv(N) ∪ fv(M) and fv(νx.N〈x〉) def

= fv(N) (since x does not occur in N in the
latter label).

In addition to the rules for structural equivalence and reduction of Section 2, we adopt
the following rules:

In N(x).P
N(M)−−−−→ P{M/x}

Out-Var
x /∈ fv(N〈M〉.P)

N〈M〉.P νx.N〈x〉−−−−−→ P | {M/x}

Scope
A

α−→ A′ u does not occur in α

νu.A
α−→ νu.A′

Par
A

α−→ A′ bv(α) ∩ fv(B) = ∅
A |B α−→ A′ |B

Struct
A ≡ B B

α−→ B′ B′ ≡ A′

A
α−→ A′

According to In, a term M may be input. On the other hand, Out-Var permits output
for terms “by reference”: a fresh variable is associated with the term in question and output.

For example, using the signature and equations for symmetric encryption, and the new
constant symbol oops ! , we have the sequence of transitions of Figure 3. The first two
transitions do not directly reveal the term M . However, they give enough information to
the environment to compute M as dec(x, y), and to input it in the third transition.

The labelled operational semantics leads to an equivalence relation:

17

νk.a〈enc(M,k)〉.a〈k〉.a(z).if z = M then c〈 oops ! 〉
νx.a〈x〉−−−−−→ νk.

(
{enc(M,k)/x} | a〈k〉.a(z).if z = M then c〈 oops ! 〉

)
νy.a〈y〉−−−−−→ νk.

(
{enc(M,k)/x} | {k/y} | a(z).if z = M then c〈 oops ! 〉

)
a(dec(x,y))−−−−−−−→ νk.

(
{enc(M,k)/x} | {k/y} | if dec(x, y) = M then c〈 oops ! 〉

)
→ νk.

(
{enc(M,k)/x} | {k/y}

)
| c〈 oops ! 〉

Figure 3: Example transitions

Definition 4.4 A labelled bisimulation is a symmetric relation R on closed extended proc-
esses such that A R B implies:

1. A ≈s B;

2. if A→ A′ and A′ is closed, then B →∗ B′ and A′ R B′ for some B′;

3. if A
α−→ A′, A′ is closed, and fv(α) ⊆ dom(A), then B →∗ α−→→∗ B′ and A′ R B′ for

some B′.

Labelled bisimilarity (≈l) is the largest such relation.

Conditions 2 and 3 are standard; condition 1, which requires that bisimilar processes be
statically equivalent, is necessary for example in order to distinguish the frames ϕ0 and ϕ2 of
Section 4.2. As in Definition 4.1, we explicitly require that A′ be closed and fv(α) ⊆ dom(A)
in order to exclude transitions that introduce free unused variables.

Our main result is that this relation coincides with observational equivalence. Although
such results are fairly common in process calculi, they are important and non-trivial.

Theorem 4.1 Observational equivalence is labelled bisimilarity: ≈ = ≈l.

The proof of this theorem is outlined in Section 4.5 and completed in the appendix.
The theorem implies that ≈l is closed by application of closing evaluation contexts.

However, unlike the definition of ≈, the definition of ≈l does not include a condition about
contexts. It therefore permits simpler proofs.

In addition, labelled bisimilarity can probably be established via standard “bisimulation
up to context” techniques [89], which enable useful on-the-fly simplifications in frames after
output steps. We do not develop the theory of “up to context” techniques, since we do not
use them in this paper.

The following lemmas provide methods for simplifying frames:

Lemma 4.4 (Alias elimination) Let A and B be closed extended processes, M be a term
such that fv(M) ⊆ dom(A), and x be a variable such that x /∈ dom(A). We have A ≈l B if
and only if

{M/x} |A ≈l {M/x} |B

Proof: Both directions follow from context closure of ≈l, for the contexts {M/x} | and
νx. , respectively. In the converse direction, since x is not free in A or B, we have A ≡
νx.({M/x} |A), νx.({M/x} |A) ≈l νx.({M/x} |B), and νx.({M/x} |B) ≡ B hence A ≈l B.

18

Lemma 4.5 (Name disclosure) Let A and B be closed extended processes and x be a
variable such that x /∈ dom(A). We have A ≈l B if and only if

νn.({n/x} |A) ≈l νn.({n/x} |B)

Proof: The direct implication follows from context closure of ≈l. Conversely, we show
that the relation R defined by A R B if and only if A and B are closed extended processes
and νn.({n/x} | A) ≈l νn.({n/x} | B) for some x /∈ dom(A) is a labelled bisimulation. This
proof is detailed in Appendix D.

In Lemma 4.4, the substitution {M/x} can affect only the context, since A and B are
closed. However, the lemma implies that the substitution does not give or mask any in-
formation about A and B to the context. In Lemma 4.5, the restriction on n and the
substitution {n/x} mean that the context can access n only indirectly, through the free vari-
able x. Intuitively, the lemma says that indirect access is equivalent to direct access in this
case.

Our labelled operational semantics contrasts with a more naive semantics carried over
from the pure pi calculus, with output labels of the form νũ.N〈M〉 and rules that permit
direct output of any term, such as:

Out-Term N〈M〉.P N〈M〉−−−−→ P

Open
A

νũ.N〈M〉−−−−−−→ A′ v ∈ fv(M) ∪ fn(M) \ (fv(N) ∪ fn(N) ∪ {ũ})

νv.A
νv,ũ.N〈M〉−−−−−−−→ A′

These rules lead to a different, finer equivalence relation, which for example would distin-
guish νk, s.a〈(k, s)〉 and νk.a〈(f(k), g(k))〉. This equivalence relation is often inadequate in
applications (as in [11, Section 5.2.1]), hence our definitions.

We have also studied intermediately liberal rules for output, which permit direct output
of certain terms. In particular, the rules of the conference paper permit direct output of
channel names. That feature implies that it is not necessary to export variables of channel
types; as Section 4.5 explains, this property is needed for Theorem 4.1 for those rules. That
feature makes little sense in the present calculus, in which arbitrary terms may be used as
channels, so we abandon it in the rules above. Nevertheless, certain rules with more explicit
labels can still be helpful. We explain those rules next.

4.4 Making the Output Labels More Explicit

In the labelled operational semantics of Section 4.3, the labels for outputs do not reveal
anything about the terms being output: those terms are represented by fresh variables.
Often, however, more explicit labels can be convenient in reasoning about protocols, and
they do not cause harm as long as they only make explicit information that is immediately
available to the environment. For instance, for the process νk.a〈(Header, enc(M,k))〉, the
label νy.a〈(Header, y)〉 is more informative than νx.a〈x〉. In this example, the environment
could anyway observe that x is a pair such that fst(x) = Header and use snd(x) for y.
More generally, we rely on the following definition to characterize the information that the
environment can derive.

Definition 4.5 Variables x̃ resolve to M̃ in A if and only if A ≡ {M̃/̃x} | νx̃.A. They are
solvable in A if and only if they resolve to some terms in A.

19

Hence, when variables x̃ resolve to terms M̃ in A, they are in dom(A) and we can erase

the restriction of νx̃.A by applying the context {M̃/̃x} | and by structural equivalence.
Intuitively, A does not reveal more information than νx̃.A, because the environment can
build the terms M̃ and use them instead of x̃.

In general, when variables x̃ are in dom(A), there exist ñ, M̃ , and A′ such that A ≡
νñ.({M̃/̃x} | A′). If variables x̃ resolve to M̃ in A, then ñ can be chosen empty, so that the

terms M̃ are not under restrictions. The following lemma provides two reformulations of
Definition 4.5, including a converse to this observation. Its proof appears in Appendix E.

Lemma 4.6 The following three properties are equivalent:

1. the variables x̃ resolve to M̃ in A;

2. there exists A′ such that A ≡ {M̃/̃x} |A′;

3. (x̃ = M̃)ϕ(A) and the substitution {M̃/̃x} is cycle-free.

For example, using pairs and symmetric encryption, we let:

ϕ
def
= νk.{M/x,enc(x,k)/y,(Header,y)/z}

The variable y resolves to snd(z) in ϕ, since

ϕ ≡ {snd(z)/y} | νk.{M/x,(Header,enc(x,k))/z}

and z resolves to (Header, y) in ϕ, since

ϕ ≡ {(Header,y)/z} | νk.{M/x,enc(x,k)/y}

In contrast, x is not always solvable in ϕ (for instance, when M is k).
A second lemma shows that Definition 4.5 is robust in the sense that it is preserved by

static equivalence, so a fortiori by labelled bisimilarity:

Lemma 4.7 If A ≈s B and x̃ resolve to M̃ in A, then x̃ resolve to M̃ in B.

Proof: Static equivalence preserves property 3 of Lemma 4.6, so we conclude by
Lemma 4.6.

We introduce an alternative semantics in which the rules permit composite terms in
output labels but require that every restricted variable that is exported be solvable. In
this semantics, the label α in the relation A

α−→ A′ ranges over the same input labels
N(M) as in Section 4.3, and over generalized output labels of the form νx̃.N〈M〉, where
{x̃} ⊆ fv(M)\ fv(N). The label νx̃.N〈M〉 corresponds to an output of M on N that reveals
the variables x̃. We retain the rules for structural equivalence and reduction, and rules
In, Par, and Struct of Section 4.3. We also keep rule Scope, but only for labels with
no extrusion, that is, for labels N(M) and N〈M〉. This restriction is necessary because
variables may not remain solvable after the application of a context νu. . As a replacement
for the rule Out-Var, we use the rule Out-Term discussed in Section 4.3 and:

Open-Var

A
N〈M〉−−−−→ A′ {x̃} ⊆ fv(M) \ fv(N)

x̃ solvable in {M/z} |A′ for some z /∈ fv(A′) ∪ {x̃}

νx̃.A
νx̃.N〈M〉−−−−−−→ A′

20

These rules are more liberal than those of Section 4.3. For instance, consider A1 =
νk.a〈(f(k), g(k))〉 and A2 = νk.a〈(k, f(k))〉. With the rules of Section 4.3, we have:

Ai
νz.a〈z〉−−−−−→ νx, y.{(x,y)/z} | ϕi

where ϕi is as in Section 4.2. With the new rules, we also have:

Ai
νx,y.a〈(x,y)〉−−−−−−−−→ ϕi

This transition is the most informative for A1 since x and y behave like fresh, independent
values in ϕ1. For A2, we also have the more informative transition:

A2
νx.a〈(x,f(x))〉−−−−−−−−−→ νk.{k/x}

that reveals the link between x and y, but not that x is a name. As in this example, several
output transitions are sometimes possible, each transition leading to an extended process
with a different frame. In reasoning (for example, in proving that a relation is included in
labelled bisimilarity), it often suffices to consider any one of the transitions, so one may be
chosen so as to limit the complexity of the resulting extended processes.

We name “simple semantics” the labelled semantics of Section 4.3 and “refined seman-
tics” the semantics of this section, and “simple labels” and “refined labels” the corresponding
labels. The next theorem states that the two labelled semantics yield the same notion of
equivalence. Thus, making the output labels more explicit only makes apparent some of the
information that is otherwise kept in the static, equational part of labelled bisimilarity.

Theorem 4.2 Let ≈L be the relation of labelled bisimilarity obtained by applying Defini-
tion 4.4 to the refined semantics. We have ≈l = ≈L.

The proof of Theorem 4.2 relies on the next two lemmas, which relate simple and refined
output transitions.

Lemma 4.8 A
νx̃.N〈M〉−−−−−−→ A′ if and only if, for some z that does not occur in any of A, A′,

x̃, N , and M , A
νz.N〈z〉−−−−−→ νx̃.({M/z} | A′), {x̃} ⊆ fv(M) \ fv(N), and the variables x̃ are

solvable in {M/z} |A′.

In Lemma 4.8, the transition A
νx̃.N〈M〉−−−−−−→ A′ is performed in the refined semantics, while

the transition A
νz.N〈z〉−−−−−→ νx̃.({M/z} | A′) is performed in the simple semantics. However,

Lemma 4.9 below shows that the choice of the semantics does not matter. Lemma 4.9 is a
consequence of Lemma 4.8.

Lemma 4.9 A
νx.N〈x〉−−−−−→ A′ in the refined semantics if and only if A

νx.N〈x〉−−−−−→ A′ in the
simple semantics.

Theorem 4.2 is then proved as follows. By Lemma 4.9, ≈L is a simple-labelled bisimu-
lation, and thus ≈L ⊆ ≈l. Conversely, to show that ≈l is a refined-labelled bisimulation, it
suffices to prove its bisimulation property for any refined output label. This proof, which
relies on Lemma 4.8, and the proofs of Lemmas 4.6, 4.8, and 4.9 are detailed in Appendix E.

21

4.5 Proving Theorem 4.1 (≈ = ≈l)

A claim of Theorem 4.1 appears, without proof, in the conference version of this paper, for
the calculus as presented in that version. There, the channels in labels cannot be variables.
The claim neglects to include a corresponding hypothesis that exported variables must not
be of channel type. This hypothesis is implicitly assumed, as it holds trivially for plain
processes and is maintained, as an invariant, by output transitions. Without it, the two
extended processes νa.({a/x}) and νa.({a/x} | a〈N〉) (where the exported variable x stands
for the channel a) would constitute a counterexample: they would not be observationally
equivalent but they would be bisimilar in the labelled semantics, since neither could make a
labelled transition. Delaune et al. [53, 54] included the hypothesis in their study of symbolic
bisimulation. Avik Chaudhuri (private communication, 2007) pointed out this gap in the
statement of the theorem, and Bengtson et al. [28] discussed it as motivation for their work
on an alternative calculus with a more abstract treatment of terms, the psi calculus, which
has a mechanized metatheory. On the other hand, Liu [72] presented a proof of the theorem,
making explicit the necessary hypothesis. Her proof demonstrated that the theorem was
basically right—no radical changes or new languages were needed. More recently, Liu and
others have also developed an extension of the proof for a stateful variant of the applied pi
calculus [16].

Theorem 4.1, in its present form, does not require that hypothesis because of some of
the details of the calculus as we define it in this paper. Specifically, the labelled semantics
allows variables that stand for channels in labels. Therefore, extended processes such as
νa.({a/x} | a〈N〉) can make labelled transitions.

This section outlines the proof of Theorem 4.1. The appendix gives further details,
including all proofs that this section omits. Those details are fairly long and technical.
In particular, they rely on a definition of “partial normal forms” for extended processes,
which are designed to simplify reasoning about reductions. (In an extended process A | B,
the frame of A may affect B and vice versa, so A and B may not reduce independently of
each other; partial normal forms are designed to simplify the analysis of reductions in such
situations.) We believe that these partial normal forms may be useful in other proofs on
the applied pi calculus. In this section, we omit further specifics on partial normal forms,
since they are not essential to understanding our main arguments.

The proof of Theorem 4.1 starts with a fairly traditional definition of “labelled bisimu-
lation up to ≡”:

Definition 4.6 A relation R on closed extended processes is a labelled bisimulation up to
≡ if and only if R is symmetric and A R B implies:

1. A ≈s B;

2. if A→ A′ and A′ is closed, then B →∗ B′ and A′ ≡R≡ B′ for some closed B′;

3. if A
α−→ A′, A′ is closed, and fv(α) ⊆ dom(A), then B →∗ α−→→∗ B′ and A′ ≡R≡ B′

for some closed B′.

This definition implies that, if R is a labelled bisimulation up to ≡, then ≡R≡ is a
labelled bisimulation (since, by Lemma 4.1, static equivalence is invariant by structural
equivalence).

We use the definition to establish the following lemma:

Lemma 4.10 ≈l is closed by application of closing evaluation contexts.

22

In the proof of this lemma (which is given in Appendix C.2), we show that we can restrict
attention to contexts of the form νũ.(|C). To every relationR on closed extended processes,
we associate a relationR′= {(νũ.(A|C), νũ.(B |C)) | A R B, νũ.(|C) closing for A and B}.
We prove that, if R is a labelled bisimulation, then R′ is a labelled bisimulation up to ≡,
hence R ⊆ ≡R′≡ ⊆ ≈l. For R = ≈l, this property entails that ≈l is closed by application
of evaluation contexts νũ.(| C).

Another lemma characterizes barbs in terms of labelled transitions:

Lemma 4.11 Let A be a closed extended process. We have A ⇓a if and only if A→∗ νx.a〈x〉−−−−−→
A′ for some fresh variable x and some A′.

We then obtain Lemma 4.12, which is one direction of Theorem 4.1:

Lemma 4.12 ≈l ⊆ ≈.

Proof: We show that ≈l satisfies the three properties of Definition 4.1, as follows.

1. To show that ≈l preserves barbs, we apply Lemma 4.11 and use Properties 2 and 3 of
Definition 4.4.

2. Suppose that A ≈l B, A →∗ A′, and A′ is closed. Given the trace A = A0 → A1 →
. . . → An = A′, we instantiate all variables in

⋃n
i=0(fv(Ai) \ dom(Ai)) with fresh

names. This instantiation yields a trace in which all intermediate processes are closed.
We can then conclude that B →∗ B′ and A′ ≈l B′ for some B′ by Property 2 of
Definition 4.4.

3. ≈l is closed by application of closing evaluation contexts by Lemma 4.10.

Moreover, ≈l is symmetric. Since ≈ is the largest relation that satisfies these properties, we
obtain ≈l ⊆ ≈.

The other direction of Theorem 4.1 relies on two lemmas that characterize input and
output transitions. The first lemma characterizes inputs N(M) using processes of the form

T pN(M)

def
= p〈p〉 | N〈M〉.p(x). Here, the use of p as a message in p〈p〉 is arbitrary: we could

equally use processes of the form p〈M ′〉 for any term M ′.

Lemma 4.13 Let A be a closed extended process. Let N and M be terms such that
fv(N〈M〉) ⊆ dom(A). Let p be a name that does not occur in A, M , and N .

1. If A
N(M)−−−−→ A′ and p does not occur in A′, then A | T pN(M) →→ A′ and A′ 6⇓p.

2. If A | T pN(M) →
∗ A′ and A′ 6⇓p, then A→∗ N(M)−−−−→→∗ A′.

The second lemma characterizes outputs νx.N〈x〉 using processes of the form T p,q
νx.N〈x〉

def
=

p〈p〉 |N(x).p(y).q〈x〉.

Lemma 4.14 Let A be a closed extended process. Let N be a term such that fv(N) ⊆
dom(A). Let p and q be names that do not occur in A and N .

1. If A
νx.N〈x〉−−−−−→ A′ and p and q do not occur in A′, then A | T p,q

νx.N〈x〉 →→ νx.(A′ | q〈x〉),

νx.(A′ | q〈x〉) 6⇓p, and x /∈ dom(A).

23

2. Let x be a variable such that x /∈ dom(A). If A | T p,q
νx.N〈x〉 →

∗ A′′ and A′′ 6⇓ p, then

A→∗ νx.N〈x〉−−−−−→→∗ A′ and A′′ ≡ νx.(A′ | q〈x〉) for some A′.

A further lemma provides a way of proving the equivalence of two extended processes
with the same domain by putting them in a context that binds the variables in their domain
and extrudes them. Given a family of processes Pi for i in a finite set I, we write

∏
i Pi for

the parallel composition of the processes Pi if I is not empty, and for 0 otherwise.

Lemma 4.15 Let A and B be two closed extended processes with a same domain that

contains x̃. Let Ex̃[]
def
= νx̃.(

∏
x∈x̃ nx〈x〉 |) using names nx that do not occur in A or

B. If Ex̃[A] ≈ Ex̃[B], then A ≈ B.

The final lemma is the other direction of Theorem 4.1:

Lemma 4.16 ≈ is a labelled bisimulation, and thus ≈ ⊆ ≈l.

Proof: The relation ≈ is symmetric. We show that it satisfies the three properties of
Definition 4.4.

1. If A ≈ B, then A ≈s B, by Lemma 4.3.

2. If A ≈ B, A → A′, and A′ is closed, then B →∗ B′ and A′ ≈ B′ for some B′, by
Property 2 of the definition of ≈.

3. IfA ≈ B, A
α−→ A′, A′ is closed, and fv(α) ⊆ dom(A), thenB →∗ α−→→∗ B′ andA′ ≈ B′

for some B′. To prove this property, we rely on characteristic parallel contexts Tα that
unambiguously test for a labelled transition

α−→ using the disappearance of a barb ⇓ p,
and do not otherwise affect ≈.

Assume A ≈ B, A
α−→ A′, A′ is closed, and fv(α) ⊆ dom(A).

(a) For input α = N(M) (where N and M may contain variables exported by A and
B) and some fresh name p, we have A|T pN(M) →→ A′ 6⇓p by Lemma 4.13(1), hence

B | T pN(M) →
∗ B′ 6⇓p with A′ ≈ B′, hence B →∗ N(M)−−−−→→∗ B′ by Lemma 4.13(2).

(b) For output α = νx.N〈x〉 and some fresh names p and q, we have A |T p,q
νx.N〈x〉 →→

νx.(A′|q〈x〉) 6⇓p and x /∈ dom(A) by Lemma 4.14(1), hence B|T p,q
νx.N〈x〉 →

∗ B′′ 6⇓p

for some B′′, hence B →∗ νx.N〈x〉−−−−−→→∗ B′ and B′′ ≡ νx.(B′ | q〈x〉) for some B′ by
Lemma 4.14(2). We obtain a pair νx.(A′ | q〈x〉) ≈ νx.(B′ | q〈x〉), and conclude
by applying Lemma 4.15.

Hence ≈ is a labelled bisimulation, and ≈ ⊆ ≈l, since ≈l is the largest labelled bisimulation.

Theorem 4.1 is an immediate consequence of Lemmas 4.12 and 4.16.

24

5 Diffie-Hellman Key Agreement

The fundamental Diffie-Hellman protocol allows two principals to establish a shared secret
by exchanging messages over public channels [57]. The principals need not have any shared
secrets in advance. The basic protocol, on which we focus here as an example, does not pro-
vide authentication; therefore, a “bad” principal may play the role of either principal in the
protocol. On the other hand, the two principals that follow the protocol will communicate
securely with one another afterwards, even in the presence of active attackers. In extended
protocols, such as the Station-to-Station protocol [58] and SKEME [67], additional messages
perform authentication.

We program the basic protocol in terms of the binary function symbol f and the unary
function symbol g, with the equation:

f(x, g(y)) = f(y, g(x)) (5)

Concretely, the functions are f(x, y) = yx mod p and g(x) = αx mod p for a prime p and a
generator α of Z∗p , and we have the equation f(x, g(y)) = (αy)x = αy×x = αx×y = (αx)y =
f(y, g(x)). However, we ignore the underlying number theory, working abstractly with f and
g.

The protocol has two symmetric participants, which we represent by the processes A0

and A1. The protocol establishes a shared key, then the participants respectively run P0

and P1 using the key. We use the public channel c01 for messages from A0 to A1 and the
public channel c10 for communication in the opposite direction. (Although the use of two
distinct public channels is of no value for security, it avoids some trivial confusions, so makes
for a cleaner presentation.) We assume that none of the values introduced in the protocol
appears in P0 and P1, except for the key.

In order to establish the key, A0 invents a name n0, sends g(n0) to A1, and A1 proceeds
symmetrically. Then A0 computes the key as f(n0, g(n1)) and A1 computes it as f(n1, g(n0)),
with the same result. We find it convenient to use the following substitutions for A0’s
message and key:

σ0
def
= {g(n0)/x0}

φ0
def
= {f(n0,x1)/y}

and the corresponding substitutions σ1 and φ1, as well as the frame:

ϕ
def
= (νn0. (φ0 | σ0)) | (νn1. σ1)

With these notations, A0 is:

A0
def
= νn0.(c01〈x0σ0〉 | c10(x1).P0φ0)

and A1 is analogous.
Two reductions represent a normal run of the protocol:

A0 |A1 →→ νx0, x1, n0, n1. (P0φ0 | P1φ1 | σ0 | σ1) (6)

≡ νx0, x1, n0, n1, y. (P0 | P1 | φ0 | σ0 | σ1) (7)

≡ νy.(P0 | P1 | νx0, x1. ϕ) (8)

The two communication steps (6) use structural equivalence to activate the substitutions
σ0 and σ1 and extend the scope of the secret values n0 and n1. The structural equivalence

25

(7) crucially relies on equation (5) in order to reuse the active substitution φ0 instead of φ1
after the reception of x0 in A1. The next structural equivalence (8) tightens the scope for
restricted names and variables, then uses the definition of ϕ.

We model an eavesdropper as a process that intercepts messages on c01 and c10, remem-
bers them, but forwards them unmodified. In the presence of this passive attacker, the
operational semantics says that A0 |A1 yields instead:

νy.(P0 | P1 | ϕ)

The sequence of steps that leads to this result is similar to the one above. The absence of
the restrictions on x0 and x1 corresponds to the fact that the eavesdropper has obtained
the values of these variables.

The following theorem relates this process to

νk.(P0 | P1){k/y}

which represents the bodies P0 and P1 of A0 and A1 sharing a key k. This key appears
as a simple shared name, rather than as the result of communication and computation.
Intuitively, we may read νk.(P0 | P1){k/y} as the ideal outcome of the protocol: P0 and P1

execute using a shared key, without concern for how the key was established, and without
any side-effects from weaknesses in the establishment of the key. The theorem says that
this ideal outcome is essentially achieved, up to some “noise”. This “noise” is a substitution
that maps x0 and x1 to unrelated, fresh names. It accounts for the fact that an attacker
may have the key-exchange messages, and that they look just like unrelated values to the
attacker. In particular, the key in use between P0 and P1 has no observable relation to those
messages, or to any other left-over secrets. We view this independence of the shared key as
an important forward-secrecy property.

Theorem 5.1 Let P0 and P1 be processes with free variable y where the name k does not
appear. We have:

νy.(P0 | P1 | ϕ) ≈ νk.(P0 | P1){k/y} | νs0.{s0/x0} | νs1.{s1/x1}

Proof: The theorem follows from Lemma 4.2 and the static equivalence ϕ ≈s
νs0, s1, k.{s0/x0

,s1/x1
,k/y}, which says that the frame ϕ generated by the protocol execu-

tion is equivalent to one that maps variables to fresh names. This static equivalence is
proved automatically by ProVerif, using the technique presented in [35]. We conclude by
applying the context νy.(P0 | P1 |).

Extensions of the basic protocol add rounds of communication that confirm the key and
authenticate the principals. We have studied one such extension with key confirmation.
There, the shared secret f(n0, g(n1)) is used in confirmation messages. Because of these
messages, the shared secret can no longer be equated with a virgin key for P0 and P1.
Instead, the final key is computed by hashing the shared secret. This hashing guarantees
the independence of the final key.

We have also studied more advanced protocols that rely on a Diffie-Hellman key ex-
change, such as the JFK protocol [13]. The analysis of JFK in the applied pi calculus [6]
illustrates the composition of manual reasoning with invocations of ProVerif.

26

νk.(A |B)
a(M)−−−→ νk.(A |B | b〈(M,mac(k,M))〉)
νx.b〈x〉−−−−−→ νk.(A |B | {(M,mac(k,M))/x})
b(x)−−→→ νk.(A | c〈M〉 | {(M,mac(k,M))/x})
νy.c〈y〉−−−−→ νk.(A | {(M,mac(k,M))/x,

M/y})

Figure 4: A correct trace

6 Hash Functions and Message Authentication Codes

Section 3 briefly discusses cryptographic hash functions. In this section we continue their
study, and also treat message authentication codes (MACs). We consider constructions
of both hash functions and MACs. These examples provide a further illustration of the
usefulness of equations in the applied pi calculus. On the other hand, some aspects of
the constructions are rather low-level, and we would not expect to account for all their
combinatorial details (e.g., the “birthday attacks” [77]). A higher-level task is to express
and reason about protocols treating hash functions and MACs as primitive; this is squarely
within the scope of our approach.

6.1 Using MACs

MACs serve to authenticate messages using shared keys. When k is a key and M is a mes-
sage, and k is known only to a certain principal A and to the recipient B of the message, B
may take mac(k,M) as proof that M comes from A. More precisely, B can check mac(k,M)
by recomputing it upon receipt of M and mac(k,M), and reason that A must be the sender
of M . This property should hold even if A generates MACs for other messages as well; those
MACs should not permit forging a MAC for M . In the worst case, it should hold even if A
generates MACs for other messages on demand.

Using a new binary function symbol mac, we may describe this scenario by the following
processes:

A
def
= !a(x).b〈(x,mac(k, x))〉

B
def
= b(y).if mac(k, fst(y)) = snd(y) then c〈fst(y)〉

S
def
= νk.(A |B)

The process S represents the complete system, composed of A and B; the restriction on k
means that k is private to A and B. The process A receives messages on a public channel
a and returns them MACed on the public channel b. When B receives a message on b, it
checks its MAC and acts upon it, here simply by forwarding on a channel c. Intuitively,
we would expect that B forwards on c only a message that A has MACed. In other words,
although an attacker may intercept, modify, and inject messages on b, it should not be able
to forge a MAC and trick B into forwarding some other message. Hence, every message
output on c equals a preceding input on a, as illustrated in Figure 4.

This property can be expressed precisely in terms of the labelled semantics and it can
be checked without too much difficulty when mac is a primitive function symbol with no
equations. The property remains true even if there is a function extract that maps a MAC

27

mac(x, y) to the underlying cleartext y, with the equation extract(mac(x, y)) = y. Since
MACs are not supposed to guarantee secrecy, such a function may well exist, so it is safer
to assume that it is available to the attacker.

The property is more delicate if mac is defined from other operations, as it invariably is
in practice. In that case, the property may even be taken as the specification of MACs [63].
Thus, a MAC implementation may be deemed correct if and only if the process S works as
expected when mac is instantiated with that implementation. More specifically, the next
section deals with the question of whether the property remains true when mac is defined
from hash functions.

6.2 Constructing Hash Functions and MACs

In Section 3, we give no equations for hash functions. In practice, following Merkle and
Damg̊ard, hash functions are commonly defined by iterating a basic binary compression
function, which maps two input blocks to one output block [77]. Furthermore, keyed hash
functions include a key as an additional argument. Thus, we may have:

h(x, y0 :: y1 :: z) = h(f(x, y0), y1 :: z) (9)

h(x, y :: nil) = f(x, y) (10)

Here, we use the sorts Block for blocks and BlockList for sequences of blocks, defined as lists
as in Section 3, with sorts Block and BlockList instead of Data and List, respectively. The
function h : Block×BlockList→ Block is the keyed hash function, f : Block×Block→ Block
is the compression function.

In these equations we are rather abstract in our treatment of blocks, their sizes, and
therefore of padding and other related issues. We also ignore two common twists: some
functions use initialization vectors to start the iteration, and some append a length block
to the input. Nevertheless, we can explain various MAC constructions, describing flaws in
some and reasoning about the properties of others.

A first, classical definition of a MAC from a keyed hash function h is:

mac(x, y)
def
= h(x, y)

For instance, the MAC of a three-block message M = M1 :: M2 :: M3 :: nil with key k
is mac(k,M) = f(f(f(k,M1),M2),M3). More generally, the MAC of a n-block message
M = M1 :: . . . :: Mn :: nil is mac(k,M) = f(. . . (f(k,M1), . . .),Mn). This implementation is
subject to a well-known extension attack. Given the MAC of M = M1 :: . . . :: Mn :: nil,
an attacker can compute the MAC of any extension M ++ N = M1 :: . . . :: Mn :: N :: nil
without knowing the MAC key, since mac(k,M ++N) = f(mac(k,M), N).

We describe the extension attack formally, through the operational semantics of the
process S of Section 6.1, in Figures 5 and 6. These figures use the semantics of Sections 4.3
and 4.4 respectively. In both cases, we assume k 6∈ fn(M) ∪ fn(N). Additionally, we adopt
the sorts pair : BlockList × Block → Data, fst : Data → BlockList, and snd : Data → Block,
the abbreviation (M,N) for pair(M,N), and the equations (1) and (2) of Section 3. In
Figures 5 and 6, we see that the message M that the system MACs differs from the message
M ++ N that it forwards on c. These transitions are not enabled with the primitive MAC
of Section 6.1, hence S with the proposed MAC implementation is not labelled bisimilar to
S with the primitive MAC.

There are several ways to address extension attacks, and indeed the literature contains
many MAC constructions that are not subject to these attacks. We have considered some

28

νk.(A |B)
a(M)−−−→ νk.(A |B | b〈(M,mac(k,M))〉)
νx.b〈x〉−−−−−→ νk.(A |B | {(M,mac(k,M))/x})

b((M++N,h(snd(x),N)))−−−−−−−−−−−−−−−→→ νk.(A | c〈M ++N〉 | {(M,mac(k,M))/x})
νy.c〈y〉−−−−→ νk.(A | {(M,mac(k,M))/x,

M++N/y})

Figure 5: An attack scenario

νk.(A |B)
a(M)−−−→ νk.(A |B | b〈(M,mac(k,M))〉)

νx.b〈(M,x)〉−−−−−−−→ νk.(A |B | {mac(k,M)/x})
b((M++N,h(x,N)))−−−−−−−−−−−−→→ νk.(A | c〈M ++N〉 | {mac(k,M)/x})

c〈M++N〉−−−−−−→ νk.(A | {mac(k,M)/x})

Figure 6: An attack scenario (with refined labels)

of them. Here we describe a construction that uses the MAC key twice:

mac(x, y)
def
= f(x, h(x, y))

Under this definition, the MAC of M = M1 :: M2 :: M3 :: nil with key k is mac(k,M) =
f(k, f(f(f(k,M1),M2),M3)), and the process S forwards on c only a message that it has
previously MACed, as desired.

Looking beyond the case of S, we can prove a more general result by comparing the
situation where mac is primitive (and has no special equations) and one with the definition
of mac(x, y) as f(x, h(x, y)). Given a name k and an extended process C that uses the symbol
mac, we write [[C]] for the translation of C in which the definition of mac is expanded wherever
the key k is used, with f(k, h(k,M)) replaced for mac(k,M). The theorem says that this
translation yields an equivalent process (so, intuitively, the constructed MACs work as well
as the primitive ones). It applies to a class of equational theories generated by rewrite rules.

Theorem 6.1 Suppose that the signature Σ is equipped with an equational theory generated
by a convergent rewrite system such that mac and f do not occur in the left-hand sides of
rewrite rules; the only rewrite rules with h at the root of the left-hand side are those of (9)
and (10) oriented from left to right; there are no rewrite rules with :: nor nil at the root of
the left-hand side; and names do not occur in rewrite rules. Suppose that C is closed and
the name k appears only as first argument of mac in C. Then νk.C ≈ νk.[[C]].

In the proof of this theorem (which is given in Appendix F), we use the same notion of
partial normal form as in the proof of Theorem 4.1. We define a relation R by A R B if and
only if A and B are closed, A ≡ νk.C, B ≡ νk.[[C]], C is a closed extended process in partial
normal form, and the name k appears only as MAC key in C. We show that the relation
R ∪ R−1 (that is, the union of R with its inverse relation) is a labelled bisimulation. Static
equivalence follows from the preservation of equality by the translation [[·]] for terms in

29

which k occurs only as MAC key; reductions commute with the translation [[·]] and preserve
the restriction on the occurrences of the key k. We conclude by Theorem 4.1. An alternative
proof of similar complexity would show that R ∪ R−1 is an observational bisimulation.

Theorem 6.1 considers a single MAC key at a time. For an extended process with several
MAC keys k1, . . . , kn, we can apply Theorem 6.1 once for each key ki, using structural
equivalence to move each restriction νki to the root of the extended process.

Theorem 6.1 allows cryptographic primitives other than hash functions and MACs, pro-
vided the assumptions on the equational theory are satisfied. The following corollary states
a simple special case for the primitives mentioned in this section. It suffices for treating the
system S.

Corollary 6.1 Suppose that the signature Σ is equipped with the equational theory defined
by the equations (1), (2), (3), (4), (9), and (10). Suppose that C is closed and the name k
appears only as first argument of mac in C. Then νk.C ≈ νk.[[C]].

6.3 Constructing Robust Hash Functions

Constructions of hash functions, of the kind described in Section 6.2, typically impose
constraints on the use of these functions. For example, some care is needed in order to
thwart extension attacks in the definition of MACs. The possibility of such attacks stems
from structural flaws in the constructions; details such as the iteration of a compression
function are not completely hidden, lead to unwanted additional properties, and can be
exploited.

A line of work in cryptography studies safer hash functions with stronger guarantees [48].
Although these functions are generally built much as in Section 6.2 by iterating a compres-
sion function, their design conceals their inner structure. The functions thus aim to behave
like abstract “random oracles” on inputs of arbitrary length. A notion of indifferentiability
captures this goal.

In this section, as a final, more advanced example, we describe one design that strength-
ens the Merkle-Damg̊ard approach, following Coron et al. [48, Section 3.4]. In this example,
the attacker is given only indirect access to functions such as the hash function h. We model
this restriction by inserting a private name k as the first argument of h. (Cryptographically,
the name k may reflect the initial random sampling of h.) We refer to this argument as
a key, of sort Key. We use sorts Block for blocks and BlockList for sequences of blocks,
defined as lists as in Section 3, with sorts Block and BlockList instead of Data and List,
respectively. We use sort Block2 for pairs of blocks, with pair : Block × Block → Block2,
fst : Block2 → Block, and snd : Block2 → Block, the abbreviation (x, y) for pair(x, y), and
the equations

fst((x, y)) = x snd((x, y)) = x (fst(x), snd(x)) = x (11)

The third equation of (11) is not present in Section 3; it models that all elements of sort
Block2 are pairs. We use sort Block3 for pairs of a Block2 and a Block defined in the same
way with overloaded function symbols pair, fst, and snd, and sort Bool for booleans.

We define the hash function h : Key × BlockList→ Block by:

h(k, z) = h2(k, (0, 0), z) (12)

where

h2(k, x, nil) = fst(x) (13)

h2(k, x, y :: z) = h2(k, f(k, (x, y)), z) (14)

30

The function h2 : Key × Block2 × BlockList → Block uses a compression function f : Key ×
Block3 → Block2. In h2(k, x, z), the variable x represents the fixed-size internal state of
the hash function and z is the remainder of the input. The internal state starts at (0, 0)
and is updated by applications of the compression function f as input blocks are processed.
Finally, only the first half of the internal state is returned.

For instance, the hash of a two-block messageM = M1 :: M2 :: nil with key k is h(k,M) =
fst(f(k, (f(k, ((0, 0),M1)),M2))). More generally, we have

h(k,M1 :: . . . :: Mn :: nil) = fst(f(k, (. . . f(k, ((0, 0),M1)) . . . ,Mn)))

Indifferentiability requires that the hash function behave like a black box (like a “random
oracle”), even in interaction with an adversary that also has access to the underlying com-
pression function. The compression function and the hash function are related, of course.
However, as far as the adversary can tell, it is the compression function that may be de-
fined from the hash function (in fact, from an ideal hash function without equations as in
Section 3) rather than the other way around. Thus, we express indifferentiability as the
equivalence of two systems, each of which provides access to the hash function and the
compression function. In the applied pi calculus, one of the systems is:

νk.(A0
h |A0

f)

where the processes

A0
h = !ch(y).if ne list(y) = true then c′h〈h(k, y)〉

A0
f = !cf (x).c′f 〈f(k, x)〉

answer requests to evaluate h and f with key k. We restrict ourselves to hashes of non-empty
sequences of blocks. In practice, one never hashes the empty string, because the input of
the hash function is padded to a non-zero multiple of the block length. This restriction is
important in this example, because the definition of h yields h(k, nil) = 0, and this special
hash value would break indifferentiability. In order to enforce this restriction, we use symbols
true : Bool and ne list : BlockList→ Bool, with equations

ne list(x :: nil) = true ne list(x :: y :: z) = ne list(y :: z) (15)

The term ne list(M) is equal to true when M is a non-empty list.
The other system offers an analogous interface, for an ideal hash function h′ : Key ×

BlockList→ Block and for a stateful compression function built from h′:

νk.(A1
h |A1

f)

The process A1
h answers requests to evaluate an ideal hash function h′:

A1
h = !ch(y).if ne list(y) = true then c′h〈h

′(k, y)〉

and A1
f simulates the compression function using h′. The code for A1

f , which is consider-
ably more intricate, captures the core of the security argument as it might appear in the
cryptography literature. (The paper by Coron et al. [48] omits this argument and, as far as
we know, this argument does not appear elsewhere.)

A1
f = ν`, cs.(!cs(s).cf (x).`〈x, s, s〉 | !Q | cs〈((0, 0), nil) :: nil〉)

31

Q = `(x, t, s).if t = nil then P0 else

if fst(hd(t)) = fst(x) then P1 else `〈x, tl(t), s〉
P0 = c′f 〈f

′(k, x)〉 | cs〈s〉
P1 = let z = snd(hd(t)) in

let z′ = z ++ snd(x) in
let r = (h′(k, z′), fc(k, z

′)) in

c′f 〈r〉 | cs〈(r, z′) :: s〉

In this definition, let x = M in P is syntactic sugar for P{M/x}, `(x, t, s).P is syntactic
sugar for `(y).let x = fst(y) in let t = fst(snd(y)) in let s = snd(snd(y)) in P where y is
a fresh variable, and `〈x, t, s〉 is syntactic sugar for `〈(x, (t, s))〉, with the appropriate sorts
and overloading of the function symbols for pairs. The function symbol f ′ : Key×Block3→
Block2 represents the compression function outside the domain used for implementing the
hash function, and the function symbol fc : Key × BlockList → Block represents the second
projection of the compression function inside that domain. The channel cs maintains global
private state, a lookup table that maps each term (h′(k,M), fc(k,M)) with M = M1 ::
. . . :: Mn :: nil built as a result of previous compression requests to the term M , and initially
maps (0, 0) to nil. This lookup table is represented as a list of pairs. Each table element, of
sort Block2Blocks, is a pair of a Block2 and a BlockList; the table, of sort Block2Blocks List,
is a list of Block2Blocks; we overload the function symbols for pairs and lists. Upon a
compression request with input x, the process Q looks up fst(x) in the table: Q receives
as input x, the initial state of the table s, and the tail t of the lookup table. It uses a
local channel l for encoding the recursive call. The auxiliary processes P0 and P1 complete
compression requests in the cases where lookups fail and succeed, respectively. When a
lookup fails, the compression request is outside the domain used for implementing the hash
function, so P0 answers it using f ′, and leaves the table unchanged. When a lookup succeeds,
we have either fst(x) = (h′(k,M), fc(k,M)) with M = M1 :: . . . :: Mn−1 :: nil and n > 0
or fst(x) = (0, 0) and we let M = nil. The lookup yields z = M , P1 computes z′ =
z ++ snd(x) and returns r = (h′(k, z′), fc(k, z

′)) as result of the compression request. The
table is extended by adding the mapping from r to z′.

Let us now explain, informally, why this code ensures that the results of the compression
function are consistent with those of hash computations. The result of a compression request
with argument x needs to be made consistent with the hash function when

x = (f(k, (. . . f(k, ((0, 0),M1)) . . . ,Mn−1)),Mn) (16)

for some M1, . . . ,Mn (n > 0), because in that case

h(k,M1 :: . . . :: Mn :: nil) = fst(f(k, x)) (17)

that is, in the system νk.(A0
h |A0

f), the result of the hash request with argument M1 ::

. . . :: Mn :: nil computed by A0
h is equal to the first block of the result of the compression

request with argument x computed by A0
f . We need to have an analogous equality in

the system νk.(A1
h |A1

f). In the system νk.(A0
h |A0

f), equality (16) holds exactly when
fst(x) is the result of previous compression requests f(k, (. . . f(k, ((0, 0),M1)) . . . ,Mn−1)) for
some M1, . . . ,Mn−1. In the system νk.(A1

h |A1
f), the table lookup tests a corresponding

condition and, when it succeeds, P1 retrieves z = M1 :: . . . :: Mn−1 :: nil, computes z′ =
M1 :: . . . :: Mn−1 :: Mn :: nil since snd(x) = Mn, and returns r = (h′(k, z′), fc(k, z

′)). Hence,
fst(r) = h′(k, z′) and the result of the hash request with argument z′ = M1 :: . . . :: Mn :: nil

32

computed by A1
h is equal to the first block of the result r of the compression request with

argument x computed by A1
f .

Formally, we obtain the following observational equivalence:

Theorem 6.2 νk.(A0
h |A0

f) ≈ νk.(A1
h |A1

f).

In the proof of this theorem (which is given in Appendix G), we define a relation R between
configurations of the two systems, and show that R ∪ R−1 is a labeled bisimulation. A key
step of this proof consists in proving static equivalence between related configurations; this
step formalizes the informal explanation of the process Af1 given above. We conclude by
Theorem 4.1.

7 Related Work

This section aims to position the applied pi calculus with respect to research on process
calculi and on the analysis of security protocols. As discussed in Section 1, the applied pi
calculus has been the basis for much further work since its initial publication; this section
does not discuss many papers that build on the applied pi calculus.

7.1 Process Calculi

The applied pi calculus has many commonalities with the original pi calculus [81] and
its relatives, such as the spi calculus [11] (discussed above). In particular, the model of
communication adopted in the applied pi calculus is deliberately classical: communication
is through named channels, and value computation is rather separate from communication.

Furthermore, active substitutions are reminiscent of the constraints of the fusion calcu-
lus [95]. They are especially close to the substitution environments that Boreale et al. employ
in their proof techniques for a variant of the spi calculus with a symmetric cryptosystem [39].
We incorporate substitutions into processes, systematize them, and generalize from symmet-
ric cryptosystems to arbitrary operations and equations.

7.2 Analysis of Security Protocols

The analysis of a security protocol generally requires reasoning about its possible executions.
However, the ways of talking about the executions and their properties vary greatly. We
use a process calculus whose semantics provides a detailed specification for sets of traces.
Because the process calculus has a proper “new” construct (like the pi calculus but unlike
CSP), it provides a direct account of the generation of new keys and other fresh quantities.
It also enables reasoning with equivalence and implementation relations. Furthermore, the
process calculus permits treating security protocols as programs written in a programming
notation—subject to typing, to other static analyses, and to translations [1, 9, 10, 2, 38, 41].

As in many other works (e.g., [59, 55, 78, 66, 74, 91, 84, 83, 94, 11, 51, 15, 60, 18, 50, 90]),
our use of the applied pi calculus conveniently avoids matters of computational complexity
and probability. In contrast, other techniques for the analysis of security protocols employ
more concrete computational models, where principals are basically Turing machines that
manipulate bitstrings, and security depends on the computational limitations of attackers
(e.g., [96, 64, 65, 27, 63]).

Although these two approaches remained rather distinct during the 1980s and 1990s,
fruitful connections have developed more recently (e.g., [71, 85, 12, 52, 33, 37, 45, 19, 5, 23]).
In particular, some work interprets symbolic proofs in terms of concrete, bitstring-based

33

models [12], in some cases specifically studying the “computational soundness” of the applied
pi calculus [26, 45, 19]. Other work focuses directly on those concrete models but benefits
from notations and ideas from process calculi and programming languages. For example,
the tool CryptoVerif [33, 37] provides guarantees in terms bitstrings, running times, and
probabilities, but its input language is strongly reminiscent of the applied pi calculus, which
influenced it—rather than of Turing machines.

8 Conclusion

In this paper, we describe a uniform extension of the pi calculus, the applied pi calculus,
in which messages may be compound values, not just channel names. We study its theory,
developing its semantics and proof techniques. Although the calculus has no special, built-in
features to deal with security, it has proved useful in the analysis of security protocols.

Famously, the pi calculus is the language of those lively social occasions where all con-
versations are exchanges of names. The applied pi calculus opens the possibility of more
substantial, structured conversations; the cryptic character of some of these conversations
can only add to their charm and to their tedium.

Acknowledgements We thank Rocco De Nicola, Andy Gordon, Tony Hoare, and Phil
Rogaway for discussions that contributed to this work. Georges Gonthier and Jan Jürjens
suggested improvements to the presentation of the conference version of this paper. Steve
Kremer and Ben Smyth provided helpful comments on a draft of this paper.

References

[1] Mart́ın Abadi. Protection in programming-language translations. In Kim G. Larsen,
Sven Skyum, and Glynn Winskel, editors, Proceedings of the 25th International Col-
loquium on Automata, Languages and Programming, volume 1443 of Lecture Notes in
Computer Science, pages 868–883, Heidelberg, July 1998. Springer. Also Digital Equip-
ment Corporation Systems Research Center report No. 154, April 1998.

[2] Mart́ın Abadi. Secrecy by typing in security protocols. Journal of the ACM, 46(5):749–
786, September 1999.

[3] Mart́ın Abadi. Security protocols: Principles and calculi. In Alessandro Aldini and
Roberto Gorrieri, editors, Foundations of Security Analysis and Design IV, FOSAD
2006/2007 Tutorial Lectures, volume 4677 of Lecture Notes in Computer Science, pages
1–23, Heidelberg, 2007. Springer.

[4] Mart́ın Abadi and Bruno Blanchet. Computer-assisted verification of a protocol for
certified email. Science of Computer Programming, 58(1–2):3–27, October 2005. Special
issue SAS’03.

[5] Mart́ın Abadi, Bruno Blanchet, and Hubert Comon-Lundh. Models and proofs of
protocol security: A progress report. In Ahmed Bouajjani and Oded Maler, editors,
Computer Aided Verification, 21st International Conference, volume 5643 of Lecture
Notes in Computer Science, pages 35–49, Heidelberg, 2009. Springer.

[6] Mart́ın Abadi, Bruno Blanchet, and Cédric Fournet. Just fast keying in the pi calculus.
ACM Transactions on Information and System Security, 10(2):1–59, 2007.

34

[7] Mart́ın Abadi and Véronique Cortier. Deciding knowledge in security protocols under
equational theories. Theoretical Computer Science, 367(1–2):2–32, November 2006.

[8] Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure communi-
cation. In POPL 2001: Proceedings 28th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 104–115, New York, NY, January 2001.
ACM Press.

[9] Mart́ın Abadi, Cédric Fournet, and Georges Gonthier. Secure implementation of chan-
nel abstractions. In Proceedings of the 13th Annual IEEE Symposium on Logic in
Computer Science, pages 105–116, Los Alamitos, CA, June 1998. IEEE Computer So-
ciety.

[10] Mart́ın Abadi, Cédric Fournet, and Georges Gonthier. Authentication primitives and
their compilation. In Proceedings of the 27th ACM Symposium on Principles of Pro-
gramming Languages, pages 302–315, New York, NY, January 2000. ACM Press.

[11] Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The
spi calculus. Information and Computation, 148(1):1–70, January 1999. An extended
version appeared as Digital Equipment Corporation Systems Research Center report
No. 149, January 1998.

[12] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (The com-
putational soundness of formal encryption). Journal of Cryptology, 15(2):103–127, 2002.

[13] W. Aiello, S.M. Bellovin, M. Blaze, R. Canetti, J. Ionnidis, A.D Keromytis, and
O. Reingold. Just fast keying: Key agreement in a hostile internet. ACM Transactions
on Information and System Security, 7(2):1–30, May 2004.

[14] Xavier Allamigeon and Bruno Blanchet. Reconstruction of attacks against crypto-
graphic protocols. In 18th IEEE Computer Security Foundations Workshop (CSFW-
18), pages 140–154, Los Alamitos, CA, June 2005. IEEE Computer Society.

[15] Roberto M. Amadio and Denis Lugiez. On the reachability problem in cryptographic
protocols. In Catuscia Palamidessi, editor, CONCUR 2000: Concurrency Theory (11th
International Conference), volume 1877 of Lecture Notes in Computer Science, pages
380–394, Heidelberg, August 2000. Springer.

[16] Myrto Arapinis, Jia Liu, Eike Ritter, and Mark Ryan. Stateful applied pi calculus.
In Mart́ın Abadi and Steve Kremer, editors, Principles of Security and Trust—Third
International Conference, volume 8414 of Lecture Notes in Computer Science, pages
22–41, Heidelberg, 2014. Springer.

[17] Myrto Arapinis, Eike Ritter, and Mark Dermot Ryan. StatVerif: Verification of stateful
processes. In 24th IEEE Computer Security Foundations Symposium, pages 33–47, Los
Alamitos, CA, 2011. IEEE Computer Society.

[18] Alessandro Armando, David Basin, Yohan Boichut, Yannick Chevalier, Luca Com-
pagna, Jorge Cuellar, Paul Hankes Drielsma, Pierre-Cyrille Héam, Olga Kouchnarenko,
Jacopo Mantovani, Sebastian Mödersheim, David von Oheimb, Michaël Rusinowitch,
Judson Santiago, Mathieu Turuani, Luca Viganó, and Laurent Vigneron. The AVISPA
tool for automated validation of Internet security protocols and applications. In Kousha

35

Etessami and Sriram K. Rajamani, editors, Computer Aided Verification, 17th Inter-
national Conference, CAV 2005, volume 3576 of Lecture Notes in Computer Science,
pages 281–285, Heidelberg, July 2005. Springer.

[19] Michael Backes, Dennis Hofheinz, and Dominique Unruh. Cosp: a general framework
for computational soundness proofs. In 16th ACM Conference on Computer and Com-
munications Security, pages 66–78, New York, NY, 2009. ACM Press.

[20] Michael Backes, Matteo Maffei, and Dominique Unruh. Zero-knowledge in the applied
pi-calculus and automated verification of the direct anonymous attestation protocol.
In 29th IEEE Symposium on Security and Privacy, pages 202–215, Los Alamitos, CA,
May 2008. IEEE Computer Society.

[21] Michael Baldamus, Joachim Parrow, and Björn Victor. Spi calculus translated to pi-
calculus preserving may-tests. In 19th Annual IEEE Symposium on Logic in Computer
Science, pages 22–31, Los Alamitos, CA, 2004. IEEE Computer Society.

[22] Chetan Bansal, Karthikeyan Bhargavan, and Sergio Maffeis. Discovering concrete at-
tacks on website authorization by formal analysis. In 25th IEEE Computer Security
Foundations Symposium, pages 247–262, Los Alamitos, CA, 2012. IEEE Computer
Society.

[23] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. Programming lan-
guage techniques for cryptographic proofs. In Matt Kaufmann and Lawrence C. Paul-
son, editors, Interactive Theorem Proving, First International Conference, volume 6172
of Lecture Notes in Computer Science, pages 115–130, Heidelberg, 2010. Springer.

[24] Mathieu Baudet. Deciding security of protocols against off-line guessing attacks. In
Proceedings of the 12th ACM Conference on Computer and Communications Security
(CCS’05), pages 16–25, New York, NY, November 2005. ACM Press.

[25] Mathieu Baudet, Véronique Cortier, and Stéphanie Delaune. Yapa: A generic tool
for computing intruder knowledge. In Ralf Treinen, editor, Rewriting Techniques and
Applications (RTA’09), volume 5595 of Lecture Notes in Computer Science, pages 148–
163, Heidelberg, 2009. Springer.

[26] Mathieu Baudet, Véronique Cortier, and Steve Kremer. Computationally sound imple-
mentations of equational theories against passive adversaries. Information and Com-
putation, 207(4):496–520, 2009.

[27] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In
Advances in Cryptology—CRYPTO ’94, volume 773 of Lecture Notes in Computer
Science, pages 232–249, Heidelberg, 1993. Springer.

[28] Jesper Bengtson, Magnus Johansson, Joachim Parrow, and Björn Victor. Psi-calculi:
a framework for mobile processes with nominal data and logic. Logical Methods in
Computer Science, 7(1), 2011.

[29] Gérard Berry and Gérard Boudol. The chemical abstract machine. Theoretical Com-
puter Science, 96(1):217–248, April 1992.

[30] Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon, and Stephen Tse. Verified
interoperable implementations of security protocols. ACM Transactions on Program-
ming Languages and Systems, 31(1), December 2008.

36

[31] Bruno Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In
14th IEEE Computer Security Foundations Workshop, pages 82–96, Los Alamitos, CA,
2001. IEEE Computer Society.

[32] Bruno Blanchet. Automatic proof of strong secrecy for security protocols. In 2004
IEEE Symposium on Security and Privacy, pages 86–100, Los Alamitos, CA, 2004.
IEEE Computer Society.

[33] Bruno Blanchet. A computationally sound mechanized prover for security protocols.
In 2006 IEEE Symposium on Security and Privacy, pages 140–154, Los Alamitos, CA,
2006. IEEE Computer Society.

[34] Bruno Blanchet. Automatic verification of correspondences for security protocols. Jour-
nal of Computer Security, 17(4):363–434, July 2009.

[35] Bruno Blanchet, Mart́ın Abadi, and Cédric Fournet. Automated verification of se-
lected equivalences for security protocols. Journal of Logic and Algebraic Programming,
75(1):3–51, February–March 2008.

[36] Bruno Blanchet and Benjamin Aziz. A calculus for secure mobility. In Vijay Saraswat,
editor, 8th Asian Computing Science Conference (ASIAN’03), volume 2896 of Lecture
Notes in Computer Science, pages 188–204, Heidelberg, December 2003. Springer.

[37] Bruno Blanchet and David Pointcheval. Automated security proofs with sequences of
games. In CRYPTO’06, volume 4117 of Lecture Notes in Computer Science, pages
537–554, Heidelberg, 2006. Springer.

[38] Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and Hanne Riis Nielson. Control
flow analysis for the pi-calculus. In Davide Sangiorgi and Robert de Simone, editors,
CONCUR ’98: Concurrency Theory (9th International Conference), volume 1466 of
Lecture Notes in Computer Science, pages 84–98, Heidelberg, September 1998. Springer.

[39] Michele Boreale, Rocco De Nicola, and Rosario Pugliese. Proof techniques for cryp-
tographic processes. In Proceedings of the 14th Annual IEEE Symposium on Logic
in Computer Science, pages 157–166, Los Alamitos, CA, July 1999. IEEE Computer
Society.

[40] Marco Carbone and Sergio Maffeis. On the expressive power of polyadic synchronisation
in pi-calculus. Nordic Journal of Computing, 10(2):70–98, 2003.

[41] Luca Cardelli. Mobility and security. In F. L. Bauer and R. Steinbrueggen, editors,
Foundations of Secure Computation, NATO Science Series, pages 3–37, Amsterdam,
2000. IOS Press.

[42] Rohit Chadha, Stefan Ciobaca, and Steve Kremer. Automated verification of equiv-
alence properties of cryptographic protocols. In Helmut Seidl, editor, Programming
Languages and Systems - 21st European Symposium on Programming, ESOP 2012,
volume 7211 of Lecture Notes in Computer Science, pages 108–127, Heidelberg, March
2012. Springer.

[43] Vincent Cheval, Véronique Cortier, and Stéphanie Delaune. Deciding equivalence-based
properties using constraint solving. Theoretical Computer Science, 492:1–39, June 2013.

37

[44] Ştefan Ciobâcă, Stéphanie Delaune, and Steve Kremer. Computing knowledge in secu-
rity protocols under convergent equational theories. Journal of Automated Reasoning,
48(2):219–262, February 2012.

[45] Hubert Comon-Lundh and Véronique Cortier. Computational soundness of observa-
tional equivalence. In Proceedings of the 15th ACM Conference on Computer and
Communications Security, pages 109–118, New York, NY, 2008. ACM Press.

[46] Sylvain Conchon and Fabrice Le Fessant. Jocaml: Mobile agents for Objective-Caml.
In First International Symposium on Agent Systems and Applications (ASA’99)/Third
International Symposium on Mobile Agents (MA’99), pages 22–29, Washington, DC,
October 1999. IEEE Computer Society.

[47] Core SDI S.A. SSH insertion attack. Bugtraq mailing list, June 1998. Available at
http://seclists.org/bugtraq/1998/Jun/65.

[48] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-
Damg̊ard revisited: How to construct a hash function. In Advances in Cryptology—
CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science, pages 430–448,
Heidelberg, 2005. Springer.

[49] Véronique Cortier and Steve Kremer. Formal models and techniques for analyzing
security protocols: A tutorial. Foundations and Trends in Programming Languages,
1(3):151–267, 2014.

[50] Cas J.F. Cremers. Unbounded verification, falsification, and characterization of se-
curity protocols by pattern refinement. In 15th ACM conference on Computer and
Communications Security (CCS’08), pages 119–128, New York, NY, 2008. ACM Press.

[51] Mads Dam. Proving trust in systems of second-order processes. In Proceedings of the
31th Hawaii International Conference on System Sciences, volume VII, pages 255–264,
Los Alamitos, CA, 1998. IEEE Computer Society.

[52] Anupam Datta, Ante Derek, John C. Mitchell, and Dusko Pavlovic. A derivation
system and compositional logic for security protocols. Journal of Computer Security,
13(3):423–482, 2005.

[53] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Symbolic bisimulation for the
applied pi calculus. Research Report LSV-07-14, LSV, ENS Cachan, April 2007.

[54] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Symbolic bisimulation for the
applied pi calculus. Journal of Computer Security, 18(2):317–377, 2010.

[55] Richard A. DeMillo, Nancy A. Lynch, and Michael Merritt. Cryptographic protocols.
In Proceedings of the 14th Annual ACM Symposium on Theory of Computing, pages
383–400, New York, NY, 1982. ACM Press.

[56] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2.
IETF RFC 5246, 2008.

[57] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, IT-22(6):644–654, November 1976.

[58] Whitfield Diffie, Paul C. van Oorschot, and Michael J. Wiener. Authentication and
authenticated key exchanges. Designs, Codes and Cryptography, 2:107–125, 1992.

38

[59] Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, IT-29(12):198–208, March 1983.

[60] Santiago Escobar, Catherine Meadows, and José Meseguer. A rewriting-based inference
system for the NRL protocol analyzer and its meta-logical properties. Theoretical
Computer Science, 367(1–2):162–202, 2006.

[61] Cédric Fournet and Georges Gonthier. A hierarchy of equivalences for asynchronous
calculi. In Kim G. Larsen, Sven Skyum, and Glynn Winskel, editors, Proceedings of
the 25th International Colloquium on Automata, Languages and Programming, volume
1443 of Lecture Notes in Computer Science, pages 844–855, Heidelberg, July 1998.
Springer.

[62] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The SSL proto-
col: Version 3.0. Internet Draft available at http://tools.ietf.org/html/

draft-ietf-tls-ssl-version3-00, November 1996.

[63] Shafi Goldwasser and Mihir Bellare. Lecture notes on cryptography. Summer Course
“Cryptography and Computer Security” at MIT, 1996–1999, August 1999.

[64] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and
System Sciences, 28:270–299, April 1984.

[65] Shafi Goldwasser, Silvio Micali, and Ronald Rivest. A digital signature scheme secure
against adaptive chosen-message attack. SIAM Journal on Computing, 17:281–308,
1988.

[66] R. Kemmerer, C. Meadows, and J. Millen. Three systems for cryptographic protocol
analysis. Journal of Cryptology, 7(2):79–130, Spring 1994.

[67] Hugo Krawczyk. SKEME: A versatile secure key exchange mechanism for internet. In
Proceedings of the Internet Society Symposium on Network and Distributed Systems
Security, pages 114–127, Los Alamitos, February 1996. IEEE Computer Society.

[68] Steve Kremer and Robert Künnemann. Automated analysis of security protocols with
global state. In Proceedings of the 35th IEEE Symposium on Security and Privacy
(S&P’14), pages 163–178, Los Alamitos, CA, May 2014. IEEE Computer Society.

[69] Steve Kremer and Mark D. Ryan. Analysis of an electronic voting protocol in the
applied pi calculus. In Mooly Sagiv, editor, Programming Languages and Systems: 14th
European Symposium on Programming, ESOP 2005, volume 3444 of Lecture Notes in
Computer Science, pages 186–200, Heidelberg, April 2005. Springer.

[70] Ben Liblit and Alexander Aiken. Type systems for distributed data structures. In
Proceedings of the 27th ACM Symposium on Principles of Programming Languages,
pages 199–213, New York, NY, January 2000. ACM Press.

[71] P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time frame-
work for protocol analysis. In Proceedings of the 5th ACM Conference on Computer
and Communications Security, pages 112–121, New York, NY, 1998. ACM Press.

[72] Jia Liu. A proof of coincidence of labeled bisimilarity and observational equivalence in
applied pi calculus. http://lcs.ios.ac.cn/~jliu/papers/LiuJia0608.pdf, 2011.

39

[73] Jia Liu and Humin Lin. A complete symbolic bisimulation for full applied pi calculus.
In Jan van Leeuwen, Anca Muscholl, David Peleg, Jaroslav Pokorný, and Bernhard
Rumpe, editors, SOFSEM 2010: Theory and Practice of Computer Science, volume
5901 of Lecture Notes in Computer Science, pages 552–563, Heidelberg, January 2010.
Springer.

[74] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In Tools and Algorithms for the Construction and Analysis of Systems, volume
1055 of Lecture Notes in Computer Science, pages 147–166, Heidelberg, 1996. Springer.

[75] Joana Martinho and António Ravara. Encoding cryptographic primitives in a calcu-
lus with polyadic synchronisation. Journal of Automated Reasoning, 46(3–4):293–323,
2011.

[76] Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin. The Tamarin
prover for the symbolic analysis of security protocols. In Natasha Sharygina and Helmut
Veith, editors, Computer Aided Verification, 25th International Conference, CAV 2013,
volume 8044 of Lecture Notes in Computer Science, pages 696–701, Heidelberg, 2013.
Springer.

[77] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, Boca Raton, FL, 1996.

[78] Michael J. Merritt. Cryptographic Protocols. PhD thesis, Georgia Institute of Technol-
ogy, February 1983.

[79] Robin Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, Upper Saddle River, NJ, 1989.

[80] Robin Milner. Functions as processes. Mathematical Structures in Computer Science,
2:119–141, 1992.

[81] Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, Cambridge, 1999.

[82] John C. Mitchell. Foundations for Programming Languages. MIT Press, Cambridge,
MA, 1996.

[83] John C. Mitchell, Mark Mitchell, and Ulrich Stern. Automated analysis of crypto-
graphic protocols using Murφ. In Proceedings of the 1997 IEEE Symposium on Security
and Privacy, pages 141–151, Los Alamitos, CA, 1997. IEEE Computer Society.

[84] Lawrence C. Paulson. The inductive approach to verifying cryptographic protocols.
Journal of Computer Security, 6(1–2):85–128, 1998.

[85] Birgit Pfitzmann, Matthias Schunter, and Michael Waidner. Cryptographic security
of reactive systems (extended abstract). Electronic Notes in Theoretical Computer
Science, 32:59–77, April 2000.

[86] Benjamin C. Pierce and David N. Turner. Pict: A programming language based on the
pi-calculus. In Gordon Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language
and Interaction: Essays in Honour of Robin Milner, Foundations of Computing, pages
455–494, Cambridge, MA, May 2000. MIT Press.

40

[87] Mark D. Ryan and Ben Smyth. Applied pi calculus. In Véronique Cortier and Steve
Kremer, editors, Formal Models and Techniques for Analyzing Security Protocols, chap-
ter 6, pages 112–142. IOS Press, Amsterdam, 2011.

[88] Peter Y. A. Ryan and Steve A. Schneider. An attack on a recursive authentication
protocol. A cautionary tale. Information Processing Letters, 65(1):7–10, January 1998.

[89] D. Sangiorgi. On the bisimulation proof method. Journal of Mathematical Structures
in Computer Science, 8:447–479, 1998.

[90] Benedikt Schmidt, Simon Meier, Cas Cremers, and David Basin. Automated analysis
of Diffie-Hellman protocols and advanced security properties. In 25th IEEE Computer
Security Foundations Symposium (CSF’12), pages 78–94, Los Alamitos, CA, June 2012.
IEEE Computer Society.

[91] Steve Schneider. Security properties and CSP. In Proceedings of the 1996 IEEE Sympo-
sium on Security and Privacy, pages 174–187, Los Alamitos, CA, 1996. IEEE Computer
Society.

[92] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C.
John Wiley & Sons, Inc., Hoboken, NJ, second edition, 1996.

[93] Stuart G. Stubblebine and Virgil D. Gligor. On message integrity in cryptographic
protocols. In Proceedings of the 1992 IEEE Symposium on Research in Security and
Privacy, pages 85–104, Los Alamitos, CA, 1992. IEEE Computer Society.

[94] F. Javier Thayer Fábrega, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces:
Why is a security protocol correct? In Proceedings of the 1998 IEEE Symposium on
Security and Privacy, pages 160–171, Los Alamitos, CA, May 1998. IEEE Computer
Society.

[95] Björn Victor. The Fusion Calculus: Expressiveness and Symmetry in Mobile Processes.
PhD thesis, Dept. of Computer Systems, Uppsala University, Sweden, June 1998.

[96] Andrew C. Yao. Theory and applications of trapdoor functions. In Proceedings of
the 23rd Annual Symposium on Foundations of Computer Science (FOCS 82), pages
80–91, Los Angeles, CA, 1982. IEEE Computer Society.

Appendix: Proofs

The appendix contains proofs and auxiliary definitions needed for these proofs. After intro-
ducing the notion of simple contexts and proving Lemma 4.1 (Section A), the bulk of the
appendix is devoted to lemmas and definitions that contribute to the proof of Theorem 4.1
(Sections B and C). Section D presents the proof of Lemma 4.5. Section E presents the
proofs related to refined labels. Finally, Sections F and G present the proofs related to the
two constructions of hash functions given in Sections 6.2 and 6.3 respectively.

A Simple Contexts and Proof of Lemma 4.1

In order to work with definitions that refer to contexts, such as Definition 4.1, it is con-
venient to generalize structural equivalence from extended processes to contexts. For this

41

generalization, we use the rules of Section 2.2, except that (1) we do not rename bound
names and variables whose scope includes the hole; and (2) in rule New-Par, the hole is
considered to contain any name and variable.

Further, in order to avoid special cases in proofs, we often adopt simplifying assumptions
on contexts. We say that an evaluation context E is simple when (1) no name is both free
in E and restricted above the hole; and (2) no variable is both in dom(E) and restricted
above the hole. We say that E is simple for A if, in addition, it is closing for A. These
conditions on scopes exclude, for example, a〈s〉 | νs.() and {s/x} | νx.().

Lemma A.1 Let A be a closed extended process. Given a simple context E for A, there
exists a context E′ of the form νũ.(| B) such that E ≡ E′ and all subcontexts of E′ are
simple for A.

Proof: We construct the context E′ from E as follows:

1. We rename all names and variables bound by restrictions that are not above the hole
to distinct fresh names and variables.

2. We move all restrictions above the hole in E to the root of E. These moves are possible
because the names and variables bound by these restrictions do not occur elsewhere:
they are not free since E is simple for A and they are not bound by other restrictions
by the renaming of step 1.

3. We reorganize parallel compositions by associativity and commutativity so that the
obtained context is of the form νũ.(|B).

Hence we obtain a context E′ = νũ.(| B) such that E ≡ E′ and E′ is closing for A, that
is, E′[A] is closed.

The subcontexts of E′ are , | B, and contexts of the form νũ′.(| B) where ũ′ is a
suffix of ũ. The contexts and |B have no names and variables bound in the hole. In the
contexts νũ′.(|B), the names and variables bound in the hole are ũ′, and they are not free.
So all these contexts are simple.

We show that all subcontexts of E′ are closing for A. For the context E′′ = , we have
E′′[A] = A and we know by hypothesis that A is closed. For the other subcontexts, we
proceed by removing one by one the elements of ũ′.

• Suppose that νx.E′′[A] is closed where E′′ = νũ′′.(| B). We have fv(E′′[A]) \
dom(E′′[A]) = fv(νx.E′′[A]) \ dom(νx.E′′[A]) = ∅, so E′′[A] is closed.

• Suppose that νn.E′′[A] is closed where E′′ = νũ′′.(|B). Then E′′[A] is obviously also
closed.

Lemma A.2 Let A and B be two closed extended processes.

1. Let σ be a bijective renaming. We have A ≈s B if and only if Aσ ≈s Bσ.

2. Let A′ and B′ be obtained from A and B, respectively, by replacing all variables (in-
cluding their occurrences in domains of active substitutions) with distinct variables.
We have A ≈s B if and only if A′ ≈s B′.

Proof: To show the first point, suppose that A ≈s B. Hence for all terms M and N ,
(M = N)ϕ(A) if and only if (M = N)ϕ(B). So (Mσ = Nσ)ϕ(Aσ) if and only if (Mσ =

42

Nσ)ϕ(Bσ), since the equational theory is closed under renaming. So Aσ ≈s Bσ. The same
argument also shows the converse, via the inverse renaming.

To show the second point, suppose that A ≈s B. Hence for all terms M and N ,
(M = N)ϕ(A) if and only if (M = N)ϕ(B). We let M ′ and N ′ be obtained from M
and N , respectively, by the same variable replacement as the one that transforms A and
B into A′ and B′. So (M ′ = N ′)ϕ(A′) if and only if (M ′ = N ′)ϕ(B′), since Mσ = M ′σ′

where ϕ(A) ≡ νñ.σ and ϕ(A′) ≡ νñ.σ′. So A′ ≈s B′. As above, the same argument also
shows the converse, via the inverse variable replacement.

Proof of Lemma 4.1 We show that, if A ≡ B, then ϕ(A) ≡ ϕ(B), by an easy induction
on the derivation of A ≡ B. We then show that, if A → B, then ϕ(A) ≡ ϕ(B) since the
frame is not affected by Comm, Then, and Else. Since Definition 4.2 considers frames
up to structural equivalence, we conclude that static equivalence is invariant by structural
equivalence and reduction.

For the context-closure property, we suppose that A ≈s B and we show that for all
closing evaluation contexts E, we have E[A] ≈s E[B]. We first rename the free names
and variables of E, so that the obtained context is simple, and apply Lemma A.2. Then
by Lemma A.1, we construct a context E′ such that E ≡ E′ and all subcontexts of E′

are simple. Since static equivalence is invariant by structural equivalence, it is sufficient
to show that E′[A] ≈s E′[B]. All subcontexts of E′ are closing evaluation contexts, so we
proceed by structural induction on E′. The cases of name restriction and variable restriction
hold because they restrict the range of M and N in Definition 4.2. In the case of parallel

composition, we have E′ ≡ | νñ.({M̃ ′
/̃x} | P) with fv(M̃ ′) ∪ fv(P) ⊆ dom(A) = dom(B)

and {x̃} ∩ dom(A) = ∅. By renaming the names ñ so that they do not occur free in A and

B, we have ϕ(E′[A]) ≡ νñ.(ϕ(A) | {M̃ ′
/̃x}) and ϕ(E′[B]) ≡ νñ.(ϕ(B) | {M̃ ′

/̃x}). Since we
have already handled the case of name restriction, it suffices to consider the closing context
| {M ′

/x} with fv(M ′) ⊆ dom(A) and x /∈ dom(A). In this case, we apply the inductive
hypothesis using M{M ′

/x} and N{M ′
/x} instead of M and N in Definition 4.2.

B Proof of Theorem 4.1: Partial Normal Forms

Our proof of Theorem 4.1, outlined in Section 4.5, requires a definition of partial normal
forms, which we present in Section B.1. A semantics on partial normal forms corresponds
to the standard semantics (Section B.2). We can soundly restrict attention to reductions
between closed processes in the semantics of partial normal forms (Section B.3). More-
over, partial normal forms enable helpful compositions and decompositions of reductions
(Section B.4).

B.1 Definition of Partial Normal Forms

In this section, we define partial normal forms and prove two of their basic properties.
We first define the normalization of the parallel composition of two substitutions. The

composition σ]σ′ of two substitutions σ and σ′ such that σ | σ′ is cycle-free is defined as
follows: we reorder σ | σ′ into {M1/x1

, . . . ,Ml/xl
} where xi /∈ fv(Mj) for all i ≤ j ≤ l; we

let σ0 = 0 and σi+1 = σi{Mi+1/xi+1} | {Mi+1/xi+1} for 0 ≤ i ≤ l − 1; then σ]σ′ = σl. By
definition, we have σ]σ′ ≡ σ | σ′.

The partial normal form pnf(A) of an extended process A is an extended process of the

form νñ.({M̃/̃x} | P) such that (fv(P) ∪ fv(M̃)) ∩ {x̃} = ∅. The sequence of restrictions νñ

43

may be empty, in which case the partial normal form is written {M̃/̃x} |P . The substitution

{M̃/̃x} may be empty, in which case it is written 0. The partial normal form of A is defined
by induction on A as follows:

pnf(P) = 0 | P
pnf({M/x}) = {M/x} | 0
pnf(νn.A) = νn, ñ.(σ | P) where pnf(A) = νñ.(σ | P) and n /∈ {ñ}
pnf(νx.A) = νñ.(σ|dom(σ)\{x} | P) where pnf(A) = νñ.(σ | P)

pnf(A |B) = νñ, ñ′.(σ]σ′ | (P | P ′)(σ]σ′))
where pnf(A) = νñ.(σ | P), pnf(B) = νñ′.(σ′ | P ′) and ñ and ñ′

are renamed so that they are disjoint, the names of ñ are not free
in σ′ | P ′, and the names of ñ′ are not free in σ | P .

The last four cases apply only when the argument of pnf is not a plain process. We define
a normal process as an extended process in partial normal form.

Two simple lemmas provide some basic properties of partial normal forms.

Lemma B.1 A ≡ pnf(A).

Proof: By induction on the syntax of A.

Lemma B.2 If A is closed, then pnf(A) is closed.

Proof: We prove by induction on the syntax of A that fv(pnf(A)) ⊆ fv(A) and
dom(pnf(A)) = dom(A). The result follows.

B.2 Relation between the Standard Semantics and the Semantics
on Partial Normal Forms

In this section, we define an operational semantics on partial normal forms, by defining
structural equivalence, internal reduction, and labelled transitions. We relate this semantics
to the standard semantics of the applied pi calculus given in Sections 2.2 and 4.3.

We begin with the definition of structural equivalence on partial normal forms. Let
�≡

be the smallest equivalence relation on plain processes closed by application of evaluation
contexts such that

Par-0′ P | 0 �≡ P
Par-A′ P | (Q |R)

�≡ (P |Q) |R
Par-C′ P |Q �≡ Q | P
Repl′ !P

�≡ P | !P
New-0′ νn.0

�≡ 0
New-C′ νn.νn′.P

�≡ νn′.νn.P
New-Par′ P | νn.Q �≡ νn.(P |Q) when n 6∈ fn(P)
Rewrite′ P{M/x}

�≡ P{N/x} when Σ `M = N

and let
◦≡ be the smallest equivalence relation on normal processes such that

Plain′′ νñ.(σ | P)
◦≡ νñ.(σ | P ′)

when P
�≡ P ′ and (fv(P) ∪ fv(P ′)) ∩ dom(σ) = ∅

New-C′′ νñ.(σ | P)
◦≡ νñ′.(σ | P) when ñ′ is a reordering of ñ

New-Par′′ νñ.(σ | νn′.P)
◦≡ νñ, n′.(σ | P) when n′ /∈ fn(σ)

44

Rewrite′′ νñ.(σ | P)
◦≡ νñ.(σ′ | P)

when dom(σ) = dom(σ′)
and Σ ` xσ = xσ′ for all x ∈ dom(σ)
and (fv(xσ) ∪ fv(xσ′)) ∩ dom(σ) = ∅ for all x ∈ dom(σ)

In Plain′′ and Rewrite′′, the hypotheses on free variables ensure that the process re-
mains normalized in case fresh variables are introduced (respectively, via Rewrite′ and by
rewriting the substitution σ to σ′).

We also introduce the corresponding reduction relation. Let→� be the smallest relation
on plain processes closed by

�≡ and by application of evaluation contexts such that:

Comm′ N〈M〉.P |N(x).Q →� P |Q{M/x}
Then′ if M = M then P else Q →� P

Else′ if M = N then P else Q →� Q
for any ground terms M and N such that Σ 6`M = N

and let→◦ be the smallest relation on normal processes closed by
◦≡ such that νñ.(σ |P)→◦

νñ.(σ | P ′) when P →� P ′.

Lemma B.3 1. If P
�≡ P ′, then Pσ

�≡ P ′σ.

2. If P →� P ′, then Pσ →� P ′σ.

Proof: These properties are immediate by induction on derivations. The proof of Prop-
erty 2 relies on Property 1 in the case in which one applies

�≡. Note that the change from
Comm to Comm′ is crucial for Property 2.

Lemma B.4 Assume that νñ.(σ |P), νñ′.(σ′ |P ′), and νñ′′.(σ′′ |P ′′) are normal processes.
If νñ.(σ | P)

◦≡ νñ′.(σ′ | P ′), then

1. νñ.(σ|dom(σ)\{x} | P)
◦≡ νñ′.(σ′|dom(σ′)\{x} | P

′);

2. νn, ñ.(σ | P)
◦≡ νn, ñ′.(σ′ | P ′); and

3. if σ |σ′′ and σ′ |σ′′ are cycle-free, then νñ, ñ′′.(σ]σ′′ |(P |P ′′)(σ]σ′′)) ◦≡ νñ′, ñ′′.(σ′]σ′′ |
(P ′ | P ′′)(σ′]σ′′)).

If νñ.(σ | P)→◦ νñ′.(σ′ | P ′), then

4. νñ.(σ|dom(σ)\{x} | P)→◦ νñ′.(σ′|dom(σ′)\{x} | P
′);

5. νn, ñ.(σ | P)→◦ νn, ñ′.(σ′ | P ′); and

6. if σ|σ′′ and σ′|σ′′ are cycle-free, then νñ, ñ′′.(σ]σ′′|(P |P ′′)(σ]σ′′))→◦ νñ′, ñ′′.(σ′]σ′′|
(P ′ | P ′′)(σ′]σ′′)).

Proof: We establish these properties by induction on derivations. To prove Property 3 in
the case

�≡, we use that if P
�≡ P ′ then (P | P ′′)(σ]σ′′) �≡ (P ′ | P ′′)(σ]σ′′), which follows

from Lemma B.3(1). To prove Properties 4 to 6, we use Properties 1 to 3, respectively, in
the case in which we apply

◦≡. Additionally, to prove Property 6 in the case→�, we use that
if P →� P ′ then (P |P ′′)(σ]σ′′)→� (P ′ |P ′′)(σ]σ′′), which follows from Lemma B.3(2).

Lemma B.5 If A ≡ B, then pnf(A)
◦≡ pnf(B).

45

Proof: By induction on the derivation of A ≡ B. We first notice that, if P and Q are
plain processes, then pnf(P |Q) = 0 | (P |Q) can also be obtained by applying the definition
of pnf(A |B) for extended processes, with the same result: pnf(P) = 0 | P , pnf(Q) = 0 |Q,
so pnf(P |Q) = 0 | (P |Q). We use this property to avoid distinguishing whether A, B, C
are plain processes or not in the first three cases and in the last case.

• Case A ≡ A | 0.

Let pnf(A) = νñ.(σ | P). We have pnf(A | 0) = νñ.(σ | (P | 0)). Since P
�≡ P | 0, we

have pnf(A)
◦≡ pnf(A | 0).

• Case A | (B | C) ≡ (A |B) | C.

Let pnf(A) = νñ.(σ | P), pnf(B) = νñ′.(σ′ | P ′), and pnf(C) = νñ′′.(σ′′ | P ′′). To
compute pnf(A | (B | C)), we first rename ñ′ and ñ′′ so that they are disjoint, the
names of ñ′ are not free in σ′′ | P ′′, and the names of ñ′′ are not free in σ′ | P ′. Then
pnf(B | C) = νñ′, ñ′′.(σ′]σ′′ | (P ′ | P ′′)(σ′]σ′′)). Then, we rename ñ and ñ′, ñ′′ so
that they are disjoint, the names of ñ are not free in σ′]σ′′ | (P ′ |P ′′)(σ′]σ′′), and the
names of ñ′, ñ′′ are not free in σ | P . Hence, ñ, ñ′ and ñ′′ are renamed so that they
are disjoint, the names of ñ are not free in σ′ | P ′ and σ′′ | P ′′, the names of ñ′ are
not free in σ | P and σ′′ | P ′′, and the names of ñ′′ are not free in σ | P and σ′ | P ′.
This condition is the same as the one obtained when we compute pnf((A |B) |C). Let
σ0 = σ](σ′]σ′′) = (σ]σ′)]σ′′. So

pnf(A | (B | C)) = νñ, ñ′, ñ′′.(σ0 | (P | (P ′ | P ′′)(σ′]σ′′))σ0)

= νñ, ñ′, ñ′′.(σ0 | (Pσ0 | (P ′σ0 | P ′′σ0)))
◦≡ νñ, ñ′, ñ′′.(σ0 | ((Pσ0 | P ′σ0) | P ′′σ0)) = pnf((A |B) | C)

since Pσ0 | (P ′σ0 | P ′′σ0)
�≡ (Pσ0 | P ′σ0) | P ′′σ0.

• Case A |B ≡ B |A.

Let pnf(A) = νñ.(σ |P) and pnf(B) = νñ′.(σ′ |P ′). We rename ñ and ñ′ so that they
are disjoint, the names of ñ are not free in σ′ | P ′, and the names of ñ′ are not free
in σ | P . Let σ0 = σ]σ′ = σ′]σ. We have pnf(A | B) = νñ, ñ′.(σ0 | (Pσ0 | P ′σ0))

◦≡
νñ′, ñ.(σ0 | (P ′σ0 | Pσ0)) = pnf(B |A) since Pσ0 | P ′σ0

�≡ P ′σ0 | Pσ0.

• Case !P ≡ P | !P .

We have pnf(!P) = 0 | !P ◦≡ 0 | (P | !P) = pnf(P | !P), since !P
�≡ P | !P .

• Case νn.0 ≡ 0.

We have pnf(νn.0) = 0 | νn.0 ◦≡ 0 | 0 = pnf(0), since νn.0
�≡ 0.

• Case νu.νv.A ≡ νv.νu.A.

If A is a plain process, then u and v are names. (If u or v were variables, these
variables would be in the domain of A, so A would not be a plain process.) In this case,
pnf(νu.νv.A) = 0 | νu.νv.A ◦≡ 0 | νv.νu.A = pnf(νv.νu.A) since νu.νv.A

�≡ νv.νu.A.

If A is not a plain process, let pnf(A) = νñ.(σ | P). If u and v are names, then
pnf(νu.νv.A) = νu, v, ñ.(σ | P)

◦≡ νv, u, ñ.(σ | P) = pnf(νv.νu.A). If u and v are
variables, then pnf(νu.νv.A) = νñ.(σ|dom(σ)\{u,v} | P) = pnf(νv.νu.A). If u is a name
and v is a variable, then pnf(νu.νv.A) = νu, ñ.(σ|dom(σ)\{v} |P) = pnf(νv.νu.A). The
remaining case is symmetric.

46

• Case A | νu.B ≡ νu.(A |B) with u 6∈ fv(A) ∪ fn(A).

If B is a plain process, then u is a name and pnf(νu.B) = 0 | νu.B.

– If A is also a plain process, then pnf(A | νu.B) = 0 | (A | νu.B)
◦≡ 0 | νu.(A |B) =

pnf(νu.(A |B)) since A | νu.B �≡ νu.(A |B).

– If A is not a plain process, then let pnf(A) = νñ.(σ | P). We rename ñ so that
the names of ñ are not free in B and do not contain u. We have pnf(A | νu.B) =
νñ.(σ |(P |νu.B)σ)

◦≡ νñ.(σ |νu.(P |B)σ)
◦≡ νu, ñ.(σ |(P |B)σ) = pnf(νu.(A |B)).

If B is not a plain process, then let pnf(B) = νñ′.(σ′ | P ′). Let pnf(A) = νñ.(σ | P).
We rename ñ and ñ′ so that ñ and ñ′ are disjoint and do not contain u, the names of
ñ are not free in σ′ | P ′, and the names of ñ′ are not free in σ | P .

– If u is a name, then pnf(A | νu.B) = νñ, u, ñ′.(σ]σ′ | (P | P ′)(σ]σ′)) ◦≡
νu, ñ, ñ′.(σ]σ′ | (P | P ′)(σ]σ′)) = pnf(νu.(A |B)).

– If u is a variable, then

pnf(A | νu.B) = νñ, ñ′.(σ](σ′|dom(σ′)\{u}) | (P | P
′)(σ](σ′|dom(σ′)\{u})))

= νñ, ñ′.((σ]σ′)|dom(σ]σ′)\{u} | (P | P ′)(σ]σ′))
= pnf(νu.(A |B))

• Case νx.{M/x} ≡ 0.

We have pnf(νx.{M/x}) = 0 | 0 = pnf(0).

• Case {M/x} |A ≡ {M/x} |A{M/x}.
Let pnf(A) = νñ.(σ | P). We rename ñ so that these names do not occur in M . We
have pnf({M/x} | A) = νñ.(({M/x}]σ) | (0 | P)({M/x}]σ)) and pnf({M/x} | A{M/x}) =
νñ.(({M/x}]σ{M/x})|(0|P{M/x})({M/x}]σ)), so pnf({M/x}|A) = pnf({M/x}|A{M/x}).

• Case {M/x} ≡ {N/x} with Σ `M = N .

We have pnf({M/x}) = {M/x} | 0
◦≡ {N/x} | 0 = pnf({N/x}).

• Case νx.A ≡ νx.B knowing that A ≡ B.

Let pnf(A) = νñ.(σ |P) and pnf(B) = νñ′.(σ′ |P ′). By induction hypothesis, we have
pnf(A)

◦≡ pnf(B), that is, νñ.(σ | P)
◦≡ νñ′.(σ′ | P ′). By Lemma B.4(1), we conclude

that

pnf(νx.A) = νñ.(σ|dom(σ)\{x} | P)
◦≡ νñ′.(σ′|dom(σ′)\{x} | P

′) = pnf(νx.B)

• Case νn.A ≡ νn.B knowing that A ≡ B. By induction hypothesis, we have pnf(A)
◦≡

pnf(B).

If A and B are plain processes, then pnf(A) = 0 |A ◦≡ 0 |B = pnf(B), so νn.(0 |A)
◦≡

νn.(0 |B) by Lemma B.4(2), so

pnf(νn.A) = 0 | νn.A ◦≡ 0 | νn.B = pnf(νn.B)

by New-Par′′.

47

If A is a plain process and B is not a plain process, then let pnf(B) = νñ.(σ | P).
We have pnf(A) = 0 | A ◦≡ νñ.(σ | P) = pnf(B), so νn.(0 | A)

◦≡ νn, ñ.(σ | P) by
Lemma B.4(2), so

pnf(νn.A) = 0 | νn.A ◦≡ νn, ñ.(σ | P) = pnf(νn.B)

by New-Par′′.

If A and B are not plain processes, then let pnf(A) = νñ.(σ | P) and pnf(B) =
νñ′.(σ′ | P ′). We have

pnf(νn.A) = νn, ñ.(σ | P)
◦≡ νn, ñ′.(σ′ | P ′) = pnf(νn.B)

by Lemma B.4(2).

• Case A |A′′ ≡ B |A′′ knowing that A ≡ B.

Let pnf(A) = νñ.(σ | P), pnf(B) = νñ′.(σ′ | P ′), and pnf(A′′) = νñ′′.(σ′′ | P ′′). We
rename ñ, ñ′, and ñ′′ so that ñ and ñ′ are disjoint from ñ′′, the names of ñ and ñ′

are not free in σ′′ | P ′′, the names of ñ′′ are not free in σ | P and σ′ | P ′. By induction
hypothesis, we have pnf(A)

◦≡ pnf(B), that is, νñ.(σ | P)
◦≡ νñ′.(σ′ | P ′), so

pnf(A |A′′) = νñ, ñ′′.(σ]σ′′ | (P | P ′′)(σ]σ′′))
◦≡ νñ′, ñ′′.(σ′]σ′′ | (P ′ | P ′′)(σ′]σ′′)) = pnf(B |A′′)

by Lemma B.4(3).

Lemma B.6 If P ≡ Q, then P
�≡ Q.

Proof: By Lemma B.5, P ≡ Q implies pnf(P) = 0 | P ◦≡ pnf(Q) = 0 |Q. We show that,
if 0 | P ◦≡ νñ.(σ |Q), then σ = 0 and P

�≡ νñ.Q, by an easy induction on the derivation of
0 | P ◦≡ νñ.(σ |Q). By applying this result to 0 | P ◦≡ 0 |Q, we obtain P

�≡ Q.

Lemma B.7 If P
�≡ Q, then P ≡ Q. If A

◦≡ B, then A ≡ B.

Proof: By induction on the derivations of P
�≡ Q and of A

◦≡ B, respectively.

Lemma B.8 If A→ B, then pnf(A)→◦ pnf(B).

Proof: By induction on the derivation of A→ B.

• Cases Comm, Then, and Else. A and B are plain processes, so pnf(A) = 0 | A →◦
0 |B = pnf(B), since A→� B by Comm′, Then′, and Else′ respectively.

• Case νx.A→ νx.B knowing A→ B. The result follows easily from Lemma B.4(4).

• Case νn.A → νn.B knowing A → B. The result follows easily from Lemma B.4(5),
by distinguishing cases depending on whether A and B are plain processes or not, as
in the proof of Lemma B.5.

• Case A |A′′ → B |A′′ knowing A→ B. The result follows easily from Lemma B.4(6),
as in the proof of Lemma B.5.

• If we apply ≡, the result follows immediately from Lemma B.5.

48

Lemma B.9 If P →� Q, then P → Q. If A→◦ B, then A→ B.

Proof: By induction on the derivations of P →� Q and A→◦ B, respectively. In the cases
in which we apply

�≡ or
◦≡, we rely on Lemma B.7.

Similarly, we define restricted labelled transitions. First, for plain processes, we define
P

α−→� A as follows:

In′ N(x).P
N(M)−−−−→� P{M/x}

Out-Var′
x /∈ fv(N〈M〉.P)

N〈M〉.P νx.N〈x〉−−−−−→� P | {M/x}

Scope′
P

α−→� A n does not occur in α

νn.P
α−→� νn.A

Par′
P

α−→� A bv(α) ∩ fv(Q) = ∅
P |Q α−→� A |Q

Struct′
P
�≡ Q Q

α−→� B B ≡ A
P

α−→� A

We define A
α−→◦ B, where A is a normal process and B is an extended process, as follows:

there exist ñ, σ, P , α′, B′ such that A
◦≡ νñ.(σ | P), P

α′

−→� B′, B ≡ νñ.(σ | B′), fv(σ) ∩
bv(α′) = ∅, Σ ` ασ = α′, and the elements of ñ do not occur in α.

We give below an alternative formulation of
α−→�.

Lemma B.10 We have P
α−→� A if and only if for some ñ, P1, P2, A1, N , M , P ′, x, we

have P
�≡ νñ.(P1 | P2), A ≡ νñ.(A1 | P2), {ñ} ∩ fn(α) = ∅, bv(α) ∩ fv(P1 | P2) = ∅, and one

of the following two cases holds:

1. α = N(M), P1 = N(x).P ′, and A1 = P ′{M/x}; or

2. α = νx.N〈x〉, P1 = N〈M〉.P ′, and A1 = P ′ | {M/x}.

Proof: For the implication from left to right, we proceed by induction on this derivation
of P

α−→� A.

• Case In′: We are in the first case with P2 = 0 and ñ = ∅.

• Case Out-Var′: We are in the second case with P2 = 0 and ñ = ∅.

• Case Scope′: P
α−→� A has been derived from Q

α−→� B with P = νn.Q, A =
νn.B, and n does not occur in α. By induction hypothesis, Q

�≡ νñ′.(Q1 | Q2),
B ≡ νñ′.(B1 |Q2), {ñ′}∩fn(α) = ∅ and bv(α)∩fv(Q1 |Q2) = ∅. So P

�≡ νn, ñ′.(Q1 |Q2),
A
�≡ νn, ñ′.(B1 |Q2), {n, ñ′} ∩ fn(α) = ∅ and bv(α) ∩ fv(Q1 |Q2) = ∅.

• Case Par′: P
α−→� A has been derived from Q

α−→� B with P = Q | Q′, A = B | Q′,
and bv(α) ∩ fv(Q′) = ∅. By induction hypothesis, Q

�≡ νñ′.(Q1 | Q2), B ≡ νñ′.(B1 |
Q2), {ñ′} ∩ fn(α) = ∅ and bv(α) ∩ fv(Q1 | Q2) = ∅. So P

�≡ νñ′.(Q1 | Q2) | Q′ �≡
νñ.(Q1{ñ/̃n′}|(Q2{ñ/̃n′}|Q′)) and A ≡ νñ′.(B1 |Q2)|Q′ ≡ νñ.(B1{ñ/̃n′}|(Q2{ñ/̃n′}|Q′))
where ñ consists of fresh names that do not occur in α nor Q′. Let P1 = Q1{ñ/̃n′},

49

P2 = Q2{ñ/̃n′} | Q′, and A1 = B1{ñ/̃n′}. Then P
�≡ νñ.(P1 | P2), A ≡ νñ.(A1 | P2),

{ñ} ∩ fn(α) = ∅, bv(α) ∩ fv(P1 | P2) = ∅, and the two cases are preserved because
the renaming of ñ′ into ñ leaves α unchanged, so in the first case, it leaves N and M
unchanged, and just renames inside P ′, and in the second case, it leaves N unchanged
and renames inside M and P ′.

• Case Struct′: P
α−→� A has been derived from Q

α−→� B with P
�≡ Q and B ≡ A.

By induction hypothesis, Q
�≡ νñ′.(Q1 |Q2), B ≡ νñ′.(B1 |Q2), {ñ′} ∩ fn(α) = ∅ and

bv(α) ∩ fv(Q1 | Q2) = ∅. So P
�≡ νñ′.(Q1 | Q2), A ≡ νñ′.(B1 | Q2), {ñ′} ∩ fn(α) = ∅

and bv(α) ∩ fv(Q1 |Q2) = ∅.

For the converse implication, we have P1
α−→� A1 by In′ in Case 1 and by Out-Var′ in Case

2. Then P1 |P2
α−→� A1 |P2 by Par′, νñ.(P1 |P2)

α−→� νñ.(A1 |P2) by Scope′, and P
α−→� A

by Struct′.

Lemma B.11 If P
α−→� A and fv(σ) ∩ bv(α) = ∅, then Pσ

ασ−−→� Aσ.

Proof: By Lemma B.3(1), if P
�≡ P ′, then Pσ

�≡ P ′σ, We show that, if A ≡ B and
dom(σ)∩dom(A) = ∅, then Aσ ≡ Bσ, by noticing that Aσ ≡ νx̃.(A|σ) where {x̃} = dom(σ).
Then, we use the characterization of Lemma B.10, after renaming the elements of ñ so that
{ñ} ∩ fn(σ) = ∅.

Lemma B.12 If A
α−→ B, then pnf(A)

α−→◦ B.

Proof: By induction on the derivation of A
α−→ B.

• In all cases in which A is a plain process, we have pnf(A) = 0 |A α−→� B since, for plain

processes, the rules that define A
α−→� B are the same as those that define A

α−→ B. So
pnf(A) = 0 |A α−→◦ B, with α′ = α, σ = 0, and ñ = ∅.

• Case Scope with u = n. We have A′
α−→ B′, n does not occur in α, A = νn.A′,

and B = νn.B′. By induction hypothesis, pnf(A′)
α−→◦ B′, so pnf(A′)

◦≡ νñ.(σ | P),

P
α′

−→� B′′, B′ ≡ νñ.(σ |B′′), fv(σ) ∩ bv(α′) = ∅, Σ ` ασ = α′, and the elements of ñ

do not occur in α. So pnf(A)
◦≡ νn, ñ.(σ |P) and B ≡ νn, ñ.(σ |B′′), so pnf(A)

α−→◦ B.

• Case Scope with u = x. We have A′
α−→ B′, x does not occur in α, A = νx.A′,

and B = νx.B′. By induction hypothesis, pnf(A′)
α−→◦ B′, so pnf(A′)

◦≡ νñ.(σ | P),

P
α′

−→� B′′, B′ ≡ νñ.(σ | B′′), fv(σ) ∩ bv(α′) = ∅, Σ ` ασ = α′, and the elements

of ñ do not occur in α. Let σ′ = σ|dom(σ)\{x}. So pnf(A)
◦≡ νñ.(σ′ | P), P

α′

−→� B′′,
B ≡ νñ.(σ′ | B′′), fv(σ′) ∩ bv(α′) = ∅, Σ ` ασ′ = α′ since x does not occur in α, and

the elements of ñ do not occur in α, so pnf(A)
α−→◦ B.

• Case Par. We have A′
α−→ B′, bv(α) ∩ fv(B0) = ∅, A = A′ | B0, and B = B′ | B0.

By induction hypothesis, pnf(A′)
α−→◦ B′, so pnf(A′)

◦≡ νñ.(σ | P), P
α′

−→� B′′, B′ ≡
νñ.(σ |B′′), fv(σ)∩ bv(α′) = ∅, Σ ` ασ = α′, and the elements of ñ do not occur in α.
Let pnf(B0) = νñ′.(σ′ |P ′), where ñ and ñ′ are renamed so that they are disjoint, the
names of ñ are not free in σ′ | P ′, and the names of ñ′ are not free in σ | P , in α, nor

in B′′. Then pnf(A)
◦≡ νñ, ñ′.(σ]σ′ | (P | P ′)(σ]σ′)). By Par′, P | P ′ α′

−→� B′′ | P ′.
(We have bv(α′)∩ fv(P ′) = ∅ because fv(P ′) ⊆ fv(pnf(B0)) ⊆ fv(B0), bv(α′) = bv(α),

and bv(α) ∩ fv(B0) = ∅.) By Lemma B.11, (P | P ′)(σ]σ′) α′(σ]σ′)−−−−−−→� (B′′ | P ′)(σ]σ′).

50

(We have fv(σ]σ′) ∩ bv(α′) = ∅ because fv(σ) ∩ bv(α′) = ∅ and fv(σ′) ∩ bv(α′) = ∅.)
Moreover,

B = B′ |B0 ≡ νñ.(σ |B′′) | νñ′.(σ′ | P ′) ≡ νñ, ñ′.(σ]σ′ | (B′′ | P ′)(σ]σ′))
fv(σ]σ′) ∩ bv(α′(σ]σ′)) = fv(σ]σ′) ∩ bv(α′) = ∅
Σ ` α(σ]σ′) = ασ(σ]σ′) = α′(σ]σ′)

and the elements of ñ, ñ′ do not occur in α, so pnf(A)
α−→◦ B.

• Case Struct. We have A′
α−→ B′, A ≡ A′, and B ≡ B′. By induction hypothesis,

pnf(A′)
α−→ B′, so pnf(A′)

◦≡ νñ.(σ|P), P
α′

−→� B′′, B′ ≡ νñ.(σ|B′′), fv(σ)∩bv(α′) = ∅,
Σ ` ασ = α′, and the elements of ñ do not occur in α. By Lemma B.5, pnf(A)

◦≡
pnf(A′), so pnf(A)

◦≡ νñ.(σ | P), and B ≡ νñ.(σ |B′′), hence pnf(A)
α−→◦ B.

Lemma B.13 If P
α−→� A, then P

α−→ A. If A
α−→◦ B, then A

α−→ B.

Proof: The first point is proved by induction on the derivation of P
α−→� A. In the case

Struct′, we use Lemma B.7.

For the second point, we have A
◦≡ νñ.(σ | P), P

α′

−→� B′, B ≡ νñ.(σ | B′), fv(σ) ∩
bv(α′) = ∅, Σ ` ασ = α′, and the elements of ñ do not occur in α, for some ñ, σ, P , α′,
B′. By Lemma B.10, we have P

�≡ νñ′.(P1 | P2), B′ ≡ νñ′.(B1 | P2), {ñ′} ∩ fn(α′) = ∅,
bv(α′) ∩ fv(P1 | P2) = ∅, and one of the following two cases holds:

1. α′ = N ′(M ′), P1 = N ′(x).P ′, and B1 = P ′{M ′
/x};

2. α′ = νx.N ′〈x〉, P1 = N ′〈M ′〉.P ′, and B1 = P ′ | {M ′
/x}

for some ñ′, P1, P2, B1, N ′, M ′, P ′, x. We rename the elements of ñ′ so that {ñ′}∩fn(α) = ∅.
In Case 1, α = N(M) for some N and M . We have

A ≡ νñ, ñ′.(σ |N ′(x).P ′ | P2) ≡ νñ, ñ′.(σ |N(x).P ′ | P2)

using Lemma B.7 and Rewrite, since Σ ` Nσ = N ′. We have

B ≡ νñ, ñ′.(σ | P ′{M
′
/x} | P2) ≡ νñ, ñ′.(σ | P ′{M/x} | P2)

using Rewrite, since Σ `Mσ = M ′. Hence, we derive

N(x).P ′
α−→ P ′{M/x} by In

N(x).P ′ | P2 | σ
α−→ P ′{M/x} | P2 | σ by Par

νñ, ñ′.(N(x).P ′ | P2 | σ)
α−→ νñ, ñ′.(P ′{M/x} | P2 | σ) by Scope

A
α−→ B by Struct

To apply Par, we notice that fv(P2 | σ) ∩ bv(α) = ∅ since bv(α) = bv(α′).
In Case 2, α = νx.N〈x〉 for some N . We have

A ≡ νñ, ñ′.(σ |N ′〈M ′〉.P ′ | P2) ≡ νñ, ñ′.(σ |N〈M ′〉.P ′ | P2)

using Lemma B.7 and Rewrite, since Σ ` Nσ = N ′. We have

B ≡ νñ, ñ′.(σ | P ′ | {M
′
/x} | P2)

51

Hence, we derive

N〈M ′〉.P ′ α−→ P ′ | {M
′
/x} by Out-Var

N〈M ′〉.P ′ | P2 | σ
α−→ P ′ | {M

′
/x} | P2 | σ by Par

νñ, ñ′.(N〈M ′〉.P ′ | P2 | σ)
α−→ νñ, ñ′.(P ′ | {M

′
/x} | P2 | σ) by Scope

A
α−→ B by Struct

B.3 Restriction to Closed Processes

Next, we show that we can restrict ourselves to reductions between closed processes in the
semantics on partial normal forms. Let R be an inductive relation on processes. We say that
a derivation of R is closed when all processes that appear in the derivation are closed, and
that a derivation of R is closed on the left when all processes that appear in the derivation
before applying R are closed.

Let A and B be two normal processes. We write Σ ` A = B when B is obtained from
A by replacing some terms M with terms N such that Σ `M = N . When Σ ` P = Q, we
have P

�≡ Q by (possibly several) applications of Rewrite′. When Σ ` A = B, we have
A
◦≡ B by (possibly several) applications of Rewrite′ and Rewrite′′.

Lemma B.14 1. If P
�≡ Q and Σ ` P = Pσ, then Pσ

�≡ Qσ and Σ ` Q = Qσ.

2. If A
◦≡ B and Σ ` A = Aσ, then Aσ

◦≡ Bσ and Σ ` B = Bσ.

Proof: We prove these properties by induction on the derivations. All cases are straight-
forward. (When y ∈ dom(A), we consider that A{a/y} = A.) In the cases Rewrite′ and
Rewrite′′, we use that the equational theory is closed under substitution of terms for vari-
ables. In the cases of transitivity of

�≡ and
◦≡, we use the induction hypothesis twice.

Lemma B.15 If A ≡ B, then Aσ ≡ Bσ.

Proof: We prove this lemma by induction on the derivation of A ≡ B.

Lemma B.16 In all the cases below, Y is a set of variables, σ is a substitution from Y to
pairwise distinct fresh names.

1. If P
�≡ Q, Y

def
= fv(P) ∪ fv(Q), and Σ ` P = Pσ, then Σ ` Q = Qσ and Pσ

�≡ Qσ by
a closed derivation.

2. If P →� Q, Y
def
= fv(P) ∪ fv(Q), and Σ ` P = Pσ, then Σ ` Q = Qσ and Pσ →� Qσ

by a closed derivation.

3. If P
α−→� A, Y

def
= fv(P)∪fv(α)∪(fv(A)\dom(A)), and Σ ` P = Pσ, then Σ ` α = ασ,

A ≡ Aσ, and Pσ
ασ−−→� Aσ by a derivation closed on the left.

4. If A
◦≡ B, Y

def
= (fv(A) \ dom(A)) ∪ (fv(B) \ dom(B)), and Σ ` A = Aσ, then

Σ ` B = Bσ and Aσ
◦≡ Bσ by a closed derivation.

5. If A →◦ B, Y
def
= (fv(A) \ dom(A)) ∪ (fv(B) \ dom(B)), and Σ ` A = Aσ, then

Σ ` B = Bσ and Aσ →◦ Bσ by a closed derivation.

52

Proof: We prove the lemma by induction on the derivations. All cases are straightforward.
In the cases Rewrite′, Rewrite′′, and Else′, we use that the equational theory is closed
under substitution of names for variables. In the cases of transitivity of

�≡ and
◦≡, we use the

induction hypothesis and notice that, if a variable does not occur free in a certain process,
then we can substitute it or not without changing the result. We use a similar argument
when we apply a structural equivalence step and a reduction step. In the case Struct′, we
additionally use Lemma B.15.

Lemma B.17 1. If P →� Q and P is closed, then P →� Q by a derivation closed on
the left.

2. If A→◦ B and A is closed, then A→◦ B by a derivation closed on the left.

3. If P
α−→� A, P is closed, and α is νx.N〈x〉 or N(M) for some ground term N , then

P
α−→� A by a derivation closed on the left.

4. If A
α−→◦ B, A is closed, and fv(α) ⊆ dom(A), then A

α−→◦ B by a derivation closed on

the left, and the label α′ of the transition P
α′

−→� B′ used in the definition of A
α−→◦ B

is closed.

Proof: In the proof below, Y ranges over sets of variables and σ maps Y to pairwise
distinct fresh names. The first two properties immediately follow from Lemma B.16. For
instance, if P →� Q and P is closed, let Y = fv(P) ∪ fv(Q) = fv(Q). We have P = Pσ, so
a fortiori Σ ` P = Pσ. By Lemma B.16(2), we have Σ ` Q = Qσ and P = Pσ →� Qσ by a
closed derivation, so Q

�≡ Qσ. Hence P →� Q by a derivation closed on the left.
Property 3: suppose that α = N(M) where N is a ground term. By Lemma B.10,

P
�≡ νñ.(N(x).P1 | P2), A ≡ νñ.(P1{M/x} | P2), and {ñ} ∩ fn(α) = ∅. Let Y = fv(N(x).P1 |

P2). We rename x so that x /∈ Y . Since P is closed, P = Pσ, so a fortiori Σ ` P =
Pσ. By Lemma B.16(1), P = Pσ

�≡ νñ.(N(x).P1σ | P2σ) by a closed derivation and
Σ ` νñ.(N(x).P1 | P2) = νñ.(N(x).P1σ | P2σ), so Σ ` P1 = P1σ and Σ ` P2 = P2σ. Hence
A ≡ νñ.(P1{M/x} | P2) ≡ νñ.(P1σ{M/x} | P2σ). We derive

N(x).P1σ
N(M)−−−−→� P1σ{M/x} by In′

N(x).P1σ | P2σ
N(M)−−−−→� P1σ{M/x} | P2σ by Par′

νñ.(N(x).P1σ | P2σ)
N(M)−−−−→� νñ.(P1σ{M/x} | P2σ) by Scope′

P
N(M)−−−−→� A by Struct′

using the previous closed derivation of P
�≡ νñ.(N(x).P1σ |P2σ). In the resulting derivation,

all intermediate processes before
α−→� are closed. The case α = νx.N〈x〉 where N is a ground

term can be proved in a similar way, or by using Lemma B.16(3) since α is closed.

Property 4: suppose that A is closed and A
α−→◦ B. Then A

◦≡ νñ.(σ′ | P), P
α′

−→� B′,
B ≡ νñ.(σ′ | B′), fv(σ′) ∩ bv(α′) = ∅, Σ ` ασ′ = α′, and the names ñ do not occur in
α. Let Y = (fv(σ′) \ dom(σ′)) ∪ fv(P) ∪ fv(α′) ∪ (fv(B′) \ dom(B′)). Then Σ ` A = Aσ,
so by Lemma B.16(4), Aσ

◦≡ νñ.(σ′σ | Pσ) by a closed derivation and Σ ` νñ.(σ′ | P) =

νñ.(σ′σ |Pσ), so Σ ` σ′ = σ′σ and Σ ` P = Pσ. Hence by Lemma B.16(3), Pσ
α′σ−−→� B′σ by

a derivation closed on the left, and B′ ≡ B′σ. So B ≡ νñ.(σ′σ |B′σ), fv(σ′σ)∩ bv(α′σ) = ∅,
Σ ` ασ′σ = α′σ, and the names ñ do not occur in α. Hence we obtain the desired derivation
using α′σ instead of α′, σ′σ instead of σ′, Pσ instead of P , and B′σ instead of B′.

53

B.4 Decomposition and Composition of Reductions on Partial Nor-
mal Forms

The next few lemmas allow us to analyze internal reductions and labelled transitions on
partial normal forms. Most of these lemmas describe the possible reductions of a process.
Lemma B.20 composes two reductions: if two processes perform labelled transitions, one an
output transition and the other an input transition on the same channel, then their parallel
composition performs an internal reduction.

Lemma B.18 Suppose that P0 is closed, α is νx.N ′〈x〉 or N ′(M ′) for some ground term

N ′, and P0
α−→� A. Then one of the following cases holds:

1. P0 = P |Q and either P
α−→� A′ and A ≡ A′ |Q, or Q

α−→� A′ and A ≡ P |A′, for some
P , Q, and A′;

2. P0 = νn.P , P
α−→� A′, and A ≡ νn.A′ for some P , A′, and n that does not occur in

α;

3. P0 = !P , P
α−→� A′, and A ≡ A′ | !P for some P and A′;

4. P0 = N(x).P , α = N ′(M ′), Σ ` N = N ′, and A ≡ P{M ′
/x} for some N , x, P , N ′,

and M ′;

5. P0 = N〈M〉.P , α = νx.N ′〈x〉, Σ ` N = N ′, x /∈ fv(P0), and A ≡ P | {M/x} for some
N , M , P , x, and N ′.

Proof: An obvious approach for proving this result is to proceed by induction on the
derivation of P0

α−→� A. However, the statement is not strong enough to provide an
inductive invariant. For instance, in case P0

α−→� A is derived from P0 = νn.νn′.P
�≡

νn′.νn.P
α−→� A, we can apply the statement to νn′.νn.P

α−→� A by induction hypothesis,
because νn′.νn.P

α−→� A is derived by a derivation smaller than that of P0
α−→� A. Hence,

we obtain that νn.P
α−→� A′ and A ≡ νn′.A′ for some A′. However, we cannot apply the

result to νn.P
α−→� A′, because we are not sure that the derivation of νn.P

α−→� A′ is smaller
than that of P0

α−→� A. For this reason, we strengthen the induction hypothesis as shown
below, to make sure that it can be applied to a labelled transition, such as νn.P

α−→� A′,
obtained by applying the desired result itself.

Let Prop(P0
α−→� A) be the greatest property such that Prop(P0

α−→� A) holds if and
only if one of the following cases holds:

1. P0 = P | Q and either P
α−→� A′, Prop(P

α−→� A′), and A ≡ A′ | Q, or Q
α−→� A′,

Prop(Q
α−→� A′), and A ≡ P |A′, for some P , Q, and A′;

2. P0 = νn.P , P
α−→� A′, Prop(P

α−→� A′), and A ≡ νn.A′ for some P , A′, and n that
does not occur in α;

3. P0 = !P , P
α−→� A′, Prop(P

α−→� A′), and A ≡ A′ | !P for some P and A′;

4. P0 = N(x).P , α = N ′(M ′), Σ ` N = N ′, and A ≡ P{M ′
/x} for some N , x, P , N ′,

and M ′;

5. P0 = N〈M〉.P , α = νx.N ′〈x〉, Σ ` N = N ′, x /∈ fv(P0), and A ≡ P | {M/x} for some
N , M , P , x, and N ′.

54

Let us show that, if P0
α−→� A is derived by a derivation closed on the left, then Prop(P0

α−→�
A), by induction on the derivation of P0

α−→� A.

• Case In′. We have P0 = N(x).P , α = N(M), and A = P{M/x}, so we are in Case 4

of Prop(P0
α−→� A) with N ′ = N and M ′ = M .

• Case Out-Var′. We have P0 = N〈M〉.P , α = νx.N〈x〉, x /∈ fv(P0), and A = P |{M/x},
so we are in Case 5 of Prop(P0

α−→� A) with N ′ = N .

• Case Scope′. We have P0 = νn.P , n does not occur in α, P
α−→� A′, and A = νn.A′

for some A′. We obtain Prop(P
α−→� A′) by induction hypothesis, so we are in Case 2

of Prop(P0
α−→� A).

• Case Par′. We have P0 = P | Q, P
α−→� A′ and A = A′ | Q for some P , Q, and

A′. We obtain Prop(P
α−→� A′) by induction hypothesis, so we are in Case 1 of

Prop(P0
α−→� A).

• Case Struct′. We have P0
�≡ Q0

α−→� B ≡ A. The case in which P0 = Q0 is obvious.
Let us consider the case in which the structural equivalence P0

�≡ Q0 consists of
applying a single structural equivalence step. (The case in which it consists of several
steps can be transformed into several applications of Struct′.) The process Q0 is

closed, and by induction hypothesis Prop(Q0
α−→� B). We show that, if P0

�≡ Q0
α−→�

B ≡ A, Prop(Q0
α−→� B), and all processes in the derivation of P0

�≡ Q0 are closed,

then Prop(P0
α−→� A), by induction on the derivation of P0

�≡ Q0.

– Case P0 = Q0 |0
�≡ Q0. We have Q0

α−→� B, Prop(Q0
α−→� B), and A ≡ B ≡ B |0,

so we are in Case 1 of Prop(P0
α−→� A).

– Case P0
�≡ P0|0. Since Prop(P0|0

α−→� B), we have either P0
α−→� B′, Prop(P0

α−→�
B′), and B ≡ B′ |0 for some B′, or 0

α−→� B′, Prop(0
α−→� B′), and B ≡ P |B′ for

some B′. By definition of Prop, Prop(0
α−→� B′) is impossible, so we are in the

first case: Prop(P0
α−→� B′) and A ≡ B′. Since Prop(P0

α−→� B′) is invariant by

structural equivalence applied to B′, we can then conclude that Prop(P0
α−→� A).

– Case P0 = P | (Q | R)
�≡ (P |Q) | R. We have Prop((P |Q) | R α−→� B), so either

P | Q α−→� B′, Prop(P | Q α−→� B′), and B ≡ B′ | R for some B′, or R
α−→� B′,

Prop(R
α−→� B′), and B ≡ (P | Q) | B′ for some B′. In the first case, either

P
α−→� B′′, Prop(P

α−→� B′′), and B′ ≡ B′′ | Q for some B′′, or Q
α−→� B′′,

Prop(Q
α−→� B′′), and B′ ≡ P | B′′ for some B′′. Consider for instance the last

case, in which Q reduces. The other two cases are similar. Since R is closed,
bv(α) ∩ fv(R) = ∅, so by Par′, Q | R α−→� B′′ | R, Prop(Q | R α−→� B′′ | R), and

A ≡ B ≡ B′ |R ≡ (P |B′′)|R ≡ P |(B′′ |R), so we are in Case 1 of Prop(P0
α−→� A).

– Case P0 = (P |Q) |R �≡ P | (Q |R). This case is similar to the previous one.

– Case P0 = P |Q �≡ Q|P . (This case is its own symmetric.) This case is immediate,
since the desired result is invariant by swapping P and Q.

– Case P0 = !P
�≡ P | !P . Since Prop(P | !P α−→� B), either P

α−→� B′, Prop(P
α−→�

B′), and B ≡ B′ | !P for some B′, or !P
α−→� B′, Prop(!P

α−→� B′), and B ≡ P |B′
for some B′. In the first case, we are in Case 3 of Prop(P0

α−→� A) with A′ = B′.

In the second case, since Prop(!P
α−→� B′), we have P

α−→� B′′, Prop(P
α−→� B′′),

55

and B′ ≡ B′′ | !P for some B′′. Hence, A ≡ B ≡ B′ | P ≡ B′′ | !P , so we are in

Case 3 of Prop(P0
α−→� A) with A′ = B′′.

– Case P0 = P | !P �≡ !P . Since Prop(!P
α−→� B), we have P

α−→� B′, Prop(P
α−→�

B′), and B ≡ B′ | !P for some B′. We are in Case 1 of Prop(P0
α−→� A) with

A′ = B′.

– Case P0 = νn.0
�≡ 0. We have that Prop(0

α−→� B) is impossible, so this case
never happens.

– Case P0 = 0
�≡ νn.0. Since Prop(νn.0

α−→� B), we have Prop(0
α−→� B′), which

is impossible, so this case never happens.

– Case P0 = νn.νn′.P
�≡ νn′.νn.P . (This case is its own symmetric.) We rename

n and n′ so that they do not occur in α. Since Prop(νn′.νn.P
α−→� B), we have

νn.P
α−→� B′, Prop(νn.P

α−→� B′), and B ≡ νn′.B′ for some B′, so P
α−→� B′′,

Prop(P
α−→� B′′), and B′ ≡ νn.B′′ for some B′′. Hence, by Scope’, νn′.P

α−→�
νn′.B′′, Prop(νn′.P

α−→� νn′.B′′), and we have A ≡ B ≡ νn′.B′ ≡ νn′.νn.B′′ ≡
νn.νn′.B′′, so we are in Case 2 of Prop(P0

α−→� A) with A′ = νn′.B′′.

– Case P0 = P |νn.Q �≡ νn.(P |Q) and n /∈ fn(P). We rename n so that it does not

occur in α. Since Prop(νn.(P |Q)
α−→� B), we have P |Q α−→� B′, Prop(P |Q α−→�

B′), and B ≡ νn.B′ for some B′, so either P
α−→� B′′, Prop(P

α−→� B′′), and

B′ ≡ B′′ | Q for some B′′, or Q
α−→� B′′, Prop(Q

α−→� B′′), and B′ ≡ P | B′′
for some B′′. In the first case, we rename n in Q so that n /∈ fn(B′′), hence

A ≡ B ≡ νn.B′ ≡ νn.(B′′ |Q) ≡ B′′ |νn.Q, so we are in Case 1 of Prop(P0
α−→� A)

with A′ = B′′. In the second case, by Scope′, νn.Q
α−→� νn.B′′, Prop(νn.Q

α−→�
νn.B′′), and A ≡ B ≡ νn.B′ ≡ νn.(P | B′′) ≡ P | νn.B′′ since n /∈ fn(P), so we

are in Case 1 of Prop(P0
α−→� A) with A′ = νn.B′′.

– Case P0 = νn.(P | Q)
�≡ P | νn.Q and n /∈ fn(P). This case is fairly similar to

the previous one.

– Case P0 = P1{M/x}
�≡ P1{N/x} and Σ ` M = N . (This case is its own sym-

metric.) We have Prop(P1{N/x}
α−→� B). We show by induction on the syn-

tax of P1 that, if Prop(P1{N/x}
α−→� B), Σ ` M = N , and A ≡ B, then

Prop(P1{M/x}
α−→� A).

∗ Case P1 = P |Q. We have Prop(P{N/x}|Q{N/x}
α−→� B), so either P{N/x}

α−→�
B′, Prop(P{N/x}

α−→� B′), and B ≡ B′ | Q{N/x}, or Q{N/x}
α−→� B′,

Prop(Q{N/x}
α−→� B′), and B ≡ P{N/x} | B′ for some B′. Hence P1{M/x} =

P{M/x}|Q{M/x} and either P{M/x}
�≡ P{N/x}

α−→� B′, Prop(P{M/x}
α−→� B′)

by induction hypothesis, and A ≡ B ≡ B′ | Q{N/x} ≡ B′ | Q{M/x}, or

Q{M/x}
�≡ Q{N/x}

α−→� B′, Prop(Q{M/x}
α−→� B′) by induction hypothe-

sis, and A ≡ B ≡ P{N/x} | B′ ≡ P{M/x} | B′, so we are in Case 1 of

Prop(P1{M/x}
α−→� A).

∗ Case P1 = νn.P . We rename n so that it does not occur in α. We have
Prop(νn.P{N/x}

α−→� B), so P{N/x}
α−→� B′, Prop(P{N/x}

α−→� B′), and B ≡
νn.B′ for some B′. Hence P1{M/x} = νn.P{M/x}, P{M/x}

�≡ P{N/x}
α−→� B′,

Prop(P{M/x}
α−→� B′) by induction hypothesis, and A ≡ B ≡ νn.B′, so we

are in Case 2 of Prop(P1{M/x}
α−→� A).

56

∗ Case P1 = !P . We have Prop(!P{N/x}
α−→� B), so P{N/x}

α−→� B′,

Prop(P{N/x}
α−→� B′), and B ≡ B′ | !P{N/x} for some B′. Hence P1{M/x} =

!P{M/x}, P{M/x}
�≡ P{N/x}

α−→� B′, Prop(P{M/x}
α−→� B′) by induction hy-

pothesis, and A ≡ B ≡ B′ | !P{N/x} ≡ B′ | !P{M/x}, so we are in Case 3 of

Prop(P1{M/x}
α−→� A).

∗ Case P1 = N1(x1).P . We rename x1 so that x1 6= x. We have

Prop(N1{N/x}(x1).P{N/x}
α−→� B), so α = N ′(M ′), Σ ` N1{N/x} = N ′,

and B ≡ P{N/x}{M
′
/x1
}. So Σ ` N1{M/x} = N ′, and A ≡ B ≡

P{M/x}{M
′
/x1
}, hence Prop(N1{M/x}(x1).P{M/x}

α−→� A), so we are in

Case 4 of Prop(P1{M/x}
α−→� A).

∗ Case P1 = N1〈M1〉.P . We have Prop(N1{N/x}〈M1{N/x}〉.P{N/x}
α−→�

B), so α = νx1.N ′〈x1〉, Σ ` N1{N/x} = N ′, and B ≡ P{N/x} |
{M1{N/x}/x1}. So Σ ` N1{M/x} = N ′, and A ≡ B ≡ P{N/x} | {M1{M/x}/x1},
hence Prop(N1{M/x}〈M1{M/x}〉.P{M/x}

α−→� A), so we are in Case 5 of

Prop(P1{M/x}
α−→� A).

Using this result, we obtain Prop(P0
α−→� A).

– Case P0 = P |Q �≡ P ′ |Q knowing P
�≡ P ′. Since Prop(P ′ |Q α−→� B), either P ′

α−→�
A′, Prop(P ′

α−→� A′), and A ≡ A′ |Q for some A′, or Q
α−→� A′, Prop(Q

α−→� A′),
and A ≡ P ′ | A′ for some A′. In the first case, by Struct′, P

α−→� A′. By

induction hypothesis, Prop(P
α−→� A′). Moreover, A ≡ A′ | Q, so we are in

Case 1 of Prop(P0
α−→� A). In the second case, Q

α−→� A′, Prop(Q
α−→� A′), and

A ≡ P ′ |A′ ≡ P |A′, so we are in Case 1 of Prop(P0
α−→� A).

– Case P0 = νn.P
�≡ νn.P ′ knowing P

�≡ P ′. We rename n so that it does not
occur in α. Since Prop(νn.P ′

α−→� B), we have P ′
α−→� A′, Prop(P ′

α−→� A′),
and A ≡ νn.A′ for some A′. By Struct′, P

α−→� A′. By induction hypothesis,
Prop(P

α−→� A′). Moreover, A ≡ νn.A′, so we are in Case 2 of Prop(P0
α−→� A).

Since P0 is closed and α is νx.N ′〈x〉 or N ′(M ′) for some ground term N ′, by Lemma B.17(3),

there exists a derivation of P0
α−→� A closed on the left. So by applying the previous result,

Prop(P0
α−→� A), which yields the desired property.

Lemma B.19 If νñ.(σ | P) is a closed normal process, νñ.(σ | P)
α−→◦ A, fv(α) ⊆ dom(σ),

and the elements of ñ do not occur in α, then P
ασ−−→� A′, A ≡ νñ.(σ | A′), and bv(α) ∩

dom(σ) = ∅ for some A′.

Proof: By Lemma B.17(4), we consider a derivation of νñ.(σ |P)
α−→◦ A closed on the left

and the label α′ below is closed. By definition of
α−→◦, we have νñ.(σ | P)

◦≡ νñ′.(σ′ | P ′),
P ′

α′

−→� B, A ≡ νñ′.(σ′ |B), Σ ` ασ′ = α′ for some ñ′, σ′, P ′, α′, B such that the elements
of ñ′ do not occur in α and fv(σ′) ∩ bv(α′) = ∅. By applying Lemma B.10 back and forth,

since P ′
α′

−→� B and Σ ` ασ′ = α′, we have P ′
ασ′

−−→� B. We proceed by induction on the
derivation of νñ.(σ | P)

◦≡ νñ′.(σ′ | P ′).

• Base case: νñ.(σ | P) = νñ′.(σ′ | P ′), and the desired result holds.

• Transitivity: the result is proved by applying the induction hypothesis twice.

• Case Plain′′: ñ = ñ′, σ = σ′, P
�≡ P ′ ασ−−→� B, and A ≡ νñ.(σ |B), so the result holds.

57

• Case New-C′′: ñ′ is a reordering of ñ, νñ.(σ | P)
◦≡ νñ′.(σ | P), P

ασ−−→� B and

A ≡ νñ′.(σ |B), so P
ασ−−→� B and A ≡ νñ′.(σ |B) ≡ νñ.(σ |B), hence the result holds.

• Case New-Par′′: P = νn′.P ′, νñ.(σ | νn′.P ′) ◦≡ νñ, n′.(σ | P ′), P ′ ασ−−→� B, and
A ≡ νñ, n′.(σ | B) where the elements of ñ, n′ do not occur in α and n′ /∈ fn(σ). By

Scope′, P = νn′.P ′
ασ−−→� νn′.B and by New-Par, A ≡ νñ, n′.(σ |B) ≡ νñ.(σ |νn′.B),

hence the result holds.

• Case New-Par′′ reversed: νñ, n′.(σ | P)
◦≡ νñ.(σ | νn′.P), νn′.P

ασ−−→� B and A ≡
νñ.(σ |B) where the elements of ñ do not occur in α and n′ /∈ fn(σ). We rename n′ so

that it does not occur in α. By Lemma B.18, P
ασ−−→� B′ and B ≡ νn′.B′ for some B′.

Hence, P
ασ−−→� B′ and A ≡ νñ.(σ |B) ≡ νñ.(σ |νn′.B′) ≡ νñ, n′.(σ |B′) by New-Par,

so the result holds.

• Case Rewrite′′: νñ.(σ | P)
◦≡ νñ.(σ′ | P), P

ασ′

−−→� B and A ≡ νñ.(σ′ | B) where
dom(σ) = dom(σ′), Σ ` xσ = xσ′ for all x ∈ dom(σ), and (fv(xσ) ∪ fv(xσ′)) ∩
dom(σ) = ∅ for all x ∈ dom(σ). Hence P

ασ′

−−→� B and Σ ` ασ = ασ′, so by applying

Lemma B.10 back and forth, P
ασ−−→� B. Moreover, A ≡ νñ.(σ′ | B) ≡ νñ.(σ | B) by

several applications of Rewrite, so the result holds.

Lemma B.20 If P and Q are closed processes, N is a ground term, P
N(x)−−−→� A, and

Q
νx.N〈x〉−−−−−→� B, then P |Q→� R and R ≡ νx.(A |B) for some R.

Proof: By Lemma B.10, we have P
�≡ νñ.(N(y).P1 | P2), A ≡ νñ.(P1{x/y} | P2), {ñ} ∩

fn(N) = ∅ and Q
�≡ νñ′.(N〈M〉.Q1 | Q2), B ≡ νñ′.(Q1 | {M/x} | Q2), {ñ′} ∩ fn(N) = ∅,

x /∈ fv(N〈M〉.Q1 |Q2).
Let Y = fv(νñ.(N(y).P1 |P2)). We rename y so that y /∈ Y . Let σ be a substitution from

Y to pairwise distinct fresh names. Since P and N are closed, Pσ = P and Nσ = N , so a
fortiori Σ ` P = Pσ. By Lemma B.16(1), P

�≡ νñ.(N(y).P1σ | P2σ) and Σ ` νñ.(N(y).P1 |
P2) = νñ.(N(y).P1σ | P2σ). Then, by introducing fresh names ñ1, ñ

′
1,

P |Q �≡ νñ1, ñ′1.(N(y).P1σ{ñ1/̃n} | P2σ{ñ1/̃n}

|N〈M{ñ
′
1/̃n′}〉.Q1{ñ

′
1/̃n′} |Q2{ñ

′
1/̃n′})

→� νñ1, ñ′1.(P1σ{ñ1/̃n}{M{
ñ′
1/̃n′}/y} | P2σ{ñ1/̃n} |Q1{ñ

′
1/̃n′} |Q2{ñ

′
1/̃n′}) = R

and

νx.(A |B) ≡ νx, ñ1, ñ′1.(P1σ{x/y,ñ1 /̃n} | P2σ{ñ1/̃n}

|Q1{ñ
′
1/̃n′} | {M{

ñ′
1/̃n′}/x} |Q2{ñ

′
1/̃n′})

≡ νñ1, ñ′1.(P1σ{M{
ñ′
1/̃n′}/y,

ñ1 /̃n} | P2σ{ñ1/̃n} |Q1{ñ
′
1/̃n′} |Q2{ñ

′
1/̃n′})

≡ R

because x is not free in P1σ, P2σ, Q1, Q2, since νñ.(N(y).P1σ | P2σ) is closed and x /∈
fv(N〈M〉.Q1 |Q2).

Lemma B.21 Suppose that P0 is a closed process and P0 →� R. Then one of the following
cases holds:

58

1. P0 = P |Q for some P and Q, and one of the following cases holds:

(a) P →� P ′ and R ≡ P ′ |Q for some P ′,

(b) P
N(x)−−−→� A, Q

νx.N〈x〉−−−−−→� B, and R ≡ νx.(A | B) for some A, B, x, and ground
term N ,

and two symmetric cases obtained by swapping P and Q;

2. P0 = νn.P , P →� Q′, and R ≡ νn.Q′ for some n, P , and Q′;

3. P0 = !P , P | P →� Q′, and R ≡ Q′ | !P for some P and Q′;

4. P0 = if M = N then P else Q and either Σ ` M = N and R ≡ P , or Σ ` M 6= N
and R ≡ Q, for some M , N , P , and Q.

Proof: We proceed similarly to Lemma B.18. Let Prop(P0 →� R0) be the greatest prop-
erty such that Prop(P0 →� R0) holds if and only if one of the following cases holds:

1. P0 = P |Q for some P and Q, and one of the following cases holds:

(a) P →� P ′, Prop(P →� P ′), and R0 ≡ P ′ |Q for some P ′,

(b) P
N(x)−−−→� A, Q

νx.N〈x〉−−−−−→� B, and R0 ≡ νx.(A | B) for some A, B, x, and ground
term N ,

and two symmetric cases obtained by swapping P and Q, named (a’) and (b’) respec-
tively;

2. P0 = νn.P , P →� Q′, Prop(P →� Q′), and R0 ≡ νn.Q′ for some n, P , and Q′;

3. P0 = !P , P | P →� Q′, Prop(P | P →� Q′), and R0 ≡ Q′ | !P for some P and Q′;

4. P0 = if M = N then P else Q and either Σ ` M = N and R0 ≡ P , or Σ ` M 6= N
and R0 ≡ Q, for some M , N , P , and Q.

Let us show that, if P0 →� R0 is derived by a derivation closed on the left, then Prop(P0 →�
R0), by induction on the derivation of P0 →� R0.

• In the case Comm′, P0 = P | Q where P = N〈M〉.P ′, Q = N(x).Q′, and R0 =

P ′|Q′{M/x}, so by choosing a fresh variable y, P
νy.N〈y〉−−−−−→� P ′|{M/y}, Q

N(y)−−−→� Q′{y/x},
νy.(P ′ | {M/y} | Q′{y/x}) ≡ P ′ | Q′{M/x} ≡ R0, and N is ground since P0 is closed.
Therefore, we are in Case 1.(a’) of Prop(P0 →� R0).

• In the case Then′, we are in Case 4 of Prop(P0 →� R0) with P0 = if M =
M then P else Q and R0 = P .

• In the case Else′, we are in Case 4 of Prop(P0 →� R0) with P0 = if M =
N then P else Q, Σ `M 6= N , and R0 = Q.

• If we apply a reduction under an evaluation context E, then P0 = E[P]→� E[P ′] = R0

is derived from P →� P ′. By induction hypothesis, we have Prop(P →� P ′), and we
are in Case 1.(a) (respectively, 1.(a’) or 2) of Prop(P0 →� R0) when E is E′ | Q
(respectively, Q | E′ or νn.E′).

59

• Finally, suppose that we use
�≡. We have P0

�≡ Q0 →� R1
�≡ R0. The case in which

P0 = Q0 is obvious by induction, since R1
�≡ R0 implies R1 ≡ R0 by Lemma B.7. Let

us consider the case in which the structural equivalence P0
�≡ Q0 consists of applying

a single structural equivalence step. (The case in which it consists of several steps can
be transformed into several applications of the rule.) The process Q0 is closed, and
by induction hypothesis Prop(Q0 →� R1). We show that, if P0

�≡ Q0 →� R1 ≡ R0,
Prop(Q0 →� R1), and all processes in the derivation of P0

�≡ Q0 are closed, then
Prop(P0 →� R0), by induction on the derivation of P0

�≡ Q0.

– Case P0 = Q0 | 0
�≡ Q0. We have Q0 →� R1, Prop(Q0 →� R1), and R0 ≡ R1 ≡

R1 | 0, so we are in Case 1.(a) of Prop(P0 →� R0).

– Case P0
�≡ P0 | 0. Since Prop(P0 | 0→� R1), we have either

1. P0 →� R′, Prop(P0 →� R′), and R1 ≡ R′ | 0 for some R′;

2. P0
N(x)−−−→� A, 0

νx.N〈x〉−−−−−→� B;

3. P0
νx.N〈x〉−−−−−→� A, 0

N(x)−−−→� B; or

4. 0→� R′, Prop(0→� R′), and R1 ≡ P0 |R′ for some R′.

Cases 2 and 3 are impossible by Lemma B.18. Case 4 is impossible since, by
definition of Prop, Prop(0 →� R′) does not hold. So we are in the first case:
Prop(P0 →� R′) and R0 ≡ R1 ≡ R′|0 ≡ R′. Since Prop(P0 →� R′) is invariant by
structural equivalence applied to R′, we can then conclude that Prop(P0 →� R0).

– Case P0 = P | (Q |R)
�≡ (P |Q) |R. Since Prop((P |Q) |R→� R1), we have four

cases:

∗ P | Q →� R2, Prop(P | Q →� R2), and R1 ≡ R2 | R. We have again four
cases.

· P →� R3, Prop(P →� R3), and R2 ≡ R3 |Q. Then R0 ≡ R1 ≡ R2 |R ≡
(R3 |Q) |R ≡ R3 | (Q |R), so we are in Case 1.(a) of Prop(P0 →� R0).

· Q →� R3, Prop(Q →� R3), and R2 ≡ P | R3. Then Q | R →� R3 | R,
Prop(Q |R→� R3 |R), and R0 ≡ R1 ≡ R2 |R ≡ (P |R3) |R ≡ P |(R3 |R),
so we are in Case 1.(a’) of Prop(P0 →� R0).

· P N(x)−−−→� A, Q
νx.N〈x〉−−−−−→� B, and R2 ≡ νx.(A | B) for some A, B, x, and

ground term N . Then Q | R νx.N〈x〉−−−−−→� B | R by Par′, and R0 ≡ R1 ≡
R2 | R ≡ νx.(A | B) | R ≡ νx.(A | (B | R)) since x /∈ fv(R), so we are in
Case 1.(b) of Prop(P0 →� R0).

· P νx.N〈x〉−−−−−→� A, Q
N(x)−−−→� B, and R2 ≡ νx.(A | B) for some A, B, x, and

ground term N . This case can be handled similarly to the previous one.

∗ R →� R2, Prop(R →� R2), and R1 ≡ (P | Q) | R2. Then Q | R →� Q | R2,
Prop(Q |R→� Q |R2), and R0 ≡ R1 ≡ (P |Q) |R2 ≡ P | (Q |R2), so we are
in Case 1.(a’) of Prop(P0 →� R0).

∗ P |Q N(x)−−−→� A, R
νx.N〈x〉−−−−−→� B, and R1 ≡ νx.(A | B) for some A, B, x, and

ground term N . By Lemma B.18, either P
N(x)−−−→� A′ and A ≡ A′ |Q for some

A′, or Q
N(x)−−−→� A′ and A ≡ P |A′ for some A′. In the first case, P

N(x)−−−→� A′,

Q | R νx.N〈x〉−−−−−→� Q | B by Par′ and Struct′, and R0 ≡ R1 ≡ νx.(A | B) ≡
νx.((A′ |Q)|B) ≡ νx.(A′ |(Q|B)), so we are in Case 1.(b) of Prop(P0 →� R0).

60

In the second case, by Lemma B.20, Q | R →� R2 and R2 ≡ νx.(A′ | B) for
some R2, Prop(Q |R→� R2), and R0 ≡ R1 ≡ νx.(A |B) ≡ νx.((P |A′) |B) ≡
P | νx.(A′ | B) ≡ P | R2 since x /∈ fv(P). Hence, we are in Case 1.(a’) of
Prop(P0 →� R0).

∗ P |Q νx.N〈x〉−−−−−→� A, R
N(x)−−−→� B, and R1 ≡ νx.(A | B) for some A, B, x, and

ground term N . This case can be handled similarly to the previous one.

– Case P0 = (P |Q) |R �≡ P | (Q |R). This case is similar to the previous one.

– Case P0 = P |Q �≡ Q|P . (This case is its own symmetric.) This case is immediate,
since the desired result is invariant by swapping P and Q.

– Case P0 = !P
�≡ P | !P . Since Prop(P | !P →� R1), we have four cases:

∗ P →� P ′, Prop(P →� P ′), and R1 ≡ P ′ | !P for some P ′. Hence P | P →�
P ′ | P , Prop(P | P →� P ′ | P), and R0 ≡ R1 ≡ P ′ | !P ≡ (P ′ | P) | !P , so we
are in Case 3 of Prop(P0 →� R0).

∗ !P →� P ′, Prop(!P →� P ′), and R1 ≡ P |P ′ for some P ′. Since Prop(!P →�
P ′), we have P | P →� R2, Prop(P | P →� R2), and P ′ ≡ R2 | !P . So
P |P →� R2, Prop(P |P →� R2), and R0 ≡ R1 ≡ P |P ′ ≡ P |(R2|!P) ≡ R2|!P ,
so we are in Case 3 of Prop(P0 →� R0).

∗ P N(x)−−−→� A, !P
νx.N〈x〉−−−−−→� B, and R1 ≡ νx.(A | B) for some A, B, x, and

ground term N . By Lemma B.18, P
νx.N〈x〉−−−−−→� B′ and B ≡ B′ | !P for

some B′. So by Lemma B.20, P | P →� R2 and R2 ≡ νx.(A | B′) for some
R2. So P | P →� R2, Prop(P | P →� R2), and R0 ≡ R1 ≡ νx.(A | B) ≡
νx.(A | (B′ | !P)) ≡ νx.(A | B′) | !P ≡ R2 | !P since x /∈ fv(!P). So we are in
Case 3 of Prop(P0 →� R0).

∗ P νx.N〈x〉−−−−−→� A, !P
N(x)−−−→� B, and R1 ≡ νx.(A | B) for some A, B, x, and

ground term N . This case can be handled similarly to the previous one.

– Case P0 = P | !P �≡ !P . Since Prop(!P →� R1), we have P | P →� R2, Prop(P |
P →� R2), and R1 ≡ R2 | !P for some R2. Since Prop(P | P →� R2), we have
four cases, which reduce to two by symmetry:

∗ P →� P ′, Prop(P →� P ′), and R2 ≡ P ′ | P for some P ′. Hence R0 ≡ R1 ≡
R2 | !P ≡ P ′ | P | !P ≡ P ′ | !P , so we are in Case 1.(a) of Prop(P0 →� R0).

∗ P N(x)−−−→� A, P
νx.N〈x〉−−−−−→� B, and R2 ≡ νx.(A | B) for some A, B, x, and

ground term N . Hence P
N(x)−−−→� A, !P

�≡ P | !P νx.N〈x〉−−−−−→� B | !P by Par′ so

!P
νx.N〈x〉−−−−−→� B | !P by Struct′, and R0 ≡ R1 ≡ R2 | !P ≡ νx.(A |B) | !P ≡

νx.(A |(B | !P)) since x /∈ fv(!P). So we are in Case 1.(b) of Prop(P0 →� R0).

– Case P0 = νn.0
�≡ 0. We have that Prop(0 →� R1) is impossible, so this case

never happens.

– Case P0 = 0
�≡ νn.0. Since Prop(νn.0 →� R1), we have Prop(0 →� R′1), which

is impossible, so this case never happens.

– Case P0 = νn.νn′.P
�≡ νn′.νn.P . (This case is its own symmetric.) Since

Prop(νn′.νn.P →� R1), we have νn.P →� R′1, Prop(νn.P →� R′1), and R1 ≡
νn′.R′1 for some R′1, so P →� R′′1 , Prop(P →� R′′1), and R′1 ≡ νn.R′′1 for some R′′1 .
Hence, νn′.P →� νn′.R′′1 , Prop(νn′.P →� νn′.R′′1), and R0 ≡ R1 ≡ νn′.R′1 ≡
νn′.νn.R′′1 ≡ νn.νn′.R′′1 , so we are in Case 2 of Prop(P0 →� R0) with Q′ =
νn′.R′′1 .

61

– Case P0 = P | νn.Q �≡ νn.(P |Q) and n /∈ fn(P). Since Prop(νn.(P |Q)→� R1),
we have P |Q →� R2, Prop(P |Q →� R2), and R1 ≡ νn.R2 for some R2. Since
Prop(P |Q→� R2), we have four cases:

∗ P →� P ′, Prop(P →� P ′), and R2 ≡ P ′ | Q for some P ′. We rename n in
Q so that n /∈ fn(P ′). Hence P →� P ′, Prop(P →� P ′), and R0 ≡ R1 ≡
νn.R2 ≡ νn.(P ′ |Q) ≡ P ′ | νn.Q since n /∈ fn(P ′). So we are in Case 1.(a) of
Prop(P0 →� R0).

∗ Q →� Q′, Prop(Q →� Q′), and R2 ≡ P | Q′ for some Q′. Then νn.Q →�
νn.Q′, Prop(νn.Q →� νn.Q′), and R0 ≡ R1 ≡ νn.R2 ≡ νn.(P | Q′) ≡
P | νn.Q′ since n /∈ fn(P). So we are in Case 1.(a’) of Prop(P0 →� R0).

∗ P N(x)−−−→� A, Q
νx.N〈x〉−−−−−→� B, and R2 ≡ νx.(A | B) for some A, B, x, and

ground term N .
We need to rename n so that n /∈ fn(N) ∪ fn(A). To do that, we first
show that, for all processes P , P ′, if P

�≡ P ′ and Σ ` P{n′
/n} = P , then

Σ ` P ′{n′
/n} = P ′, by induction on the derivation of P

�≡ P ′.
We also show that, if A ≡ A′, then A{n′

/n} ≡ A′{n′
/n}, by induction on the

derivation of A ≡ A′.
By Lemma B.10, since P

N(x)−−−→� A, we have P
�≡ νñ.(N(y).P1 | P2), A ≡

νñ.(P1{x/y} | P2), and {ñ} ∩ fn(N) = ∅, for some ñ, P1, P2, y, and since

Q
νx.N〈x〉−−−−−→� B, we have Q

�≡ νñ′.(N〈M〉.Q1 |Q2), A ≡ νñ′.(Q1 | {M/x} |Q2),
{ñ′} ∩ fn(N) = ∅, and x /∈ fv(N〈M〉.Q1 |Q2), for some ñ′, Q1, Q2, M . Let
n′ be a fresh name.

· First case: n /∈ ñ. We have P{n′
/n} = P since n /∈ fn(P), so by

the result shown above, Σ ` (νñ.(N(y).P1 | P2)){n′
/n} = νñ.(N(y).P1 |

P2), so Σ ` N{n′
/n} = N , P

�≡ νñ.(N{n′
/n}(y).P1{n

′
/n} | P2{n

′
/n}),

A{n′
/n} ≡ νñ.(P1{n

′
/n}{x/y} | P2{n

′
/n}), and {ñ} ∩ fn(N{n′

/n}) = ∅, so

by Lemma B.10, P
N{n

′
/n}(x)−−−−−−−→� A{n

′
/n}.

· Second case: n ∈ ñ, so n /∈ fn(N). We have N{n′
/n} = N .

So P
�≡ νñ.(N{n′

/n}(y).P1} | P2), A{n′
/n} ≡ νñ.(P1{x/y} | P2), and

{ñ} ∩ fn(N{n′
/n}) = ∅, so by Lemma B.10, P

N{n
′
/n}(x)−−−−−−−→� A{n

′
/n}.

Let N ′ = N{n′
/n} and A′ = A{n′

/n}. Hence in both cases, P
N ′(x)−−−−→� A′

and Σ ` N ′ = N , so Q
�≡ νñ′.(N ′〈M〉.Q1 | Q2), A ≡ νñ′.(Q1 | {M/x} |

Q2), {ñ′} ∩ fn(N ′) = ∅, and x /∈ fv(N ′〈M〉.Q1 | Q2), so by Lemma B.10,

Q
νx.N ′〈x〉−−−−−−→� B. Hence P

N ′(x)−−−−→� A′, νn.Q
νx.N ′〈x〉−−−−−−→� νn.B by Scope′, and

R0 ≡ R1 ≡ νn.R2 ≡ νn.νx.(A′ |B) ≡ νx.(A′ | νn.B), so we are in Case 1.(b)
of Prop(P0 →� R0).

∗ P νx.N〈x〉−−−−−→� A, Q
N(x)−−−→� B, and R2 ≡ νx.(A | B) for some A, B, x, and

ground term N . This case can be handled similarly to the previous one.

– Case P0 = νn.(P | Q)
�≡ P | νn.Q and n /∈ fn(P). This case is fairly similar to

the previous one.

– Case P0 = P1{M/x}
�≡ P1{N/x} and Σ ` M = N . (This case is its own sym-

metric.) We have Prop(P1{N/x} →� R1). We show by induction on the syn-
tax of P1 that, if Prop(P1{N/x} →� R1), Σ ` M = N , and R0 ≡ R1, then
Prop(P1{M/x} →� R0).

62

∗ Case P1 = P | Q. We have Prop(P{N/x} | Q{N/x} →� R1), so we have four
cases:

· P{N/x} →� P ′, Prop(P{N/x} →� P ′), and R1 ≡ P ′ |Q{N/x} for some P ′.
We have P{M/x} →� P ′, Prop(P{M/x} →� P ′) by induction hypothesis,
and R0 ≡ R1 ≡ P ′ | Q{N/x}, so we are in Case 1.(a) of Prop(P{M/x} |
Q{M/x} →� R0).

· Q{N/x} →� Q′, Prop(Q{N/x} →� Q′), and R1 ≡ P{N/x} | Q′ for some
Q′. This case is obtained from the previous one by swapping P and Q.

· P{N/x}
N ′(x)−−−−→� A, Q{N/x}

νx.N ′〈x〉−−−−−−→� B, and R1 ≡ νx.(A |B) for some A,

B, x, and ground term N ′. Then P{M/x}
N ′(x)−−−−→� A, Q{M/x}

νx.N ′〈x〉−−−−−−→�
B by Struct′, and R1 ≡ νx.(A | B), so R0 ≡ R1 ≡ νx.(A | B). So we
are in Case 1.(b) of Prop(P{M/x} |Q{M/x} →� R0).

· P{N/x}
νx.N ′〈x〉−−−−−−→� A, Q{N/x}

N ′(x)−−−−→� B, and R1 ≡ νx.(A | B) for some
A, B, x, and ground term N ′. This case is obtained from the previous
one by swapping P and Q.

∗ Case P1 = νn.P . We have Prop(νn.P{N/x} →� R1), so P{N/x} →� R2,
Prop(P{N/x} →� R2), and R1 ≡ νn.R2 for some R2. Hence P1{M/x} =
νn.P{M/x}, P{M/x}

�≡ P{N/x} →� R2, Prop(P{M/x} →� R2) by induction
hypothesis, and R0 ≡ R1 ≡ νn.R2, so we are in Case 2 of Prop(P1{M/x} →�
R0).

∗ Case P1 = !P . We have Prop(!P{N/x} →� R1), so P{N/x} | P{N/x} →� R2,
Prop(P{N/x} | P{N/x} →� R2), and R1 ≡ R2 | !P{N/x} for some R2. Since
Prop(P{N/x} | P{N/x} →� R2), we have four cases, which reduce to two by
symmetry:

· P{N/x} →� P ′, Prop(P{N/x} →� P ′), and R2 ≡ P ′ |P{N/x} for some P ′.
We have P{M/x} →� P ′, Prop(P{M/x} →� P ′) by induction hypothesis,
so P{M/x} | P{M/x} →� P ′ | P{M/x} and R0 ≡ R1 ≡ R2 | !P{N/x} ≡
P ′ | P{N/x} | !P{N/x} ≡ P ′ | P{M/x} | !P{M/x}, so we are in Case 3 of
Prop(!P{M/x} →� R0).

· P{N/x}
N ′(x)−−−−→� A, P{N/x}

νx.N ′〈x〉−−−−−−→� B, and R2 ≡ νx.(A |B) for some A,

B, x, and ground term N ′. Hence P{M/x}
N ′(x)−−−−→� A, P{M/x}

νx.N ′〈x〉−−−−−−→�
B by Struct′, and R0 ≡ R1 ≡ R2 | !P{N/x} ≡ νx.(A | B) | !P{N/x}.
By Lemma B.20, P{M/x} | P{M/x} →� R3 and R3 ≡ νx.(A | B), so
Prop(P{M/x} | P{M/x} →� R3), and R0 ≡ R3 | !P{M/x}, so we are in
Case 3 of Prop(!P{M/x} →� R0).

∗ Case P1 = if M1 = N1 then P else Q. We have Prop(if M1{N/x} =
N1{N/x} then P{N/x} else Q{N/x} →� R1), so we have two cases:

· Σ ` M1{N/x} = N1{N/x} and R1 ≡ P{N/x}. Hence, we have Σ `
M1{M/x} = N1{M/x} and R0 ≡ R1 ≡ P{M/x}, so we are in Case 4
of Prop(P1{M/x} →� R0).

· Σ ` M1{N/x} 6= N1{N/x} and R1 ≡ Q{N/x}. Hence, we have Σ `
M1{M/x} 6= N1{M/x} and R0 ≡ R1 ≡ Q{M/x}, so we are in Case 4
of Prop(P1{M/x} →� R0).

Using this result, we obtain Prop(P0 →� R0).

– Case P0 = P |Q �≡ P ′ |Q knowing P
�≡ P ′. Since Prop(P ′ |Q →� R1), we have

four cases:

63

∗ P ′ →� P ′′, Prop(P ′ →� P ′′), and R1 ≡ P ′′ |Q for some P ′′. Then P →� P ′′,
Prop(P →� P ′′) by induction hypothesis, and R0 ≡ R1 ≡ P ′′ |Q, so we are
in Case 1.(a) of Prop(P0 →� R0).

∗ Q →� Q′, Prop(Q →� Q′), and R1 ≡ P ′ | Q′ for some Q′. Then Q →�
Q′, Prop(Q →� Q′), and R0 ≡ R1 ≡ P ′ | Q′, so we are in Case 1.(a’) of
Prop(P0 →� R0).

∗ P ′ N(x)−−−→� A, Q
νx.N〈x〉−−−−−→� B, and R1 ≡ νx.(A | B) for some A, B, x, and

ground term N . Then P
N(x)−−−→� A by Struct′, Q

νx.N〈x〉−−−−−→� B, and R0 ≡
R1 ≡ νx.(A |B), so we are in Case 1.(b) of Prop(P0 →� R0).

∗ P ′ νx.N〈x〉−−−−−→� A, Q
N(x)−−−→� B, and R1 ≡ νx.(A | B) for some A, B, x, and

ground term N . This case can be handled similarly to the previous one.

– Case P0 = νn.P
�≡ νn.P ′ knowing P

�≡ P ′. Since Prop(νn.P ′ →� R1), P ′ →� R′1,
Prop(P ′ →� R′1), and R1 ≡ νn.R′1 for some R′1. Then, P →� R′1. By induction
hypothesis, Prop(P →� R′1). Moreover, R0 ≡ R1 ≡ νn.R′1, so we are in Case 2
of Prop(P0 →� R0).

If P0 is closed and P0 →� R0, then by Lemma B.17(1), there exists a derivation of P0 →� R0

closed on the left. So by applying the previous result, Prop(P0 →� R0), which yields the
desired property.

Lemma B.22 If νñ.(σ |P) is a closed normal process and νñ.(σ |P)→◦ A, then P →� P ′
and A ≡ νñ.(σ | P ′) for some P ′.

Proof: We proceed similarly to Lemma B.19. By Lemma B.17(2), we consider a derivation
of νñ.(σ |P)→◦ A closed on the left. By definition of→◦, we have νñ.(σ |P)

◦≡ νñ′.(σ′ |P ′),
P ′ →� Q′ and A

◦≡ νñ′.(σ′ | Q′) for some ñ′, σ′, P ′, Q′. We proceed by induction on the
derivation of νñ.(σ | P)

◦≡ νñ′.(σ′ | P ′).

• Base case: νñ.(σ | P) = νñ′.(σ′ | P ′), and the desired result holds.

• Transitivity: the result is proved by applying the induction hypothesis twice.

• Case Plain′′: P
�≡ P ′ →� Q′ and A ≡ νñ.(σ |Q′), so the result holds.

• Case New-C′′: ñ′ is a reordering of ñ, νñ.(σ | P)
◦≡ νñ′.(σ | P), P →� Q′ and

A ≡ νñ′.(σ | Q′), so P →� Q′ and A ≡ νñ′.(σ | Q′) ≡ νñ.(σ | Q′), hence the result
holds.

• Case New-Par′′: P = νn′.P ′, νñ.(σ | νn′.P ′) ◦≡ νñ, n′.(σ | P ′), P ′ →� Q′, and
A ≡ νñ, n′.(σ | Q′) where n′ /∈ fn(σ). Therefore, P = νn′.P ′ →� νn′.Q′ and by
New-Par, A ≡ νñ, n′.(σ |Q′) ≡ νñ.(σ | νn′.Q′), hence the result holds.

• Case New-Par′′ reversed: νñ, n′.(σ | P)
◦≡ νñ.(σ | νn′.P), νn′.P →� Q′ and A ≡

νñ.(σ | Q′) where n′ /∈ fn(σ). By Lemma B.21, P →� Q′′ and Q′ ≡ νn′.Q′′ for some
Q′′. Hence, P →� Q′′ and A ≡ νñ.(σ | Q′) ≡ νñ.(σ | νn′.Q′′) ≡ νñ, n′.(σ | Q′′) by
New-Par, so the result holds.

• Case Rewrite′′: νñ.(σ|P)
◦≡ νñ.(σ′ |P), P →� Q and A ≡ νñ.(σ′ |Q) where dom(σ) =

dom(σ′), Σ ` σx = σ′x for all x ∈ dom(σ), and (fv(σx)∪ fv(σ′x))∩dom(σ) = ∅ for all
x ∈ dom(σ). Hence P →� Q and A ≡ νñ.(σ′ |Q) ≡ νñ.(σ |Q) by several applications
of Rewrite, so the result holds.

64

We prove the following strengthened version of Lemma B.22, in which the process P ′ is
guaranteed to be closed.

Lemma B.23 If νñ.(σ |P) is a closed normal process and νñ.(σ |P)→◦ A, then P →� P ′
and A ≡ νñ.(σ | P ′) for some closed process P ′.

Proof: By Lemma B.22, we get the existence of a process P ′, which may not be closed. Let
us apply Lemma B.16(2). Let Y = fv(P) ∪ fv(P ′) = fv(P ′). Let σ′ be a substitution from
Y to pairwise distinct fresh names. Since P is closed, P = Pσ′, so a fortiori Σ ` P = Pσ′.
Hence Pσ′ →� P ′σ′ and Σ ` P ′ = P ′σ′. So P →� P ′σ′ and A ≡ νñ.(σ |P ′) ≡ νñ.(σ |P ′σ′),
so we get the desired result by using the closed process P ′σ′ instead of P ′.

The following strengthened version of Lemma B.21 is proved in a similar way.

Lemma B.24 Suppose that P0 is a closed process and P0 →� R. Then one of the following
cases holds:

1. P0 = P |Q for some P and Q, and one of the following cases holds:

(a) P →� P ′ and R ≡ P ′ |Q for some closed process P ′,

(b) P
N(x)−−−→� A, Q

νx.N〈x〉−−−−−→� B, and R ≡ νx.(A | B) for some A, B, x, and ground
term N ,

and two symmetric cases obtained by swapping P and Q;

2. P0 = νn.P , P →� Q′, and R ≡ νn.Q′ for some n and some closed processes P and
Q′;

3. P0 = !P , P | P →� Q′, and R ≡ Q′ | !P for some closed processes P and Q′.

4. P0 = if M = N then P else Q and either Σ ` M = N and R ≡ P , or Σ ` M 6= N
and R ≡ Q, for some M , N , P , and Q.

C Proof of Theorem 4.1: Main Lemmas

Relying on partial normal forms and their semantics, we prove the remaining lemmas needed
for the proof of Theorem 4.1. Sections C.2 and C.3 establish the two directions of Theo-
rem 4.1. The argument for the first direction employs lemmas about consequences of static
equivalences; these lemmas are in Section C.1.

C.1 Exploiting Static Equivalence

The lemmas in this section rely on static equivalences in order to analyze and to establish
structural equivalences or reductions. For all these lemmas, we consider the action of two
equivalent frames νñ.σ ≈s νñ′.σ′ on a process P ′ such that fn(P ′)∩{ñ, ñ′} = ∅: we suppose
a structural equivalence or reduction of a process P such that Σ ` P ′σ = P , and prove a
corresponding structural equivalence or reduction of the process P ′σ′. Lemma C.1 deals with
structural equivalence, Lemma C.2 with internal reduction, and Lemma C.3 with labelled
transitions.

65

Lemma C.1 Suppose that νñ.σ ≈s νñ′.σ′, fn(P ′) ∩ {ñ, ñ′} = ∅, and Σ ` P ′σ = P . If
P
�≡ Q, then P ′σ′

�≡ Q′σ′ for some Q′ such that fn(Q′) ∩ {ñ, ñ′} = ∅; Σ ` Q = Q′σ; and,
(*) if σ, σ′, and P ′σ are closed, then Q′σ is closed.

Proof: We first prove the lemma without property (*), by induction on the derivation of
P
�≡ Q. The only rule that depends on terms is Rewrite′, and when P

�≡ Q by Rewrite′,
Σ ` P ′σ = P = Q, so taking Q′ = P ′, we have P ′σ′

�≡ Q′σ′, fn(Q′) ∩ {ñ, ñ′} = ∅, and
Σ ` Q = Q′σ. For all other base cases, the structural equivalence rule applied in P

�≡ Q
also applies to P ′ and yields a process Q′ such that P ′

�≡ Q′, fn(Q′) ∩ {ñ, ñ′} = ∅, and
Σ ` Q = Q′σ; by Lemma B.3(1) we conclude P ′σ′

�≡ Q′σ′. The case of transitivity is proved
by applying the induction hypothesis twice.

We now prove the lemma with property (*) by applying Lemma B.16(1) to the structural
equivalence P ′σ′

�≡ Q′σ′ for the process Q′ obtained above. Let Y = fv(P ′σ) ∪ fv(Q′σ) =
fv(Q′σ) = fv(Q′) \ dom(σ) and let σ′′ map Y to pairwise distinct fresh names. We have
P ′σσ′′ = P ′σ so a fortiori Σ ` P ′σ = P ′σσ′′, then by Lemma B.16(1) P ′σσ′′

�≡ Q′σσ′′

and Σ ` Q′σ = Q′σσ′′. So Σ ` Q = Q′σ = (Q′σ′′)σ. Since P ′σ′
�≡ Q′σ′, we have P ′σ′ =

P ′σ′σ′′
�≡ Q′σ′σ′′ = (Q′σ′′)σ′. Since fn(Q′) ∩ {ñ, ñ′} = ∅, we have fn(Q′σ′′) ∩ {ñ, ñ′} = ∅.

We also have fv(Q′σ′′) ⊆ dom(σ) = dom(σ′), so we get the desired result by using Q′σ′′

instead of Q′.

Lemma C.2 Suppose that νñ.σ ≈s νñ′.σ′, fn(P ′) ∩ {ñ, ñ′} = ∅, and Σ ` P ′σ = P . If
P →� Q, then P ′σ′ →� Q′σ′ for some Q′ such that fn(Q′)∩{ñ, ñ′} = ∅; Σ ` Q = Q′σ; and,
(*) if σ, σ′, and P ′σ are closed, then Q′σ is closed.

Proof: We first prove the lemma without property (*), by induction on the derivation of
P →� Q.

• Case Comm′. We have P = N〈M〉.P0 | N(x).Q0 →� P0 | Q0{M/x} = Q. We rename
x so that x /∈ dom(σ′). Therefore, P ′ = N ′〈M ′〉.P ′0 | N ′′(x).Q′0 for some N ′, M ′,
P ′0, N ′′, Q′0 such that Σ ` N ′σ = N ′′σ = N , Σ ` M ′σ = M , Σ ` P ′0σ = P0, and
Σ ` Q′0σ = Q0. Let Q′ = P ′0 |Q′0{M

′
/x}. We have

P ′σ′ = N ′σ′〈M ′σ′〉.P ′0σ′ |N ′′σ′(x).Q′0σ
′

≡ N ′σ′〈M ′σ′〉.P ′0σ′ |N ′σ′(x).Q′0σ
′

→� P ′0σ′ |Q′0σ′{M
′σ′
/x} = Q′σ′

since Σ ` N ′σ′ = N ′′σ′ because Σ ` N ′σ = N ′′σ, (fn(N ′) ∪ fn(N ′′)) ∩ {ñ, ñ′} = ∅,
and νñ.σ ≈s νñ′.σ′. Moreover, fn(Q′) ∩ {ñ, ñ′} = ∅, and Σ ` Q = P0 | Q0{M/x} =
P ′0σ |Q′0σ{M

′σ/x} = Q′σ.

• The cases Then′ and Else′ are similar: the equalities that trigger reductions happen
both in P and in P ′σ.

• The case in which we apply
�≡ holds by Lemma C.1 and induction hypothesis.

• Case in which we apply a context. The reduction P = E[P0] →� Q = E[Q0] is
derived from P0 →� Q0. If E contains a restriction νn. above the hole, we rename
n so that n /∈ {ñ, ñ′}. Hence P ′ = E′[P ′0] with Σ ` E′σ = E, Σ ` P ′0σ = P0, and
fn(P ′0) ∩ {ñ, ñ′} = ∅. By induction hypothesis, P ′0σ

′ →� Q′0σ′, fn(Q′0) ∩ {ñ, ñ′} = ∅,
and Σ ` Q0 = Q′0σ for some Q′0. Let Q′ = E′[Q′0]. Then P ′σ′ = E′σ′[P ′0σ

′] →�
E′σ′[Q′0σ

′] = Q′σ′, fn(Q′) ∩ {ñ, ñ′} = ∅, and Σ ` Q = E[Q0] = E′σ[Q′0σ] = Q′σ.

66

We now prove the lemma with property (*) by applying Lemma B.16(2) to the reduction
P ′σ →� Q′σ for the process Q′ obtained above. Let Y = fv(P ′σ) ∪ fv(Q′σ) = fv(Q′σ) =
fv(Q′) \ dom(σ) and let σ′′ map Y to pairwise distinct fresh names. We have P ′σσ′′ = P ′σ
so a fortiori Σ ` P ′σ = P ′σσ′′, then by Lemma B.16(2), P ′σσ′′ →� Q′σσ′′ and Σ ` Q′σ =
Q′σσ′′. So Σ ` Q = Q′σ = (Q′σ′′)σ. Since P ′σ′ →� Q′σ′, we have P ′σ′ = P ′σ′σ′′ →�
Q′σ′σ′′ = (Q′σ′′)σ′. Since fn(Q′) ∩ {ñ, ñ′} = ∅, we have fn(Q′σ′′) ∩ {ñ, ñ′} = ∅. We also
have fv(Q′σ′′) ⊆ dom(σ) = dom(σ′), so we get the desired result by using Q′σ′′ instead of
Q′.

Lemma C.3 gives two variants of the same result: if νñ.σ ≈s νñ′.σ′ and P such that
Σ ` P ′σ = P has a labelled transition, then P ′σ′ has a corresponding labelled transition.
The two variants differ by the closure assumptions and conclusions.

Lemma C.3 Suppose that νñ.σ ≈s νñ′.σ′, fn(P ′) ∩ {ñ, ñ′} = ∅, Σ ` P ′σ = P , P
α−→� A,

and σ, σ′, and P ′σ are closed.

1. If α is an output or α = N(M) with some M ′ such that Σ ` M ′σ = M , M ′σ is

closed, and fn(M ′)∩{ñ, ñ′} = ∅; then P ′σ′
α′σ′

−−−→� A′σ′, fn(A′)∩{ñ, ñ′} = ∅, A ≡ A′σ,
fn(α′) ∩ {ñ, ñ′} = ∅, Σ ` α = α′σ, and A′σ is closed for some A′, α′.

2. If α = N(x) and x /∈ dom(σ), then P ′σ′
N ′σ′(x)−−−−−→� A′σ′, fn(A′)∩{ñ, ñ′} = ∅, A ≡ A′σ,

fn(N ′) ∩ {ñ, ñ′} = ∅, Σ ` N = N ′σ, fv(A′) ⊆ dom(σ) ∪ {x}, and fv(N ′) ⊆ dom(σ)
for some A′, N ′.

Proof: 1. By induction on the derivation of P
α−→� A.

• Case In′. We have P = N(x).P0
N(M)−−−−→� P0{M/x} = A and there exists M ′ such

that Σ ` M ′σ = M and fn(M ′) ∩ {ñ, ñ′} = ∅. We rename x so that x /∈ dom(σ).
So P ′ = N ′(x).P ′0 with Σ ` N = N ′σ and Σ ` P0 = P ′0σ. Let A′ = P ′0{M

′
/x} and

α′ = N ′(M ′). Then we have P ′σ′ = N ′σ′(x).P ′0σ
′ N

′σ′(M ′σ′)−−−−−−−→� P ′0σ′{M
′σ′
/x} = A′σ′,

fn(A′) ∩ {ñ, ñ′} = ∅, Σ ` A = P ′0σ{M
′σ/x} = A′σ, fn(α′) ∩ {ñ, ñ′} = ∅, and Σ ` α =

α′σ. Since P ′σ is closed, fv(P ′0) ⊆ dom(σ) ∪ {x}; moreover M ′σ is closed, so A′σ is
closed.

• Case Out-Var′. We have P = N〈M〉.P0
νx.N〈x〉−−−−−→� P0 | {M/x} = A with x /∈

fv(N〈M〉.P0). So P ′ = N ′〈M ′〉.P ′0 with Σ ` N = N ′σ, Σ ` M = M ′σ,
and Σ ` P0 = P ′0σ. Let A′ = P ′0 | {M

′
/x} and α′ = νx.N ′〈x〉. We have

P ′σ′ = N ′σ′〈M ′σ′〉.P ′0σ′
νx.N ′σ′〈x〉−−−−−−−→� P ′0σ′ | {M

′σ′
/x} = A′σ′, fn(A′) ∩ {ñ, ñ′} = ∅,

Σ ` A = P ′0σ | {M
′σ/x} = A′σ, fn(α′) ∩ {ñ, ñ′} = ∅, and Σ ` α = α′σ. Since P ′σ is

closed, P ′0σ is closed; moreover M ′σ is closed, so A′σ is closed.

• Case Scope′. The transition P = νn.P0
α−→� νn.A0 = A is derived from P0

α−→� A0,
where n does not occur in α. We rename n so that n /∈ {ñ, ñ′} and n /∈ fn(σ)∪ fn(σ′).
We have P ′ = νn.P ′0 for some P ′0, so Σ ` P ′0σ = P0 and P ′0σ is closed. By induction

hypothesis, P ′0σ
′ α

′σ′

−−−→� A′0σ′, fn(A′0)∩{ñ, ñ′} = ∅, Σ ` A0 = A′0σ, fn(α′)∩{ñ, ñ′} = ∅,
Σ ` α = α′σ, and A′0σ is closed for some A′0, α′. Let A′ = νn.A′0. Then P ′σ′

α′σ′

−−−→�
A′σ′ by Scope′, so we have the desired result.

67

• Case Par′. The transition P = P0 | Q0
α−→� A0 | Q0 = A is derived from P0

α−→� A0,
where bv(α) ∩ fv(Q0) = ∅. We have P ′ = P ′0 |Q′0 for some P ′0, Q′0, so Σ ` P ′0σ = P0,

Σ ` Q′0σ = Q0, and P ′0σ and Q′0σ are closed. By induction hypothesis, P ′0σ
′ α′σ′

−−−→�
A′0σ

′, fn(A′0) ∩ {ñ, ñ′} = ∅, Σ ` A0 = A′0σ, fn(α′) ∩ {ñ, ñ′} = ∅, Σ ` α = α′σ, and

A′0σ is closed for some A′0, α′. Let A′ = A′0 |Q′0. Then P ′σ′
α′σ′

−−−→� A′σ′ by Par′, since
fv(Q′0σ

′) = ∅. Since P ′σ is closed, Q′0σ is closed, so A′σ is closed. Therefore, we have
the desired result.

• Case Struct′ follows by Lemma C.1 and induction hypothesis.

2. By Lemma B.10, P
�≡ νñ′′.(N(y).P1|P2), A ≡ νñ′′.(P1{x/y}|P2), and {ñ′′}∩fn(N) = ∅, for

some ñ′′, P1, P2, N , y. We rename ñ′′ so that {ñ′′}∩(fn(σ)∪fn(σ′)) = ∅, and we rename y so
that y /∈ dom(σ). By Lemma C.1, P ′σ′

�≡ Q′σ′, fn(Q′)∩{ñ, ñ′} = ∅, and Σ ` νñ′′.(N(y).P1 |
P2) = Q′σ for some Q′ such that Q′σ is closed, so fv(Q′) ⊆ dom(σ) = dom(σ′). Hence, Q′ is
of the form Q′ = νñ′′.(N ′(y).P ′1 |P ′2) with Σ ` N = N ′σ, Σ ` P1 = P ′1σ, and Σ ` P2 = P ′2σ.

Hence, by Lemma B.10, P ′σ′
�≡ Q′σ′ = νñ′′.(N ′σ′(y).P ′1σ

′ | P ′2σ′)
N ′σ′(x)−−−−−→� νñ′′.(P ′1σ′{x/y} |

P ′2σ
′). Let A′ = νñ′′.(P ′1{x/y} | P ′2). Then P ′σ′

N ′σ′(x)−−−−−→� A′σ′, fn(A′) ∩ {ñ, ñ′} = ∅ and
fn(N ′)∩ {ñ, ñ′} = ∅ because fn(Q′)∩ {ñ, ñ′} = ∅, A ≡ νñ′′.(P1{x/y} | P2) ≡ νñ′′.(P ′1σ{x/y} |
P ′2σ) ≡ A′σ, Σ ` N = N ′σ, and fv(A′) ⊆ dom(σ) ∪ {x} and fv(N ′) ⊆ dom(σ) = dom(σ′)
because fv(Q′) ⊆ dom(σ) = dom(σ′).

C.2 Labelled Bisimilarity Implies Observational Equivalence

The goal of this section is to establish the lemmas needed in the outline of the argument
that labelled bisimilarity implies observational equivalence in Section 4.5.

Lemma C.4 Let A and B be two extended processes. Let σ be a bijective renaming (a
substitution that is a bijection from names to names). We have:

• A ≡ B if and only if Aσ ≡ Bσ,

• A→ B if and only if Aσ → Bσ,

• A α−→ B if and only if Aσ
ασ−−→ Bσ.

Let A′, B′, and α′ be obtained from A, B, and α, respectively, by replacing all variables
(including their occurrences in domains of active substitutions) with distinct variables. We
have:

• A ≡ B if and only if A′ ≡ B′,

• A→ B if and only if A′ → B′,

• A α−→ B if and only if A′
α′

−→ B′.

Proof: The implications from left to right are proved by induction on the derivations. We
use that the equational theory is closed under renaming of names and variables. The same
argument also proves the converse implications, via the inverse renaming.

Lemma C.5 Let A and B be two closed extended processes.

• Let σ be a bijective renaming. We have A ≈l B if and only if Aσ ≈l Bσ.

68

• Let A′ and B′ be obtained from A and B, respectively, by replacing all variables (in-
cluding their occurrences in domains of active substitutions) with distinct variables.
We have A ≈l B if and only if A′ ≈l B′.

Proof: To prove the first point, we define a relation R by A′ R B′ if and only if A′ = Aσ,
B′ = Bσ, and A ≈l B for some A and B. We show that R satisfies the three properties of
Definition 4.4. Then R ⊆ ≈l, so if A ≈l B, then A′ = Aσ ≈l B′ = Bσ.

1. Property 1 comes from Lemma A.2.

2. If A′ R B′, A′ → A′1, and A′1 is closed, then by Lemma C.4, A = A′σ−1 → A′1σ
−1.

We let A′′ = A′1σ
−1, which is also closed. So by definition of ≈l, B →∗ B′′ and

A′′ ≈l B′′ for some B′′. By Lemma C.4, B′ = Bσ →∗ B′′σ. We let B′1 = B′′σ. We
have A′1 R B′1 and B′ →∗ B′1. So Property 2 holds.

3. The proof of Property 3 is similar to the proof of Property 2.

The same argument also proves the converse, via the inverse renaming.
The proof of the second point is similar.

Proof of Lemma 4.10 Let A and B be two closed extended processes such that A ≈l B,
and E be an evaluation context closing for A and B. Our goal is to show that E[A] ≈l E[B].
We first rename the free names and variables of E by Lemma C.5, so that the obtained
context is simple. Then by Lemma A.1, we construct a context E′ of the form νũ.(| C ′′)
such that E ≡ E′. Since ≈l is invariant by structural equivalence, it is sufficient to show that
E′[A] ≈l E′[B]. Hence, it is sufficient to consider evaluation contexts of the form νũ.(|C),
such that νũ.(A | C) and νũ.(B | C) are closed.

To every relationR on closed extended processes, we associate the relation R′= {(νũ.(A|
C), νũ.(B | C)) | A R B, νũ.(| C) closing for A and B}. We prove that, if R is a labelled
bisimulation, then R′ is a labelled bisimulation up to ≡, hence R ⊆ ≡R′≡ ⊆ ≈l. For
R = ≈l, this establishes that ≈l is closed by application of evaluation contexts νũ.(| C).

Assume S R′ T , with S = νũ.(A|C), T = νũ.(B|C), andA R B. Let pnf(A) = νñ.(σ|P),
pnf(B) = νñ′.(σ′ | P ′), pnf(C) = νñ′′.(σ′′ | P ′′), ũ consist of names ñ′′′ and variables x̃. We
suppose that A or C is not a plain process. (The case in which A and C are plain processes
is simpler.) Since A R B, we have dom(A) = dom(B), so we also have that B or C is not
a plain process. We rename ñ, ñ′, and ñ′′ so that they are disjoint, the names of ñ and of
ñ′ are not free in σ′′ | P ′′, and the names of ñ′′ are not free in σ | P nor in σ′ | P ′. Since A
is closed, by Lemma B.2, pnf(A) is closed, so P and the image of σ have no free variables,
so they are not modified by σ′′. Similarly, P ′ and the image of σ′ have no free variables, so
they are not modified by σ′′. Hence pnf(S) = νñ′′′, ñ, ñ′′.((σ | σ′′σ)|dom(σ|σ′′σ)\{x̃} |P |P ′′σ)

and pnf(T) = νñ′′′, ñ′, ñ′′.((σ′ | σ′′σ′)|dom(σ′|σ′′σ′)\{x̃} | P ′ | P ′′σ′).
We argue that R′ satisfies the three properties of a labelled bisimulation up to ≡ (Defi-

nition 4.6). The proof of the first property is trivial; those of the last two properties (given
in more detail below) go as follows. From a (labelled or internal) reduction of S, we infer a
reduction of pnf(S), hence a reduction of P |P ′′σ by a decomposition lemma (Lemma B.19
or B.22), hence reductions of P and/or P ′′σ by another decomposition lemma (Lemma B.18
or B.24). From a reduction of P , we infer a reduction of A, hence a reduction of B since R
is labelled bisimulation, so a reduction of P ′ by a decomposition lemma. From a reduction
of P ′′σ, we infer a reduction of P ′′σ′ using the static equivalence A ≈s B, which means that
νn.σ ≈s νn′.σ′. Therefore, in all cases, we obtain a reduction of P ′ |P ′′σ′, hence a reduction
of pnf(T), so a reduction of T . In more detail, the proof proceeds as follows.

69

1. S ≈s T immediately follows from A ≈s B by Lemma 4.1.

2. For every S → S′ with S′ closed, we prove that T →∗ T ′ and S′ ≡R′≡ T ′ for
some T ′. By Lemma B.8, pnf(S) →◦ pnf(S′). By Lemma B.22, P | P ′′σ →� Q and
pnf(S′) ≡ νñ′′′, ñ, ñ′′.((σ | σ′′σ)|dom(σ|σ′′σ)\{x̃} | Q) for some Q. By Lemma B.24, we
have four cases:

(a) P →� Q′ and Q ≡ Q′ |P ′′σ for some closed process Q′. By Lemmas B.1 and B.9,
A ≡ νñ.(σ | P) → A′ where A′ = νñ.(σ |Q′). Since A R B and A′ is closed, we
have B →∗ B′ and A′ R B′ for some B′. By Lemma B.8, pnf(B) →◦∗ pnf(B′),
so by Lemma B.23, P ′ →�∗ Q′′ and pnf(B′) ≡ νñ′.(σ′ | Q′′) for some closed
process Q′′. We rename ñ′′ so that {ñ′′} ∩ fn(Q′) = ∅ and {ñ′′} ∩ fn(Q′′) = ∅.
Hence, by Lemmas B.1 and B.9,

T ≡ νñ′′′, ñ′, ñ′′.((σ′ | σ′′σ′)|dom(σ′|σ′′σ′)\{x̃} | P
′ | P ′′σ′)

→∗ νñ′′′, ñ′, ñ′′.((σ′ | σ′′σ′)|dom(σ′|σ′′σ′)\{x̃} |Q
′′ | P ′′σ′)

≡ νũ.(νñ′.(σ′ |Q′′) | νñ′′.(σ′′ | P ′′)) ≡ νũ.(B′ | C)

If there is at least one reduction step in this trace, we let T ′ = νũ.(B′ | C);
otherwise, we let T ′ = T . In all cases, T →∗ T ′ and T ′ ≡ νũ.(B′ | C). Since
A′ R B′,

S′ ≡ νñ′′′, ñ, ñ′′.((σ | σ′′σ)|dom(σ|σ′′σ)\{x̃} |Q
′ | P ′′σ)

≡ νũ.(νñ.(σ |Q′) | νñ′′.(σ′′ | P ′′))
≡ νũ.(A′ | C) ,

and νũ.(| C) is closing for A′ and B′, we have S′ ≡R′≡ T ′.
(b) P ′′σ →� Q′ and Q ≡ P | Q′ for some closed process Q′. Since A R B, we have

A ≈s B, that is, νñ.σ ≈s νñ′.σ′. By Lemma C.2, P ′′σ′ →� Q′′σ′, fn(Q′′) ∩
{ñ, ñ′} = ∅, and Σ ` Q′ = Q′′σ for some Q′′ such that Q′′ is closed, so fv(Q′′) ⊆
dom(σ) = dom(σ′). So by Lemmas B.1 and B.9,

T ≡ νñ′′′, ñ′, ñ′′.((σ′ | σ′′σ′)|dom(σ′|σ′′σ′)\{x̃} | P
′ | P ′′σ′)

→ νñ′′′, ñ′, ñ′′.((σ′ | σ′′σ′)|dom(σ′|σ′′σ′)\{x̃} | P
′ |Q′′σ′)

≡ νũ.(νñ′.(σ′ | P ′) | νñ′′.(σ′′ |Q′′)) ≡ νũ.(B | C ′)

where C ′ = νñ′′.(σ′′ |Q′′). Moreover,

S′ ≡ νñ′′′, ñ, ñ′′.((σ | σ′′σ)|dom(σ|σ′′σ)\{x̃} | P |Q
′′σ)

≡ νũ.(νñ.(σ | P) | νñ′′.(σ′′ |Q′′))
≡ νũ.(A | C ′)

We let T ′ = νũ.(B | C ′). We have T → T ′. Since fv(Q′′) ⊆ dom(σ) = dom(σ′),
νũ.(| C ′) is closing for A and B, and since A R B, we have S′ ≡R′ T ′.

(c) P
N(x)−−−→� A1, P ′′σ

νx.N〈x〉−−−−−→� C1, and Q ≡ νx.(A1 | C1) for some A1, C1, x, and
ground term N . We rename x so that x /∈ dom(σ) = dom(σ′). By Lemma B.10
applied twice, P

�≡ νñ1.(N(y).P1 |P2), A1 ≡ νñ1.(P1{x/y} |P2), {ñ1}∩ fn(N) = ∅
and P ′′σ

�≡ νñ2.(N〈M〉.P3 | P4), C1 ≡ νñ2.(P3 | {M/x} | P4), {ñ2} ∩ fn(N) = ∅,

70

x /∈ fv(N〈M〉.P3 | P4). By Lemma B.16(1), we transform νñ1.(N(y).P1 | P2) and
νñ2.(N〈M〉.P3 | P4) into closed processes that satisfy the same properties. Since
A R B, we have A ≈s B, that is, νñ.σ ≈s νñ′.σ′. By Lemma C.1, P ′′σ′

�≡ Q′σ′,
fn(Q′)∩{ñ, ñ′} = ∅, and Σ ` Q′σ = νñ2.(N〈M〉.P3|P4) for some Q′ such that Q′σ
is closed, so fv(Q′) ⊆ dom(σ). Then Q′ is of the form Q′ = νñ2.(N ′〈M ′〉.P ′3 |P ′4),
with Σ ` N ′σ = N , Σ ` M ′σ = M , Σ ` P ′3σ = P3, Σ ` P ′4σ = P4, and
fv(N ′〈M ′〉) ⊆ dom(σ) = dom(A). We rename ñ1 and ñ2 so that {ñ1}∩ fn(M) =
∅, {ñ1}∩{ñ2} = ∅, {ñ1}∩ (fn(P ′3σ)∪ fn(P ′4σ)∪ fn(σ |σ′′σ)) = ∅, {ñ2}∩ (fn(P1)∪
fn(P2) ∪ fn(σ | σ′′σ)) = ∅. By Lemma B.10, P

�≡ νñ1.(N(y).P1 | P2)
N(M)−−−−→�

νñ1.(P1{M/y} | P2). By definition of
N ′(M ′)−−−−−→◦, A ≡ νñ.(σ | P)

N ′(M ′)−−−−−→◦ A′ where
A′ = νñ.(σ | νñ1.(P1{M/y} | P2)). (The elements of ñ do not occur in N ′(M ′)

since fn(Q′) ∩ {ñ, ñ′} = ∅.) So by Lemma B.13, A
N ′(M ′)−−−−−→ A′. Since A′ is closed

and A R B, we have B →∗ N
′(M ′)−−−−−→ B′′ →∗ B′ and A′ R B′ for some B′, B′′. By

Lemmas B.8 and B.12, pnf(B) = νñ′.(σ′ |P ′)→◦∗
N ′(M ′)−−−−−→◦ B′′. By Lemmas B.23

and B.19, P ′ →�∗
N ′σ′(M ′σ′)−−−−−−−→� B′′′ and B′′ ≡ νñ′.(σ′ | B′′′) for some B′′′. By

Lemma B.10, P ′ →�∗
�≡ νñ3.(N

′σ′(z).P5 | P6), B′′′ ≡ νñ3.(P5{M
′σ′
/z} | P6), and

{ñ3} ∩ fn(N ′σ′(M ′σ′)) = ∅ for some ñ3, P5, and P6. We rename ñ′′ so that
{ñ′′} ∩ fn(νñ1.(P1{M/y} | P2)) = ∅ and {ñ′′} ∩ fn(B′′′) = ∅. Then we have

S′ ≡ νñ′′′, ñ, ñ′′.((σ | σ′′σ)|dom(σ|σ′′σ)\{x̃} | νx.(A1 | C1))

≡ νũ.νñ.νñ′′.(σ | σ′′σ | νx.(νñ1.(P1{x/y} | P2) | νñ2.(P3 | {M/x} | P4))

≡ νũ.νñ.νñ′′.(σ | σ′′σ | νx.(νñ1.(P1{x/y} | P2) | νñ2.(P ′3σ | {M/x} | P ′4σ))

≡ νũ.νñ.νñ′′.νñ1.νñ2.(σ | σ′′σ | P1{M/y} | P2 | P ′3σ | P ′4σ)

≡ νũ.νñ.νñ′′.νñ1.νñ2.(σ | σ′′ | P1{M/y} | P2 | P ′3 | P ′4)

≡ νũ, ñ2.νñ.νñ′′.(σ | νñ1.(P1{M/y} | P2) | σ′′ | (P ′3 | P ′4))

≡ νũ, ñ2.(A′ | C ′)

where C ′ = νñ′′.(σ′′ | (P ′3 | P ′4)). We have

T ≡ νñ′′′, ñ′, ñ′′.((σ′ | σ′′σ′)|dom(σ′|σ′′σ′)\{x̃} | P
′ | P ′′σ′)

→∗≡ νũ.νñ′.νñ′′.(σ′ | σ′′σ′ | νñ3.(N ′σ′(z).P5 | P6)

| νñ2.(N ′σ′〈M ′σ′〉.P ′3σ′ | P ′4σ′))

→ νũ, ñ2.νñ
′.νñ′′.(σ′ | σ′′σ′ | νñ3.(P5{M

′σ′
/z} | P6) | (P ′3σ′ | P ′4σ′))

≡ νũ, ñ2.νñ′.νñ′′.(σ′ | νñ3.(P5{M
′σ′
/z} | P6) | σ′′ | (P ′3 | P ′4))

≡ νũ, ñ2.(νñ′.(σ′ |B′′′) | C ′)
≡ νũ, ñ2.(B′′ | C ′)→∗ νũ.(B′ | C ′)

We let T ′ = νũ, ñ2.(B
′ | C ′). Hence, T →∗ T ′. Since fv(P ′3 | P ′4) ⊆ fv(Q′) ⊆

dom(σ), νũ, ñ2.(|C ′) is closing for A′ and B′, and moreover A′ R B′, so S′ ≡R′
T ′.

(d) P
νx.N〈x〉−−−−−→� A1, P ′′σ

N(x)−−−→� C1, and Q ≡ νx.(A1 | C1) for some A1, C1, x,
and ground term N . We rename x so that x /∈ dom(σ) = dom(σ′). By
Lemma B.16(3), we transform A1 into a closed extended process that satisfies

71

the same properties. Since A R B, we have A ≈s B, that is, νñ.σ ≈s νñ′.σ′.
By Lemma C.3(2), P ′′σ′

N ′σ′(x)−−−−−→� C2σ
′, fn(C2) ∩ {ñ, ñ′} = ∅, C1 ≡ C2σ,

fn(N ′) ∩ {ñ, ñ′} = ∅, Σ ` N = N ′σ, fv(C2) ⊆ dom(σ) ∪ {x}, and fv(N ′) ⊆

dom(σ) = dom(A) for some C2 and N ′. By definition of
νx.N ′〈x〉−−−−−−→◦, A ≡

νñ.(σ|P)
νx.N ′〈x〉−−−−−−→◦ A′ where A′ = νñ.(σ|A1), so by Lemma B.13, A

νx.N ′〈x〉−−−−−−→ A′.

Since A′ is closed and A R B, we have B →∗ νx.N
′〈x〉−−−−−−→ B′′ →∗ B′ and A′ R B′ for

some B′, B′′. By Lemmas B.8 and B.12, pnf(B) = νñ′.(σ′|P ′)→◦∗
νx.N ′〈x〉−−−−−−→◦ B′′.

By Lemmas B.23 and B.19, P ′ →�∗
νx.N ′σ′〈x〉−−−−−−−→� B′′′ and B′′ ≡ νñ′.(σ′ | B′′′) for

some B′′′. By Lemma B.20, P ′ | P ′′σ′ →�∗→� νx.(B′′′ |C2σ
′). We rename ñ′′ so

that {ñ′′} ∩ fn(A1) = ∅ and {ñ′′} ∩ fn(B′′′) = ∅. Moreover,

S′ ≡ νñ′′′, ñ, ñ′′.((σ | σ′′σ)|dom(σ|σ′′σ)\{x̃} | νx.(A1 | C1))

≡ νx, ũ.νñ.νñ′′.(σ | σ′′σ |A1 | C2σ)

≡ νx, ũ.(νñ.(σ |A1) | νñ′′.(σ′′ | C2))

≡ νx, ũ.(A′ | C ′)

where C ′ = νñ′′.(σ′′ | C2). We have

T ≡ νñ′′′, ñ′, ñ′′.((σ′ | σ′′σ′)|dom(σ′|σ′′σ′)\{x̃} | P
′ | P ′′σ′)

→∗→ νñ′′′, ñ′, ñ′′.((σ′ | σ′′σ′)|dom(σ′|σ′′σ′)\{x̃} | νx.(B
′′′ | C2σ

′))

≡ νx, ũ.(νn′.(σ′ |B′′′) | νn′′.(σ′′ | C2)) ≡ νx, ũ.(B′′ | C ′)
→∗ νx, ũ.(B′ | C ′)

We let T ′ = νx, ũ.(B′ |C ′). We have T →∗ T ′ and, since A′ R B′ and νx, ũ.(|C ′)
is closing for A′ and B′, S′ ≡R′ T ′.

3. For every S
α−→ S′ with S′ closed and fv(α) ⊆ dom(S), we prove that T →∗ α−→→∗ T ′

and S′ ≡R′≡ T ′ for some T ′. We rename ñ′′′, ñ, ñ′, ñ′′ so that these names do not

occur in α. By Lemma B.12, pnf(S)
α−→◦ S′. By Lemma B.19, P | P ′′σ α′

−→� A0,
S′ ≡ νñ′′′, ñ, ñ′′.((σ | σ′′σ)|dom(σ|σ′′σ)\{x̃} | A0), and bv(α) ∩ dom(σ | σ′′σ) \ {x̃} = ∅
for α′ = α(σ | σ′′σ)|dom(σ|σ′′σ)\{x̃} = ασ′′σ and some A0. We rename x̃ so that
bv(α) ∩ {x̃} = ∅. By Lemma B.18, we have two cases:

(a) P
α′

−→� A1 and A0 ≡ A1 | P ′′σ for some A1. By Lemma B.16(3), we transform
A1 into a closed extended process that satisfies the same properties. We have
α′ = (ασ′′)σ, the elements of ñ do not occur in ασ′′, because they do not occur

in α nor in σ′′. We also have bv(α′) ∩ dom(σ) = ∅. By definition of
ασ′′

−−−→◦,
we have A ≡ νñ.(σ | P)

ασ′′

−−−→◦ A′ where A′ = νñ.(σ | A1), so by Lemma B.13,

A
ασ′′

−−−→ A′. Since fv(α) ⊆ dom(S) ⊆ dom(σ) ∪ dom(σ′′), we have fv(ασ′′) ⊆
dom(σ) = dom(A). Since A′ is closed and A R B, we have B →∗ ασ

′′

−−−→ B′′ →∗
B′ and A′ R B′ for some B′ and B′′. By Lemmas B.8 and B.12, pnf(B) =

νñ′.(σ′ | P ′) →◦∗
ασ′′

−−−→◦ B′′. By Lemmas B.23 and B.19, P ′ →�∗
ασ′′σ′

−−−−→� B′′′,
B′′ ≡ νñ′.(σ′ | B′′′), and bv(α) ∩ dom(σ′) = ∅ for some B′′′. Hence by Par′,

72

P ′ | P ′′σ′ →�∗
ασ′′σ′

−−−−→� B′′′ | P ′′σ′. By definition of
α−→◦,

pnf(T) = νñ′′′, ñ′, ñ′′.((σ′ | σ′′σ′)|dom(σ′|σ′′σ′)\{x̃} | P
′ | P ′′σ′)

→◦∗
α−→◦ νñ′′′, ñ′, ñ′′.((σ′ | σ′′σ′)|dom(σ′|σ′′σ′)\{x̃} |B

′′′ | P ′′σ′) .

(We have fv((σ′ | σ′′σ′)|dom(σ′|σ′′σ′)\{x̃}) ∩ bv(α) = ∅ because we have

fv((σ′ | σ′′σ′)|dom(σ′|σ′′σ′)\{x̃}) = dom(σ′)∪dom(σ′′)\{x̃} = dom(σ)∪dom(σ′′)\
{x̃}, bv(α) = bv(α′), and bv(α′) ∩ (dom(σ) ∪ dom(σ′′) \ {x̃}) = ∅.) We rename
ñ′′ so that {ñ′′} ∩ fn(A1) = ∅ and {ñ′′} ∩ fn(B′′′) = ∅. By Lemmas B.1, B.9,
and B.13, we have

T ≡ pnf(T)

→∗ α−→ νñ′′′, ñ′, ñ′′.((σ′ | σ′′σ′)|dom(σ′|σ′′σ′)\{x̃} |B
′′′ | P ′′σ′)

≡ νũ.(νñ′.(σ′ |B′′′) | νñ′′.(σ′′ | P ′′))
≡ νũ.(B′′ | C)

→∗ νũ.(B′ | C)

Moreover,

S′ ≡ νñ′′′, ñ, ñ′′.((σ | σ′′σ)|dom(σ|σ′′σ)\{x̃} |A0)

≡ νñ′′′, ñ, ñ′′.((σ | σ′′σ)|dom(σ|σ′′σ)\{x̃} |A1 | P ′′σ)

≡ νũ.(νñ.(σ |A1) | νñ′′.(σ′′ | P ′′))
≡ νũ.(A′ | C)

We let T ′ = νũ.(B′ | C). Then we have T →∗ α−→→∗ T ′ and νũ.(| C) is closing
for A′ and B′ so S′ ≡R′ T ′.

(b) P ′′σ
α′

−→� A1 and A0 ≡ P | A1 for some A1. Since A R B, we have A ≈s B,
that is, νñ.σ ≈s νñ′.σ′. We have Σ ` (ασ′′)σ = α′, so if α′ = N(M), then
we have ασ′′ = N ′(M ′), Σ ` M ′σ = M , and fn(M ′) ∩ {ñ, ñ′} = ∅ for some

N ′,M ′. By Lemma C.3(1), P ′′σ′
α′′σ′

−−−→� A′′σ′, fn(A′′) ∩ {ñ, ñ′} = ∅, A1 ≡ A′′σ,
fn(α′′)∩{ñ, ñ′} = ∅, Σ ` α′ = α′′σ, and A′′σ is closed for some A′′, α′′. By Par’,

P ′ |P ′′σ′ α
′′σ′

−−−→� P ′ |A′′σ′. We have Σ ` ασ′′σ = α′ = α′′σ, fn(ασ′′)∩{ñ, ñ′} = ∅,
fn(α′′) ∩ {ñ, ñ′} = ∅, and νñ.σ ≈s νñ′.σ′, so Σ ` ασ′′σ′ = α′′σ′ by definition of

static equivalence. By definition of
α−→◦,

pnf(T) = νñ′′′, ñ′, ñ′′.((σ′ | σ′′σ′)|dom(σ′|σ′′σ′)\{x̃} | P
′ | P ′′σ′)

α−→◦ νñ′′′, ñ′, ñ′′.((σ′ | σ′′σ′)|dom(σ′|σ′′σ′)\{x̃} | P
′ |A′′σ′) .

(We have fv((σ′ | σ′′σ′)|dom(σ′|σ′′σ′)\{x̃}) ∩ bv(α′′σ′) = ∅ because we have

fv((σ′ | σ′′σ′)|dom(σ′|σ′′σ′)\{x̃}) = dom(σ′)∪dom(σ′′)\{x̃} = dom(σ)∪dom(σ′′)\
{x̃}, bv(α′′σ′) = bv(α′′) = bv(α′), and bv(α′) ∩ (dom(σ) ∪ dom(σ′′) \ {x̃}) = ∅.)
Hence, by Lemmas B.1, B.9, and B.13, we have

T ≡ pnf(T)
α−→ νñ′′′, ñ′, ñ′′.((σ′ | σ′′σ′)|dom(σ′|σ′′σ′)\{x̃} | P

′ |A′′σ′)

≡ νũ.(νñ′.(σ′ | P ′) | νñ′′.(σ′′ |A′′))
≡ νũ.(B | C ′)

73

where C ′ = νñ′′.(σ′′ |A′′). Moreover,

S′ ≡ νñ′′′, ñ, ñ′′.((σ | σ′′σ)|dom(σ|σ′′σ)\{x̃} |A0)

≡ νñ′′′, ñ, ñ′′.((σ | σ′′σ)|dom(σ|σ′′σ)\{x̃} | P |A1)

≡ νñ′′′, ñ, ñ′′.((σ | σ′′σ)|dom(σ|σ′′σ)\{x̃} | P |A
′′σ)

≡ νũ.(νñ.(σ | P) | νñ′′.(σ′′ |A′′))
≡ νũ.(A | C ′)

We let T ′ = νũ.(B | C ′). We have T
α−→ T ′ and since A R B and νũ.(| C ′) is

closing for A and B, we have S′ ≡R′ T ′.

Proof of Lemma 4.11 In order to establish this claim, we argue that A ≡ E[a〈M〉.P] for

some evaluation context E[] that does not bind a if and only if A
νx.a〈x〉−−−−−→ A′ for some fresh

variable x and some A′.
For the implication from left to right, let x be a fresh variable. We derive

a〈M〉.P νx.a〈x〉−−−−−→ P | {M/x} by Out-Var

E[a〈M〉.P]
νx.a〈x〉−−−−−→ E[P | {M/x}] by Par and Scope

A
νx.a〈x〉−−−−−→ E[P | {M/x}] by Struct, since A ≡ E[a〈M〉.P]

Conversely, if A
νx.a〈x〉−−−−−→ A′ for some fresh variable x and some A′, then we show by

induction on the derivation that A ≡ E[a〈M〉.P] for some evaluation context E[] that does
not bind a. In case Out-Var, the context E is empty. In case Scope, a restriction that
does not bind a is added to E. In case Par, a parallel composition is added to E. In case
Struct, the context E is unchanged.

C.3 Observational Equivalence implies Labelled Bisimilarity

Finally, the goal of this section is to establish the lemmas needed in the outline of the argu-
ment that observational equivalence implies labelled bisimilarity in Section 4.5. The section
also contains a corollary, namely that observational equivalence and static equivalence co-
incide on frames.

Lemma C.6 Let P be a plain process. The existence of P ′ such that Σ ` P = P ′ and
p /∈ fn(P ′) is preserved by structural equivalence (

�≡) and reduction (→�) of P .
Let A be a normal process. The existence of A′ such that Σ ` A = A′ and p /∈ fn(A′) is

preserved by structural equivalence (
◦≡) and reduction (→◦) of A.

Proof: Property 1: Suppose that P
�≡ Q, Σ ` P = P ′, and p /∈ fn(P ′). We show that

there exists Q′ such that Σ ` Q = Q′ and p /∈ fn(Q′), by induction on the derivation of
P
�≡ Q. We consider as base cases the application of each rule under an evaluation context,

in the two directions, and use induction only for transitivity.

• Case Rewrite′, under an evaluation context E. We have E[P1{M/x}]
�≡ E[P1{N/x}],

Σ ` M = N , Σ ` E[P1{M/x}] = P ′, and p /∈ fn(P ′). Since Σ ` E[P1{N/x}] =
E[P1{M/x}] = P ′, we have the result with Q′ = Q.

74

• Case Par-C′, under an evaluation context E. We have E[P1 | Q1]
�≡ E[Q1 | P1],

Σ ` E[P1|Q1] = P ′, and p /∈ fn(P ′). Since Σ ` E[P1|Q1] = P ′, we have P ′ = E′[P ′1|Q′1]
with Σ ` E = E′, Σ ` P1 = P ′1, and Σ ` Q1 = Q′1. Let Q′ = E′[Q′1 | P ′1]. We have
Σ ` E[Q1 | P1] = Q′ and p /∈ fn(Q′) = fn(P ′).

• All other base cases are handled similarly to case Par-C′.

• The case of transitivity follows by applying the induction hypothesis twice.

Property 2: Suppose that P →� Q, Σ ` P = P ′, and p /∈ fn(P ′). We show that there exists
Q′ such that Σ ` Q = Q′ and p /∈ fn(Q′), by induction on the derivation of P →� Q. Again,
we consider as base cases the application of each rule under an evaluation context, and use
induction only for the application of

�≡.

• Case Comm′, under an evaluation context E. We have E[N〈M〉.P1 | N(x).Q1] →�
E[P1 | Q1{M/x}], Σ ` E[N〈M〉.P1 | N(x).Q1] = P ′, and p /∈ fn(P ′). Since Σ `
E[N〈M〉.P1|N(x).Q1] = P ′, we have P ′ = E′[N ′〈M ′〉.P ′1|N ′′(x).Q′1] with Σ ` E = E′,
Σ ` M = M ′, Σ ` P1 = P ′1, and Σ ` Q1 = Q′1. Let Q′ = E′[P ′1 |Q′1{M

′
/x}]. We have

Σ ` E[P1 |Q1{M/x}] = Q′ and p /∈ fn(Q′) since fn(Q′) ⊆ fn(P ′).

• Case Then′, under an evaluation context E. We have E[if M =
M then P1 else Q1] →� E[P1], Σ ` E[if M = M then P1 else Q1] = P ′,
and p /∈ fn(P ′). Since Σ ` E[if M = M then P1 else Q1] = P ′, we have
P ′ = E′[if M ′ = M ′′ then P ′1 else Q′1] with Σ ` E = E′ and Σ ` P1 = P ′1. Let
Q′ = E′[P ′1]. We have Σ ` E[P1] = Q′ and p /∈ fn(Q′) since fn(Q′) ⊆ fn(P ′).

• Case Else′ is handled similarly to case Then′.

• In case we additionally apply
�≡, we conclude using Property 1 and the induction

hypothesis.

Property 3: Suppose that A
◦≡ B, Σ ` A = A′, and p /∈ fn(A′). We show that there exists

B′ such that Σ ` B = B′ and p /∈ fn(B′), by induction on the derivation of A
◦≡ B.

• Case Plain′′ follows from Property 1.

• Case New-Par′′. We have νñ.(σ | νn′.P)
◦≡ νñ, n′.(σ | P) with n′ /∈ fn(σ), Σ `

νñ.(σ | νn′.P) = A′, and p /∈ fn(A′). If p ∈ {ñ, n′}, then we have the result with
B′ = νñ, n′.(σ | P). Otherwise, since Σ ` νñ.(σ | νn′.P) = A′, we have A′ = νñ.(σ′ |
νn′.P ′) with Σ ` σ = σ′ and Σ ` P = P ′. Let B′ = νñ, n′.(σ′ | P ′). We have
Σ ` νñ, n′.(σ | P) = B′ and p /∈ fn(B′) since fn(B′) ⊆ fn(A′).

• Case New-Par′′ reversed. We have νñ, n′.(σ | P)
◦≡ νñ.(σ | νn′.P) with n′ /∈ fn(σ),

Σ ` νñ, n′.(σ |P) = A′, and p /∈ fn(A′). If p ∈ {ñ}, then we have the result with B′ =
νñ.(σ |νn′.P). If p = n′, then we also have the result with B′ = νñ.(σ |νn′.P) because
n′ /∈ fn(σ). Otherwise, since Σ ` νñ, n′.(σ |P) = A′, we have A′ = νñ, n′.(σ′ |P ′) with
Σ ` σ = σ′ and Σ ` P = P ′. LetB′ = νñ.(σ′|νn′.P ′). We have Σ ` νñ.(σ|νn′.P) = B′

and p /∈ fn(B′).

• Case New-C′′ is handled similarly to case New-Par′′.

• Case Rewrite′′. We have νñ.(σ|P)
◦≡ νñ.(σ′ |P) with Σ ` σ = σ′, Σ ` νñ.(σ|P) = A′,

and p /∈ fn(A′). Since Σ ` νñ.(σ′ | P) = νñ.(σ | P) = A′, we have the result with
B′ = A′.

75

• The case of transitivity follows by applying the induction hypothesis twice.

Property 4: Suppose that A →◦ B, Σ ` A = A′, and p /∈ fn(A′). We show that there
exists B′ such that Σ ` B = B′ and p /∈ fn(B′). Suppose νñ.(σ | P) →◦ νñ.(σ | Q) with
P →� Q, Σ ` νñ.(σ | P) = A′, and p /∈ fn(A′). If p ∈ {ñ}, then we have the result with
B′ = νñ.(σ | Q). Otherwise, since Σ ` νñ.(σ | P) = A′, we have A′ = νñ.(σ′ | P ′) with
Σ ` σ = σ′ and Σ ` P = P ′. Since p /∈ fn(A′) and p /∈ {ñ}, p /∈ fn(σ′) ∪ fn(P ′). By
Property 2, there exists Q′ such that Σ ` Q = Q′ and p /∈ fn(Q′). Let B′ = νñ.(σ′ | Q′).
We have Σ ` νñ.(σ |Q) = B′ and p /∈ fn(B′). In case we additionally apply

◦≡, we conclude
using Property 3 and the induction hypothesis.

Lemma C.7 If p /∈ fn(A), then A 6⇓p.

Proof: In order to obtain a contradiction, suppose that A ⇓ p, that is, that A →∗≡
E[p〈M〉.P] for some M , P , and evaluation context E[] that does not bind p. Hence,
pnf(A) →◦∗

◦≡ E[p〈M〉.P] for some M , P , and evaluation context E[] that does not bind
p. Let A1 = pnf(A). We have p /∈ fn(A1). By Lemma C.6, the existence of A′ such that
Σ ` A1 = A′ and p /∈ fn(A′) is preserved by structural equivalence and reduction of A1, so
there exists A′ such that Σ ` E[p〈M〉.P] = A′ and p /∈ fn(A′). Hence, there exists N such
that Σ ` p = N and p /∈ fn(N). Since the equational theory is preserved by substitution of
terms for names, for all N ′, Σ ` p{N ′

/p} = N{N ′
/p}, that is Σ ` N ′ = N , which contradicts

the assumption that the equational theory is non-trivial.

Lemma C.8 If p /∈ fn(P) and P →�∗
νx.N〈x〉−−−−−→� A or P →�∗

N(M)−−−−→� A, then Σ ` N 6= p.

Proof: The proof uses ideas similar to the proof of Lemma C.7. By Lemma B.10, P →�∗
�≡

νñ.(N〈M〉.P1 |P2) for some ñ, M , P1, P2 with {ñ}∩fn(N) = ∅, or P →�∗
�≡ νñ.(N(x).P1 |P2)

for some for some ñ, x, P1, P2 with {ñ} ∩ fn(N) = ∅. By Lemma C.6, the existence of P ′

such that Σ ` P = P ′ and p /∈ fn(P ′) is preserved by structural equivalence and reduction
of P , so there exists N ′ such that Σ ` N = N ′ and p /∈ fn(N ′). If we had Σ ` N = p, then
we would have Σ ` p = N ′ and p /∈ fn(N ′), which yields a contradiction as in the proof of
Lemma C.7. So Σ ` N 6= p.

Lemma C.9 ≈ ⊆ ≈s.

Proof: If A and B are observationally equivalent, then A | C and B | C have the same
barbs for every C with fv(C) ⊆ dom(A). In particular, A | C and B | C have the same
barb ⇓ a for every C of the special form if M = N then a〈s〉, where a does not occur
in A or B and fv(C) ⊆ dom(A), that is, fv(M) ∪ fv(N) ⊆ dom(A). We obtain that A
and B are statically equivalent, using the following property: assuming that A is closed,
fv(M) ∪ fv(N) ⊆ dom(A), and a does not occur in A, we have (M = N)ϕ(A) if and only if
A | if M = N then a〈s〉 ⇓a. We show this property below.

Let pnf(A) = νñ.(σ |P). We rename ñ so that {ñ}∩(fn(M)∪ fn(N)∪{a}) = ∅. If (M =
N)ϕ(A), then Mσ = Nσ, so A | if M = N then a〈s〉 ≡ νñ.(σ |P | if Mσ = Nσ then a〈s〉)→
νñ.(σ|P |a〈s〉), so we conclude that A|if M = N then a〈s〉 ⇓a. Conversely, in order to obtain
a contradiction, suppose that (M 6= N)ϕ(A) and A | if M = N then a〈s〉 ⇓a. Lemma 4.11

implies that A | if M = N then a〈s〉 →∗ νx.a〈x〉−−−−−→ A′ for some fresh variable x and some A′.

So pnf(A | if M = N then a〈s〉) = νñ.(σ | P | if Mσ = Nσ then a〈s〉) →◦∗
νx.a〈x〉−−−−−→◦ A′ by

Lemmas B.8 and B.12. Then P | if Mσ = Nσ then a〈s〉 →�∗
νx.a〈x〉−−−−−→� A′′, A′ ≡ νñ.(σ |A′′),

and x /∈ dom(σ) for some A′′ by Lemmas B.23 and B.19. We have a /∈ fn(pnf(A)), so

76

a /∈ fn(P). We show by induction on the length of the trace, that it is impossible to have

P | if Mσ = Nσ then a〈s〉 →�∗
νx.a〈x〉−−−−−→� A′′.

• If this trace contains a single step, then P | if Mσ = Nσ then a〈s〉 νx.a〈x〉−−−−−→� A′′, so by

Lemma B.18, P
νx.a〈x〉−−−−−→�, which yields a contradiction by Lemma C.8.

• If this trace contains several steps, the first step is an internal reduction, so by
Lemma B.24, either P reduces, and we conclude by induction hypothesis, or if Mσ =

Nσ then a〈s〉 reduces to 0 and P |0→�∗
νx.a〈x〉−−−−−→� A′′, which yields a contradiction by

Lemma C.8.

Lemma C.10 Let ñ be pairwise distinct names. Let ñ′ be pairwise distinct names that do
not occur in P nor in P ′.

If P
�≡ P ′ and Σ ` P = P{ñ′

/̃n}, then P{ñ′
/̃n}

�≡ P ′{ñ′
/̃n} and Σ ` P ′ = P ′{ñ′

/̃n}.
If P →� P ′ and Σ ` P = P{ñ′

/̃n}, then P{ñ′
/̃n} →� P ′{ñ

′
/̃n} and Σ ` P ′ = P ′{ñ′

/̃n}.

Proof: By induction on the derivations of P
�≡ P ′ and P →� P ′, respectively.

Proof of Lemma 4.13(1) Let pnf(A) = νñ.(σ | P). We rename ñ so that these names do

not occur in N , M , p. By Lemma B.12, pnf(A)
N(M)−−−−→◦ A′. By Lemma B.19, P

Nσ(Mσ)−−−−−−→�
A′′ and A′ ≡ νñ.(σ | A′′) for some A′. By Lemma B.10, P

�≡ νñ′.(Nσ(x′).P1 | P2), A′′ ≡
νñ′.(P1{Mσ/x′} |P2), {ñ′}∩ fn(Nσ(Mσ)) = ∅, for some ñ′, P1, P2, x′. We rename ñ′ so that
p /∈ {ñ′}. Hence, by Lemmas B.1 and B.7,

A | p〈p〉 |N〈M〉.p(x) ≡ pnf(A) | p〈p〉 |N〈M〉.p(x)

≡ νñ.(σ | νñ′.(Nσ(x′).P1 | P2)) | p〈p〉 |N〈M〉.p(x)

≡ νñ.(σ | νñ′.(Nσ(x′).P1 | P2 | p〈p〉 |Nσ〈Mσ〉.p(x)))

→ νñ.(σ | νñ′.(P1{Mσ/x′} | P2 | p〈p〉 | p(x)))

→ νñ.(σ | νñ′.(P1{Mσ/x′} | P2))

≡ νñ.(σ |A′′)
≡ A′

Since p /∈ fn(A′), we have A′ 6⇓p by Lemma C.7.

Proof of Lemma 4.13(2) Let pnf(A) = νñ.(σ |P). By Lemma B.2, pnf(A) is closed. We
rename ñ so that these names do not occur in N , M , p. Then pnf(A | p〈p〉 |N〈M〉.p(x)) =
νñ.(σ |P | p〈p〉 |Nσ〈Mσ〉.p(x)). By Lemma B.8, pnf(A | p〈p〉 |N〈M〉.p(x))→◦∗ pnf(A′). By
Lemma B.23 applied several times, P |p〈p〉 |Nσ〈Mσ〉.p(x)→�∗ P ′ and pnf(A′) ≡ νñ.(σ |P ′)
for some closed process P ′. Since A′ 6⇓ p, we have P ′ 6⇓ p. (If we had P ′ ⇓ p, we would
immediately obtain A′ ⇓p by definition of ⇓p.)

We prove that, if P is a closed process, P | p〈p〉 | p(x) →�∗ P ′, P ′ 6⇓ p, and p /∈ fn(P),
then P

�≡→�∗ P ′, by induction on the length of the trace. Since P | p〈p〉 | p(x) ⇓p, the trace
P |p〈p〉 |p(x)→�∗ P ′ has at least one step: P |p〈p〉 |p(x)→� P1 →�∗ P ′ . By Lemmas B.24,
B.18, and C.8, the only cases that can happen in the first step are:

• P →� P ′′ and P ′′ | p〈p〉 | p(x) ≡ P1 →�∗ P ′ for some closed process P ′′. As above
this trace has at least one step, so P ′′ | p〈p〉 | p(x) →�∗ P ′. By Lemma C.10, we
rename p inside P ′′ so that p /∈ fn(P ′′), and we obtain the desired result by induction
hypothesis.

77

• p〈p〉 νy.N〈y〉−−−−−→� A1 ≡ {p/y}, p(x)
N(y)−−−→� A2 ≡ 0, Σ ` N = p, P1 ≡ P | νy.(A1 | A2) ≡

P | νy.({p/y} | 0) ≡ P so P | p〈p〉 | p(x) →� P
�≡ P1 →�∗ P ′, so we obtain P

�≡→�∗ P ′
as desired.

Next, we prove that, if P | p〈p〉 | Nσ〈Mσ〉.p(x) is a closed process, P | p〈p〉 |
Nσ〈Mσ〉.p(x)→�∗ P ′, P ′ 6⇓p, and p /∈ fn(P)∪ fn(Nσ)∪ fn(Mσ), then P →�∗

Nσ(Mσ)−−−−−−→�→�∗
P ′, by induction on the length of the trace. Since P | p〈p〉 | Nσ〈Mσ〉.p(x) ⇓ p, the trace
P |p〈p〉 |Nσ〈Mσ〉.p(x)→�∗ P ′ has at least one step: P |p〈p〉 |Nσ〈Mσ〉.p(x)→� P1 →�∗ P ′.
By Lemmas B.24, B.18, and C.8, the only cases that can happen in the first step are:

• P →� P ′′ and P ′′ | p〈p〉 | Nσ〈Mσ〉.p(x) ≡ P1 →�∗ P ′ for some closed process P ′′.
As above this trace has at least one step, so P ′′ | p〈p〉 | Nσ〈Mσ〉.p(x) →�∗ P ′. By
Lemma C.10, we rename p inside P ′′ so that p /∈ fn(P ′′), and we obtain the desired
result by induction hypothesis.

• P N ′(y)−−−−→� B, Nσ〈Mσ〉.p(x)
νy.N ′〈y〉−−−−−−→� B′, and P1 ≡ νy.(B |p〈p〉|B′). By Lemma B.10,

P
�≡ νñ′.(N ′(z).P2 | P3), B ≡ νñ′.(P2{y/z} | P3), and {ñ′} ∩ fn(N ′) = ∅ for some

ñ′, z, P2, and P3. By Lemma B.18, Σ ` Nσ = N ′, y /∈ fv(Nσ〈Mσ〉.p(x)), and
B′ ≡ p(x) | {Mσ/y}. We rename ñ′ so that these names do not appear in Mσ and
are distinct from p. By Lemma C.10, we rename p inside νñ′.(N ′(z).P2 | P3) so that
p /∈ fn(νñ′.(N ′(z).P2 |P3)), so p /∈ fn(P2)∪ fn(P3). Hence P1 ≡ νy.(νñ′.(P2{y/z} |P3) |
p〈p〉 | {Mσ/y} | p(x)) ≡ νñ′.(P2{Mσ/z} | P3) | p〈p〉 | p(x). We have P

�≡ νñ′.(N ′(z).P2 |
P3)

Nσ(Mσ)−−−−−−→� νñ′.(P2{Mσ/z} | P3). Let P4 = νñ′.(P2{Mσ/z} | P3). We have then

P
Nσ(Mσ)−−−−−−→� P4 and P4 | p〈p〉 | p(x) ≡ P1 →�∗ P ′. By Lemma B.16(3), we transform

P4 into a closed process that satisfies the same properties. Since P ′ 6⇓p, this trace has
at least one step, so P4 | p〈p〉 | p(x)→�∗ P ′. Since p /∈ fn(P4), by the property shown

above, P4
�≡→�∗ P ′, so P

Nσ(Mσ)−−−−−−→�→�∗ P ′.

To sum up, we have A ≡ pnf(A) = νñ.(σ | P), P →�∗ P5
Nσ(Mσ)−−−−−−→� P6 →�∗ P ′, and

A′ ≡ pnf(A′) ≡ νñ.(σ |P ′). So νñ.(σ |P)→◦∗ νñ.(σ |P5)
N(M)−−−−→◦ νñ.(σ |P6)→◦∗ νñ.(σ |P ′).

Hence by Lemmas B.9 and B.13, A→∗ N(M)−−−−→→∗ A′.

Proof of Lemma 4.14(1) Let pnf(A) = νñ.(σ |P). By Lemma B.2, pnf(A) is closed. We

rename ñ so that these names do not occur inN , p, and q. By Lemma B.12, pnf(A)
νx.N〈x〉−−−−−→◦

A′. By Lemma B.19, P
νx.Nσ〈x〉−−−−−−→� A′′, A′ ≡ νñ.(σ |A′′), and x /∈ dom(σ) for some A′′. By

Lemma B.10, P
�≡ νñ′.(Nσ〈M〉.P1 |P2), A′′ ≡ νñ′.(P1 | {M/x} |P2), {ñ′} ∩ fn(Nσ) = ∅, and

x /∈ fv(Nσ〈M〉.P1 | P2)) for some ñ′, P1, P2, M . We rename ñ′ so that p, q /∈ {ñ′} and y so
that y /∈ fv(M). Hence, by Lemmas B.1 and B.7,

A | p〈p〉 |N(x).p(y).q〈x〉 ≡ pnf(A) | p〈p〉 |N(x).p(y).q〈x〉
≡ νñ.(σ | νñ′.(Nσ〈M〉.P1 | P2)) | p〈p〉 |N(x).p(y).q〈x〉
≡ νñ.(σ | νñ′.(Nσ〈M〉.P1 | P2 | p〈p〉 |N(x).p(y).q〈x〉))
→ νñ.(σ | νñ′.(P1 | P2 | p〈p〉 | p(y).q〈M〉))
→ νñ.(σ | νñ′.(P1 | P2 | q〈M〉))
≡ νx.νñ.(σ | νñ′.(P1 | {M/x} | P2 | q〈x〉))

78

≡ νx.(νñ.(σ |A′′) | q〈x〉)
≡ νx.(A′ | q〈x〉)

Since p /∈ fn(νx.(A′ | q〈x〉)), we have νx.(A′ | q〈x〉) 6⇓p by Lemma C.7.

Proof of Lemma 4.14(2) Let pnf(A) = νñ.(σ |P). By Lemma B.2, pnf(A) is closed. We
rename ñ so that these names do not occur in N , p, q. Then pnf(A |p〈p〉 |N(x).p(y).q〈x〉) =
νñ.(σ |P |p〈p〉|Nσ(x).p(y).q〈x〉). By Lemma B.8, pnf(A|p〈p〉|N(x).p(y).q〈x〉)→◦∗ pnf(A′′).
By Lemma B.23 applied several times, P | p〈p〉 | Nσ(x).p(y).q〈x〉 →�∗ P ′′ and pnf(A′′) ≡
νñ.(σ | P ′′) for some closed process P ′′. Since A′′ 6⇓p, we have P ′′ 6⇓p.

We prove that, if P2 and M ′ are closed, P2 | q〈M ′〉
�≡→�∗ P ′′, and q /∈ fn(P2), then

P ′′ ≡ P3 | q〈M ′〉 and P2 →�∗ P3 for some closed process P3, by induction on the length of
the trace P2 | q〈M ′〉

�≡→�∗ P ′′. If this trace has zero reduction steps, then the result holds
obviously with P3 = P2. If this trace has at least one reduction step, then P2 | q〈M ′〉 →�
P4 →�∗ P ′′, so by Lemmas B.24 and C.8, the only case that can happen is that P2 →� P ′2
and P ′2 | q〈M ′〉 ≡ P4 →�∗ P ′′ for some closed process P ′2. By Lemma C.10, we rename q
inside P ′2 so that q /∈ fn(P ′2), and we obtain the desired result by induction hypothesis.

Next, we prove that, if P1 and M ′ are closed, P1 | p〈p〉 | p(y).q〈M ′〉 →�∗ P ′′, P ′′ 6⇓p, and
p, q /∈ fn(P1), then P ′′ ≡ P3 | q〈M ′〉 and P1 →�∗ P3 for some closed process P3, by induction
on the length of the trace. Since P1 |p〈p〉 |p(y).q〈M ′〉 ⇓p, the trace P1 |p〈p〉 |p(y).q〈M ′〉 →�∗
P ′′ has at least one step: P1 | p〈p〉 | p(y).q〈M ′〉 →� P ′1 →�∗ P ′′. By Lemmas B.24, B.18,
and C.8, the only cases that can happen in the first step are:

• P1 →� P ′′1 and P ′′1 |p〈p〉|p(y).q〈M ′〉 ≡ P ′1 →�∗ P ′′ for some closed process P ′′1 . As above
this trace has at least one step, so P ′′1 | p〈p〉 | p(y).q〈M ′〉 →�∗ P ′′. By Lemma C.10, we
rename p and q inside P ′′1 so that p, q /∈ fn(P ′′1), and we obtain the desired result by
induction hypothesis.

• p〈p〉 νz.N〈z〉−−−−−→� A1 ≡ {p/z}, p(y).q〈M ′〉 N(z)−−−→� A2 ≡ q〈M ′〉, P ′1 ≡ P1 | νz.(A1 | A2) ≡
P1 |νz.({p/z} | q〈M ′〉) ≡ P1 | q〈M ′〉 so P1 |p〈p〉 |p(y).q〈M ′〉 →� P1 | q〈M ′〉

�≡ P ′1 →�∗ P ′′
and q /∈ fn(P1), so by the property shown above, P ′′ ≡ P3 | q〈M ′〉 and P1 →�∗ P3 for
some closed process P3, as desired.

Finally, we prove that, if P and Nσ are closed, P |p〈p〉|Nσ(x).p(y).q〈x〉 →�∗ P ′′, P ′′ 6⇓p,

and p, q /∈ fn(P) ∪ fn(Nσ), then P →�∗
νx.Nσ〈x〉−−−−−−→�→∗ B and P ′′ ≡ νx.(B | q〈x〉) for some

B, by induction on the length of the trace. Since P | p〈p〉 | Nσ(x).p(y).q〈x〉 ⇓ p, the trace
P |p〈p〉|Nσ(x).p(y).q〈x〉 →�∗ P ′′ has at least one step: P |p〈p〉|Nσ(x).p(y).q〈x〉 →� P1 →�∗
P ′′. By Lemmas B.24, B.18, and C.8, the only cases that can happen in the first step are:

• P →� P ′ and P ′ | p〈p〉 | Nσ(x).p(y).q〈x〉 ≡ P1 →�∗ P ′′ for some closed process P ′.
As above this trace has at least one step, so P ′ | p〈p〉 | Nσ(x).p(y).q〈x〉 →�∗ P ′′. By
Lemma C.10, we rename p and q inside P ′ so that p, q /∈ fn(P ′), and we obtain the
desired result by induction hypothesis.

• P νz.N ′〈z〉−−−−−→� B′, Nσ(x).p(y).q〈x〉 N ′(z)−−−→� B′′, and P1 ≡ νz.(B′ | p〈p〉 | B′′). By
Lemma B.10, P

�≡ νñ′.(N ′〈M ′〉.P2 |P3), B′ ≡ νñ′.(P2 | {M
′
/z} |P3), {ñ′}∩ fn(N ′) = ∅,

and z /∈ fv(N ′〈M ′〉.P2 | P3). By Lemma B.18, Σ ` Nσ = N ′ and B′′ ≡ p(y).q〈z〉.
Using Lemma B.16(1), we can guarantee that N ′, M ′, P2, P3 are closed. We re-
name ñ′ so that these names are distinct from p and q. By Lemma C.10, we re-
name p and q inside νñ′.(N ′〈M ′〉.P2 | P3) so that p, q /∈ fn(νñ′.(N ′〈M ′〉.P2 | P3)). So

79

P1 ≡ νz.(B′ |p〈p〉 |B′′) ≡ νz.(νñ′.(P2 | {M
′
/z} |P3) |p〈p〉 |p(y).q〈z〉) ≡ νñ′.(P2 |P3 |p〈p〉 |

p(y).q〈M ′〉). Since P1 →�∗ P ′′ and this trace has at least one step because P1 ⇓ p
and P ′′ 6⇓ p, we have νñ′.(P2 | P3 | p〈p〉 | p(y).q〈M ′〉) →�∗ P ′′, so by Lemma B.21,
P2 |P3 |p〈p〉 |p(y).q〈M ′〉 →�∗ P4 and P ′′ ≡ νñ′.P4 for some P4. Since p, q /∈ fn(P2 |P3),
by the previous result, P2 | P3 →�∗ P5 and P4 ≡ P5 | q〈M ′〉 for some closed process
P5. Therefore, we have P ′′ ≡ νñ′.(P5 | q〈M ′〉) ≡ νx.(νñ′.(P5 | {M

′
/x}) | q〈x〉) and

P
�≡ νñ′.(N ′〈M ′〉.P2 | P3)

νx.Nσ〈x〉−−−−−−→� νñ′.(P2 | {M
′
/x} | P3) →∗ νñ′.(P5 | {M

′
/x}). Let

B
def
= νñ′.(P5 | {M

′
/x}). Then we have P

νx.Nσ〈x〉−−−−−−→�→∗ B and P ′′ ≡ νx.(B | q〈x〉).

To sum up, we have A ≡ pnf(A) = νñ.(σ | P), P →�∗
νx.Nσ〈x〉−−−−−−→�→∗ B, and P ′′ ≡

νx.(B | q〈x〉), so A′′ ≡ pnf(A′′) ≡ νñ.(σ |P ′′) ≡ νñ.(σ | νx.(B | q〈x〉)) ≡ νx.(νñ.(σ |B) | q〈x〉)

since x /∈ fv(σ). Let A′
def
= νñ.(σ |B). So pnf(A)→◦∗

νx.N〈x〉−−−−−→◦→∗ A′. Hence by Lemmas B.9

and B.13, A→∗ νx.N〈x〉−−−−−→→∗ A′ and A′′ ≡ νx.(A′ | q〈x〉).

Lemma C.11 Let A and B be two closed extended processes.

• Let σ be a bijective renaming. We have A ≈ B if and only if Aσ ≈ Bσ.

• Let A′ and B′ be obtained from A and B, respectively, by replacing all variables (in-
cluding their occurrences in domains of active substitutions) with distinct variables.
We have A ≈ B if and only if A′ ≈ B′.

Proof: To prove the first point, we define a relation R by A′ R B′ if and only if A′ = Aσ,
B′ = Bσ, and A ≈ B for some A and B. We show that R satisfies the three properties of
Definition 4.1. Then R ⊆ ≈, so if A ≈ B, then A′ = Aσ ≈ B′ = Bσ.

1. If A′ R B′ and A′ ⇓ a, then A′ →∗≡ E[a〈M〉.P] for some evaluation context E that
does not bind a. Then, by Lemma C.4, A = A′σ−1 →∗≡ Cσ−1[aσ−1〈Mσ−1〉.Pσ−1],
so A ⇓aσ−1. By definition of ≈, B ⇓aσ−1, so B′ ⇓a as above.

2. If A′ R B′, A′ → A′1, and A′1 is closed, then by Lemma C.4, A = A′σ−1 → A′1σ
−1. We

let A′′ = A′1σ
−1, which is also closed. So by definition of ≈, B →∗ B′′ and A′′ ≈ B′′

for some B′′. By Lemma C.4, B′ = Bσ →∗ B′′σ. We let B′1 = B′′σ. We have A′1 R B′1
and B′ →∗ B′1. So Property 2 holds.

3. If A′ R B′, then A = A′σ−1 ≈ B′σ−1 = B, so E[A′]σ−1 = Eσ−1[A] ≈ Eσ−1[B] =
E[B′]σ−1, hence E[A′] R E[B′].

The same argument also proves the converse, via the inverse renaming.
The proof of the second point is similar.

Lemma C.12 If M is ground, fv(P) ⊆ {x}, and a /∈ fn(P) ∪ fn(M), then νa.(a〈M〉 |
a(x).P) ≈ P{M/x}.

Proof: By Lemma 4.12, it is enough to prove that νa.(a〈M〉 | a(x).P) ≈l P{M/x}. Let
A1 = νa.(a〈M〉 |a(x).P) and B1 = P{M/x}. Let R = {(A,B) | A and B are closed extended
processes, A ≡ A1 and B ≡ B1, or A ≡ B1 and B ≡ A1} ∪ {(A,B) | A and B are closed
extended processes and A ≡ B}. We show that R is a labelled bisimulation: R is symmetric
and

1. We have A1 ≈s B1 since ϕ(A1) = 0 = ϕ(B1). Hence, if A R B, then A ≈s B.

80

2. If A1 → A′ and A′ is closed, then A′ ≡ B1. (This point can be proved in detail by
using partial normal forms.)

Hence, if A R B, A→ A′, and A′ is closed, then

• either A ≡ A1 and B ≡ B1, so A′ ≡ B1 ≡ B, hence with B′
def
= B, B →∗ B′ and

A′ R B′.

• or A ≡ B1 and B ≡ A1, so B ≡ A1 → B1 ≡ A → A′, hence with B′
def
= A′,

B →∗ B′ and A′ R B′.

• or A ≡ B, so with B′
def
= A′, B ≡ A→ A′ = B′, and A′ R B′.

3. A1 does not reduce by
α−→, for any α. (This point can be proved in detail by using

partial normal forms.) Hence, if A R B, A
α−→ A′, and A′ is closed, then

• either A ≡ A1 and B ≡ B1, so A1
α−→ A′. This case is impossible.

• or A ≡ B1 and B ≡ A1, so B ≡ A1 → B1 ≡ A
α−→ A′, hence with B′

def
= A′,

B → α−→ B′ and A′ R B′.

• or A ≡ B, so with B′
def
= A′, B ≡ A α−→ A′ = B′, and A′ R B′.

Therefore, R ⊆ ≈l, so A1 ≈l B1.

Corollary C.1 If A is a closed extended process, x ∈ dom(A), fv(P) ⊆ dom(A), and
a /∈ fn(P), then A | νa.(a〈x〉 | a(x).P) ≈ A | P .

Proof: Let pnf(A) = νñ.(σ | P ′). We rename ñ so that {ñ} ∩ fn(P) = ∅. Let σ′ =
σ|dom(σ)\{x}. Let a′ /∈ fn(P) ∪ fn(σ). We have

A | νa.(a〈x〉 | a(x).P) ≡ νñ.(σ | P ′ | νa′.(a′〈xσ〉 | a′(x).Pσ′)

≈ νñ.(σ | P ′ | Pσ′{xσ/x}) by Lemma C.12

= νñ.(σ | P ′ | Pσ)

≡ A | P

Proof of Lemma 4.15 We rely on the following property: if A is a closed extended pro-
cess with {x̃} ⊆ dom(A) and Ex̃[A] → C ′, then A → A′ and C ′ ≡ Ex̃[A′] for some
closed extended process A′, proved as follows. Let pnf(A) = νñ.(σ | P). We rename ñ
so that {ñ} ∩ {ñx} = ∅. Then pnf(Ex̃[A]) = νñ.(σ|dom(σ)\{x̃} |

∏
x∈x̃ nx〈xσ〉 | P). By

Lemma B.8, pnf(Ex̃[A]) →◦ pnf(C ′). By Lemma B.22,
∏
x∈x̃ nx〈xσ〉 | P →� P ′ and

pnf(C ′) ≡ νñ.(σ|dom(σ)\{x̃} |P ′) for some P ′. By Lemmas B.24 and C.8, since {ñx}∩fn(P) =
∅, the only case that can happen is P →� P ′′ and P ′ ≡

∏
x∈x̃ nx〈xσ〉 | P ′′ for some closed

process P ′′. Let A′ = νñ.(σ | P ′′). Then A ≡ pnf(A) = νñ.(σ | P) → νñ.(σ | P ′′) = A′

and C ′ ≡ pnf(C ′) ≡ νñ.(σ|dom(σ)\{x̃} | P ′) ≡ νñ.(σ|dom(σ)\{x̃} |
∏
x∈x̃ nx〈xσ〉 | P ′′) ≡

νx̃.(
∏
x∈x̃ nx〈x〉 | νñ.(σ | P ′′)) ≡ Ex̃[A′].

Let R be the relation that collects all closed extended processes A and B with a same
domain that contains x̃, such that Ex̃[A] ≈ Ex̃[B], for some x̃ and some names ñx that do
not occur in A or B. We show that R is an observational bisimulation.

Assume A R B.

• If A → A′ and A′ is closed, then Ex̃[A] → Ex̃[A′]. By bisimulation hypothesis,
Ex̃[B] →∗ C ′ ≈ Ex̃[A′]. By induction on these reductions, we build B →∗ B′ such
that C ′ ≡ Ex̃[B′] for some closed extended process B′ and conclude using A′ R B′.

81

• We have Ex̃[A] ⇓ n if and only n = nx for some x ∈ x̃ or A ⇓ n, and similarly for B,
hence Ex̃[A] ⇓ n if and only if Ex̃[A] ⇓ n.

• For the congruence property, we suppose that A R B, and we want to show that
E[A] R E[B] for all closing evaluation contexts E. Using Lemma C.11, we show that
R is invariant by renaming of free names and variables, so we can rename the free
names and variables of E, so that the obtained context is simple. Then by Lemma A.1,
we construct a context E′ of the form νũ.(| C ′′) such that E ≡ E′. Hence, it is
sufficient to show that E′[A] R E′[B].

Let pnf(C ′′) = νñ.(σ |P). Let ũ = m̃z̃. We rename ñ so that {ñ}∩(fn(A)∪fn(B)) = ∅.
Since A R B, Ex̃[A] ≈ Ex̃[B] for some x̃. Using Lemma C.11, we rename ñx so that
{ñx}∩({ñ, m̃}∪fn(P)∪fn(σ)) = ∅. Let n′x for x ∈ (x̃∪dom(σ))\z̃ be fresh names. Let

E1[] = νm̃, ñ, ñx, z̃ \ (x̃∪ dom(σ)).(| ñx(x).(P |
∏
x∈x̃\z̃ n

′
x〈x〉 |

∏
y∈dom(σ)\z̃ n

′
y〈yσ〉)),

where ñx(x) stands for nx1
(x1) . . . nxk

(xk) when x̃ = x1, . . . , xk.

E(x̃∪dom(σ))\z̃[E
′[A]]

≡ ν(x̃ ∪ dom(σ)) \ z̃.(νm̃.νz̃.(A | νñ.(σ | P)) |
∏
x∈x̃\z̃

n′x〈x〉 |
∏

y∈dom(σ)\z̃

n′y〈y〉)

≡ νm̃, ñ, z̃ ∪ x̃ ∪ dom(σ).(A | P | σ |
∏
x∈x̃\z̃

n′x〈x〉 |
∏

y∈dom(σ)\z̃

n′y〈yσ〉)

≡ νm̃, ñ, z̃ \ (x̃ ∪ dom(σ)).νx̃.(A | P |
∏
x∈x̃\z̃

n′x〈x〉 |
∏

y∈dom(σ)\z̃

n′y〈yσ〉)

≈ νm̃, ñ, z̃ \ (x̃ ∪ dom(σ)).νx̃.

(A | νñx.(
∏
x∈x̃

nx〈x〉 | ñx(x).(P |
∏
x∈x̃\z̃

n′x〈x〉 |
∏

y∈dom(σ)\z̃

n′y〈yσ〉))

by Corollary C.1 applied several times

≡ νm̃, ñ, ñx, z̃ \ (x̃ ∪ dom(σ)).

(νx̃.(A |
∏
x∈x̃

nx〈x〉) | ñx(x).(P |
∏
x∈x̃\z̃

n′x〈x〉 |
∏

y∈dom(σ)\z̃

n′y〈yσ〉))

≡ E1[Ex̃[A]]

By the same argument, E(x̃∪dom(σ))\z̃[E
′[B]] ≈ E1[Ex̃[B]]. Since Ex̃[A] ≈ Ex̃[B], we

have E1[Ex̃[A]] ≈ E1[Ex̃[B]], so by transitivity of ≈, we obtain E(x̃∪dom(σ))\z̃[E
′[A]] ≈

E(x̃∪dom(σ))\z̃[E
′[B]]. Hence, E′[A] R E′[B].

Since R is an observational bisimulation, R ⊆ ≈, so Ex̃[A] ≈ Ex̃[B] implies A ≈ B.

Corollary C.2 Observational equivalence and static equivalence coincide on frames.

Proof: Since frames do not reduce, static equivalence and labelled bisimilarity coincide
on frames. By Theorem 4.1, we can then conclude.

D Proof of Lemma 4.5

The image of a substitution σ = {M1/x1
, . . . ,Mn/xn

} is the set of terms {M1, . . . ,Mn}. We
denote by ρ a bijective renaming. We denote by σρ the substitution obtained by applying

82

the renaming ρ to the terms in the image of σ, that is, when σ = {M1/x1
, . . . ,Mn/xn

},
σρ = {M1ρ/x1

, . . . ,Mnρ/xn
}.

Lemma D.1 Let νñ.σ and νñ′.σ′ be two frames such that νñ.σ ≡ νñ′.σ′, and M and N be
two terms such that fv(M)∪ fv(N) ⊆ dom(σ) = dom(σ′) and {ñ, ñ′}∪(fn(M)∪ fn(N)) = ∅.
If Σ `Mσ = Nσ, then Σ `Mσ′ = Nσ′.

Proof: Let us prove the following result:

Suppose νñ.(σ |P)
◦≡ νñ′.(σ′ |P ′) and fv(M)∪fv(N) ⊆ dom(σ) = dom(σ′). Let ρ

be a bijective renaming that maps names in ñ to names not in fn(νñ.σ)∪fn(M)∪
fn(N) and leaves names in (fn(νñ.σ)∪fn(M)∪fn(N))\{ñ} unchanged, and ρ′ be
a bijective renaming that maps names in ñ′ to names not in fn(νñ′.σ′)∪ fn(M)∪
fn(N) and leaves names in (fn(νñ′.σ′) ∪ fn(M) ∪ fn(N)) \ {ñ′} unchanged.

We have Σ `M(σρ) = N(σρ) if and only if Σ `M(σ′ρ′) = N(σ′ρ′).

This result is proved by induction on the derivation of νñ.(σ | P)
◦≡ νñ′.(σ′ | P ′).

• Transitivity and symmetry: obvious.

• Reflexivity: The renamings ρ and ρ′ map names in ñ to names not in fn(νñ.σ)∪fn(M)∪
fn(N) and leave names in (fn(νñ.σ) ∪ fn(M) ∪ fn(N)) \ {ñ} unchanged. Let ρ′′ be a
bijective renaming that maps ñρ to ñρ′ and leaves names in fn(νñ.σ)∪ fn(M)∪ fn(N)
unchanged. If Σ `M(σρ) = N(σρ), then Σ `M(σρ)ρ′′ = N(σρ)ρ′′, so Σ `M(σρ′) =
N(σρ′). The converse is proved is the same way, using ρ′′−1 instead of ρ′′.

• Cases Plain′′ and New-C′′: These cases are proved by the same proof as for reflex-
ivity, since the desired property does not depend on the process P nor on the order of
ñ.

• Case New-Par′′: νñ.(σ |νn′.P)
◦≡ νñ, n′.(σ |P) where n′ /∈ fn(σ). Let ρ be a bijective

renaming that maps names in ñ to names not in fn(νñ.σ)∪ fn(M)∪ fn(N) and leaves
names in (fn(νñ.σ)∪ fn(M)∪ fn(N)) \ {ñ} unchanged, and ρ′ be a bijective renaming
that maps names in ñ, n′ to names not in fn(νñ, n′.σ) ∪ fn(M) ∪ fn(N) and leaves
names in (fn(νñ, n′.σ) ∪ fn(M) ∪ fn(N)) \ {ñ, n′} unchanged. Let ρ′′ be a bijective
renaming that maps ñρ to ñρ′ and that leaves names in fn(νñ.σ) ∪ fn(M) ∪ fn(N)
unchanged. (Since n′ /∈ fn(σ), fn(νñ.σ) = fn(νñ, n′.σ), so the names ñρ′ do not collide
with fn(νñ.σ) ∪ fn(M) ∪ fn(N), hence ρ′′ exists.)

If Σ ` M(σρ) = N(σρ), then Σ ` M(σρ)ρ′′ = N(σρ)ρ′′, so Σ ` M(σρ′) = N(σρ′).
(We have σρρ′′ = σρ′ because n′ /∈ fn(σ).)

The converse is proved in the same way, using ρ′′−1 instead of ρ′′.

• Case Rewrite′′: νñ.(σ |P)
◦≡ νñ.(σ′ |P) where dom(σ) = dom(σ′), Σ ` xσ = xσ′ for

all x ∈ dom(σ), and (fv(xσ) ∪ fv(xσ′)) ∩ dom(σ) = ∅ for all x ∈ dom(σ).

Let ρ be a bijective renaming that maps names in ñ to names not in fn(νñ.σ)∪fn(M)∪
fn(N) and leaves names in (fn(νñ.σ) ∪ fn(M) ∪ fn(N)) \ {ñ} unchanged, and ρ′ be a
bijective renaming that maps names in ñ to names not in fn(νñ.σ′) ∪ fn(M) ∪ fn(N)
and leaves names in (fn(νñ.σ′) ∪ fn(M) ∪ fn(N)) \ {ñ} unchanged.

Let ρ′′ be a bijective renaming that maps names in ñ to names not in fn(νñ.σ) ∪
fn(νñ.σ′)∪fn(M)∪fn(N) and leaves names in (fn(νñ.σ)∪fn(νñ.σ′)∪fn(M)∪fn(N))\
{ñ} unchanged.

83

The renaming ρ′′ a fortiori maps names in ñ to names not in fn(νñ.σ)∪ fn(M)∪ fn(N)
and leaves names in (fn(νñ.σ) ∪ fn(M) ∪ fn(N)) \ {ñ} unchanged, so by the case of
reflexivity νñ.(σ | P)

◦≡ νñ.(σ | P), we have Σ ` M(σρ) = N(σρ) if and only if
Σ `M(σρ′′) = N(σρ′′).

Similarly, Σ `M(σ′ρ′) = N(σ′ρ′) if and only if Σ `M(σ′ρ′′) = N(σ′ρ′′).

Moreover, for all x ∈ dom(σ), Σ ` xσ = xσ′, so Σ ` xσρ′′ = xσ′ρ′′, hence Σ `
M(σρ′) = M(σ′ρ′′) and Σ ` N(σρ′) = N(σ′ρ′′), therefore Σ ` M(σρ′′) = N(σρ′′) if
and only if Σ `M(σ′ρ′′) = N(σ′ρ′′).

We can then conclude that Σ `M(σρ) = N(σρ) if and only if Σ `M(σ′ρ′) = N(σ′ρ′).

The lemma is an easy consequence of this result: since νñ.σ ≡ νñ′.σ′, we have νñ.(σ|0)
◦≡

νñ′.(σ′ |0) by Lemma B.5. We conclude by applying the previous result taking P = P ′ = 0
and the identity for ρ and ρ′.

Lemma D.2 Let A be a closed extended process. If νs.({s/x} |A)→ B′, then there exists a
closed extended process A′ such that A→ A′ and B′ ≡ νs.({s/x} |A′).

Proof: Let pnf(A) = νñ.(σ | P). We rename ñ so that s /∈ {ñ}. By Lemma B.8,
pnf(νs.({s/x} | A)) = νs, ñ.({s/x} | σ | P) →◦ pnf(B′). By Lemma B.23, P →� P ′ and
pnf(B′) ≡ νs, ñ.({s/x} | σ | P ′) for some closed process P ′. Let A′ = νñ.(σ | P ′). Hence,
A ≡ νñ.(σ |P)→ νñ.(σ |P ′) = A′ and B′ ≡ pnf(B′) ≡ νs, ñ.({s/x} | σ |P ′) ≡ νs.({s/x} |A′).

Lemma D.3 Let A be a closed extended process and α be such that fv(α) ⊆ dom(A) ∪ {x}
and s /∈ fn(α). If νs.({s/x} | A)

α−→ B′, then there exists a closed extended process A′ such

that A
α{s/x}−−−−→ A′ and B′ ≡ νs.({s/x} |A′).

Proof: Let pnf(A) = νñ.(σ | P). We rename ñ so that s /∈ {ñ} and the elements of ñ

do not occur in α. By Lemma B.12, pnf(νs.({s/x} | A)) = νs, ñ.({s/x} | σ | P)
α−→◦ B′. By

Lemma B.19, P
α({s/x}|σ)−−−−−−→� B′′ and B′ ≡ νs, ñ.({s/x} | σ |B′′) for some B′′.

Next, we show that we can choose B′′ so that it is closed. Let α′ = α({s/x} | σ). By
Lemma B.10, for some ñ′, P1, P2, B1, N , M , P ′, y, we have P

�≡ νñ′.(P1 | P2), B′′ ≡
νñ′.(B1 | P2), {ñ′} ∩ fn(α′) = ∅, bv(α) ∩ fv(P1 | P2) = ∅, and one of the following two cases
holds:

1. α′ = N(M), P1 = N(y).P ′, and B1 = P ′{M/y}; or

2. α′ = νy.N〈y〉, P1 = N〈M〉.P ′, and B1 = P ′ | {M/y}.

Let σ′ be a substitution that maps variables of fv(B′′)\dom(B′′) to distinct fresh names. We
rename y so that y /∈ fv(B′′)\dom(B′′). Since P and α′ are closed, P = Pσ′ and α′ = α′σ′.
By Lemma B.16(2), P

�≡ νñ′.(P1σ
′ | P2σ

′) and Σ ` νñ′.(P1 | P2) = νñ′.(P1σ
′ | P2σ

′), so
Σ ` P1 = P1σ

′ and Σ ` P2 = P2σ
′. By Lemma B.15, B′′σ′ ≡ νñ′.(B1σ

′ |P2σ
′). Finally, one

of the following two cases holds:

1. α′ = N(M), P1σ
′ = N(y).P ′σ′, and B1σ

′ = P ′σ′{M/y}; or

2. α′ = νy.N〈y〉, P1σ
′ = N〈Mσ′〉.P ′σ′, and B1σ

′ = P ′σ′ | {Mσ′
/y}.

84

Hence, by Lemma B.10, P
α′

−→� B′′σ′. Moreover, Σ ` B1 = B1σ
′ because Σ ` P1 = P1σ

′, so
Σ ` νñ′.(B1 |P2) = νñ′.(B1σ

′ |P2σ
′), hence B′′σ′ ≡ νñ′.(B1σ

′ |P2σ
′) ≡ νñ′.(B1 |P2) ≡ B′′,

so B′ ≡ νs, ñ.({s/x} | σ | B′′σ′). Hence, by replacing B′′ with B′′σ′, we obtain the same
properties as above, and additionally B′′σ′ is closed.

Let A′ = νñ.(σ | B′′σ′). Hence, A ≡ νñ.(σ | P)
α{s/x}−−−−→◦ A′ by definition of

α{s/x}−−−−→◦, so

A
α{s/x}−−−−→ A′ by Lemma B.13, and B′ ≡ νs, ñ.({s/x} | σ |B′′σ′) ≡ νs.({s/x} |A′).

Proof of Lemma 4.5 The direct implication follows from context closure of ≈l. Con-
versely, we show that the relation R defined by A R B if and only if A and B are closed
extended processes and νs.({s/x} | A) ≈l νs.({s/x} | B) for some x /∈ dom(A) is a labelled
bisimulation.

1. The relation R is symmetric, because ≈l is.

2. We suppose that A R B and show that A ≈s B. Since A R B, we have νs.({s/x}|A) ≈l
νs.({s/x} | B) for some x /∈ dom(A), so νs.({s/x} | A) ≈s νs.({s/x} | B). We have
dom(A) = dom(νs.({s/x} |A)) \ {x} = dom(νs.({s/x} |B)) \ {x} = dom(B). Let M , N
be two terms such that fv(M)∪fv(N) ⊆ dom(A). Let M ′ = M{x/s} and N ′ = N{x/s}.
We show that (M = N)ϕ(A) if and only if (M ′ = N ′)ϕ(νs.({s/x} |A)).

If (M = N)ϕ(A), then ϕ(A) ≡ νñ.σ, Σ `Mσ = Nσ, and {ñ} ∩ (fn(M) ∪ fn(N)) = ∅
for some ñ and σ. If s ∈ fn(M)∪ fn(N), we know that s /∈ {ñ}. Otherwise, we rename
ñ so that s /∈ {ñ}, while preserving the previous properties. So ϕ(νs.({s/x} | A)) ≡
νs, ñ.(σ | {s/x}), Σ `M ′(σ | {s/x}) = N ′(σ | {s/x}), and {s, ñ} ∩ (fn(M ′)∪ fn(N ′)) = ∅,
so (M ′ = N ′)ϕ(νs.({s/x} |A)).

Conversely, if (M ′ = N ′)ϕ(νs.({s/x} |A)), then ϕ(νs.({s/x} |A)) ≡ νñ′.σ′, Σ `M ′σ′ =
N ′σ′, and {ñ′} ∩ (fn(M ′)∪ fn(N ′)) = ∅ for some ñ′ and σ′. We have ϕ(A) ≡ νñ.σ for
some ñ and σ. We rename ñ so that ({s} ∪ fn(N) ∪ fn(M)) ∩ {ñ} = ∅, so (fn(N ′) ∪
fn(M ′))∩{ñ} = ∅. Then ϕ(νs.({s/x}|A)) ≡ νs, ñ.(σ|{s/x}), so νñ′.σ′ ≡ νs, ñ.(σ|{s/x}).
By Lemma D.1, Σ ` M ′(σ | {s/x}) = N ′(σ | {s/x}), so Σ ` Mσ = Nσ, hence (M =
N)ϕ(A).

Symmetrically, (M = N)ϕ(B) if and only if (M ′ = N ′)ϕ(νs.({s/x} | B)). Moreover,
(M ′ = N ′)ϕ(νs.({s/x}|A)) if and only if (M ′ = N ′)ϕ(νs.({s/x}|B)), because νs.({s/x}|
A) ≈s νs.({s/x}|B). Therefore, (M = N)ϕ(A) if and only if (M = N)ϕ(B), so A ≈s B.

3. We suppose that A R B, A → A′, and A′ is closed, and we show that B →∗ B′ and
A′ R B′ for some B′. For some x /∈ dom(A), we have νs.({s/x} | A) ≈l νs.({s/x} | B),
νs.({s/x} | A) → νs.({s/x} | A′), and νs.({s/x} | A′) is closed, so νs.({s/x} | B) →∗ B′′
and νs.({s/x} |A′) ≈l B′′ for some B′′.

By Lemma D.2 applied several times, B →∗ B′ and B′′ ≡ νs.({s/x}|B′) for some closed
extended process B′, so νs.({s/x} |A′) ≈l νs.({s/x} |B′), which shows that A′ R B′.

4. We suppose that A R B, A
α−→ A′, A′ is closed, and fv(α) ⊆ dom(A), and we show

that B →∗ α−→→∗ B′ and A′ R B′ for some B′.

For some x /∈ dom(A), we have νs.({s/x} | A) ≈l νs.({s/x} | B). First, we rename x in
this equivalence so that x /∈ bv(α), by Lemma C.5.

Let α′ = α{x/s}. By Lemma B.12, we have pnf(A)
α−→◦ A′, so there exist ñ, σ, P , α′′,

and A′′ such that pnf(A)
◦≡ νñ.(σ |P), P

α′′

−−→� A′′, A′ ≡ νñ.(σ |A′′), fv(σ)∩bv(α′′) = ∅,

85

Σ ` ασ = α′′, and the elements of ñ do not occur in α. We rename ñ so that s /∈ {ñ}.
Since A is closed, pnf(A) is closed, so by Lemma B.16(1), we can arrange that νñ.(σ|P)
is also closed, by substituting fresh names for its free variables.

We have νs.({s/x} | A) ≡ νs, ñ.({s/x} | σ | P), so by Lemma B.5, pnf(νs.({s/x} | A))
◦≡

νs, ñ.({s/x}|σ |P) since νs, ñ.({s/x}|σ |P) is in partial normal form, because x /∈ fv(P)
and x /∈ fv(σ), since νñ.(σ | P) is closed and x /∈ dom(A) = dom(σ). Moreover,

P
α′′

−−→� A′′, νs.({s/x} | A′) ≡ νs, ñ.({s/x} | σ | A′′), fv({s/x} | σ) ∩ bv(α′′) = ∅ because
x /∈ bv(α′′) = bv(α), Σ ` α′({s/x} | σ) = ασ = α′′, and the elements of s, ñ do not

occur in α′. Therefore, pnf(νs.({s/x} |A))
α′

−→◦ νs.({s/x} |A′).

So νs.({s/x} | A) ≡ pnf(νs.({s/x} | A))
α′

−→ νs.({s/x} | A′) using Lemmas B.1 and B.13,

so νs.({s/x} |A)
α′

−→ νs.({s/x} |A′) by Struct.

Since νs.({s/x}|A) ≈l νs.({s/x}|B), we have νs.({s/x}|B)→∗ α
′

−→→∗ B′′ and νs.({s/x}|
A′) ≈l B′′ for some B′′. By Lemma D.2 applied several times and Lemma D.3,

B →∗ α−→→∗ B′ and B′′ ≡ νs.({s/x} | B′) for some closed extended process B′, so
νs.({s/x} |A′) ≈l νs.({s/x} |B′), which shows that A′ R B′.

Since R is a labelled bisimulation and ≈l is the largest labelled bisimulation, we have
R ⊆ ≈l. If νs.({s/x} |A) ≈l νs.({s/x} |B), then A R B, so A ≈l B.

E Proofs for Section 4.4

Proof of Lemma 4.6 The implication from 1 to 2 is immediate, with A′ = νx̃.A. The
implication from 2 to 3 is also obvious. Let us prove the implication from 3 to 1. Since

(x̃ = M̃)ϕ(A), we have {x̃} ⊆ dom(ϕ(A)) = dom(A), so A ≡ νñ.({M̃ ′
/̃x} | σ | P) for some ñ,

M̃ ′, σ, and P such that the variables of dom(A) do not occur in M̃ ′, the image of σ, nor

P . We rename ñ so that these names do not occur in M̃ . Since (x̃ = M̃)ϕ(A), we have

M̃ ′ = M̃{M̃ ′
/̃x}σ = M̃{M̃/̃x}σ using that {M̃/̃x} is cycle-free, so A ≡ νñ.({M̃/̃x} |σ |P). Since

the names ñ do not occur in M̃ , A ≡ {M̃/̃x} | νñ.(σ | P) ≡ {M̃/̃x} | νx̃.A, which proves 1.

Proof of Lemma 4.8 We prove the implication from left to right by induction on the

derivation of A
νx̃.N〈M〉−−−−−−→ A′. Precisely, we prove the result for all z that do not occur in the

derivation of A
νx̃.N〈M〉−−−−−−→ A′.

• Case Out-Term. We have A = N〈M〉.P N〈M〉−−−−→ P = A′ and x̃ is empty. Let

z /∈ fv(N〈M〉.P). By Out-Var, A = N〈M〉.P νz.N〈z〉−−−−−→ P | {M/z} ≡ {M/z} | A′, so by

Struct, A
νz.N〈z〉−−−−−→ {M/z} |A′.

• Case Open-Var. The transition A = νx̃.B
νx̃.N〈M〉−−−−−−→ A′ is derived from B

N〈M〉−−−−→ A′

with {x̃} ⊆ fv(M) \ fv(N) and x̃ solvable in {M/z′} |A′ for some z′ /∈ fv(A′)∪{x̃}. By

induction hypothesis, B
νz.N〈z〉−−−−−→ {M/z}|A′ for all z that do not occur in the derivation

of B
N〈M〉−−−−→ A′, so z does not occur in A = νx̃.B

νx̃.N〈M〉−−−−−−→ A′ since {x̃} ⊆ fv(M). By

Scope, A = νx̃.B
νz.N〈z〉−−−−−→ νx̃.({M/z} |A′), since {x̃} ∩ fv(N) = ∅.

86

• Case Scope. The transition A = νu.B
N〈M〉−−−−→ νu.B′ = A′ is derived from B

N〈M〉−−−−→ B′,
where u does not occur in N〈M〉. (The restriction of the rule Scope guarantees that

x̃ is empty.) By induction hypothesis, B
νz.N〈z〉−−−−−→ {M/z} | B′ for all z that do not

occur in the derivation of B
N〈M〉−−−−→ B′. Let z be a variable that does not occur

in the derivation of A = νu.B
N〈M〉−−−−→ νu.B′ = A′. Since the derivation of A =

νu.B
N〈M〉−−−−→ νu.B′ = A′ includes the derivation of B

N〈M〉−−−−→ B′, z does not occur in

the derivation of B
N〈M〉−−−−→ B′. Hence, we have B

νz.N〈z〉−−−−−→ {M/z} | B′, so by Scope,

A = νu.B
νz.N〈z〉−−−−−→ νu.({M/z} | B′), since u does not occur in νz.N〈z〉. Moreover,

νu.({M/z} | B′) ≡ {M/z} | νu.B′ = {M/z} | A′ since u does not occur in {M/z}. So by

Struct, A
νz.N〈z〉−−−−−→ {M/z} |A′.

• Case Par. The transition A = B |C νx̃.N〈M〉−−−−−−→ B′ |C = A′ is derived from B
νx̃.N〈M〉−−−−−−→

B′, with {x̃} ∩ fv(C) = ∅. By induction hypothesis, B
νz.N〈z〉−−−−−→ νx̃.({M/z} | B′),

{x̃} ⊆ fv(M) \ fv(N), and the variables x̃ are solvable in {M/z} | B′, for all z that

do not occur in the derivation of B
N〈M〉−−−−→ B′. Let z be a variable that does not

occur in the derivation of A = B | C νx̃.N〈M〉−−−−−−→ B′ | C = A′. Since the derivation of

A = B | C νx̃.N〈M〉−−−−−−→ B′ | C = A′ includes the derivation of B
N〈M〉−−−−→ B′, z does not

occur in the derivation of B
N〈M〉−−−−→ B′. Hence, we have B

νz.N〈z〉−−−−−→ νx̃.({M/z} | B′),

so by Par, B | C νz.N〈z〉−−−−−→ νx̃.({M/z} | B′) | C, since z /∈ fv(C). Moreover, νx̃.({M/z} |
B′) |C ≡ νx̃.({M/z} | (B′ |C)) = νx̃.({M/z} |A′) since {x̃} ∩ fv(C) = ∅, so by Struct,

A
νz.N〈z〉−−−−−→ νx̃.({M/z} | A′). Moreover, the variables x̃ are solvable in {M/z} | A′:

assuming that the variables x̃ resolve to M̃ in {M/z} |B′, we have

{M̃/̃x} | νx̃.({M/z} |A′) ≡ {M̃/̃x} | νx̃.({M/z} | (B′ | C))

≡ {M̃/̃x} | νx̃.({M/z} |B′) | C since {x̃} ∩ fv(C) = ∅

≡ {M/z} |B′ | C since x̃ resolve to M̃ in {M/z} |B′

≡ {M/z} |A′

• Case Struct. The transition A
νx̃.N〈M〉−−−−−−→ A′ is derived from B

νx̃.N〈M〉−−−−−−→ B′, A ≡ B

and A′ ≡ B′. By induction hypothesis, B
νz.N〈z〉−−−−−→ νx̃.({M/z} | B′), {x̃} ⊆ fv(M) \

fv(N), and the variables x̃ are solvable in {M/z} |B′, for all z that do not occur in the

derivation of B
N〈M〉−−−−→ B′. Let z be a variable that does not occur in the derivation

of A
νx̃.N〈M〉−−−−−−→ A′. Since the derivation of A

νx̃.N〈M〉−−−−−−→ A′ includes the derivation of

B
N〈M〉−−−−→ B′, z does not occur in the derivation of B

N〈M〉−−−−→ B′. Hence, we have

B
νz.N〈z〉−−−−−→ νx̃.({M/z} | B′) and νx̃.({M/z} | B′) ≡ νx̃.({M/z} | A′), so by Struct,

A
νz.N〈z〉−−−−−→ νx̃.({M/z} | A′). Moreover, the variables x̃ are solvable in {M/z} | B′ and

{M/z} |B′ ≡ {M/z} |A′, so by Definition 4.5, the variables x̃ are solvable in {M/z} |A′.
Let us now prove the implication from right to left. For this proof, we use the notion of

partial normal form introduced in Appendix B. We have A
νz.N〈z〉−−−−−→ νx̃.({M/z} | A′) where

87

the variables x̃ are solvable in {M/z} | A′, {x̃} ⊆ fv(M) \ fv(N), and z does not occur in

A, A′, x̃, N , M . By Lemma B.12, we have pnf(A)
νz.N〈z〉−−−−−→◦ νx̃.({M/z} | A′). By definition

of
νz.N〈z〉−−−−−→◦, we have pnf(A) ≡ νñ.(σ | P), P

νz.N ′〈z〉−−−−−→� B′, νx̃.({M/z} | A′) ≡ νñ.(σ | B′),
z /∈ fv(σ), Σ ` Nσ = N ′, and the elements of ñ do not occur in N , for some ñ, σ, P ,
N ′, B′. By Lemma B.10, we have P

�≡ νñ′.(N ′〈M ′〉.P1 | P2), B′ ≡ νñ′.(P1 | {M
′
/z} | P2),

{ñ′} ∩ fn(N ′) = ∅, z /∈ fv(P1 | P2) for some ñ′, P1, P2, N ′, M ′. Hence, we have

A ≡ νñ.(σ | νñ′.(N ′〈M ′〉.P1 | P2))

νx̃.({M/z} |A′) ≡ νñ.(σ | νñ′.(P1 | {M
′
/z} | P2))

We rename the names in ñ′ so that they do not occur in σ nor in N . Then

A ≡ νñ, ñ′.(σ |N ′〈M ′〉.P1 | P2)

νx̃.({M/z} |A′) ≡ νñ, ñ′.(σ | P1 | {M
′
/z} | P2)

We instantiate the variables using σ, so that the variables of dom(σ) do not occur in the
image of σ nor in N ′,M ′, P1, P2. Furthermore, let σ′ be a substitution that maps x̃ to
distinct fresh names. By Lemma B.5,

pnf(νx̃.({M/z} |A′))
◦≡ νñ, ñ′.((σ | {M

′
/z}) | (P1 | P2))

Moreover, Σ ` pnf(νx̃.({M/z}|A′)) = pnf(νx̃.({M/z}|A′))σ′ because {x̃}∩fv(pnf(νx̃.({M/z}|
A′))) = ∅. Therefore, by Lemma B.14, Σ ` νñ, ñ′.((σ|{M ′

/z})|(P1 |P2)) = νñ, ñ′.((σ|{M ′
/z})|

(P1 | P2))σ′, so Σ ` M ′ = M ′σ′, Σ ` σ = σσ′, Σ ` P1 = P1σ
′, and Σ ` P2 = P2σ

′, so by
replacing σ with σσ′, M ′ with M ′σ′, P1 with P1σ

′, and P2 with P2σ
′, we obtain

A ≡ νñ, ñ′.(σ |N〈M ′〉.P1 | P2)

νx̃.({M/z} |A′) ≡ νñ, ñ′.(σ | P1 | {M
′
/z} | P2)

and the variables x̃ are not free in the right-hand sides of these equivalences.
The variables x̃ resolve to some M̃ in {M/z} |A′, so

{M/z} |A′ ≡ {M̃/̃x} | νx̃.({M/z} |A′) ≡ {M̃/̃x} | νñ, ñ′.(σ | P1 | {M
′
/z} | P2)

We rename the names ñ, ñ′ so that they do not occur in M̃ . Hence

{M/z} |A′ ≡ νñ, ñ′.(σ | {M
′
/z} | {M̃/̃x} | P1 | P2)

A′ ≡ νz.({M/z} |A′) ≡ νz, ñ, ñ′.(σ | {M
′
/z} | {M̃/̃x} | P1 | P2)

By Lemma 4.6, (z = M)ϕ({M/z} |A′), so (z = M)νñ, ñ′.(σ | {M ′
/z} | {M̃/̃x}). We rename the

names ñ, ñ′ so that they do not occur in M . Therefore,

A ≡ νx̃, z, ñ, ñ′.(σ | {M
′
/z} | {M̃/̃x} |N〈z〉.P1 | P2)

≡ νx̃, z, ñ, ñ′.(σ | {M
′
/z} | {M̃/̃x} |N〈M〉.P1 | P2)

So we derive

N〈M〉.P1
N〈M〉−−−−→ P1 by Out-Term

88

N〈M〉.P1 | σ | {M
′
/z} | {M̃/̃x} | P2

N〈M〉−−−−→ P1 | σ | {M
′
/z} | {M̃/̃x} | P2 by Par

νz, ñ, ñ′.(N〈M〉.P1 | σ | {M
′
/z} | {M̃/̃x} | P2)

N〈M〉−−−−→ νz, ñ, ñ′.(P1 | σ | {M
′
/z} | {M̃/̃x} | P2)

by Scope, since z, ñ, ñ′ do not occur in N〈M〉

νz, ñ, ñ′.(σ | {M
′
/z} | {M̃/̃x} |N〈M〉.P1 | P2)

N〈M〉−−−−→ A′ by Struct

νx̃, z, ñ, ñ′.(σ | {M
′
/z} | {M̃/̃x} |N〈M〉.P1 | P2)

νx̃.N〈M〉−−−−−−→ A′

by Open-Var, since {x̃} ⊆ fv(M) \ fv(N)

and the variables x̃ are solvable in {M/z} |A′

A
νx̃.N〈M〉−−−−−−→ A′ by Struct

Proof of Lemma 4.9 Suppose thatA
νx.N〈x〉−−−−−→ A′ in the refined semantics. By Lemma 4.8,

for some variable z that does not occur in this transition, we have A
νz.N〈z〉−−−−−→ νx.({x/z} |A′)

in the simple semantics. Since x ∈ dom(A′), A′ ≡ νñ.({M/x} | A′′) for some ñ and some M
and A′′ that do not contain x nor z, so

νx.({x/z} |A′) ≡ νx.({x/z} | νñ.({M/x} |A′′)) ≡ νñ.({M/z} |A′′)

Hence by Struct, A
νz.N〈z〉−−−−−→ νñ.({M/z}|A′′). By renaming z into x and x into z everywhere

in the derivation of this transition, we obtain A
νx.N〈x〉−−−−−→ νñ.({M/x} |A′′), since z and x are

not free in A, N , A′′, M . Since we have νñ.({M/x} | A′′) ≡ A′, we obtain A
νx.N〈x〉−−−−−→ A′ by

Struct in the simple semantics.

Conversely, suppose that A
νx.N〈x〉−−−−−→ A′ in the simple semantics. Since x ∈ dom(A′),

A′ ≡ νñ.({M/x} |A′′) for some ñ and some M and A′′ that do not contain x, so by Struct,

A
νx.N〈x〉−−−−−→ νñ.({M/x} | A′′). By renaming x into a fresh variable z everywhere in the

derivation of this transition, A
νz.N〈z〉−−−−−→ νñ.({M/z} | A′′), since x is not free in A, M , A′′.

Moreover, νñ.({M/z} | A′′) ≡ νx.({x/z} | νñ.({M/x} | A′′)) ≡ νx.({x/z} | A′), so by Struct,

we obtain A
νz.N〈z〉−−−−−→ νx.({x/z} |A′).

The variable x resolves to z in {x/z} |A′, because

{z/x} | νx.({x/z} |A′) ≡ {z/x} | νx.({x/z} | νñ.({M/x} |A′′))
≡ {z/x} | νñ.({M/z} |A′′)
≡ νñ.({z/x} | {M/z} |A′′)
≡ νñ.({M/x} | {x/z} |A′′)
≡ {x/z} | νñ.({M/x} |A′′)
≡ {x/z} |A′

Therefore, by Lemma 4.8, A
νx.N〈x〉−−−−−→ A′ in the refined semantics.

Proof of Theorem 4.2 By Lemma 4.9, ≈L is a simple-labelled bisimulation, and thus
≈L ⊆ ≈l. Conversely, to show that ≈l is a refined-labelled bisimulation, it suffices to prove
its bisimulation property for any refined output label.

89

Assume A ≈l B, A
νx̃.N〈M〉−−−−−−→ A′, A′ is closed, and fv(νx̃.N〈M〉) ⊆ dom(A). By

Lemma 4.8, we have

A
νz.N〈z〉−−−−−→ A◦ = νx̃.({M/z} |A′)

for some fresh variable z, where {x̃} ⊆ fv(M) \ fv(N) and x̃ resolves to M̃ in {M/z} |A′:

{M/z} |A′ ≡ {M̃/̃x} | νx̃.({M/z} |A′) ≡ {M̃/̃x} |A◦ (18)

Let E[] = νz.({M̃/̃x} |). Using the structural equivalence above and structural rearrange-
ments, we obtain E[A◦] ≡ νz.({M/z} |A′) ≡ A′. By labelled bisimulation hypothesis on the

simple output transition above, we have B →∗ B1
νz.N〈z〉−−−−−→ B2 →∗ B◦ with A◦ ≈l B◦ for

some B1, B2, B
◦. By instantiating all variables in fv(B2) \dom(B2) with fresh names in the

derivation of this reduction, we obtain the same property and additionally B2 is closed. By
Theorem 4.1, labelled bisimilarity is closed by application of closing contexts. Using E[],
we obtain A′ ≈l E[B◦]. Let B′ = E[B◦].

Let us first show that B2 ≡ νx̃.({M/z}|E[B2]). By Lemma 4.6, we have (z = M)ϕ({M/z}|
A′) and by the structural equivalence (18), (x̃ = M̃)ϕ({M/z}|A′), so (z = M{M̃/̃x})ϕ({M/z}|
A′), so (z = M{M̃/̃x})ϕ(νx̃.({M/z}|A′)) since the variables x̃ do not occur in M{M̃/̃x}. Hence

(z = M{M̃/̃x})ϕ(A◦). Since A◦ ≈l B◦ ≈s B2, we have A◦ ≈s B2, so (z = M{M̃/̃x})ϕ(B2).
Since z ∈ dom(B2), we have B2 ≡ νñ.({N/z} | B3) for some ñ, N and B3 such that z is

not free in B3. We rename ñ so that these names do not occur in M̃ nor in M . Then

E[B2] ≡ νñ.({M̃{N/z}/̃x} |B3), so

νx̃.({M/z} | E[B2]) ≡ νñ.({M{
M̃{N/z}/̃x}/z} |B3) ≡ νñ.({N/z} |B3) ≡ B2

because (N = M{M̃{N/z}/̃x})ϕ(B3) since (z = M{M̃/̃x})ϕ(B2). So we have the desired
structural equivalence B2 ≡ νx̃.({M/z} | E[B2]).

Then

B1
νz.N〈z〉−−−−−→ νx̃.({M/z} | E[B2])

Moreover, x̃ resolves to M̃ in {M/z} |A′ and

{M/z} |A′ ≡ {M/z} | E[A◦] ≈l {M/z} | E[B◦] ≈s {M/z} | E[B2]

so {M/z} | A′ ≈s {M/z} | E[B2], so by Lemma 4.7, x̃ resolves to M̃ in {M/z} | E[B2]. Hence,

by Lemma 4.8, B1
νx̃.N〈M〉−−−−−−→ E[B2]. Hence

B →∗ B1
νx̃.N〈M〉−−−−−−→ E[B2]→∗ E[B◦] = B′

so we have A′ ≈l B′ and B →∗ νx̃.N〈M〉−−−−−−→→∗ B′, which concludes the proof.

F Proofs for Section 6.2

In this appendix, we suppose that the signature Σ satisfies the assumptions of Theorem 6.1
and write R for its convergent rewrite system. In particular, since R terminates, the left-
hand sides of its rewrite rules cannot be variables.

In preparation for the proof of Theorem 6.1, we study the effect of the translation [[·]]
on the semantics of terms and processes where k occurs only as mac(k, ·), relying on the
partial normal forms defined in Appendix B.

90

Lemma F.1 Σ `M1 = M2 if and only if Σ ` h(k,M1) = h(k,M2).

Proof: The implication from left to right is obvious. Conversely, suppose that Σ `
h(k,M1) = h(k,M2). Let M ′1 and M ′2 be the normal forms under R of M1 and M2 respec-
tively. Hence Σ ` h(k,M ′1) = h(k,M ′2). For some n, n′ ≥ 1, we have M ′1 = N1 :: . . . :: Nn
and M ′2 = N ′1 :: . . . :: N ′n′ where the root symbols of Nn and N ′n′ are not ::. We compute
the normal form of h(k,M ′1):

• If n = 1, then h(k,M ′1) = h(k,N1) is irreducible since N1 is irreducible and the rewrite
rules with h at the root of the left-hand side apply only to terms with :: at the root.

• If n > 1 and Nn = nil, then h(k,M ′1) reduces to f(. . . (f(k,N1), . . .), Nn−1), and this
term is irreducible since N1, . . . , Nn−1 are irreducible as subterms of an irreducible
term, and no rewrite rule contains f in its left-hand side.

• If n > 1 and Nn 6= nil, then h(k,M ′1) reduces to h(f(. . . (f(k,N1), . . .), Nn−2), Nn−1 ::
Nn) and this term is irreducible since N1, . . . , Nn are irreducible, no rewrite rule
contains f in its left-hand side, and no rewrite rule with h at the root applies since Nn
is not nil and does not contain :: at the root.

and similarly compute a normal form of h(k,M ′2). Their equality implies n = n′ and Ni = N ′i
for all i ≤ n, hence M ′1 = M ′2 and Σ `M1 = M2.

Lemma F.2 If M1 →R M2 and k occurs only as mac(k, ·) in M1, then [[M1]]→R [[M2]] and
k occurs only as mac(k, ·) in M2.

Proof: We have M1 = C[M3σ] and M2 = C[M4σ] for some rewrite rule M3 → M4 of R,
term context C, and substitution σ. Hence [[M1]] = [[C[M3σ]]]. Furthermore, mac and k
do not occur in M3 and M3 is not a variable, so [[C[M3σ]]] = [[C]][M3[[σ]]]. Since k occurs
only as mac(k, ·) in M1 and mac does not occur in M3, k occurs only as mac(k, ·) in C
and in the image of σ. Furthermore, k does not occur in M4. Therefore, k occurs only as
mac(k, ·) in M2 = C[M4σ] and [[M2]] = [[C[M4σ]]] = [[C]][M4[[σ]]]. We can then conclude that
[[M1]]→R [[M2]].

Lemma F.3 Suppose that k occurs only as mac(k, ·) in M1 and M2. We have Σ `M1 = M2

if and only if Σ ` [[M1]] = [[M2]].

Proof: Let us first prove the implication from left to right. If Σ `M1 = M2, then M1 →∗R
M ′ and M2 →∗R M ′ for some M ′. By Lemma F.2, [[M1]] →∗R [[M ′]] and [[M2]] →∗R [[M ′]], so
Σ ` [[M1]] = [[M2]].

Conversely, suppose that Σ ` [[M1]] = [[M2]]. Let M ′1 and M ′2 be the normal forms under
R of M1 and M2, respectively. By Lemma F.2, k occurs only as mac(k, ·) in M ′1 and M ′2,
[[M1]] →∗R [[M ′1]], and [[M2]] →∗R [[M ′2]], so Σ ` [[M ′1]] = [[M ′2]]. We show by induction on the
total size of the terms M ′1 and M ′2 that, if k occurs only as mac(k, ·) in M ′1 and M ′2, M ′1 and
M ′2 are irreducible under R, and Σ ` [[M ′1]] = [[M ′2]], then M ′1 = M ′2:

• First suppose that M ′1 and M ′2 are not of the form mac(k, ·).
Since f does not occur on the left-hand sides of rewrite rules of R, if a rewrite rule of
R could be applied at the root of [[M ′1]] or [[M ′2]], then it would match only symbols
above occurrences of f(. . .) in [[M ′1]] or [[M ′2]], hence, only symbols above occurrences
of mac(k, ·) in M ′1 or M ′2. Moreover, by induction hypothesis, if subterms of [[M ′1]] or
[[M ′2]] are equal, the corresponding subterms of M ′1 or M ′2 are also equal. Hence, the

91

same rewrite rule would also apply at the root of M ′1 or M ′2, which is impossible since
M ′1 and M ′2 are irreducible.

Hence, the equality Σ ` [[M ′1]] = [[M ′2]] is equivalent to the equality between the
immediate subterms of [[M ′1]] and [[M ′2]], and we conclude by induction.

• Now suppose that M ′1 = mac(k,M ′′1) and M ′2 = mac(k,M ′′2). Then [[M ′1]] =
f(k, h(k, [[M ′′1]])) and [[M ′2]] = f(k, h(k, [[M ′′2]])). Since Σ ` [[M ′1]] = [[M ′2]], we have
Σ ` h(k, [[M ′′1]]) = h(k, [[M ′′2]]) since no rewrite rule applies to f(·, ·), so by Lemma F.1,
Σ ` [[M ′′1]] = [[M ′′2]]. By induction hypothesis, M ′′1 = M ′′2 , so M ′1 = M ′2.

• Finally, if M ′1 = mac(k,M ′′1) and M ′2 is not of the form mac(k, ·), then [[M ′1]] =
f(k, h(k, [[M ′′1]])) and [[M ′2]] is not of the form f(k, ·) because k occurs only as mac(k, ·)
in M ′2, so Σ ` [[M ′1]] 6= [[M ′2]]: this case cannot happen. Symmetrically, the case
M ′2 = mac(k,M ′′2) and M ′1 is not of the form mac(k, ·) cannot happen.

From this result, we easily conclude that Σ `M1 = M2.

Lemma F.4 Suppose that P0 is closed, α = νx.N ′〈x〉 or α = N ′(M ′) for some ground
term N ′, and k occurs only as mac(k, ·) in P0 and α.

If P0
α−→� A, then [[P0]]

[[α]]−−→� [[A′]] and A ≡ A′ for some A′ where k occurs only as
mac(k, ·) and, moreover,

• when α = νx.N ′〈x〉, A′ = E[{M/x}] where E is a closed plain evaluation context (with
no active substitutions and no variable restrictions) and M is a ground term;

• when α = N ′(M ′), A′ is a plain process with fv(A′) ⊆ fv(M ′).

Proof: We proceed by induction on the syntax of P0 and apply Lemma B.18 to decompose
P0

α−→� A, with the following cases:

1. P0 = P | Q and either P
α−→� A′ and A ≡ A′ | Q, or Q

α−→� A′ and A ≡ P | A′, for

some P , Q, and A′. In the first case, by induction hypothesis, [[P]]
[[α]]−−→� [[A′′]] and

A′ ≡ A′′ for some A′′ where k occurs only as mac(k, ·). By Par′, since [[Q]] is closed,

[[P0]] = [[P]] | [[Q]]
[[α]]−−→� [[A′′]] | [[Q]] = [[A′′ |Q]] and A′′ |Q ≡ A′ |Q ≡ A. Furthermore, k

occurs only as mac(k, ·) in A′′ |Q. The second case is symmetric.

2. P0 = νn.P , P
α−→� A′, and A ≡ νn.A′ for some P , A′, and n that does not occur in α.

We rename n so that n 6= k. By induction hypothesis, [[P]]
[[α]]−−→� [[A′′]] and A′ ≡ A′′ for

some A′′ where k occurs only as mac(k, ·). By Scope′, [[P0]] = νn.[[P]]
α−→� νn.[[A′′]] =

[[νn.A′′]] and νn.A′′ ≡ νn.A′ ≡ A. Furthermore, k occurs only as mac(k, ·) in νn.A′′.

3. P0 = !P , P
α−→� A′, and A ≡ A′ | !P for some P and A′. By induction hypothesis,

[[P]]
[[α]]−−→� [[A′′]] and A′ ≡ A′′ for some A′′ where k occurs only as mac(k, ·). We have

[[P0]] = ![[P]]
�≡ [[P]] | ![[P]]

[[α]]−−→� [[A′′]] | ![[P]] by Par′, since ![[P]] is closed. Hence by

Struct′, [[P0]]
[[α]]−−→� [[A′′ | !P]] and A′′ | !P ≡ A′ | !P ≡ A. Furthermore, k occurs only

as mac(k, ·) in A′′ | !P .

4. P0 = N(x).P , α = N ′(M ′), Σ ` N = N ′, and A ≡ P{M ′
/x} for some N , x, P ,

N ′, and M ′. By Lemma F.3, Σ ` [[N]] = [[N ′]], so we have [[P0]] = [[N]](x).[[P]]
�≡

[[N ′]](x).[[P]]
[[α]]−−→� [[P]]{[[M ′]]/x} by In′. Since k occurs only as mac(k, ·) in M ′, the

92

substitution [[P]]{[[M ′]]/x} does not create new occurrences of mac with key k, so

[[P]]{[[M ′]]/x} = [[P{M ′
/x}]]. By Struct′, we obtain [[P0]]

[[α]]−−→� [[P{M ′
/x}]], and we

have A ≡ P{M ′
/x}. Furthermore, k occurs only as mac(k, ·) in P{M ′

/x}.

5. P0 = N〈M〉.P , α = νx.N ′〈x〉, Σ ` N = N ′, x /∈ fv(P0), and A ≡ P | {M/x} for
some N , M , P , x, and N ′. By Lemma F.3, Σ ` [[N]] = [[N ′]], so we have [[P0]] =

[[N]]〈[[M]]〉.[[P]]
�≡ [[N ′]]〈[[M]]〉.[[P]]

[[α]]−−→� [[P]] | {[[M]]/x} = [[P | {M/x}]] by Out-Var′. By

Struct′, we obtain [[P0]]
[[α]]−−→� [[P | {M/x}]], and we have A ≡ P | {M/x}. Furthermore,

k occurs only as mac(k, ·) in P | {M/x}.

Lemma F.5 If P0 →� R for some closed process P0 where k occurs only as mac(k, ·), then
[[P0]]→� [[R′]] and R′ ≡ R for some closed process R′ where k occurs only as mac(k, ·).

Proof: We define the size of processes by induction on the syntax, such that size(!P) =
1+2×size(P) and, when P is not a replication, size(P) is one plus the size of the immediate
subprocesses of P . We proceed by induction on the size of P0. By Lemma B.21, we
decompose P0 →� R, with the following cases:

1. P0 = P |Q for some P and Q, and one of the following cases holds:

(a) P →� P ′ and R ≡ P ′ |Q for some P ′,

(b) P
N(x)−−−→� A, Q

νx.N〈x〉−−−−−→� B, and R ≡ νx.(A | B) for some A, B, x, and ground
term N ,

and two symmetric cases obtained by swapping P and Q.

In case (a), by induction hypothesis, [[P]]→� [[P ′′]] and P ′′ ≡ P ′ for some closed process
P ′′ where k occurs only as mac(k, ·). Hence [[P0]] = [[P]] | [[Q]]→� [[P ′′]] | [[Q]] = [[P ′′ |Q]]
and P ′′ |Q ≡ P ′ |Q ≡ R. Furthermore, k occurs only as mac(k, ·) in P ′′ |Q.

In case (b), by Lemma F.4, [[P]]
[[N]](x)−−−−→� [[P1]] and A ≡ P1 for some P1 where k occurs

only as mac(k, ·) and fv(P1) ⊆ {x}; and [[Q]]
νx.[[N]]〈x〉−−−−−−→� [[B′]] for some B′ = E2[{M2/x}]

such that B ≡ B′, k occurs only as mac(k, ·) in B′, E2 is a closed plain evaluation
context and M2 is a ground term. By Lemma B.20, [[P0]] = [[P]] | [[Q]] →� R′ and
R′ ≡ νx.([[P1]] | [[B′]]) = νx.([[P1]] | [[E2]][{[[M2]]/x}]) for some R′. We rename the bound
names of E2 so that they do not occur in P1. Let R′′ = E2[P1{M2/x}]. The process R′′

is closed and such that k occurs only as mac(k, ·). We have R′ ≡ [[R′′]], so [[P0]]→� [[R′′]]
and R′′ ≡ νx.(P1 |B′) ≡ νx.(A |B) ≡ R. The last two cases are symmetric.

2. P0 = νn.P , P →� Q′, and R ≡ νn.Q′ for some n, P , and Q′. We rename n so that
n 6= k. By induction hypothesis, [[P]] →� [[Q′′]] and Q′ ≡ Q′′ for some closed process
Q′′ where k occurs only as mac(k, ·). Hence [[P0]] = νn.[[P]] →� νn.[[Q′′]] = [[νn.Q′′]]
and νn.Q′′ ≡ νn.Q′ ≡ R. Furthermore, k occurs only as mac(k, ·) in νn.Q′′.

3. P0 = !P , P | P →� Q′, and R ≡ Q′ | !P for some P and Q′. By induction hypothesis,
[[P | P]] →� [[Q′′]] and Q′ ≡ Q′′ for some closed process Q′′ where k occurs only as
mac(k, ·). Hence [[P0]] = ![[P]]

�≡ [[P]] | [[P]] | ![[P]] →� [[Q′′]] | ![[P]] = [[Q′′ | !P]] and
Q′′ | !P ≡ Q′ | !P ≡ R. Furthermore, k occurs only as mac(k, ·) in Q′′ | !P .

4. P0 = if M = N then P else Q and either Σ ` M = N and R ≡ P , or Σ ` M 6= N
and R ≡ Q, for some M , N , P , and Q.

93

In the first case, by Lemma F.3, Σ ` [[M]] = [[N]], so [[P0]] = if [[M]] =
[[N]] then [[P]] else [[Q]] →� [[P]] and we know that P ≡ R and k occurs only
as mac(k, ·) in P . In the second case, by Lemma F.3, Σ ` [[M]] 6= [[N]], so
[[P0]] = if [[M]] = [[N]] then [[P]] else [[Q]] →� [[Q]] and we know that Q ≡ R and
k occurs only as mac(k, ·) in Q.

Lemma F.6 Suppose that P0 is closed, α = νx.N ′〈x〉 or α = N ′(M ′) for some ground
term N ′, and k occurs only as mac(k, ·) in P0 and α.

If [[P0]]
[[α]]−−→� A, then P0

α−→� A′ and A ≡ [[A′]] for some A′ where k occurs only as
mac(k, ·). Furthermore, when α = νx.N ′〈x〉, A′ = E[{M/x}] where E is a closed plain
evaluation context and M is a ground term, and when α = N ′(M ′), A′ is a plain process
with fv(A′) ⊆ fv(M ′).

Proof: We proceed by structural induction on P0, with the following cases:

• P0 = P | Q. Then [[P0]] = [[P]] | [[Q]], so by Lemma B.18, either [[P]]
[[α]]−−→� A′ and

A ≡ A′ | [[Q]], or [[Q]]
[[α]]−−→� A′ and A ≡ [[P]] | A′, for some A′. In the first case,

by induction hypothesis, P
α−→� A′′ and A′ ≡ [[A′′]] for some A′′ where k occurs

only as mac(k, ·). By Par′, since Q is closed, we have P0 = P | Q α−→� A′′ | Q and
[[A′′ |Q]] ≡ A′ | [[Q]] ≡ A. Furthermore, k occurs only as mac(k, ·) in A′′ |Q. The second
case is symmetric.

• P0 = νn.P . We rename n so that n 6= k and n does not occur in α. Then [[P0]] =

νn.[[P]], so by Lemma B.18, we have [[P]]
[[α]]−−→� A′ and A ≡ νn.A′ for some A′. By

induction hypothesis, P
α−→� A′′ and A′ ≡ [[A′′]] for some A′′ where k occurs only as

mac(k, ·). By Scope′, P0 = νn.P
α−→� νn.A′′ and [[νn.A′′]] = νn.[[A′′]] ≡ νn.A′ ≡ A.

Furthermore, k occurs only as mac(k, ·) in νn.A′′.

• P0 = !P . Then [[P0]] = ![[P]], so by Lemma B.18, we have [[P]]
[[α]]−−→� A′, and A ≡ A′|![[P]]

for some A′. By induction hypothesis, P
α−→� A′′ and A′ ≡ [[A′′]] for some A′′ where k

occurs only as mac(k, ·). We have P0 = !P
�≡ P | !P α−→� A′′ | !P by Par′, since !P is

closed. Hence by Struct′, P0
α−→� A′′ | !P and [[A′′ | !P]] ≡ A′ | ![[P]] ≡ A. Furthermore,

k occurs only as mac(k, ·) in A′′ | !P .

• P0 = N(x).P . Then [[P0]] = [[N]](x).[[P]], so by Lemma B.18, we have [[α]] = N ′(M ′),
Σ ` [[N]] = N ′, and A ≡ [[P]]{M ′

/x} for some N ′ and M ′. Hence α = N ′′(M ′′),
N ′ = [[N ′′]], and M ′ = [[M ′′]] for some N ′′ and M ′′. We have Σ ` [[N]] = [[N ′′]], so

by Lemma F.3, Σ ` N = N ′′, so we have P0 = N(x).P
�≡ N ′′(x).P

α−→� P{M
′′
/x} by

In′. By Struct′, we obtain P0
α−→� P{M

′′
/x}. The name k occurs only as mac(k, ·) in

M ′′, so the substitution [[P]]{[[M ′′]]/x} does not create new occurrences of mac(k, ·), so
[[P{M ′′

/x}]] = [[P]]{[[M ′′]]/x} = [[P]]{M ′
/x} ≡ A. Furthermore, k occurs only as mac(k, ·)

in P{M ′′
/x}.

• P0 = N〈M〉.P . Then [[P0]] = [[N]]〈[[M]]〉.[[P]], so by Lemma B.18, [[α]] = νx.N ′〈x〉,
Σ ` [[N]] = N ′, x /∈ fv([[P0]]) = fv(P0), and A ≡ [[P]] | {[[M]]/x} for some x and N ′.
Hence α = νx.N ′′〈x〉 and N ′ = [[N ′′]] for some N ′′. We have Σ ` [[N]] = [[N ′′]], so by

Lemma F.3, Σ ` N = N ′′, so we have P0 = N〈M〉.P �≡ N ′′〈M〉.P α−→� P | {M/x} by

Out-Var′. Hence by Struct′, we obtain P0
α−→� P |{M/x}, and we have [[P |{M/x}]] =

[[P]] | {[[M]]/x} ≡ A. Furthermore, k occurs only as mac(k, ·) in P | {M/x}.

94

• P0 is neither 0 nor a conditional, because by Lemma B.18, [[P0]] would not have a
labelled transition.

Lemma F.7 Suppose that P0 is a closed process where k occurs only as mac(k, ·). If

[[P0]]
α−→� A with α = νx.N ′〈x〉 or α = N ′(M ′), then Σ ` N ′ = [[N]] for some ground

term N where k occurs only as mac(k, ·).

Proof: We proceed by structural induction on P0, with the following cases:

• P0 = P | Q. Then [[P0]] = [[P]] | [[Q]], so by Lemma B.18, either [[P]]
α−→� A′ and

A ≡ A′ | [[Q]], or [[Q]]
α−→� A′ and A ≡ [[P]] | A′, for some A′. In both cases, the result

follows immediately from the induction hypothesis.

• P0 = νn.P . We rename n so that n 6= k and n does not occur in α. Then [[P0]] =

νn.[[P]], so by Lemma B.18, [[P]]
α−→� A′, and A ≡ νn.A′ for some A′. The result

follows immediately from the induction hypothesis.

• P0 = !P . Then [[P0]] = ![[P]], so by Lemma B.18, [[P]]
α−→� A′, and A ≡ A′ | ![[P]] for

some A′. The result follows immediately from the induction hypothesis.

• P0 = N(x).P . Then [[P0]] = [[N]](x).[[P]], so by Lemma B.18, α = N ′(M ′), Σ ` [[N]] =
N ′, and A ≡ [[P]]{M ′

/x} for some N ′ and M ′. Moreover, since N occurs in P0, N is
ground and k occurs only as mac(k, ·) in N , so the result holds.

• P0 = N〈M〉.P . Then [[P0]] = [[N]]〈[[M]]〉.[[P]], so by Lemma B.18, α = νx.N ′〈x〉,
Σ ` [[N]] = N ′, x /∈ fv([[P0]]) = fv(P0), and A ≡ [[P]] | {[[M]]/x} for some x and N ′.
Moreover, since N occurs in P0, N is ground and k occurs only as mac(k, ·) in N , so
the result holds.

• P0 is neither 0 nor a conditional, because by Lemma B.18, [[P0]] would not have a
labelled transition.

Lemma F.8 If P
α−→� A and Σ ` α = α′, then P

α′

−→� A.

Proof: We proceed by induction on the derivation of P
α−→� A.

• Case In′. We have P = N(x).P ′, α = N(M), and A = P ′{M/x} for some N , M , x,
and P ′. Since Σ ` α = α′, we have α′ = N ′(M ′), Σ ` N ′ = N , and Σ ` M ′ = M

for some N ′ and M ′. Hence P
�≡ N ′(x).P ′

α′

−→� P ′{M
′
/x} ≡ A by In′, so P

α′

−→� A by
Struct′.

• Case Out-Var′. We have P = N〈M〉.P ′, α = νx.N〈x〉, and A = P | {M/x} for some
N , M , x, and P ′. Since Σ ` α = α′, we have α′ = νx.N ′〈x〉 and Σ ` N ′ = N for some

N ′. Hence P
�≡ N ′〈M〉.P ′ α

′

−→� P | {M/x} by Out-Var′, so P
α′

−→� A by Struct′.

• The other cases follow easily from the induction hypothesis. In the case Scope′, we
rename the bound name n so that it does not occur in α. In the case Par′, we use
that bv(α′) = bv(α).

Lemma F.9 Suppose that P0 is a closed process where k occurs only as mac(k, ·). If
[[P0]] →� R, then P0 →� R′ and R ≡ [[R′]] for some closed process R′ where k occurs
only as mac(k, ·).

95

Proof: We proceed by induction on the size of P0, with the same definition of size as in
the proof of Lemma F.5. The following cases may occur:

1. P0 = P | Q. Then [[P0]] = [[P]] | [[Q]], so by Lemma B.21, one of the following cases
holds:

(a) [[P]]→� P ′ and R ≡ P ′ | [[Q]] for some P ′,

(b) [[P]]
N(x)−−−→� A, [[Q]]

νx.N〈x〉−−−−−→� B, and R ≡ νx.(A |B) for some A, B, x, and ground
term N ,

and two symmetric cases obtained by swapping P and Q. In the first case, by induction
hypothesis, P →� P ′′ and [[P ′′]] ≡ P ′ for some closed process P ′′ where k occurs only
as mac(k, ·). Hence P0 = P |Q→� P ′′ |Q and [[P ′′ |Q]] = [[P ′′]] | [[Q]] ≡ P ′ | [[Q]] ≡ R.
Furthermore, k occurs only as mac(k, ·) in P ′′ |Q. In the second case, by Lemma F.7,
Σ ` N = [[N ′]] for some ground term N ′ where k occurs only as mac(k, ·). By

Lemma F.8, [[P]]
[[N ′]](x)−−−−−→� A and [[Q]]

νx.[[N ′]]〈x〉−−−−−−−→� B. By Lemma F.6, P
N(x)−−−→� P1

and A ≡ [[P1]] for some P1 where k occurs only as mac(k, ·) and fv(P1) ⊆ {x}; and

Q
νx.N〈x〉−−−−−→� B′ and B ≡ [[B′]] for some B′ = E2[{M2/x}] where k occurs only as

mac(k, ·) in B′, E2 is a closed plain evaluation context, and M2 is a ground term. By
Lemma B.20, P0 = P | Q →� R′ and R′ ≡ νx.(P1 | B′) = νx.(P1 | E2[{M2/x}]) for
some R′. We rename the bound names of E2 so that they do not occur in P1. Let
R′′ = E2[P1{M2/x}]. The process R′′ is closed and k occurs only as mac(k, ·) in R′′.
We have R′ ≡ R′′, so P0 →� R′′ and [[R′′]] ≡ [[νx.(P1 |B′)]] ≡ νx.(A |B) ≡ R. The last
two cases are symmetric.

2. P0 = νn.P . We rename n so that n 6= k. Then [[P0]] = νn.[[P]], so by Lemma B.21,
[[P]] →� Q′, and R ≡ νn.Q′ for some Q′. By induction hypothesis, P →� Q′′ and
Q′ ≡ [[Q′′]] for some closed process Q′′ where k occurs only as mac(k, ·). Hence P0 =
νn.P →� νn.Q′′ and [[νn.Q′′]] = νn.[[Q′′]] ≡ νn.Q′ ≡ R. Furthermore, k occurs only as
mac(k, ·) in νn.Q′′.

3. P0 = !P . Then [[P0]] = ![[P]], so by Lemma B.21, [[P | P]] = [[P]] | [[P]] →� Q′, and
R ≡ Q′ | ![[P]] for some Q′. By induction hypothesis, P | P →� Q′′ and Q′ ≡ [[Q′′]] for
some closed process Q′′ where k occurs only as mac(k, ·). Hence P0 = !P

�≡ P |P |!P →�
Q′′ | !P and [[Q′′ | !P]] = [[Q′′]] | ![[P]] ≡ Q′ | ![[P]] ≡ R. Furthermore, k occurs only as
mac(k, ·) in Q′′ | !P .

4. P0 = if M = N then P else Q. Then [[P0]] = if [[M]] = [[N]] then [[P]] else [[Q]], so by
Lemma B.21, either Σ ` [[M]] = [[N]] and R ≡ [[P]], or Σ ` [[M]] 6= [[N]] and R ≡ [[Q]].
In the first case, by Lemma F.3, Σ `M = N , so P0 = if M = N then P else Q→� P
and we know that [[P]] ≡ R and k occurs only as mac(k, ·) in P . In the second case,
by Lemma F.3, Σ ` M 6= N , so P0 = if M = N then P else Q →� Q and we know
that [[Q]] ≡ R and k occurs only as mac(k, ·) in Q.

5. P0 is not 0, an input, or an output, because by Lemma B.21, [[P0]] would not reduce.

Proof of Theorem 6.1 Let R relate all closed extended processes A and B such that
A ≡ νk.C and B ≡ νk.[[C]] for some closed normal process C where k occurs only as
mac(k, ·).

96

We show that R ∪ R−1 is a labelled bisimulation. It is symmetric by construction.
Assume that A R B for some C = νñ.(σ |P) where k occurs only as mac(k, ·). In particular,
k does not occur in ñ, A and B are closed, A ≡ νk.C, and B ≡ νk.[[C]].

1. We show that A ≈s B.

Let M and N be two terms such that fv(M)∪ fv(N) ⊆ dom(A) = dom(B) = dom(σ).
We have ϕ(A) ≡ νk, ñ.σ and ϕ(B) ≡ νk, ñ.[[σ]]. We rename k and ñ so that these
names do not occur in M and N . Then

(M = N)ϕ(A)⇔ Σ `Mσ = Nσ

⇔ Σ ` [[Mσ]] = [[Nσ]] by Lemma F.3

⇔ Σ `M [[σ]] = N [[σ]]

since k does not occur in M and N and k occurs only as mac(k, ·) in σ, so

(M = N)ϕ(A)⇔ (M = N)ϕ(B)

Therefore, A ≈s B.

2. We first show that, if A
α−→ A′, A′ is closed, and fv(α) ⊆ dom(A), then B →∗ α−→→∗ B′

and A′ R B′ for some B′.

We have νk, ñ.(σ | P)
α−→ A′, so by Lemma B.12, νk, ñ.(σ | P)

α−→◦ A′. We rename

k and ñ so that these names do not occur in α. By Lemma B.19, P
ασ−−→� A′1,

A′ ≡ νk, ñ.(σ |A′1), and bv(α) ∩ dom(σ) = ∅ for some A′1. By Lemma F.4, [[P]]
[[ασ]]−−−→�

[[A′′1]] and A′1 ≡ A′′1 for some A′′1 where k occurs only as mac(k, ·). Furthermore, when
ασ = νx.N ′〈x〉, A′′1 = E[{M/x}] where E is a closed plain evaluation context and M is a
ground term, and when ασ = N ′(M ′), A′′1 is a plain process with fv(A′′1) ⊆ fv(M ′) = ∅,
so A′′1 is a closed plain process. Since k does not occur in α and k occurs only as

mac(k, ·) in σ, we have [[ασ]] = α[[σ]]. Therefore, B ≡ νk.[[C]] ≡ νk, ñ.([[σ]] | [[P]])
α−→◦

νk, ñ.([[σ]] | [[A′′1]]). Let C ′ = pnf(νñ.(σ |A′′1)). The process C ′ is a closed normal process
where k occurs only as mac(k, ·) We have νk.C ′ ≡ νk, ñ.(σ |A′′1) ≡ νk, ñ.(σ |A′1) ≡ A′.
Let B′ = νk.[[C ′]]. We have A′ R B′. Given the form of A′′1 , we can show that

[[C ′]] ≡ νñ.([[σ]] | [[A′′1]]), so B
α−→ B′.

Next, we show that, if B
α−→ B′, B′ is closed, and fv(α) ⊆ dom(B), then A→∗ α−→→∗ A′

and A′ R B′ for some A′.

We have νk, ñ.([[σ]] | [[P]])
α−→ B′, so by Lemma B.12, νk, ñ.([[σ]] | [[P]])

α−→◦ B′. We

rename k and ñ so that these names do not occur in α. By Lemma B.19, [[P]]
α[[σ]]−−−→� B′1,

B′ ≡ νk, ñ.([[σ]] |B′1), and bv(α)∩ dom([[σ]]) = bv(α)∩ dom(σ) = ∅ for some B′1. Since
k does not occur in α and k occurs only as mac(k, ·) in σ, we have [[ασ]] = α[[σ]].

By Lemma F.6, P
ασ−−→� A′1 and B′1 ≡ [[A′1]] for some A′1 where k occurs only as

mac(k, ·). Furthermore, when ασ = νx.N ′〈x〉, A′1 = E[{M/x}] where E is a closed
plain evaluation context and M is a ground term, and when ασ = N ′(M ′), A′1 is a
plain process with fv(A′1) ⊆ fv(M ′) = ∅, so A′1 is a closed plain process. Therefore,

A ≡ νk.C ≡ νk, ñ.(σ | P)
α−→◦ νk, ñ.(σ | A′1). Let C ′ = pnf(νñ.(σ | A′1)). The process

C ′ is a closed normal process where k occurs only as mac(k, ·). Given the form of A′1,
we can show that νk.[[C ′]] ≡ νk, ñ.([[σ]] | [[A′1]]) ≡ νk, ñ.([[σ]] |B′1) ≡ B′. Let A′ = νk.C ′.

We have A′ R B′ and νk, ñ.(σ |A′1) ≡ νk.C ′ = A′ so A
α−→ A′.

97

3. We first show that, if A→ A′ for some closed A′, then B →∗ B′ and A′ R B′ for some
B′.

We have νk, ñ.(σ | P) → A′, so by Lemma B.8, νk, ñ.(σ | P) →◦ pnf(A′). By
Lemma B.22, P →� P ′ and pnf(A′) ≡ νk, ñ.(σ | P ′) for some P ′. By Lemma F.5,
[[P]]→� [[P ′′]] and P ′ ≡ P ′′ for some closed process P ′′ where k occurs only as mac(k, ·).
Let C ′ = νñ.(σ |P ′′). The process C ′ is a closed normal process where k occurs only as
mac(k, ·). We have νk.C ′ ≡ νk, ñ.(σ |P ′′) ≡ pnf(A′) ≡ A′. Let B′ = νk.[[C ′]]. We have
A′ R B′ and B ≡ νk.[[C]] ≡ νk, ñ.([[σ]] | [[P]])→◦ νk, ñ.([[σ]] | [[P ′′]]) = νk.[[C ′]] = B′, so
B → B′.

Next, we show that, if B → B′ for some closed B′, then A →∗ A′ and A′ R B′ for
some A′.

We have νk, ñ.([[σ]] | [[P]]) → B′, so by Lemma B.8, νk, ñ.([[σ]] | [[P]]) →◦ pnf(B′). By
Lemma B.22, [[P]]→� P ′ and pnf(B′) ≡ νk, ñ.([[σ]] | P ′) for some P ′. By Lemma F.9,
P →� P ′′ and P ′ ≡ [[P ′′]] for some closed process P ′′ where k occurs only as mac(k, ·).
Let C ′ = νñ.(σ | P ′′). The process C ′ is a closed normal process where k occurs only
as mac(k, ·). We have νk.[[C ′]] ≡ νk, ñ.([[σ]] | [[P ′′]]) ≡ νk, ñ.([[σ]] | P ′) ≡ pnf(B′) ≡ B′.
Let A′ = νk.C ′. We have A′ R B′ and A ≡ νk.C ≡ νk, ñ.(σ | P)→◦ νk, ñ.(σ | P ′′) =
νk.C ′ = A′, so A→ A′.

Therefore, R ⊆ ≈l and, by Theorem 4.1, R ⊆ ≈.
Finally, when C is a closed extended process where k occurs only as mac(k, ·), we have

νk.C R νk.[[C]] because pnf(C) is a closed normal process where k occurs only as mac(k, ·)
such that pnf(C) ≡ C. We thus obtain νk.C ≈ νk.[[C]].

Proof of Corollary 6.1 We define the rewrite system R by orienting the equations (1),
(2), (3), (4), (9), and (10) from left to right:

fst((x, y)) → x (19)

snd((x, y)) → y (20)

hd(x :: y) → x (21)

tl(x :: y) → y (22)

nil ++ x → x :: nil (23)

(x :: y) ++ z → x :: (y ++ z) (24)

h(x, y0 :: y1 :: z) → h(f(x, y0), y1 :: z) (25)

h(x, y :: nil) → f(x, y) (26)

In order to prove that R terminates, we order terms M lexicographically, using:

1. the size of M ; then

2. the number of occurrences of the ++ symbol in M ; then

3. the number of occurrences of the :: symbol in M ; then

4. the sum, over all occurrences of ++ in M , of the lengths of the first arguments of
++, computed as follows: length(N1 :: N2) = 1 + length(N2), length(N1 ++ N2) =
1 + length(N1), and length(N) = 0 for all other terms.

98

This ordering is well-founded. Rules (19), (20), (21), (22), and (26) decrease the size.
Rule (23) preserves the size and decreases the number of occurrences of ++. Rule (24)
preserves the size and the numbers of occurrences of ++ and :: but it decreases the sum
above, because the length of the first argument decreases for the occurrence of ++ modified
by rule (24) (length(N) < length(M :: N)) and is unchanged for all other occurrences of ++
in the term. Rule (25) preserves the size and the number of occurrences of ++; it decreases
the number of occurrences of ::. Therefore, if M reduces to M ′ by any of these rules, we
have M ′ < M . This property shows that R terminates.

The rewrite system R is confluent because there are no critical pairs between the rules.
Hence R is convergent. Since R generates the equational theory under consideration, we
conclude by Theorem 6.1.

G Proofs for Section 6.3

In Lemma G.1 and Corollary G.1, we suppose that the signature Σ is equipped with an
equational theory generated by a convergent rewrite system R. Since R terminates, the
left-hand side of its rewrite rules cannot be variables. We suppose that the rewrite rules of
R do not contain names. We denote by θ a substitution and by ρ a variable renaming. We
first study active substitutions from variables to hash computations, that is, terms whose
root symbols range over functions that do not occur on the left-hand side of R.

Lemma G.1 Suppose Σ is equipped with an equational theory generated by a convergent
rewrite system R. Let θ be a closed substitution that ranges over pairwise distinct terms
modulo Σ, each of the form f(k,M) where f does not occur on the left-hand side of the rules
of R. Let σ map the same variables to pairwise distinct names ã. We have νk.θ ≈s νã.σ.

Proof: More explicitly, let θ = {(Mi/xi)i=1..n}, σ = {(ai/xi)i=1..n}, and ã = a1, . . . , an.
We first prove the property

SubstInj: if, moreover, θ ranges over syntactically pairwise distinct terms, then
N1θ = N2θ and k /∈ fn(N1) ∪ fn(N2) implies N1 = N2.

Let N ′1 be obtained from N1 by replacing the occurrences of x1, . . . , xn with pairwise distinct
variables y1, . . . , yn′ , and let (ij)j=1..n′ and ρ = {(xij/yj)j=1..n′} be such that N1 = N ′1ρ. We
have N ′1ρθ = N2θ. Since k does not occur in N2 or N ′1, and k occurs as first argument of
the root function symbol of Mi for i = 1..n and Mij for j = 1..n′, the terms N2 and N ′1
are equal up to some variable renaming. Since each variable yj occurs once in N ′1, we have

N2 = N ′1ρ
′ for some (i′j)j=1..n′ and ρ′ = {(xi′

j/yj)j=1..n′}. We have N ′1ρ
′θ = N ′1ρθ, so for all

j = 1..n′ we have yjρ
′θ = yjρθ, so Mi′j

= Mij . Since M1, . . . ,Mn are pairwise distinct, we

have i′j = ij , so ρ′ = ρ. Hence N1 = N ′1ρ = N ′1ρ
′ = N2.

Let us now prove the lemma itself. We first reduce M1, . . . ,Mn into irreducible form
under R. By Lemma 4.1, it is enough to prove static equivalence on these reduced terms.
Moreover, they are still of the form f(k,M) with the same condition on f . (Indeed, the left-
hand sides of rewrite rules do not contain f , so the rewrite rules apply to strict subterms
of f(k,M); and k is irreducible, so the rewrite rules apply only to the terms M within
f(k,M).)

Let N1, N2 be two terms with fv(N1) ∪ fv(N2) ⊆ {x1, . . . , xn}. We need to show that
(N1 = N2)νk.θ if and only if (N1 = N2)νã.σ. We rename k, ã so that (fn(N1) ∪ fn(N2)) ∩
{k, ã} = ∅. We have (N1 = N2)νk.θ if and only if Σ ` N1θ = N2θ, and (N1 = N2)σ if and

99

only if Σ ` N1σ = N2σ. We show that Σ ` N1θ = N2θ if and only if Σ ` N1 = N2 if and
only if Σ ` N1σ = N2σ.

Since the equational theory is closed under substitution of terms for variables and names,
we have that Σ ` N1 = N2 implies Σ ` N1θ = N2θ, Σ ` N1 = N2 implies Σ ` N1σ = N2σ,
and Σ ` N1σ = N2σ implies Σ ` N1 = N2 (by substituting xi for ai for i = 1..n). Hence, we
just have to show that Σ ` N1θ = N2θ implies Σ ` N1 = N2. We can restrict our attention
to the case in which N1 and N2 are irreducible under R, since the equality of the initial
terms is equivalent to the equality of their reduced forms.

Suppose that Σ ` N1θ = N2θ, with N1, N2,M1, . . . ,Mn irreducible under R. We first
show that N1θ is irreducible under R. In order to derive a contradiction, suppose that N1θ
is reducible by a rewrite rule N3 → N4 of R. Then there exists a term context C and a
substitution σ such that C[N3σ] = N1θ. Let N ′1 be obtained from N1 by renaming the
occurrences of x1, . . . , xn into pairwise distinct variables y1, . . . , yn′ , and let (ij)j=1..n′ and
ρ = {(xij/yj)j=1..n′} such that N1 = N ′1ρ. We have C[N3σ] = N ′1ρθ. The position of the hole
of C cannot be inside Mij , since otherwise Mij would be reducible by N3 → N4. Hence,
the position of the hole of C is inside N ′1, so N3σ = N ′′1 ρθ, C = C ′ρθ, and N ′1 = C ′[N ′′1] for
some subterm N ′′1 of N ′1 and term context C ′.

Let ρ′ be a variable renaming such that N ′3ρ
′ = N3 and all variable occurrences in N ′3

are fresh and pairwise distinct. We have N ′3ρ
′σ = N ′′1 ρθ. Since the function symbols f at

the root of Mij do not occur in N3, all occurrences of Mij are in zρ′σ for some z ∈ fv(N ′3).
Hence, for all z ∈ fv(N ′3), there exists a subterm Nz of N ′′1 such that zρ′σ = Nzρθ and
N ′′1 = N ′3{(Nz/z)z∈fv(N ′

3)
}. Furthermore, when z and z′ are distinct variables of N ′3 such

that zρ′ = z′ρ′, we have zρ′σ = z′ρ′σ, so Nzρθ = Nz′ρθ and, by SubstInj, Nzρ = Nz′ρ.
For each variable y of N3, let us choose one variable zy of N ′3 such that zyρ

′ = y. Let us
define σ′ by yσ′ = Nzyρ. Since for all z, z′ ∈ fv(N ′3), we have zρ′ = z′ρ′ implies Nzρ = Nz′ρ,
we have for all z ∈ fv(N ′3), zρ′σ′ = Nzρ. Let C ′′ = C ′ρ. We have

C ′′[N3σ
′] = C ′′[N ′3ρ

′σ′] = C ′′[N ′3{(Nz/z)z∈fv(N ′
3)
}ρ] = C ′′[N ′′1 ρ] = C ′[N ′′1]ρ = N ′1ρ = N1

Hence N1 would be reducible by N3 → N4, which is a contradiction. Therefore, N1θ is
irreducible. Similarly, N2θ is irreducible. Hence Σ ` N1θ = N2θ implies N1θ = N2θ. By
SubstInj, N1 = N2, so a fortiori Σ ` N1 = N2.

Corollary G.1 Suppose Σ is equipped with an equational theory generated by a convergent
rewrite system R. Let θ be a closed substitution that ranges over terms of the form f(k,M)
where each f does not occur on the left-hand side of the rules of R. Let σ map the same
variables to names ã such that, for all x, y ∈ dom(θ), we have xσ = yσ if and only if
Σ ` xθ = yθ. We have νk.θ ≈s νã.σ.

Proof: We factor θ and σ into ρθ′ and ρσ′ where θ′ and σ′ range over pairwise distinct
terms modulo Σ and ρ is a variable renaming. We apply Lemma G.1 and conclude by
Lemma 4.1.

Our next lemma confirms that, with the equations (11), all terms are pairs.

Lemma G.2 Suppose Σ is equipped with an equational theory that contains the equa-
tions (11). We have νa1, a2.{(a1,a2)/x} ≈s νa.{a/x}.

Proof: Let M and N be two terms such that fv(M) ∪ fv(N) ⊆ {x}. We rename a, a1, a2
so that {a, a1, a2} ∩ (fn(M) ∪ fn(N)) = ∅.

100

If (M = N)νa1, a2.{(a1,a2)/x}, then Σ ` M{(a1,a2)/x} = N{(a1,a2)/x}. Since
the equational theory is closed under substitution of any term for names, we have
Σ ` M{(a1,a2)/x}{fst(a)/a1 ,snd(a)/a2} = N{(a1,a2)/x}{fst(a)/a1 ,snd(a)/a2}, that is, Σ `
M{(fst(a),snd(a))/x} = N{(fst(a),snd(a))/x}, so Σ ` M{a/x} = N{a/x} by the equation
(fst(x), snd(x)) = x. Hence (M = N)νa.{a/x}.

Conversely, suppose that (M = N)νa.{a/x}. Hence Σ ` M{a/x} = N{a/x}. Since
the equational theory is closed under substitution of any term for names, we have Σ `
M{a/x}{(a1,a2)/a} = N{a/x}{(a1,a2)/a}, that is, Σ ` M{(a1,a2)/x} = N{(a1,a2)/x}, so (M =
N)νa1, a2.{(a1,a2)/x}.

Therefore, (M = N)νa1, a2.{(a1,a2)/x} if and only if (M = N)νa.{a/x}, so
νa1, a2.{(a1,a2)/x} ≈s νa.{a/x}.

Lemma G.3 The equational theory defined by equations (3), (4), (11), (12), (13), (14),
and (15) is generated by a convergent rewrite system R.

Proof: We define R by orienting all equations from left to right, as follows:

hd(x :: y) → x (27)

tl(x :: y) → y (28)

nil ++ x → x :: nil (29)

(x :: y) ++ z → x :: (y ++ z) (30)

ne list(x :: y :: z) → ne list(y :: z) (31)

ne list(x :: nil) → true (32)

fst((x, y)) → x (33)

snd((x, y)) → y (34)

(fst(x), snd(x)) → x (35)

h(k, z) → h2(k, (0, 0), z) (36)

h2(k, x, nil) → fst(x) (37)

h2(k, x, y :: z) → h2(k, f(k, (x, y)), z) (38)

To prove that R terminates, we order terms M lexicographically, as follows:

1. by hval(M), where hval is defined by

hval(h2(M1,M2,M3)) = hval(M2) + hval(M3) + length(M3)

hval(h(M1,M2)) = hval(M2) + length(M2) + 1

hval(f(M1, . . . ,Mn)) = hval(M1) + · · ·+ hval(Mn)

for all other functions

hval(M) = 0 when M is a variable or a name

and the length of a term is defined by

length(M :: N) = 1 + length(N)

when the symbol :: has sort Block× BlockList→ BlockList

length(M ++N) = 1 + length(M)

101

length(f(M1, . . . ,Mn)) = max(length(M1), . . . , length(Mn))

where f is a function symbol other than

:: : Block× BlockList→ BlockList

++ : BlockList× Block→ BlockList

such that the sort of the result of f may contain BlockList, that is,
this sort is BlockList, Block2Blocks, Block2Blocks List, or one of the
sorts of pairs used in the syntactic sugar for `(x, t, s) and `〈x, t, s〉.

length(M) = 0 for all other terms M ;

2. then by the size of M ;

3. then by the number of occurrences of the ++ symbol in M ;

4. then by the sum of the lengths of the first arguments of ++ in M .

This ordering is well-founded. By induction on C, we show that, for all term contexts C,

• if length(M ′) ≤ length(M), then length(C[M ′]) ≤ length(C[M]);

• if hval(M ′) ≤ hval(M) and length(M ′) ≤ length(M), then hval(C[M ′]) ≤ hval(C[M]);

• if hval(M ′) < hval(M) and length(M ′) ≤ length(M), then hval(C[M ′]) < hval(C[M]).

We notice that terms of sorts Bool, Block, Block2, and Block3 have length 0. For all rewrite
rules M → M ′ above and all substitutions σ, we show that length(M ′σ) ≤ length(Mσ) by
inspecting each rule. For all rules except (36), (37), and (38) and all substitutions σ, we
have hval(M ′σ) ≤ hval(Mσ) because

hval(Mσ) =
∑

x∈fv(M)

hval(xσ)× (number of occurrences of x in M)

and similarly for M ′, and all variables x occur at least as many times in M as in M ′. We have
hval(h(M1,M2)) = hval(M2) + length(M2) + 1 and hval(h2(M1, (0, 0),M2)) = hval(M2) +
length(M2), so rule (36) decreases hval . We have hval(h2(M1,M2, nil)) = hval(M2), so
rule (37) preserves hval . We have hval(h2(M1,M2,M3 :: M4)) = hval(M2) + hval(M3) +
hval(M4) + length(M4) + 1 and

hval(h2(M1, f(M1, (M2,M3)),M4))

= hval(f(M1, (M2,M3))) + hval(M4) + length(M4)

= hval(M1) + hval(M2) + hval(M3) + hval(M4) + length(M4)

= hval(M2) + hval(M3) + hval(M4) + length(M4)

since hval(M1) = 0 because M1 is a variable or a name since no function returns sort Key.
Hence rule (38) decreases hval . Therefore, we have:

• Rules (27), (28), (31), (32), (33), (34), (35), (37) do not increase hval and decrease
the size.

• Rule (29) does not increase hval , preserves the size and decreases the number of
occurrences of ++.

102

• Rule (30) does not increase hval , preserves the size and the number of occurrences of
++, and decreases the sum because the length of the first argument decreases for the
occurrence of ++ modified by rule (30) (length(N) < length(M :: N)) and is unchanged
for all other occurrences of ++ in the term.

• Rules (36) and (38) decrease hval .

Therefore, if M reduces to M ′ by any of these rules, then M ′ is smaller than M in a
well-founded lexicographic ordering, and thus R terminates.

The only critical pairs between these rules are:

• between rules (33) and (35): fst((fst(x), snd(x))) reduces to fst(x) by both rules, and
(fst((x, y)), snd((x, y))) reduces to (x, y) by (35) or by (33) and (34), so these two
critical pairs are joinable.

• between rules (34) and (35), symmetrically.

Since all critical pairs are joinable, R is confluent, so it is convergent.

Lemma G.4 Suppose that Σ is equipped with the equational theory of Lemma G.3. If
Σ ` f(k, (. . . f(k, ((0, 0),M1)) . . . ,Mn)) = f(k, (. . . f(k, ((0, 0),M ′1)) . . . ,M ′n′)), then n = n′

and Σ `Mi = M ′i for all i = 1..n.

Proof: We proceed by induction on n.

• If n = n′ = 0, the result holds trivially.

• If n = 0 and n′ > 0, then Σ ` (0, 0) = f(k,M) for some term M and, after reducing
under R of Lemma G.3, (0, 0) = f(k,M ′) for some term M ′. This equality does not
hold, so this case is excluded. By symmetry, the case n > 0 and n′ = 0 is also excluded.

• If n > 0 and n′ > 0, then Σ ` f(k, (. . . f(k, ((0, 0),M1)) . . . ,Mn)) =
f(k, (. . . f(k, ((0, 0),M ′1)) . . . ,M ′n′)) implies both Σ ` f(k, (. . . f(k, ((0, 0),M1))
. . . ,Mn−1)) = f(k, (. . . f(k, ((0, 0),M ′1)) . . . ,M ′n′−1)) and Σ ` Mn = M ′n′ . By in-
duction hypothesis, n = n′ and Σ `Mi = M ′i for all i ≤ n− 1.

Proof of Theorem 6.2 In this proof, we use uppercase letters X,Y, Z, S, . . . for terms
substituted for variables named with the corresponding lowercase letters x, y, z, s, . . . dur-
ing execution. We first extend the notations of Section 6.3 with intermediate processes
parametrized by terms, which we will use to define our candidate bisimulation.

A0
hi(Y) = if ne list(Y) = true then c′h〈h(k, Y)〉

A1
hi(Y) = if ne list(Y) = true then c′h〈h

′(k, Y)〉

A1
f (S) = ν`, cs.(!cs(s).cf (x).`〈x, s, s〉 | !Q | cs〈S〉)

A1
fi(X,S) = ν`, cs.(!cs(s).cf (x).`〈x, s, s〉 | !Q | `〈X,S, S〉)

Hence, for hash requests we have A0
h

ch(Y)−−−−→ A0
h | A0

hi and A1
h

ch(Y)−−−−→ A1
h | A1

hi ; and for

compression requests we have A1
f (S)→ cf (X)−−−−→ A1

fi(X,S)→∗ A1
f (S′) |c′f 〈X ′〉 for some S′ and

X ′ with, initially, A1
f = A1

f (((0, 0), nil) :: nil).

Consider traces that interleave inputs cf (Xi) for i ∈ I, outputs νxi.c′f 〈xi〉 for i ∈ Idone ⊆
I, inputs ch(Yi) for i ∈ J , and outputs νhi.c′h〈hi〉 for i ∈ Jdone ⊆ J , for some disjoint index

103

sets I and J , such that variables xj or hj may occur in Xi or Yi only when j < i. We let R
be the smallest relation closed by reductions within A1

f (S) or A1
fi(Xi0 , S), but not in A0

his

or A1
his , such that

νk, x̃.(A0
h |A0

his |A0
f | σ0 |O) R νk, x̃.(A1

h |A1
his |A1

f (S) | σ1 |O)

and νk, x̃.(A0
h |A0

his |A0
f | σ0 |O) R νk, x̃.(A1

h |A1
his |A1

fi(Xi0 , S) | σ1 |O′)

where the following conditions hold:

• J = Jdone] Jout] Jfail] Jtest, I = Idone] Iout = I ′h] I ′alt and, in the second case of
the definition of R, i0 ∈ Iout is the greatest index in J and I.

Intuitively, J collects the indices of all hash requests processed so far, partitioned into
Jtest, for requests before the test ne list(Yi) = true; Jfail, for requests after failing the
test; Jout, for requests after passing the test but before the output; and Jdone, for
requests after passing the test and performing the output. And I collects the indices
of all compression requests processed so far, partitioned into Iout, for requests before
the output and Idone, for requests after the output; and also into I ′h, for requests that
must be made consistent with the hash function, and I ′alt, for unrelated requests; i0 is
the index of the current compression request.

• A0
his =

∏
i∈Jtest

A0
hi(Yi) and A1

his =
∏
i∈Jtest

A1
hi(Yi).

These processes represent requests before the test ne list(Yi) = true.

• x̃ = {xi | i ∈ Iout} ∪ {hi | i ∈ Jout} are pairwise distinct variables, and the name k
and the variables x̃ do not occur in any (Xi)i∈I or (Yi)i∈J .

• ne list(Yi) = true for i ∈ Jdone ∪ Jout, and ne list(Yi) 6= true for i ∈ Jfail.

• O =
∏
i∈Iout

c′f 〈xi〉 |
∏
i∈Jout

c′h〈hi〉 and

O′ =
∏
i∈Iout\{i0} c

′
f 〈xi〉 |

∏
i∈Jout

c′h〈hi〉.
These parallel compositions represent pending request outputs, and each output transi-
tion consists of removing one message from O and one restriction on the corresponding
variable in x̃.

• S is (any list representation of) a finite map from pairs of blocks to lists of blocks that
maps (0, 0) to nil and (h′(k,M), fc(k,M)) to M for some lists M = M1 :: . . . :: Mn :: nil
with n > 0. The range of S is prefix-closed, that is, if S maps a pair to M ++M ′, then
it also maps a pair to M .

The variables xi and hi do not occur in S.

For every i ∈ I, S maps fst(Xiσ
1) to some list M if and only if i ∈ I ′h; then S also

maps xiσ
1 to M ++ snd(Xiσ

1), except when i = i0 in the second case in the definition
of R.

• σ0 = σ0
h | σ0

f | σ0
fo and σ1 = σ1

h | σ1
f | σ1

fo , where

σ0
h = {(h(k,Yi)/hi)i∈Jdone∪Jout} and σ1

h = {(h′(k,Yi)/hi)i∈Jdone∪Jout},

σ0
f = {(f(k,Xi)/xi

)i∈I′h} and σ1
f = {((h′(k,Z′

i),fc(k,Z
′
i))/xi

)i∈I′h} where S maps fst(Xiσ
1) to

Zi and Z ′i is Zi ++ snd(Xi),

σ0
fo = {(f(k,Xi)/xi

)i∈I′alt
} and σ1

fo = {(f′(k,Xi)/xi
)i∈I′alt

}.

104

With σ1 defined in the second case of R, for instance, we have

A1
fi(Xi0σ

1, S)→∗ A1
f ((xi0σ

1,M ++ snd(Xi0σ
1)) :: S) | c′f 〈xi0σ

1〉

when S maps fst(Xi0σ
1) to M , and A1

fi(Xi0σ
1, S) →∗ A1

f (S) | c′f 〈xi0σ1〉 otherwise. Hence,
the second case of the definition of R reduces to the first one. However, the first case
is useful for the initial case, and the second case is useful after inputs cf (Xi). Taking
S = ((0, 0), nil) :: nil and I = J = ∅, the first case yields νk.(A0

h | A0
f) R νk.(A1

h | A1
f),

so R includes our target observational equivalence. We show that R ∪ R−1 is a labeled
bisimulation.

1. We show that, if A R B, then A ≈s B. To this end, we prove the two properties below
by induction on the number of variables in the domain of σ0 and σ1.

P1. νk.σ0 ≈s νk.σ1 and

P2. if M = M1 :: . . . :: Mn :: nil for some n ≥ 1 contains neither k nor the variable
with greatest index in dom(σ0) = dom(σ1), then for all i ∈ I we have Σ `
fst(xiσ

0) = h(k,Mσ0)⇐⇒ Σ ` fst(xiσ
1) = h′(k,Mσ1).

For all i ∈ I, xiσ
0 = f(k,Xiσ

0) and for all i ∈ Jdone ∪ Jout, hiσ
0 = fst(f(k,M)) for

some term M . Hence, by Corollary G.1,

νk.σ0 ≈s νã.{(xiσ0/xi
)i∈I , (

fst(hiσ0)/hi
)i∈Jdone∪Jout

}

where the following conditions hold:

• xiσ0 for i ∈ I and hiσ0 for i ∈ Jdone ∪ Jout are names in ã.

• For all i, j ∈ I, xiσ0 = xjσ0 if and only if Σ ` f(k,Xiσ
0) = f(k,Xjσ

0), that is,
Σ ` Xiσ

0 = Xjσ
0.

• For all i, j ∈ Jdone ∪ Jout, hiσ0 = hjσ0 if and only if Σ ` f(k, (. . . f(k,
((0, 0),M1)) . . . ,Mn)) = f(k, (. . . f(k, ((0, 0),M ′1)) . . . ,M ′n′)) where Yiσ

0 = M1 ::
. . . :: Mn :: nil and Yjσ

0 = M ′1 :: . . . :: M ′n :: nil, that is, Σ ` Yiσ0 = Yjσ
0, by

Lemma G.4.

• For all i ∈ I and j ∈ Jdone ∪ Jout, xiσ0 = hjσ0 if and only if Σ ` f(k,Xiσ
0) =

f(k, (. . . f(k, ((0, 0),M1)) . . . ,Mn)) where Yjσ
0 = M1 :: . . . :: Mn :: nil. In this

case, we have Σ ` fst(xiσ
0) = fst(f(k,Xiσ

0)) = fst(f(k, (. . . f(k, ((0, 0),M1)) . . . ,
Mn))) = h(k, Yjσ

0). Conversely, if Σ ` fst(xiσ
0) = h(k, Yjσ

0), then Σ `
fst(f(k,Xiσ

0)) = fst(f(k, (. . . f(k, ((0, 0),M1)) . . . ,Mn))). Since these terms do
not reduce at the root under the rewrite system R of Lemma G.3, we have
Σ ` f(k,Xiσ

0) = f(k, (. . . f(k, ((0, 0),M1)) . . . ,Mn)). Therefore, xiσ0 = hjσ0 if
and only if Σ ` fst(xiσ

0) = h(k, Yjσ
0).

By Lemma G.2, we can replace the names xiσ0 and hiσ0 with pairs (xiσ1, xiσ2) and
(hiσ1, hiσ2) respectively. Thus

νk.σ0 ≈s νã′.{((xiσ1,xiσ2)/xi
)i∈I , (

hiσ1/hi
)i∈Jdone∪Jout

}

where the following conditions hold:

• xiσ1, xiσ2 for i ∈ I and hiσ1 for i ∈ Jdone ∪ Jout are names in ã′.

• For all i, j ∈ I, xiσ1 6= xjσ2.

105

• For all i ∈ I and j ∈ Jdone ∪ Jout, xiσ2 6= hjσ1.

• For all i, j ∈ I, xiσ1 = xjσ1 ⇐⇒ xiσ2 = xjσ2 ⇐⇒ Σ ` Xiσ
0 = Xjσ

0.

• For all i, j ∈ Jdone ∪ Jout, hiσ1 = hjσ1 ⇐⇒ Σ ` Yiσ0 = Yjσ
0.

• For all i ∈ I and j ∈ Jdone ∪ Jout, xiσ1 = hjσ1 ⇐⇒ Σ ` fst(xiσ
0) = h(k, Yjσ

0).

For all i ∈ I ′alt, xiσ
1 = f ′(k,Xiσ

1), for all i ∈ I ′h, xiσ
1 = (h′(k, Z ′iσ

1), fc(k, Z
′
iσ

1)), and
for all i ∈ Jdone ∪ Jout, hiσ

1 = h′(k, Yiσ
1). Hence, by Corollary G.1,

νk.σ1 ≈s νã.{(xiσ3/xi
)i∈I′alt

, ((xiσ4,xiσ5)/xi
)i∈I′h , (

hiσ4/hi
)i∈Jdone∪Jout

}

where the following conditions hold:

• xiσ3 for i ∈ I ′alt, xiσ4 and xiσ5 for i ∈ I ′h, and hiσ4 for i ∈ Jdone ∪Jout are names
in ã.

• For all i, j ∈ I ′h, xiσ4 6= xjσ5.

• For all i ∈ I ′alt and j ∈ I ′h, xiσ3 6= xjσ4 and xiσ3 6= xjσ5.

• For all i ∈ I ′alt and j ∈ Jdone ∪ Jout, xiσ3 6= hjσ4.

• For all i ∈ I ′h and j ∈ Jdone ∪ Jout, xiσ5 6= hjσ4.

• For all i, j ∈ I ′alt, xiσ3 = xjσ3 ⇐⇒ Σ ` f ′(k,Xiσ
1) = f ′(k,Xjσ

1) ⇐⇒ Σ `
Xiσ

1 = Xjσ
1.

• For all i, j ∈ Jdone ∪ Jout, hiσ4 = hjσ4 ⇐⇒ Σ ` Yiσ1 = Yjσ
1.

• For all i ∈ I ′h and j ∈ Jdone ∪ Jout, xiσ4 = hjσ4 ⇐⇒ Σ ` fst(xiσ
1) = h′(k, Yjσ

1).

• For all i, j ∈ I ′h, xiσ4 = xjσ4 ⇐⇒ xiσ5 = xjσ5 ⇐⇒ Σ ` Z ′iσ1 = Z ′jσ
1. In this

case, by definition of Z ′i, Σ ` Ziσ1 = Zjσ
1 and Σ ` snd(Xiσ

1) = snd(Xjσ
1).

Since S maps fst(Xiσ
1) to Zi and fst(Xjσ

1) to Zj , we have Zi = Ziσ
1 and Zj =

Zjσ
1, so either Σ ` Zi = Zj = nil and Σ ` fst(Xiσ

1) = (0, 0) = fst(Xjσ
1) or Σ `

Zi = Zj 6= nil and Σ ` fst(Xiσ
1) = (h′(k, Zi), fc(k, Zi)) = (h′(k, Zj), fc(k, Zj)) =

fst(Xjσ
1). So in both cases, Σ ` Xiσ

1 = Xjσ
1. Conversely, if Σ ` Xiσ

1 = Xjσ
1,

then Σ ` Z ′iσ1 = Z ′jσ
1, since Z ′i is computed from Xi. Therefore, for all i, j ∈ I ′h,

xiσ4 = xjσ4 ⇐⇒ xiσ5 = xjσ5 ⇐⇒ Σ ` Xiσ
1 = Xjσ

1.

By Lemma G.2, we can replace the names xiσ3 for i ∈ I ′alt with pairs (xiσ4, xiσ5).
Thus νk.σ1 ≈s νã′.{((xiσ4,xiσ5)/xi)i∈I , (

hiσ4/hi)i∈Jdone∪Jout} where the following condi-
tions hold:

• xiσ4 and xiσ5 for i ∈ I, and hiσ4 for i ∈ Jdone ∪ Jout are names in ã′.

• For all i, j ∈ I, xiσ4 6= xjσ5.

• For all i ∈ I and j ∈ Jdone ∪ Jout, xiσ5 6= hjσ4.

• For all i, j ∈ I, xiσ4 = xjσ4 ⇐⇒ xiσ5 = xjσ5 ⇐⇒ Σ ` Xiσ
1 = Xjσ

1. Indeed,
when i ∈ I ′h and j ∈ I ′alt, we have xiσ4 6= xjσ4, xiσ5 6= xjσ5, and Σ ` Xiσ

1 6=
Xjσ

1 since fst(Xiσ
1) and fst(Xjσ

1) are not mapped to the same value by S.
When i and j are both in I ′h or both in I ′alt, the result comes from the equivalences
shown above.

• For all i, j ∈ Jdone ∪ Jout, hiσ4 = hjσ4 ⇐⇒ Σ ` Yiσ1 = Yjσ
1.

• For all i ∈ I and j ∈ Jdone ∪ Jout, xiσ4 = hjσ4 ⇐⇒ Σ ` fst(xiσ
1) = h′(k, Yjσ

1).
Indeed, if i ∈ I ′alt, we have xiσ4 6= hjσ4 and Σ ` fst(xiσ

1) 6= h′(k, Yjσ
1). When

i ∈ I ′h, the result comes from an equivalence shown above.

106

Since Xi and Yi contain variables xj and hj only with j < i, the variable of dom(σ0)
with the greatest index does not occur in Xi and Yi, so by induction hypothesis, we
have Σ ` Xiσ

0 = Xjσ
0 ⇐⇒ Σ ` Xiσ

1 = Xjσ
1 and Σ ` Yiσ0 = Yjσ

0 ⇐⇒ Σ ` Yiσ1 =
Yjσ

1, so it suffices to show property P2 to obtain νk.σ0 ≈s νk.σ1.

Let us now show property P2, by induction on n. Let M = M1 :: . . . :: Mn :: nil be
a term that does not contain k nor the variable with greatest index in dom(σ0) =
dom(σ1), n ≥ 1, and i ∈ I.

Suppose that Σ ` fst(xiσ
0) = h(k,Mσ0). We have

fst(xiσ
0) = fst(f(k,Xiσ

0))

h(k,Mσ0) = fst(f(k, (. . . f(k, ((0, 0),M1)) . . . ,Mn)))σ0

so
Σ ` Xiσ

0 = (. . . f(k, ((0, 0),M1)) . . . ,Mn)σ0

If n = 1, we have Σ ` Xiσ
0 = ((0, 0),Mnσ

0). Since Xi and Mn do not contain the
variable of dom(σ0) with the greatest index, we have Σ ` Xiσ

1 = ((0, 0),Mnσ
1) by

induction hypothesis, so S maps fst(Xiσ
1) = (0, 0) to Zi = nil, hence Z ′i = Zi ++

snd(Xi), so Σ ` Z ′iσ
1 = nil ++ Mnσ

1 = Mnσ
1 :: nil = Mσ1 and Σ ` fst(xiσ

1) =
h′(k, Z ′iσ

1) = h′(k,Mσ1).

If n > 1, let M ′ = M1 :: . . . :: Mn−1 :: nil and H = f(k, (. . . f(k, ((0, 0),M1))
. . . ,Mn−1)). We have Σ ` Xiσ

0 = (H,Mn)σ0. Since k does not occur in Xi and Xiσ
0

is of the form (Hσ0,Mnσ
0) = (f(k, ·), ·), there exists j0 ∈ I such that Σ ` Hσ0 = xj0σ

0

and xj0 occurs in Xi, so j0 < i. Thus Σ ` fst(xj0σ
0) = fst(Hσ0) = h(k,M ′σ0), so by

induction hypothesis,
Σ ` fst(xj0σ

1) = h′(k,M ′σ1)

By construction of σ1, we have

Σ ` snd(xj0σ
1) = fc(k,M

′σ1)

Moreover, we have Σ ` Xiσ
0 = (xj0 ,Mn)σ0 and Xi, xj0 , and Mn do not contain

the variable of dom(σ0) with the greatest index, so we have Σ ` Xiσ
1 = (xj0 ,Mn)σ1

by induction hypothesis. Hence Σ ` fst(Xiσ
1) = xj0σ

1 = (h′(k,M ′σ1), fc(k,M
′σ1)).

Hence S maps fst(Xiσ
1) to Zi such that Σ ` Zi = M ′σ1, so Σ ` Z ′iσ

1 = Zi ++
snd(Xi)σ

1 = Mσ1, so Σ ` fst(xiσ
1) = h′(k, Z ′iσ

1) = h′(k,Mσ1).

Conversely, suppose that Σ ` fst(xiσ
1) = h′(k,Mσ1). Thus i ∈ I ′h and Σ ` Z ′iσ1 =

Mσ1. So S maps fst(Xiσ
1) to some Zi.

If Zi = nil, then Σ ` fst(Xiσ
1) = (0, 0). Since Xi does not contain the variable

of dom(σ0) with the greatest index, we have Σ ` fst(Xiσ
0) = (0, 0) by induction

hypothesis. Moreover Z ′i = Zi ++ snd(Xi), so Σ ` Mσ1 = Z ′iσ
1 = snd(Xiσ

1) :: nil.
Since M and Xi do not contain the variable of dom(σ0) with the greatest index, we
have Σ `Mσ0 = snd(Xiσ

0) :: nil by induction hypothesis. We obtain Σ ` h(k,Mσ0) =
fst(f(k, ((0, 0), snd(Xiσ

0))) = fst(f(k,Xiσ
0)) = fst(xiσ

0).

If Zi 6= nil, then Σ ` fst(Xiσ
1) = (h′(k, Zi), fc(k, Zi)) and Z ′i = Zi ++ snd(Xi). Since

Σ ` Z ′iσ1 = Mσ1, we have

Σ ` Zi = (M1 :: . . . :: Mn−1 :: nil)σ1

Σ ` snd(Xiσ
1) = Mnσ

1

107

Since k does not occur in Xi, there exists j0 ∈ I such that Σ ` xj0σ
1 =

(h′(k, Zi), fc(k, Zi)) = fst(Xiσ
1). Hence

Σ ` fst(xj0σ
1) = h′(k, Zi) = h′(k, (M1 :: . . . :: Mn−1 :: nil)σ1)

By induction hypothesis,

Σ ` fst(xj0σ
0) = h(k, (M1 :: . . . :: Mn−1 :: nil)σ0)

= fst(f(k, (. . . f(k, ((0, 0),M1)) . . . ,Mn−1))σ0)

Since xj0σ
0 is of the form f(k, ·), we obtain

Σ ` xj0σ0 = f(k, (. . . f(k, ((0, 0),M1)) . . . ,Mn−1))σ0

We have Σ ` fst(Xiσ
1) = xj0σ

1 and Σ ` snd(Xiσ
1) = Mnσ

1, so Σ ` Xiσ
1 =

(xj0σ
1,Mnσ

1) Since Xi, xj0 , and Mn do not contain the variable of dom(σ0) with
the greatest index, we have Σ ` Xiσ

0 = (xj0σ
0,Mnσ

0) by induction hypothesis. So
Σ ` fst(xiσ

0) = fst(f(k,Xiσ
0)) = fst(f(k, (xj0σ

0,Mnσ
0))) = h(k,Mσ0).

2. We first show that, if A R B, A
α−→ A′, A′ is closed, and fv(α) ⊆ dom(A), then

B →∗ α−→→∗ B′ and A′ R B′ for some B′. The only possible labeled transitions in A
are as follows:

• A0
h performs an input with label α = ch(Yi), with fv(Yi) ⊆ dom(σ0) \ {x̃},

creating a process A0
hi(Yi). The process A1

h can perform the same input, creating
a process A1

hi(Yi). The resulting extended processes are still in R, by adding to
Jtest an index i greater than those already in I and J .

• A0
f performs an input with label α = cf (Xi), with fv(Xi) ⊆ dom(σ0) \ {x̃}, cre-

ating a process c′f 〈f(k,Xi)〉 ≡ νxi.(c′f 〈xi〉 | {f(k,Xi)/xi}). A reduced form of A1
f (S)

or A1
fi(Xi0 , S) can perform the same input (possibly after internal reductions).

We keep performing internal reductions after the input, until the output on c′f is
enabled. Hence a new process

c′f 〈f
′(k,Xi)〉 ≡ νxi.(c′f 〈xi〉 | {

f′(k,Xi)/xi})

or
c′f 〈(h

′(k, Z ′i), fc(k, Z
′
i))〉 ≡ νxi.(c′f 〈xi〉 | {

(h′(k,Z′
i),fc(k,Z

′
i))/xi
})

appears, depending on whether S maps fst(Xi) to some Zi or not, and for Z ′i
given in the definition of R. The resulting extended processes are still in R, by
adding to Iout an index greater than those already in I and J .

• O performs an output with label α = νhi.c′h〈hi〉. (We arrange that the bound
variable of α has the same name as the variable used internally by the output
that we perform.) In this case, hi is removed from x̃ and c′h〈hi〉 is removed from
O. The process O can perform the same output on the right-hand side, hence we
remain in R by moving the index i from Jout to Jdone.

• O performs an output with label α = νxi.c′f 〈xi〉. In this case, xi is removed from

x̃ and c′f 〈xi〉 is removed from O. If we are in the second case of the definition

of R with i = i0, we first reduce A1
fi(Xi0 , S) until we arrive at the first case of

the definition of R. The process O can then perform the same output on the
right-hand side, hence we remain in R by moving the index i from Iout to Idone.

108

A detailed proof that these are the only possible labeled transitions of A uses the
partial normal forms introduced in Appendix B and the decomposition lemmas proved
in Appendix B.4. This comment also applies to other case distinctions below in the
proof of Theorem 6.2.

Conversely, we show that, if A R B, B
α−→ B′, B′ is closed, and fv(α) ⊆ dom(B), then

A →∗ α−→→∗ A′ and A′ R B′ for some A′. The only possible labeled transitions in B
are as follows:

• A1
h performs an input with label α = ch(Yi), with fv(Yi) ⊆ dom(σ1) \ {x̃}. The

process A1
h can perform the same input, and we remain in R by adding to Jtest

an index i greater than those already in I and J .

• (A reduced form of) A1
f (S) performs an input with label α = cf (Xi), with

fv(Yi) ⊆ dom(σ1) \ {x̃}. After the input, A1
f (S) is transformed into the pro-

cess A1
fi(Xi, S). The process A0

f can perform the same input. A new process

c′f 〈f(k,Xi)〉 ≡ νxi.(c′f 〈xi〉 | {f(k,Xi)/xi
}) appears on left-hand side. We remain in

R by adding to Iout an index i0 greater than those already in I ∪ J . (On the
right-hand side, the variable xi0 is defined but not used.)

When a reduced form of A1
fi(Xi0 , S) performs an input with label α = cf (Xi),

A1
fi(Xi0 , S) has first been reduced so that the configuration is in the first case of

the definition of R, with the considered input in A1
f (S), so this case is already

treated above.

• O performs an output with label α = νhi.c′h〈hi〉. The process O performs the
same output on the left-hand side and we remain in R by moving the index i
from Jout to Jdone.

• O performs an output with label α = νxi.c′f 〈xi〉. The process O performs the
same output on the left-hand side, and we remain in R, by moving the index i
from Iout to Idone.

When a reduced form ofA1
fi(Xi0 , S) performs an output with label α = νxi.c′f 〈xi〉,

A1
fi(Xi0 , S) has first been reduced so that the configuration is in the first case

of the definition of R, with the considered output included in O, so this case is
already treated above.

3. We first show that, if A R B, A → A′, and A′ is closed, then B →∗ B′ and A′ R B′

for some B′.

The only processes that can be reduced in A are processes A0
hi(Yi) inside A0

his . If
ne list(Yi) = true, then A0

hi(Yi) reduces to

c′h〈h(k, Yi)〉 ≡ νhi.(c′h〈hi〉 | {
h(k,Yi)/hi})

and similarly A1
hi(Yi) reduces to

c′h〈h
′(k, Yi)〉 ≡ νhi.(c′h〈hi〉 | {

h′(k,Yi)/hi
})

and we remain in R by moving i from Jtest to Jout. (The value of ne list(Yi) remains
unchanged when we instantiate Yi with σ0 or σ1 because the image of these substi-
tutions does not contain lists.) If ne list(Yi) 6= true, then A0

hi(Yi) reduces to 0 and
similarly A1

hi(Yi) reduces to 0, and we remain in R by moving i from Jtest to Jfail.

109

Conversely, we show that, if A R B, B → B′, and B′ is closed, then A →∗ A′ and
A′ R B′ for some A′.

The only reductions in B are due to processes A1
hi(Yi) within A1

his , and A1
f (S) or

A1
fi(Xi0 , S). The first case can be handled similarly to the case in which A0

hi(Yi)
reduces. In the second case, we remain in R with A′ = A.

Therefore, R ⊆ ≈l. By Theorem 4.1, R ⊆ ≈. So νk.(A0
h |A0

f) ≈ νk.(A1
h |A1

f).

110

