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Abstract

We consider the problem of estimating the random element s of a finite
dimensional vector space S from the continuous data corrupted by noise
with unknown variance σ2

w. The mean E(s) (the fixed effect) of s belongs to
a known vector subspace F of S, and the likelihood of the centred component
s − E(s) (the random effect) belongs to an unknown supplementary space
E of F relative to S and has the PDF proportional to exp{−q(s)/2σ2

s},
where σ2

s is some unknown positive parameter. We introduce the notion of
bases separating the fixed and random effects and define comparison criteria
between two separating bases using the partition functions and the maximum
likelihood method. We illustrate our results for climate change detection
using the set S of cubic splines. We show the influence of the choice of
separating basis on the estimation of the linear tendency of the temperature
and the signal-to-noise ratio σ2

w/σ
2
s .
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1. Motivation

We consider the problem of climate change detection. The years taken
into account and the annual mean temperature are denoted by t1 < . . . < tn+1

and y1, . . . , yn+1 respectively. In our work we consider the additive model

y(i) = s(ti) + wi, i = 1, . . . , n+ 1, (1)

where (w1, . . . , wn+1) is a Gaussian white noise with the variance σ2
w, and

s(ti) is the true temperature at the year ti. We model the behaviour of the
true temperature s by a random element of the set S3(t1, . . . , tn+1) of cubic
splines having the knots t1 < . . . < tn+1.

The fixed effect E(s) is a straight line. It belongs to the null space Q−1(0)
of the quadratic form

Q(s) =

∫ tn+1

t1

|s′′(t)|2dt. (2)

Here s′, s′′ are respectively the first and the second derivative of the map s.
The random effect s−E(s) belongs to an unknown supplementary space

E of Q−1(0) relative to S3(t1, . . . , tn+1) and has the probability distribution

exp{−Q(s)/2σ2
s}1E(s)ds/Zσs . (3)

Here σ2
s is a positive parameter which measures the dispersion of the random

effect around the space Q−1(0), and may depend on the space E, and Zσs is
the partition function. We assume that the noise (wi) is independent of s,
but its variance σ2

w may depend on the space E.
A popular estimator of the temperature s is given by the following pe-

nalized estimation technique [15]

ŝ = arg min{
n+1∑
i=1

|y(i)− s(ti)|2 + λQ(s) : s ∈ H2}, (4)

where H2 is the infinite dimensional space of all functions with square in-
tegrable second derivative, and λ > 0 denotes the smoothing parameter.
Generalized cross-validation techniques are among the automatic methods
used to estimate the smoothing parameter see, e.g., [2], [9], [15]. The esti-
mator ŝ (4), for λ fixed, belongs to the set S3(t1, . . . , tn+1) of cubic splines
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and does not depend on the parametrization of S3(t1, . . . , tn+1). See [4], [5]
for a similar study.

The concept of fixed and random effects has been applied to the anal-
ysis of longitudinal data. See, e.g., [8], [12], [14], [16]. In [11] the authors
have modelled the fixed effects nonparametrically using truncated series ex-
pansions with B-spline basis. They have selected the fixed effects using lasso
methodology, while the random effects are estimated using the Newton Raph-
son algorithm.

In our work the sum of the fixed and the random effects is a random
cubic spline. The fixed effects are straight lines. The random effects are the
supplementary spaces of the space of straight lines relative to S3(t1, . . . , tn+1).
We introduce an original notion of basis separating the space of straight
lines (fixed effects) from its supplementary spaces (random effects) relative
to S3(t1, . . . , tn+1). We interpret the smoothing parameter as the signal-to-
noise ratio σ2

w/σ
2
s . We show that the estimator of the smoothing parameter

is a function of such a basis. We also show that there exists an infinite
number of separating bases and we propose comparison criteria between two
separating bases using the partition functions and the maximum-likelihood
method.

The plan of our work is the following. In Section 2, we introduce the
notion of separating bases in a general setting , and show that they determine
the shape of the fixed effect and the parametrization of the random effect,
but are not enough to determine the shape of the random effect and the
parametrization of the fixed effect. In Section 3 we return to the climate
change detection. We show that the random effect is parametrized by s′′(t1),
. . . , s′′(tn+1), and the fixed effect is parametrized by two independent linear
forms of the vectors

(s(t1), . . . , s(tn+1)), (s
′(t1), . . . , s

′(tn+1)).

We construct four bases separating the fixed and the random effects, and
calculate in each basis the maximum likelihood estimators of the fixed and the
random effects and the dispersion parameters σ2

s and σ2
w. Finally we consider

the separating basis as a parameter and we estimate it by maximizing the
likelihood.
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2. Separating Basis in a general setting

In this section the set S is any finite dimensional vector space having the
dimension p, and s a random element of S. Its probability distribution is
defined by the fixed space F having the dimension k < p and the measurable
map q : S → R such that for all ν > 0 and for all supplementary space E of
F relative to S, the partition function

Zν :=

∫
E

exp{−q(s)/2ν2}ds < +∞.

Here ds denotes the Lebesgue measure on E. The random vector s has the
mean (fixed effect) E(s) ∈ F . We say that F is the shape of the fixed effect.
The random effect s − E(s) belongs to some supplementary space E of F
relative to S. Knowing the space E (the shape of the random effect), s−E(s)
has the probability distribution

exp{−q(s)/2σ2
s}1E(s)ds/Zσs

Here σ2
s is a positive parameter which measures the dispersion of the random

effect.
Now we need to parametrize the set S in order to define properly an

element s ∈ S. A parametrization of S is a one-to-one linear map

Θ : s ∈ S → θ ∈ Rp.

Defining a parametrization Θ is equivalent to the existence of the basis B :=
(b1, . . . , bp) of S such that for all s ∈ S

s =

p∑
i=1

θibi := Bθ.

Definition 2.1. We say that a basis B = (b1, . . . , bp) separates (θ1, . . . , θk)
from (θk+1, . . . , θp) (or simply B is a separating basis) if (b1, . . . , bk) is a basis
of the set of the fixed effect F .

We will show in assertion 2 of Proposition 2.3 below, for all separating
bases B = (b1, . . . , bp) that the component

∑p
j=k+1 θjbj has the PDF

exp{−q(
p∑

j=k+1

θjbj)/2σ
2
s}dθk+1 . . . dθp/Zσs(bk+1, . . . , bp). (5)
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The notation Zσs(bk+1, . . . , bp) means that the partition function depends

on the family bk+1, . . . , bp. However the component
∑k

j=1 θjbj is only a

candidate for the fixed effect , i.e.,
∑k

j=1 θjbj is a candidate for the mean of
s.

The following proposition shows that there is an infinite number of sep-
arating bases, and the choice of a fixed effect depends on the practitioner’s
aim.

Proposition 2.2. There is an infinite number of separating bases.

Proof. Starting from any basis (b1, . . . , bk) of F and using the incomplete
basis theorem we can construct an infinite number of bases B = (b1, . . . , bp)
of S, which achieves the proof.

Two parametrizations Θ1 and Θ2 are related by the passage matrix P:

θ
(2)
i =

p∑
j=1

Pijθ
(1)
j , i = 1, . . . , p, (6)

or equivalently their respective bases B(1) and B(2) are related by

b
(2)
i =

p∑
j=1

P−1ji b
(1)
j .

Here P−1 denotes the inverse of the passage matrix P. Now we ask the
following question. What is the link between two separating bases?

Proposition 2.3. Let B(1) = (b
(1)
1 , . . . , b(1)p ) and B(2) = (b

(2)
1 , . . . , b(2)p ) be two

separating bases. Let Θ(1) and Θ(2) be the parametrizations of the element s
in B(1) and B(2) respectively.

1) The passage matrix P, given by Θ(2) = PΘ(1), has the following form(
P(1 : k, 1 : k) P(1 : k, k + 1 : p)

0(k + 1 : p, 1 : k) P(k + 1 : p, k + 1 : p)

)
,

where for 1 ≤ n1 < n2 ≤ p, P(n1 : n2, n3 : n4) is the sub-matrix (Pij : n1 ≤
i ≤ n2, n3 ≤ j ≤ n4) of P and 0(k + 1 : p, 1 : k) denotes the sub-matrix of
the null matrix 0(1 : p, 1 : p).

2) We have (θ
(2)
k+1, . . . , θ

(2)
p )> = P(k + 1 : p, k + 1 : p)(θ

(1)
k+1, . . . , θ

(1)
p )>.
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3) The components θ
(2)
1 , . . . , θ

(2)
k may depend on the all parameters (θ

(1)
1 , . . . , θ

(1)
p ).

4) The elements (b
(2)
1 , . . . , b

(2)
k ) depend only on (b

(1)
1 , . . . , b

(1)
k ). But the

elements (b
(2)
k+1, . . . , b

(2)
p ) may depend on the whole basis (b

(1)
1 , . . . , b(1)p ).

Proof. 1) If θ
(2)
i = 0, i = k + 1, . . . , p, then from

p∑
i=1

θ
(2)
i b

(2)
i =

p∑
i=1

θ
(1)
i b

(1)
i ,

we have

k∑
i=1

{θ(2)i b
(2)
i − θ

(1)
i b

(1)
i } =

p∑
i=k+1

θ
(1)
i b

(1)
i .

The left-hand side term belongs to F , and the right-hand side term belongs
to the supplementary space span(b

(1)
k+1, . . . , b

(1)
p ) of F . It follows that θ

(1)
i = 0

for all i = k + 1, . . . , p, which achieves the proof of 1). The proof of 2), 3)
and 4) is a consequence of 1).

The vector s has in two separating bases B(1), B(2) the following decom-
positions

s =
k∑
i=1

θ
(1)
i b

(1)
i +

p∑
i=k+1

θ
(1)
i b

(1)
i

=
k∑
i=1

θ
(2)
i b

(2)
i +

p∑
i=k+1

θ
(2)
i b

(2)
i .

1) If the vector θ
(2)
k+1, . . . , θ

(2)
p has the PDF

exp{−q(
p∑

j=k+1

θ
(2)
j b

(2)
j )/2σ2

s}dθ
(2)
k+1 . . . dθ

(2)
p /Zσs(b

(2)
k+1, . . . , b

(2)
p ), (7)

then assertion 2 of Proposition 2.3 and the formula of change of variables tell
us that the vector θ

(1)
k+1, . . . , θ

(1)
p has the PDF

exp{−q(
p∑

j=k+1

θ
(1)
i b

(1)
j )/2σ2

s}dθ
(1)
k+1 . . . dθ

(1)
p /Zσs(b

(1)
k+1, . . . , b

(1)
p )
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where

Zσs(b
(1)
k+1, . . . , b

(1)
p ) = Zσs(b

(2)
k+1, . . . , b

(2)
p )/|det{P(k + 1 : p, k + 1 : p)}|.

Hence, a random parameter in the basis B(2) remains random in the basis
B(1). 2) If θ

(2)
1 , . . . , θ

(2)
k are fixed and θ

(2)
k+1, . . . , θ

(2)
p has the PDF (7), then

for i = 1, . . . , k, the parameter

θ
(1)
i =

p∑
j=1

P−1ij θ
(2)
j

may depend on the random vector θ
(2)
k+1, . . . , θ

(2)
p . The parameters θ

(1)
1 , . . . ,

θ
(1)
k are corrupted by θ

(2)
k+1, . . . , θ

(2)
p . Hence, a fixed effect in a basis B(2) is in

general no longer fixed in another basis B(1).

Definition 2.4. We say that two separating bases B(1), B(2) are equivalent
if the components

∑k
i=1 θ

(1)
i b

(1)
i ,
∑k

i=1 θ
(2)
i b

(2)
i are the fixed effect of s respec-

tively in the basis B(1) and B(2) and if the passage matrix (see Proposition2.3
assertion 2) satisfies |det{P(k + 1 : p, k + 1 : p)}| = 1.

Remark 2.5. Two separating bases B(1), B(2) are equivalent if and only if
the passage matrix (6) has the following form(

P(1 : k, 1 : k) 0(1 : k, k + 1 : p)
0(k + 1 : p, 1 : k) P(k + 1 : p, k + 1 : p)

)
,

with |det{P(k + 1 : p, k + 1 : p)}| = 1.

Note that the PDF (5) will concentrate around the minimizers of the map
q as Zσs(bk+1, . . . , bp) → 0. Now we can compare two separating bases as
follows.

Definition 2.6. We say that the parametrization Θ(1) = (θ
(1)
1 , . . . , θ

(1)
p ) is

more concentrated than Θ(2) = (θ
(2)
1 , . . . , θ

(2)
p ) if for all ν > 0,

Zν(b
(1)
k+1, . . . , b

(1)
p ) < Zν(b

(2)
k+1, . . . , b

(2)
p ).

7



3. Four separating bases of cubic splines

We consider the set S := S3(t1, . . . , tn+1) of C2 cubic splines having the
knots t1 < . . . < tn+1. We recall that an element s ∈ S is a C2 map on
[t1, tn+1] and is a polynomial of degree three on each interval [ti, ti+1[ for
i = 1,. . . , n.

More precisely let

p1 := s(t1), . . . , pn+1 := s(tn+1),

q1 := s′(t1), . . . , qn+1 := s′(tn+1),

u1 := s′′(t1), . . . , un+1 := s′′(tn+1),

v1 = s′′′(t1+), . . . , vn = s′′′(tn+)

be respectively the values of s and its derivatives up to order three on the
knots. We have for i = 1, . . . , n,

s(t) = pi + qi(t− ti) + (t− ti)2ui/2 + (t− ti)3vi/6, t ∈ [ti, ti+1[.

The following constraint for hi = ti+1 − ti, i = 1, . . . , n guarantees the
hypothesis that s is C2:

pi + qihi + uih
2
i /2 + vih

3
i /6 = pi+1, (8)

qi + uihi + vih
2
i /2 = qi+1, (9)

vi = s(3)(ti) = (ui+1 − ui)/hi. (10)

It is well known [3] that S has the dimension n + 3. Hence an element
s ∈ S is completely defined by n+ 3 independent parameters. Note that the
quadratic form (2) is equal to

n∑
i=1

∫ ti+1

ti

|ui + t(ui+1 − ui)/hi|2dt =
n∑
i=1

(u2i + uiui+1 + u2i+1)hi/3

= u>Q2u

where the column vector u = (u1, . . . , un+1)
> and the invertible (n + 1) ×

(n+ 1) matrix

Q2 := [q(i, j)] (11)
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is defined by q(1, 1) = h1/3, q(n+ 1, n+ 1) = hn/3, for i = 2, . . . , n, q(i, i) =
(hi−1 + hi)/3, for i = 1, . . . , n, q(i, i+ 1) = q(i+ 1, i) = hi/6, and q(i, j) = 0
elsewhere.

The PDF (3) means that the vector u is Gaussian, centred with the
covariance matrix σ2

sQ
−1
2 . It follows for any separating basis (b1, . . . , bn+3)

that

Zσs(b3, . . . , bn+3) = σn+1
s /det(Q2). (12)

Any other parametrization of the random effect is just a linear transformation
of (u1, . . . , un+1), e.g., (u1, v1, . . . , vn) is also a parametrization of the random
effect. See assertion 2 of Proposition 2.3.

From Remark 2.5, we derive that for all t ∈ [t1, tn+1] the fixed effect E(s)
is given by E(s(t)) = α + βt, where

α =
n+1∑
i=1

{α(0)
i s(ti) + α

(1)
i s′(ti)} (13)

β =
n+1∑
i=1

{β(0)
i s(ti) + β

(1)
i s′(ti)}. (14)

The coefficients α
(0)
i , α

(1)
i , β

(0)
i , β

(1)
i define the parametrization of the fixed

effect.
If a priori information tells us that the initial values p1, p2 are not random,

then the parametrization Θ002 = (p1, p2, u1, . . . , un+1) and the corresponding
basis B002 = (b0021 , . . . , b002n+3) are the right choice for separating the fixed
effect (p1, p2) from the random effect (u1, . . . , un+1). The subscript notation
002 is justified by the fact that

p1 := s(t1) := s(0)(t1), p2 := s(t2) := s(0)(t2),

u1 := s′′(t1) := s(2)(t1), . . . , un+1 := s′′(tn+1) := s(2)(tn+1).

If a priori information tells us that (p1, q1) are not random then the
parametrizations

Θ012 := (p1, q1, u1, . . . , un+1), Θ0123 := (p1, q1, u1, v1, . . . , vn),

and the corresponding bases

B012 := (b0121 , . . . , b012n+3), B0123 := (b01231 , . . . , b0123n+3 )
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are the right choices for separating the fixed effect (p1, q1) from the ran-
dom effect (u1, . . . , un+1). The subscript notation 012 is justified by the
fact that p1 := s(0)(t1), q1 := s′(t1) := s(1)(t1) and u1 := s(2)(t1), . . . ,
un+1 := s(2)(tn+1). Similarly, the notation 0123 is justified by the fact
that p1 := s(0)(t1), q1 := s(1)(t1), u1 := s(2)(t1) and v1 := s′′′(t1+) :=
s(3)(t1+), . . . , vn = s′′′(tn+) := s(3)(tn+).

It follows for s ∈ S that

s = p1b
002
1 + p2b

002
2 +

n+1∑
i=1

uib
002
2+i

= p1b
012
1 + q1b

012
2 +

n+1∑
i=1

uib
012
2+i

= p1b
0123
1 + q1b

0123
2 + u1b

0123
3 +

n∑
i=1

vib
0123
3+i .

The passage matrix from the parametrization Θ002 to the parametrization
Θ012 is given by

p1 = p1,

q1 = (p2 − p1)/h1 − h1u1/3− h1u2/6,
u1 = u1,

... =
...

un+1 = un+1.

Note that if we decide that (p1, p2) is the fixed effect, then (p1, q1) is
not a fixed effect, because from (8) the parameter q1 is random with the
mean (p2 − p1)/h1 and the variance h21var(u1/3 + u2/6). Inversely, if (p1, q1)
is the fixed effect, then (p1, p2) is not a fixed effect, because again from
(8) the parameter p2 is random with the mean p1 + h1q1 and the variance
h41var(u1/3 + u2/6). We conclude that the parametrizations Θ002 and Θ012

have the same concentration σn+1
s /det(Q2) in the sense of Definition 2.6, but

are not equivalent in the sense of Definition 2.4.

3.1. Construction of the bases B0123, B012, B002

First, we construct the basis B0123 = (b01231 , . . . , b0123n+3 ) in which

s = s(t1)b
0123
1 + s′(t1)b

0123
2 + s′′(t1)b

0123
3 +

n∑
i=1

s′′′(ti+)b01233+i , (15)
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for all cubic spline s. By writing

s(t) = pi + qi(t− ti) + (t− ti)2ui/2 + (t− ti)3vi/6

on each sub-interval [ti, ti+1), and using its smoothness, we obtain the fol-
lowing constraints pi+1

qi+1

ui+1

 = Mi

 pi
qi
ui

+ vi

 h3i /6
h2i /2
hi

 , (16)

where

Mi =

 1 hi h2i /2
0 1 hi
0 0 1

 .

We denote by Mi the product
∏i

l=1 Ml. The equation (16) implies for i =
1, . . . , n, that pi+1

qi+1

ui+1

 = Mi

 p1
q1
u1

+
i∑
l=1

vlM
i−l

 h3l /6
h2l /2
hl

 . (17)

We will use the notation M−1
i = 0, and M0

i = I3.
Let us define, for each i = 1, . . . , n, the piecewise functions,

χi(t) = 1[ti,ti+1)(t), χ1
i (t) = (t− ti)χi(t), χ2

i (t) = (t− ti)2χi(t)/2,
χ3
i (t) = (t− ti)3χi(t)/6.

Now, using (17), we can announce the basis B0123 = [b0123j : j = 1, . . . , n+3].

Proposition 3.1. We have for t ∈ [t1, t2), that(
b01231 (t) b01232 (t) b01233 (t) b01234 (t)

)
=

(
χ1(t) χ1

1(t) χ2
1(t) χ3

1(t)
)
,

b0123l = 0, l = 5, . . . , n+ 3.

We have for i = 1, . . . , n− 1, t ∈ [ti+1, ti+2), and l = 1, . . . , i, that(
b01231 (t) b01232 (t) b01233 (t)

)
=

(
χi+1(t) χ1

i+1(t) χ2
i+1(t)

)
Mi,

b01233+l (t) =
(
χi+1(t) χ1

i+1(t) χ2
i+1(t)

)
Mi−l

 h3l /6
h2l /2
hl

 ,

b0123i+4 (t) = χ3
i+1,

b0123j (t) = 0, j = i+ 5, . . . , n+ 3.

11



The basis B0123 is a separating basis because (b01231 , b01232 ) is a basis of
Q−1(0) (2). It is plotted in Figure 1. To compare with (13), (14), we observe
that b01231 (t) = 1, b01232 (t) = t and then

s(t1)b
0123
1 (t) + s′(t1)b

0123
2 (t) := α + βt,

with

α = s(t1), β = s′(t1).

3.2. Construction of the bases B002 and B012

Now, we are ready to construct the basis B012 = [b0121 , . . . , b0123+n]. From
the constraints (ui+1 − ui)/hi = vi, i = 1, . . . , n+ 1, we have

s = p1b
0123
1 + q1b

0123
2 + u1b

0123
3 +

n∑
i=1

vib
0123
3+i

= p1b
0123
1 + q1b

0123
2 + u1(b

0123
3 − b01234 /h1) +

n∑
i=2

ui(b
0123
2+i /hi−1 − b01233+i /hi) +

un+1b
0123
3+n/hn.

It follows that b0121 = b01231 , b0122 = b01232 , b0123 = b01233 − b01234 /h1, for i =
4, . . . , n + 2, b012i = b0123i /hi−3 − b0123i+1 /hi+1−3, b

012
n+3 = b01233+n/hn. The passage

matrix (b01233 , . . . , b0123n+3 )> = P(b0123 , . . . , b012n+3)
> is the inverse of the matrix

having the rows l1 = (1,−1/h1, 0, . . . , 0), l2 = (0, 1/h1,−1/h2, 0, . . . , 0), . . . ,
ln = (0, . . . , 0, 1/hn−1, 1/hn), ln+1 = (0, . . . , 0, 1/hn). It follows that the
partition function

Zσs(b
0123
3 , . . . , b0123n+3 ) = (

n∏
i=1

h2i )σ
n+1
s /det(Q2). (18)

We derive the basis B002 as follows. The relation

q1 = (p2 − p1)/h1 − h1u1/3− h1u2/6,

and

s = p1b
002
1 + p2b

002
2 +

n+1∑
i=1

uib
002
2+i

12



imply that

b0021 = b0121 − b0122 /h1, b
002
2 = b2/h1, b

002
3 = b0123 − h1b0122 /3,

b0024 = b0124 − h1b0122 /6, b002i = b012i , i = 5, . . . , n+ 3.

Observe that b0023 and b0024 are corrupted by b0122 . The bases B012, B0123,
B002 are separating bases and are plotted in Figure 1. Moreover, according
to (18) if hi = 1 for all i, then the bases B002, B012, B0123 have the same
concentration.

To compare with (13), (14), we observe that b0021 (t) = 1− t/h1, b0022 (t) =
t/h1 and then s(t1)b

002
1 (t) + s(t2)b

002
2 (t) := α + βt, with α = s(t1), β =

{s(t2)− s(t1)}/h1.

3.3. Basis Bs202

Here we are interested in the parametrization

Θ202 = (s′′(t1), s(t1), . . . , s(tn+1), s
′′(tn+1)).

The corresponding basis B202 = (ϕ1, . . . , ϕn+3) was constructed in [7] and
is plotted in Figure 1. The subscript notation 202 is justified by the fact
that s′′(t1) := s(2)(t1), s(t1) := s(0)(t1), . . . , s(tn+1) := s(0)(tn+1), s

′′(tn+1) :=
s(2)(tn+1). A cubic spline s is written in the basis B202 as follows

s = s′′(t1)ϕ1 +
n+1∑
i=1

s(ti)ϕ1+i + s′′(tn+1)ϕn+3.

The basis B202 does not contain any straight line (see Figure 1). It follows
that B202 is not a separating basis. However we are going to derive from
B202 an interesting separating basis denoted Bs202.

We can show [7] that the quadratic form (2) equals

(s′′(t1), s(t1), . . . , s(tn+1), s
′′(tn+1))Q202(s

′′(t1), s(t1), . . . , s(tn+1), s
′′(tn+1))

>,

where

Q202 := [

∫ tn+1

t1

ϕ′′i (t)ϕ
′′
j (t)dt : i, j = 1, . . . , n+ 3].

The singular valued decomposition (SVD) of Q202 = OD(0, 0, c1, . . . , cn+1)O
>

tells us that the diagonal matrix D(0, 0, c1, . . . , cn+1) is defined by the null

13
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Figure 1: Representation of bases B012, B0123, B002 and B202 for n=7 equidistant intervals
in [0, 1].
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Figure 2: Representation of the basis Bs202 for n=7 equidistant intervals in [0, 1].

eigenvalue of order 2 and the positive eigenvalues c1 ≤ . . . ≤ cn+1 of Q202.
Moreover the ith-column oi of the orthogonal matrix O is such that Q202oi =
0 for i = 1, 2, and Q202o2+i = cio2+i for i = 1, . . . , n+ 1.

It follows for all column vector θ ∈ Rn+3 that

θ>O>Q202Oθ = θ>D(0, 0, c1, . . . , cn+1)θ

=
n+1∑
i=1

ciθ
2
2+i.

The new parametrization

θ = O>(s′′(t1), s(t1), . . . , s(tn+1), s
′′(tn+1)

>,

defines the new basis Bs202 = OB202 := (ψ1, . . . , ψn+3) plotted in Figure 2.
By construction ψ1, ψ2 is a basis of the null space Q−1(0) of the quadratic

form (2), and then Bs202 is a separating basis. More precisely, the new
parametrization (θ1, . . . , θn+3) is defined by

θ1 =
n+1∑
j=1

o1j+1s(tj), θ2 =
n+1∑
j=1

o2j+1s(tj),

and for i = 3, . . . , n+ 3, θi = oi1s
′′(t1) +

∑n+1
j=1 oij+1s(tj) + oin+3s

′′(tn+1). To
compare with (13), (14), we observe that the fixed effect θ1ψ1+θ2ψ2 := α+βt
is such that α and β mix all the components s(t1), . . . , s(tn+1).
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Making the assumption that (s′′(t1), . . . , s
′′(tn+1)) is centred, Gaussian

with the covariance matrix σ2
sQ
−1
2 (11) is equivalent to saying that (θ3, . . . , θn+3)

is centred, Gaussian with the covariance matrix σ2
sQ
−1
s202, where the diago-

nal matrix Qs202 = D(c1, . . . , cn+1). It follows that the partition function of
(θ3, . . . , θn+3) is equal to

Zσs(ψ3, . . . , ψn+3) = σn+1
s

n+1∏
i=1

1/ci. (19)

4. Maximum likelihood estimators of the fixed effect and the dis-
persion parameters

Let s =
∑2

i=1 θibi +
∑n+3

i=3 θibi be a random element of S3(t1, . . . , tn+1)
in the basis B = (b1, . . . , bn+3) separating the fixed effect β := (θ1, θ2)

>

from the random effect r := (θ3, . . . , θn+3)
>. In the basis B the PDF of the

random effect is centred, Gaussian with the covariance σ2
sQ
−1
B , where

QB = [

∫ tn+1

t1

b′′i (t)b
′′
j (t)dt : i, j = 3, . . . , n+ 3].

The matrix representation of (1) is the following additive mixed model

y := (y1, . . . , yn+1)
> = Fβ + Rr +w.

Here the column vectors of the matrices

F = (b1(t), b2(t)), R = (b3(t), . . . , bn+3(t)) (20)

are bi(t) := (bi(t1), . . . , bi(tn+1))
>.

If the noise w is white and Gaussian with the variance σ2
w, then the data

y is Gaussian with the mean Fβ and the covariance matrix

Σ(σ2
s , σ

2
w) = σ2

sG0 + σ2
wG1.

Here

G0 = RQ−1B R>, G1 = In+1.

The −2 ln-likelihood of the data y in the basis B is equal to

`(y,B) = (n+ 1) ln(2π) + ln[det{Σ(σ2
s , σ

2
w)}]

+trace{(y − Fβ)(y − Fβ)>Σ−1(σ2
s , σ

2
w)}. (21)
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The likelihood equations

∂βi` = 0, i = 1, 2, ∂σ2
w
` = 0, ∂σ2

s
` = 0,

are equivalent [1] to

β = {F>Σ−1(σ2
s , σ

2
w)F}−1F>Σ−1(σ2

s , σ
2
w)y,(

trace{Σ−2(σ2
s , σ

2
w)G2

0} trace{Σ−2(σ2
s , σ

2
w)G0}

trace{Σ−2(σ2
s , σ

2
w)G0} trace{Σ−2(σ2

s , σ
2
w)}

)(
σ2
s

σ2
w

)
=

(
trace{(y − Fβ)(y − Fβ)>Σ−2(σ2

s , σ
2
w)G0}

trace{(y − Fβ)(y − Fβ)>Σ−2(σ2
s , σ

2
w)}

)
.

To solve the likelihood equations we use the following iterative scheme [1].
Starting from β(0) = (F>F)−1F>y, we obtain initial estimates σ2

s(0), σ2
w(0)

by solving the system(
trace(G2

0) trace(G0)
trace(G0) trace(G1)

)(
σ2
s(0)
σ2
w(0)

)
=

(
trace(C(0)G0)

trace(C(0))

)
,

where C(0) = {y−Fβ(0)}{y−Fβ(0)}>. Having σ2
s(0), σ2

w(0), we construct

β(1) = {F>Σ−1(σ2
s(0), σ2

w(0))F}−1F>Σ−1(σ2
s(0), σ2

w(0))y.

Having β(1), we construct σ2
s(1), σ2

w(1) by solving the system(
trace{Σ−2(σ2

s(0), σ2
w(0))G2

0} trace{Σ−2(σ2
s(0), σ2

w(0))G0}
trace{Σ−2(σ2

s(0), σ2
w(0))G0} trace{Σ−2(σ2

s(0), σ2
w(0))}

)(
σ2
s(1)
σ2
w(1)

)
=

(
trace{C(1)Σ−2(σ2

s(0), σ2
w(0))G0}

trace{C(1)Σ−2(σ2
s(0), σ2

w(0))}

)
,

where C(1) = {y−Fβ(1)}{y−Fβ(1)}>. If the number n+1 of observations
y is large then this iterative scheme converges.

If the number n+1 is small, then we needN large i.i.d. copies y(1), . . . ,y(N)
of y. In this case we only need the following one-step algorithm. Calculate
OLSE

βN(0) = (F>F)−1F>ȳ,

and obtain initial estimates of σ2
s,N(0), σ2

w,N(0) by solving the system(
trace(G2

0) trace(G0)
trace(G0) trace(G1)

)(
σ2
s(0)
σ2
w(0)

)
=

(
trace(CN(0)G0)

trace(CN(0))

)
,
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Here ȳ =
∑N

k=1 y(k)/N and CN(0) =
∑N

k=1(y(k)−FβN(0))(y(k)−FβN(0))>/N .
Having σ2

s,N(0), σ2
w,N(0), we construct

βN(1) = {F>Σ−1(σ2
s,N(0), σ2

w,N(0))F}−1F>Σ−1(σ2
s,N(0), σ2

w,N(0))ȳ.

Having βN(1), we construct σ2
s,N(1) and σ2

w,N(1) by solving the system(
trace{Σ−2(σ2

s,N(0), σ2
w,N(0))G2

0} trace{Σ−2(σ2
s,N(0), σ2

w,N(0))G0}
trace{Σ−2(σ2

s,N(0), σ2
w,N(0))G0} trace{Σ−2(σ2

s,N(0), σ2
w,N(0))}

)(
σ2
s(1)
σ2
w(1)

)
=

(
trace{CN(1)Σ−2(σ2

s,N(0), σ2
w,N(0))G0}

trace{CN(1)Σ−2(σ2
s,N(0), σ2

w,N(0))}

)
,

where CN(1) =
∑N

k=1(y(k)− FβN(1))(y(k)− FβN(1))>/N . It is known [1]

that
√
N(βN(1)−β),

√
N(σ2

s,N(1)− σ2
s , σ

2
w,N(1)− σ2

w)T have a limiting nor-
mal distribution with means 0 and covariance matrices {F>Σ−1(σ2

s , σ
2
w)F}−1,

[1
2
trace{Σ−1(σ2

s , σ
2
w)GiΣ

−1(σ2
s , σ

2
w)Gj} : i, j = 0, 1]−1 respectively.

Finally having the estimates β̂, σ̂2
w, σ̂2

s of β, σ2
w, σ2

s , the random effect
estimate

r̂ = arg min
r
{λ̂r>G0r + ‖y − (Fβ̂ + Rr)‖2}

= (λ̂G0 + R>R)−1R>(y − Fβ̂),

where λ̂ := σ̂2
s

σ̂2
w

, and ‖ · ‖ denotes the Euclidean norm.

Remark 4.1. The fixed effect in the bases B002 and B012 does not coincide
with the linear regression. It only reflects the linear tendency of the beginning
of the period. In the basis Bs202 the fixed effect concerns all the period.
In the basis Bs202 (and unlike the bases B002 and B012) the columns of the
matrix F and the columns of the matrix R (20) are orthogonal. We can show
theoretically that this fact implies that the maximum-likelihood estimator β̂ =
β(i) = (F>F)−1F>y for each iteration i. It follows that the fixed effect Fβ̂
coincides with the linear regression. See [4], [6] for a similar study.

5. Numerical applications

5.1. Simulation: inference from the bases B002, B012

In order to illustrate the importance of the parametrization for the es-
timation of the true fixed effect, we consider the parametrization B002 and
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B012. We construct the spline

s0 = p1(true)b
002
1 + p2(true)b

002
2 +

n+1∑
i=1

ui(true)b
002
2+i

= p1(true)b
012
1 + q1(true)b

012
2 +

n+1∑
i=1

ui(true)b
012
2+i

by fixing p1(true), q1(true) (fixed effect) and u1(true), . . . , un+1(true) is a
realization of the random effect u1, . . . , un+1. We obtain the true value

p2(true) = p1(true) + h1q1(true) + h21u1(true)/3 + h31u2(true)/6.

We generate a sample s1, . . . , sN of s0, and a sample w1, . . . , wN of the
noise w. We obtain a sample y1, . . . , yN of the data y.

Under the B002 parametrization and assuming that p1, p2 are the fixed
effect, we execute the scoring algorithm and obtain the estimator p0021 , p0022 ,
u0021 , . . . , u002n+1 of p1(true), p2(true), u1(true), . . . , un+1(true). We derive

q0021 = (p0022 − p0021 )/h1 − h1u0021 /3− h1u0022 /6

as an estimator of q1(true). Now we estimate p1(true), q1(true), u1(true),
. . . , un+1(true) in the basis B012 and assume that p1, q1 are the fixed effect.
From the estimator p0121 , q0121 , u0121 , . . . , u012n+1, we obtain

p0122 := p0121 + h1q
012
1 +

h21
3
u0121 +

h31
6
u0122

as a new estimator of p2(true).
Table 1 presents the differences between the estimations of the parameters

p1, p2, q1, σ
2
s and σ2

w when the true model is the basis B012 and B002 while
varying the signal-to-noise ratio λ = σ2

w/σ
2
s .

The results presented in Table 1 show that, for small values of λ, a bad choice
of model produces large estimation errors. In our example, for λ = 1/50
the estimation of q1 = 1 is q0121 = 0.9775 in the true model B012, whereas
q0021 = 0.4419 in the wrong model B002. According to our simulations, these
errors decrease with λ (see the results in Table 1 for λ = 1/5, and λ = 1).
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Parameter θ p1 p2 q1 σ2
s σ2

w λ
True values 0 0.056 1 5 0.1 1/50

θ̂012 0.0021 0.1110 0.9775 5.0213 0.0954 1/52.9100

θ̂002 0.0022 0.056 0.4419 5.1343 0.0955 1/53.7634

True values 0 0.172 1 0.5 0.1 1/5

θ̂012 0.0107 0.1566 0.9742 0.4721 0.1025 1/4.6058

θ̂002 0.0101 0.1867 1.1731 0.4578 0.1024 1/4.4707

True values 0 0.1521 1 0.1 0.1 1

θ̂012 −0.0012 0.1373 1.0109 0.1042 0.0998 1/1.0440

θ̂002 −0.0014 0.1517 1.0823 0.1025 0.0912 1/1.12

Table 1: Estimation using B012 and B002 models.

5.2. Real data application: climat change

In the climate change problem we are interested in the annual mean tem-
perature observed in France form 1900 to 2015. For each year, Meteo France
(Division des Études et Climatologie, Nord) provided us with the minimum,
mean and maximum temperatures in France. In our application we are in-
terested only in the mean temperature. Data is presented in Figure 3.

We illustrate the importance of the parametrization of the fixed effects
by considering the bases B002 and Bs202. The estimation of the parameters
of the two models and the −2 ln(Likelihood) values are presented in Table
2.

Basis θ̂1 θ̂2 σ2
s σ2

w −2 ln(likelihood)
B002 11.486 11.491 1.577× 10−5 0.232 172.552
Bs202 −114.968 −58.545 2.755× 10−5 0.2283 165.495

Table 2: Estimation using B002 and Bs202 models for annual mean temperature.

For each model, the fixed and the random effects are plotted in Figure 4.
The difference between the two models is illustrated in Figure 5.

The numerical results (Figure 5) confirm the theoretical ones, namely the
Remark 4.1. Note that the performance of the basis Bs202 is superior to that
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Figure 3: Annual mean temperatures in France from 1900 to 2015.

of B002 in terms of likelihood. As expected, from Figure 5 we see that the
fixed effects in the two models are very different, whereas the estimates of the
true signal are very close. In the basis B002 the random effect compensates
and corrects the fixed effect defined only by the first two observations (years
1900 and 1901). The numerical results also show that the basis Bs202 is more

concentrated than B002 (
116∏
i=1

1/ci ≈ 1/27 << 1/det(Q2)).

Appendix: Inference from fixed and random effects in a general
setting

Let s =
∑k

i=1 θibi +
∑p

i=k+1 θibi be a random element of S in the basis
B = (b1, . . . , bp) separating the fixed effect θ1, . . . , θk from the random effect
θk+1, . . . , θp. The PDF of θk+1, . . . , θp is equal to

fσ2
s
(θk+1, . . . , θp) :=

1

Zs
exp{−q(

p∑
i=k+1

θibi)/2σ
2
s}.
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Figure 4: Mean annual temperatures in France from 1900 to 2015.

Let X : S → Rm be a given linear map, and w ∈ Rm a random vector with
the PDF

1

Zw
exp{−G(w)/2σ2

w},

where G is a measurable map. In the basis B, the additive model y = Xs+w
becomes

y =
k∑
i=1

θiXbi +

p∑
i=k+1

θiXbi +w. (22)
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Figure 5: B002 versus Bs202 estimators

The mixed model (22) consists of three types of objects: observable random
vector y (data), unobservable random vectors θk+1, . . . , θp, w and unknown
parameters τ := (θ1, . . . , θk, σ

2
s , σ

2
w). In general, the probability density func-

tion (PDF) of a random vector z is denoted by fτ (y). Here τ is a fixed
parameter and y varies. The likelihood of τ given the data y is denoted by
L(τ |y). The connection between the (PDF) and the likelihood is given by

L(τ |y) = fτ (y).

It follows that

fτ (y) =

∫
Rp−k

f(θ1,...,θp,σ2
w)(y)fσ2

s
(θk+1, . . . , θp)dθk+1 . . . dθp,

where

f(θ1,...,θp,σ2
w)(y) =

1

Zw
exp{−G(y −Xs)/2σ2

w}

is the (PDF) of y known s and σ2
w.

Parameter estimation: Given the data y, we estimate τ by maximizing
the likelihood τ → L(τ |y).

The joint (PDF) of the random effect (θk+1, . . . , θp) and y is equal to

fτ (θk+1, . . . , θp,y) = fσ2
s
(θk+1, . . . , θp)f(θ1,...,θk,σ2

w)(y)

= L(τ | θk+1, . . . , θp,y).
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These were called a joint likelihood by [10] in the context of Gaussian case
and hierarchical likelihoods by [13].

Random effect estimation. Given the data y and an estimation τ̂ of τ , we
estimate the random effect by maximizing the joint likelihood of the random
effect (θk+1, . . . , θp) and y given y and τ = τ̂ .

L(τ̂ | θk+1, . . . , θp,y).
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