
HAL Id: hal-01426626
https://hal.inria.fr/hal-01426626

Submitted on 4 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

One-variable context-free hedge automata
Florent Jacquemard, Michael Rusinowitch

To cite this version:
Florent Jacquemard, Michael Rusinowitch. One-variable context-free hedge automata. Journal of
Computer and System Sciences, Elsevier, 2016, �10.1016/j.jcss.2016.10.006�. �hal-01426626�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/80458096?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01426626
https://hal.archives-ouvertes.fr

One-Variable Context-Free Hedge AutomataI

Florent Jacquemarda,∗, Michael Rusinowitchb,∗

aINRIA Paris–Rocquencourt & Ircam UMR – 1 place Igor Stravinsky, 75004 Paris, France.
bINRIA Nancy–Grand Est & LORIA UMR

615 rue du Jardin Botanique, 54602 Villers-les-Nancy, France.

Abstract

We introduce an extension of hedge automata called One-Variable Context-Free
Hedge Automata. The class of unranked ordered tree languages they recognize
has polynomial membership problem and is preserved by rewrite closure with
inverse-monadic rules. We also propose a modeling of primitives of the W3C
XQuery Update Facility by mean of parameterized rewriting rules, and show
that the rewrite closure of a context-free hedge language with these extended
rewriting systems is a context-free hedge language. This result is applied to
static analysis of XML access control policies expressed with update primitives.

Keywords: Hedge automata, rewrite closure, verification, static type
checking, XQuery Update, access control.

Introduction

The verification of systems and programs involving tree-like structures mo-
tivates the study of rewrite closures for various kind of term rewriting systems
(TRS) and the identification of computable cases. Automata for ranked trees
(terms over a signature) provide a good formalism for characterizing the closure
of languages w.r.t. term rewriting systems. Indeed, tree-automata (TA) transi-
tions can be defined as rewrite rules [1], given a TRS R and an initial TA A,
the rewrite closure of the language of A by R can be computed in many inter-
esting cases by tree automata completion, a procedure that iteratively computes
critical pairs between the TA transitions (which are rewrite rules) of A and the
TRS rules of R.

Unranked trees are natural representations for XML documents, where the
number of children of a node is not fixed. Hedge Automata (HA) [2] embeds most
of the formalisms [3] for specifying the structural information (or type) of XML
documents. Some procedures have been proposed for the construction of rewrite
closure of HA languages [4]. There are however two problems in the context of
unranked trees. The first one is technical, and stems from the different natures
of rewrite rules and HA transitions. Indeed, performing automata computations
in unranked trees requires vertical navigation from children to parent (in case

IThis work has been partly supported by the grant ANR-12-CORD-0009 ”Inedit”.
∗Corresponding author
Email addresses: florent.jacquemard@inria.fr (Florent Jacquemard),

michael.rusinowitch@inria.fr (Michael Rusinowitch)

Preprint submitted to Journal of Computer and System Sciences January 4, 2017

of bottom-up computations) and also horizontal navigation between children,
since their number is unbounded. The original HA is an hybrid model where
horizontal and vertical navigation rules are not specified in the same way, and
tree automata completion is more difficult to define in this case than for ranked
tree automata. The second difficulty is that rewrite closures are often non
regular in the case of unranked trees, i.e. they cannot be captured by HA. For
instance the closure of HA languages by a flat linear unranked TRS is not always
HA whereas the closure of TA languages by flat linear TRS is TA [5]. There are
mainly two solutions to this problem: the construction of (over)-approximations
(as in [4]) or the extension of the HA model.

Regarding applications of these results, one may cite for instance regular
tree model checking, type checking of XML transformations, and consistency
verification of access control policies (ACP) for XML updates. We briefly survey
these three typical applications.

In formal verification of infinite state systems, several regular model checking
approaches represent sets of configurations by regular languages, transitions by
rewrite rules and (approximations of) reachable configurations as rewrite closure
of regular languages [6]. Regular tree model checking extends the approach
from string to tree regular languages and string rewriting to term rewriting (see
e.g. [7, 8]). It has been extended later from ranked tree to hedge rewriting and
hedge automata in [9]. Regular tree model checking has been applied to the
verification of programs with recursive calls and dynamic thread creation.

A central problem in XML document processing is static typechecking [10].
This problem amounts to verifying at compile time that every output XML
document which is the result of a specified query or transformation applied
to an input document with a valid input type has a valid output type. In
general, input and output type are defined as regular tree languages. Being
able to compute the closure or backward closure (under transformations) of
such languages hence permits to solve the problem see e.g. [11].

A large amount of work has been devoted to secure XML querying and
transformations. But most of the work focuses on read-only rights, and very
few have considered update rights for a model based on standard XML update
operations such as those of the XQuery Update Facility (XQUF) [12]; one may
cite [13, 14, 15]. The sensitive problem of access control policy inconsistency is,
whether a forbidden operation can be simulated through a sequence of allowed
operations. For instance [15] presents a hospital database example where it is
forbidden to rename a patient name in a medical file but the same effect can be
obtained by deleting this file and inserting a new one. This example illustrates a
so-called local inconsistency problem and its detection can be solved by rewrite
closure computations.

Contributions. In this paper, we introduce an automata model for unranked
trees generalizing HA and whose transitions are uniformly presented as rewrite
rules. This model, called CF1HA, is shown decidable and more expressive than
previous ones. It permits us to capture significant classes of rewrite systems
with computable closures, such as inverse-monadic rules, that are more general
than the rules considered in [16]. Moreover, the representation of transitions as
rewrite rules enables simpler constructions than in the case of HA [16, 15].

This implies that we can compute exact reachability sets when the configura-
tion sets are represented by CF1HA hence beyond the regular (HA) ones. These

2

results are therefore interesting for automated verification where reachability
sets are not always regular.

As an application we consider a model for XML update primitives of XQUF [12]
as parameterized rewriting rules of the form: ”insert an unranked tree from a
regular tree language L as the first child of a node labeled by a”. This model
extends an initial proposal of [15] with (in particular) the possibility to in-
sert a new parent node above a given node. We show how to compute the
rewrite closure of HA languages with these extended rewriting systems. These
rewrite closure results can be applied directly to the static analysis of access
control policies (ACP) for XML updates. ACPs can be specified with two sets
of atomic update primitives listing the operations that are allowed, resp. for-
bidden, to a user [13, 14]. We show how to verify the local consistency of ACPs,
i.e. whether no sequence of allowed updates starting from a given document
can achieve an explicitly forbidden update. Such situations may lead to serious
security breaches which are challenging to detect according to [13].

We also consider (in Section 5.2) an extension of rewrite systems to suit the
case of XML documents developed under DTDs (following the DDML/XSchema
methodology), and we obtain in that case a negative result for closure computa-
tion, namely that reachability is undecidable even for non-recursive DTD, and
therefore there is no hope to extend our construction in this direction.

Roadmap. Preliminary notions such as hedge rewriting systems are introduced
in Section 1. We present our extension of hedge automata called 1-variable bidi-
mensional context-free hedge automaton (CF1HA in short) in Section 2. In Sub-
section 2.1 we present closure and decision properties for the class of languages
they recognize. In Subsection 2.2 we show the correctness of the membership
algorithm we have given for CF1HA. The CF1HA are compared to known classes
of automata on unranked trees in Subsection 2.3. In Section 3 we introduce
1-childvar inverse monadic hedge rewriting systems. We prove in Subsection 3.1
that these hedge rewriting systems preserve CF1HA languages. In Subsection 3.2
we show that hedge automata languages are preserved by backward closure ap-
plication of inverse monadic systems. In Section 4 we show how XQuery Update
Facility primitives can be directly modeled using a subclass of parameterized
hedge rewriting rules called uPHRS. In Subsection 4.1 we introduce a subclass
of uPHRS that admit no looping sequence of renamings. This sublass is used
to simplify the computation, in Subsection 4.2, of the forward rewrite closure
for uPHRS, using automata completion techniques. In Subsection 4.3 we give
an application to typechecking XML updates. In Section 5 we study some
models of Access Control Policies (ACP) for the update operations defined in
Section 4, and the verification problems for these ACP. In Subsection 5.1 we
consider ACP where update rules are divided into authorized and forbidden
operations. In Subsection 5.2 we consider ACP defined by extending DTD with
security annotations as in [17, 13]. We conclude by sketching future works in
Section 6.

Related work. A detailed comparison of CF1HA with other unranked tree au-
tomata models can be found in Section 2.3. Many works have employed tree
automata to compute sets of descendants for standard (ranked) term rewriting
(see e.g. [7]). Regular model checking [6] is extended to hedge rewriting and
hedge automata in [9], which gives a procedure to compute reachability sets

3

approximations. Here we compute exact reachability sets for some classes of
hedge rewrite systems.

[18] (see also [?]) presents a static analysis of XML document adaptations,
expressed as sequences of XQUF primitives. The authors also use an automatic
inference method for deriving the type, expressed as a HA, of a sequence of
document updates. The type is computed starting from the original schema
and from the XQuery Updates formulated as rewriting rules as in [15]. However
differently from our case the updates are applied in parallel in one shot.

The first access control model for XML was proposed by [19] and was ex-
tended to secure updates in [20]. Static analysis has been applied to XML
Access Control in [21] to determine if a query expression is guaranteed not to
access to elements that are forbidden by the policy. In [13] the authors pro-
pose the XACU language. They study policy consistency and show that it is
undecidable in their setting. On the positive side [22] considers policies whose
allow/deny permissions are tied to a DTD and gives a PTIME algorithm for
checking consistency, as well as analysis/heuristics for the repair problem.

This paper differs significantly from our conference paper [23] in many as-
pects. Compared to [23] we simplify our model by allowing only one variable
in automata transition rules but this allows one to prove that the membership
problem becomes PTIME in this new model (with a CYK-like algorithm [24]).
We show the new result that our closure construction cannot be extended to
take into account DTD, due to undecidability of closure computations in this
case. We apply our positive result to the consistency verification of ACP with
update primitives, an application that is not considered in [23].

1. Preliminaries

We consider a finite alphabet Σ and an infinite set of variables X . The
symbols of Σ are generally denoted a, b, c . . . and the variables x, y. . . The sets
of hedges and trees over Σ and X , respectively denoted H(Σ,X) and T (Σ,X),
are defined recursively as the smallest sets such that: every x ∈ X is a tree, if
t1, . . . , tn is a finite sequence of trees (possibly empty), then t1 · · · tn is a hedge
and if h is a hedge and a ∈ Σ, then a(h) is a tree. The empty hedge (case
n ≥ 0 above) is denoted by ε and the tree a(ε) will be simply denoted by a. We
use the operator · to denote the hedge concatenation. It is associative and ε is
its unit element. We will sometimes consider a tree as a hedge of length one,
i.e. consider that T (Σ,X) ⊂ H(Σ,X). The sets of ground trees (trees without
variables) and ground hedges are respectively denoted T (Σ) and H(Σ).

The root of the tree a(h) is its top node labeled by a. A root (resp. leaf) of
a hedge h = (t1 · · · tn) is a root node (resp. leaf node, i.e. node without child)
of one of the trees t1, . . . , tn. The root node of the tree a(h) is called the parent
of every root of h and every root of h is called a child of the root of a(h). A
path is a sequence of nodes p0, . . . , pk, k ≥ 0, such that for all 0 ≤ i < k, pi+1

is a child of pi. In this case, pk is called a descendant of p0. As usual, we can
see a hedge h ∈ H(Σ,X) as a function from its set of nodes dom(h) into labels
in Σ∪X . The label of the node p ∈ dom(h) is denoted by h(p). The subtree of
a hedge h at node p ∈ dom(h) is denoted h|p.

The set of variables occurring in a hedge h ∈ H(Σ,X) is denoted var(h).
A hedge h ∈ H(Σ,X) is called linear if every variable of var(h) occurs once

4

in h. A substitution σ is a mapping of finite domain from X into H(Σ,X).
The application of a substitution σ to terms and hedges (written with postfix
notation) is defined recursively by xσ := σ(x) when x ∈ dom(σ), yσ := y when
y ∈ X \ dom(σ), (t1 · · · tn)σ := (t1σ · · · tnσ) for n ≥ 0, and a(h)σ := a(hσ).

The set C(Σ) of contexts over Σ contains the linear hedges of H
(
Σ, {x}

)
.

The application of a context C ∈ C(Σ) to a hedge h ∈ H(Σ,X) is defined by
C[h] := C{x 7→ h}. It consists in inserting h in C in place of the node labelled
by x. Sometimes, we write h[s] in order to emphasize that s is a subhedge (or
subtree) of h.

A hedge rewriting system (HRS) R over a finite unranked alphabet Σ is a
set of rewrite rules of the form `→ r where ` ∈ H(Σ,X)\X and r ∈ H(Σ,X); `
and r are respectively called left- and right-hand-side (lhs and rhs) of the rule.
Note that we do not assume the cardinality of R to be finite. A HRS is called
ground, resp. linear, if all its lhs and rhs of rules are ground, resp. linear.

The rewrite relation −−→R of a HRS R is the smallest binary relation on
H(Σ,X) containing R and closed by application of substitutions and contexts.
In other words, h −−→R h′, iff there exists a context C, a rule ` → r in R and a
substitution σ such that h = C[`σ] and h′ = C[rσ]. The reflexive and transitive
closure of −−→R is denoted −−→∗R . Given L ⊆ H(Σ,X) and a HRS R, we define the

rewrite closure of L under R as post∗R(L) := {h′ ∈ H(Σ,X) | ∃h ∈ L, h −−→∗R h′}
and the backward rewrite closure of L under R as pre∗R(L) := {h ∈ H(Σ,X) |
∃h′ ∈ L, h −−→∗R h′}.

Example 1. Let Σ = {a, b, c, d0, d1, d2} and let us consider the following rewrite
rules over Σ

R = {d0(x)→ a · d1(x), d1(x)→ d2(x) · c, d2(x)→ d0(b(x)), d2(x)→ b(x)}.

Starting from d0 = d0(ε), we have the following rewrite sequence d0 → a · d1 →
a ·d2 ·c→ a ·d0(b) ·c→ a ·a ·d1(b) ·c→ a ·a ·d2(b) ·c ·c→ a ·a ·d0(b(b)) ·c ·c→ . . .
We can observe that the trees of the rewrite closure of d0 under R which do not
contain the symbols d0, d1, d2 is the set of trees of the form a · · · a · b(. . . b(b)) ·
c · · · c with the same number of a, b and c. We call them T-patterns since they
have the shape of character T:

a · · · a · b · c · · · c
...
b
|
b

2. One-Variable Bidimensional Context-Free Hedge Automata

We consider a model of automata computing of unranked trees by means of
reduction with rewrite rules similar to (inverse) productions of CF grammars,
applied in horizontal or vertical directions in trees.

Definition 1. A 1-variable bidimensional context-free hedge automaton (CF1HA)
is a tuple A = 〈Σ, Q,Qf , ∆〉 where Σ is a finite unranked alphabet, Q is a finite

5

set of states disjoint from Σ, Qf ⊆ Q is a set of final states, and ∆ is a set of
rewrite rules of one of the following form, where p ∈ Q ∪ Σ, q1, q2, q ∈ Q:

ε → q(ε)
p(x) → q(x)

q1(x) · q2 → q(x)
q1 · q2(x) → q(x)

q1

(
q2(x)

)
→ q(x)

The rules of the second column are called horizontal transitions, and those of
the last column are called vertical transitions. By convention, q(ε) in the first
rule will be simply written q below.

The move relation −−→A between ground hedges of H(Σ∪Q) is defined as the

rewrite relation defined by ∆. The language of a CF1HA A in one of its states q,
denoted by L(A, q), is the set of ground hedges h ∈ H(Σ) such that h −−→∗A q
(we recall that q stands for q(ε)). A hedge h is accepted by A if there exists
q ∈ Qf such that h ∈ L(A, q). The language of A, denoted by L(A), is the set
of hedges accepted by A.
In the following, for the sake of conciseness, we should also consider horizontal
and vertical transitions of the form

p1(x) · p2 → q(x)
p1 · p2(x) → q(x)

p1

(
p2(x)

)
→ q(x)

where p1, p2 ∈ Q ∪ Σ and q ∈ Q. This does not increase the expressiveness of
CF1HA, as it is possible to simulate such rules with a linear number of additional
states and rules of Definition 1 of the form a→ q or a(x)→ q(x).
Moreover, it is possible to force the variable x in the transitions in Definition 1
to be equal to ε, i.e. to consider transitions of the form (p1, p2 ∈ Q∪Σ, q ∈ Q)

p1 → q p1 · p2 → q p1

(
p2

)
→ q

This does not change the expressiveness of the model. We can indeed assume,
without loss of generality, a unique state qε such that there is a transition ε→ qε
and that qε does not occur in lhs of horizontal transitions. With every symbol
p ∈ Σ∪Q, we associate a copy pε and a new transition p(qε(x))→ pε(x). Then
p1 → q corresponds to pε1(x) → q(x), p1 · p2 → q to pε1(x) · p2 → q(x), and
p1(p2)→ q to p1(pε2(x))→ q(x). More generally, we also accept horizontal rules
of the form p1 · · · pn → q (n ≥ 0).

Example 2. The language of T-patterns over Σ = {a, b, c}, as defined in Ex-
ample 1, is recognized by 〈Σ, {q0, q1, q2}, {q0},∆〉 with

∆ = {b(x1)→ q2(x1), a·q1(x2)→ q0(x2), q2(x1)·c→ q1(x1), q0(b(x))→ q2(x)}.

As an example of derivation, it holds that: a · a · b(b) · c · c→ a · a · q2(b) · c · c→
a · a · q1(b) · c→ a · q0(b) · c→ a · q2 · c→ a · q1 → q0.

2.1. Properties

In this Subsection we present closure and decision properties of CF1HA.

Property 1. The class of CF1HA languages is closed under union and not
closed under intersection or complementation.

6

Proof. Closure under union works with a direct construction by disjoint union
of automata. Non-closure under intersection is a consequence of the same result
for context-free word languages, which are defined as CF1HA without vertical
transitions. 2

The emptiness problem is the problem to decide whether the language of a given
CF1HA is empty or not.

Property 2. The emptiness problem is decidable in PTIME for CF1HA.

Proof. Let A = 〈Σ, Q,Qf ,∆〉. We use a marking algorithm with two marks: h
and v. Let us iterate the following operations until no marking is possible (note
that the marking is not exclusive: some states may have 2 marks h and v).

For all transitions ε→ q, mark q with h.

For all transitions a(x)→ q(x), mark q with h and v.

For all transitions q1(x)→ q(x), mark q with the marks of q1.

For all transitions q1(x) · q2 → q(x) such that both q1 and q2 are marked,
if q1 is marked with v, then mark q with v, otherwise mark q with h.

For all transitions q1 · q2(x)→ q(x) such that both q1 and q2 are marked,
if q2 is marked with v, then mark q with v, otherwise mark q with h.

For all transitions q1

(
q2(x)

)
→ q(x) such that q1 is marked v, if q2 is marked

with v, then mark q with v, otherwise, if q2 is marked with h, then mark
q with h.

The number of iterations is at most 2|Q| and the cost of each iteration is linear
in the size of A. It holds that (i) q ∈ Q is marked with h iff there exists h ∈ H(Σ)
such that h −−→∗

∆
q, and (ii) q ∈ Q is marked with v iff there exists C[] ∈ C(Σ),

non-trivial and such that for all h ∈ H(Σ), C[h] −−→∗
∆

q(h). Not that the latter
implies in particular that C[ε] ∈ L(A, q). These two properties can be proved
simultaneously by induction over the hedge structure. It follows from (i) that
L(A) = ∅ iff no state of Qf is marked with h or with v or with both. 2

The membership problem is the problem to decide whether a given hedge is
accepted by a given CF1HA.

Property 3. The membership problem is PTIME-complete for CF1HA.

PTIME-hardness follows from the PTIME-hardness of membership for context-
free grammars.

For proving the upper-bound we present a dynamic programming algorithm
à la Cocke-Younger-Kasami (see e.g. [25]), which, given an hedge h = a(t1 · · · tn)
and a CF1HA A = 〈Σ, Q,Qf ,∆〉 runs in deterministic polynomial time. The
algorithm associates set of states with some convex regions in h, which are
defined by patterns of the two following kinds. For convenience, the ith child of
a node p in h is denoted as p · i, and we use a special symbol > for representing
a virtual node, parent of all the roots of h, and, for 1 ≤ i ≤ n, we denote > · i
the ith root of h, i.e. the root node of ti.

7

A h-pattern is a tuple of the form π = 〈p, i, j〉 where p ∈ dom(h)∪ {>}, and
i ≤ j are natural numbers such that either p · i, p · j ∈ dom(h) or p is a leaf of h
and i = j = 1. This pattern represents an hedge denoted h|π, which is ε in the
latter case, and h|p·i · · ·h|p·j in the former case.

A v-pattern is a tuple of the form π = 〈p, i, p′, j〉 where p ∈ dom(h) ∪ {>},
i ≤ j are natural numbers such that p · i, p · j ∈ dom(h), and p′ ∈ dom(h) is
a descendant of p · i′ for some i ≤ i′ ≤ j. This pattern represents the context
h|p·i · · ·h|p·i′−1 · (h|p·i′)[x] · h|p·i′+1 · · ·h|p·j , denoted as h|π, where x is the only
child of the node p′.
The algorithm associates a set of states of A with each pattern of type h or v,
by iteration of the following rules.

1. if p · i is the node of a leaf of h, and ε→ q ∈ ∆,
then we add q to (the set of states associated with) the h-pattern 〈p, 1, 1〉;

2. if p · i is labeled by a in h, and a(x)→ q(x) ∈ ∆,
then we add q to the v-pattern 〈p, i, p · i, i〉;

3. if q1 is in the h-pattern π = 〈p, i, j〉, or the v-pattern π = 〈p, i, p′, j〉,
and q1(x)→ q(x) ∈ ∆ then we add q to π;

4. if q1 is in the v-pattern 〈p, i, p′, j〉 and q2 is in the h-pattern 〈p, j + 1, k〉,
and q1(x) · q2 → q(x) ∈ ∆, then we add q to the v-pattern 〈p, i, p′, k〉;

5. if q1 is in the h-pattern 〈p, i, j〉 and q2 is in the v-pattern 〈p, j + 1, p′, k〉,
and q1 · q2(x)→ q(x) ∈ ∆, then we add q to the v-pattern 〈p, i, p′, k〉;

6. if q1 is in the h-pattern 〈p, i, j〉 and q2 is in the h-pattern 〈p, j + 1, k〉,
and q1(x) · q2 → q(x) ∈ ∆, or q1 · q2(x)→ q(x) ∈ ∆,
then we add q to the h-pattern 〈p, i, k〉;

7. if q1 is in the v-pattern 〈p, i, p′, j〉 and q2 is in the v-pattern 〈p′, 1, p′′, k〉,
where k is the number of children of p′, and q1(q2(x))→ q(x) ∈ ∆,
then we add q to the v-pattern 〈p, i, p′′, j〉;

8. if q1 is in the v-pattern 〈p, i, p′, j〉 and q2 is in the h-pattern 〈p′, 1, k〉,
where k is the number of children of p′, and q1(q2(x))→ q(x) ∈ ∆,
then we add q to the h-pattern 〈p, i, j〉.

The number P of patterns is at most cubic in the size of h, and the algorithm
will reach a fix point in at most P |Q| iterations. Every iteration needs a time
polynomial in the size of A, hence the algorithm terminates in polynomial time.
Then it answers that the hedge h is accepted by A iff the set of states associated
with the h-pattern 〈>, 1, n〉 contains an accepting state of Qf (n is the number
of children of h).

2.2. Correctness of the membership algorithm

In order to establish the correctness of the above algorithm, we show the
two following claims simultaneously.

(h) for every h-pattern π, q belongs to π iff h|π −−→∗A q

(v) for every v-pattern π, q belongs to π iff h|π −−→∗A q(x)

For the only if direction, let us assume that q belongs to a pattern π (h- or
v-pattern). We do an induction on the number of iterations of the algorithm
before adding q to π, and consider the case of the rule that has added q to π.

8

rule 1. In this case π is a h-pattern 〈p, 1, 1〉, p is a leaf node, ε → q ∈ ∆, and
hence h|π = ε −−→∗A q.

rule 2. Then π is a v-pattern 〈p, i, p · i, i〉, p · i is labeled by a in h, and
a(x)→ q(x) ∈ ∆, and hence h|π = a(x) −−→∗A q(x).

rule 3. By hypothesis, q1(x) → q(x) ∈ ∆ and q1 is already in π, hence, by
induction hypothesis, h|π −−→∗A q1 −−→A q if π is a h-pattern and h|π −−→∗A
q1(x) −−→A q(x) if π is a v-pattern.

rule 4. In this case, π is a v-pattern 〈p, i, p′, k〉 and by hypothesis, q1(x) ·
q2 → q(x) ∈ ∆, q1 is already in the v-pattern π1 = 〈p, i, p′, j〉 and q2 is
already in the h-pattern π2 = 〈p, j+1, k〉. Hence, by induction hypothesis,
h|π = h|π1

· h|π2
−−→∗A q1(x) · q2 −−→A q(x).

rule 5. This case is similar to the previous one.

rule 6. In this case π is a h-pattern 〈p, i, k〉, and by hypothesis, q1(x) · q2 →
q(x) ∈ ∆, or q1 · q2(x) → q(x) ∈ ∆, q1 is already in the h-pattern π1 =
〈p, i, j〉 and q2 is already in the h-pattern π2 = 〈p, j + 1, k〉. Hence by
induction hypothesis, h|π = h|π1

· h|π2
−−→∗A q1 · q2 −−→A q(x).

rule 7. In this case, π is a v-pattern 〈p, i, p′′, j〉 and by hypothesis, q1(q2(x))→
q(x) ∈ ∆, q1 is already in the v-pattern π1 = 〈p, i, p′, j〉 and q2 is already
in the v-pattern π2 = 〈p′, 1, p′′, k〉. Using the induction hypothesis, h|π =
h|π1

[h|π2
] −−→∗A q1(q2(x)) −−→A q(x).

rule 8. Then π is a h-pattern 〈p, i, j〉, and q1(q2(x))→ q(x) ∈ ∆, q1 is already
in the v-pattern π1 = 〈p, i, p′, j〉, and q2 is already in the v-pattern π2 =
〈p′, 1, k〉, where k is the number of children of p′ in h. Using the induction
hypothesis, h|π = h|π1

[h|π2
] −−→∗A q1(q2) −−→A q.

Note that the base case of the induction enters in one of the cases 1 or 2 above.

For the if direction, let us assume that h|π −−→∗A q or h|π −−→∗A q(x), according to
the type of π, and let us reason by induction on the length of the reduction.
If the reduction has length one, then we are in one of the following cases

π is an h-pattern and h|π = ε −−→A q. It means that π = 〈p, 1, 1〉 where p is a
leaf node of h. The transition of A involved in the reduction is necessarily
ε→ q, and the rule 1 has been applied by the algorithm to add q to π.

π is an v-pattern and h|π = a(x) −−→A q(x). It means that π = 〈p, i, p · i, i〉
where p · i is a node of h labeled by a. The transition of A involved in the
reduction must be a(x) → q(x), and the rule 2 has been applied by the
algorithm to add q to π.

Assume now that the reduction has length more than one. We make a case
analysis on the transition rule of A involved in the last step of the reduction.

if the last transition is ε→ q then, according to the form of the CF1HA transi-
tions, the reduction has length one, and this case has been treated above.

9

assume that the last transition is q1(x) → q(x). If π is a h-pattern, then the
reduction has the form h|π −−→∗A q1 −−→A q. By induction hypothesis on
the first part of the reduction, q1 is in π, and the rule 3 has been applied
by the algorithm and hence q has been added to π. The case where π
is a v-pattern, and the reduction has the form h|π −−→∗A q1(x) −−→A q(x) is
similar.

assume that the last transition is q1(x) · q2 → q(x). If π is a h-pattern 〈p, i, k〉,
then the reduction has the form

h|π = h|p·i · · ·h|p·k −−→∗A q1 · q2 −−→A q.

It means that there exists j such that i ≤ j ≤ k and h|p·i · · ·h|p·j −−→∗A q1

and h|p·j+1 · · ·h|p·k −−→∗A q2. Hence, by induction hypothesis, q1 is in the
h-pattern 〈p, i, j〉 and q2 is in the h-pattern 〈p, j + 1, k〉. It follows that
the rule 6 has been applied and that q is in π.
If π is a v-pattern 〈p, i, p′, k〉, then the reduction has the form

h|π = h|p·i · · ·h|p·i′−1 · (h|p·i′)[x] · h|p·i′+1 · · ·h|p·k −−→∗A q1(x) · q2 −−→A q(x).

It means that there exists j such that i′ ≤ j ≤ k and h|p·i · · ·h|p·i′−1 ·
(h|p·i′)[x] · h|p·i′+1 · · ·h|p·j −−→∗A q1(x) and h|p·j+1 · · ·h|p·k −−→∗A q2. Hence,
by induction hypothesis, q1 is in the v-pattern 〈p, i, p′, j〉, and q2 is in the
h-pattern 〈p, j+ 1, k〉. It follows that the rule 4 has been applied and that
q is in π.

the case of a last transition of the form q1 · q2(x) → q(x) is similar to the
previous one.

assume that the last transition is q1(q2(x))→ q(x). If π is a h-pattern 〈p, i, j〉,
then the reduction has the form

h|π = h|p·i · · ·h|p·j −−→∗A q1(q2) −−→A q.

It means that there exists i′ such that i ≤ i′ ≤ j such that h|p·i · · ·h|p·i′−1 ·
(h|p·i′)[x] · h|p·i′+1 · · ·h|p·j −−→∗A q1(x) and h|p′·1 · · ·h|p′·k −−→∗A q2, where
p′ ∈ dom(h) is the parent node of x (it is a descendant of p · i′), and k is
the number of children of p′ in h. By induction hypothesis, q1 is in the
v-pattern 〈p, i, p′, j〉 and q2 is in the h-pattern 〈p′, 1, k〉. It follows that the
rule 8 has been applied and that q is in π.
If π is a v-pattern 〈p, i, p′′, j〉, then the reduction has the form

h|π = h|p·i · · ·h|p·i′−1 · (h|p·i′)[x] · h|p·i′+1 · · ·h|p·j −−→∗A q1(q2(x)) −−→A q(x)

such that p · i′ is an ancestor of p′′ and p′′ is the parent node of x. It
means that there exists a node p′ which is a descendant of p · i′ such that
h|p·i · · ·h|p·i′−1 · (h|p·i′)[y] · h|p·i′+1 · · ·h|p·j −−→∗A q1(y), such that p′ is the

parent node of y, and h|p′·1 · · ·h|p′·i′′−1 · (h|p′·i′′)[x] · h|p′·i′+1 · · ·h|p′·k −−→∗A
q2(x) such that p′′ is the parent node of x (it is a descendant of p′ · i′′), and
k is the number of children of p′ in h. By induction hypothesis, q1 is in
the v-pattern 〈p, i, p′, j〉 and q2 is in the h-pattern 〈p′, 1, p′′, k〉. It follows
that the rule 7 has been applied and that q is in π.

10

2.3. Related Models

The CF1HA capture the expressiveness of two models of automata on un-
ranked trees: the hedge automata [2] and the lesser known extension of [26] that
we call CFHA.

A hedge automaton (HA) resp. context-free hedge automaton (CFHA) is a
tuple A = 〈Σ, Q,Qf ,∆〉 where Σ, Q and Qf are as above, and the transitions
of ∆ have the form a(L) → q where a ∈ Σ, q ∈ Q and L ⊆ Q∗ is a regular
word language (resp. a context-free word language). The language of hedges
accepted is defined as for CF1HA, using the (possibly infinite) set of rewrite rules
{a(q1 · · · qn)→ q | a(L)→ q ∈ ∆, q1 · · · qn ∈ L}.

The CFHA languages form a strict subclass of CF1HA languages. Indeed
every CFHA 〈Σ, Q,Qf ,∆〉 can be presented as a CF1HA with variable-free tran-
sitions of the form

ε→ q p1 → q p1 · p2 → q a(q1)→ q

where a ∈ Σ, p1, p2 ∈ Q ∪ Σ, q1, q ∈ Q.
It can be shown that the set of T-patterns of Example 2 is not a CFHA language,
using a pumping argument on the paths labeled by b.

The HA languages, also called regular unranked tree languages, also form
a strict subclass of CF1HA languages. Every HA can indeed be presented as a
CF1HA A = (Σ, Q,Qf ,∆) with variable-free transitions constrained with a type
discipline: Q = Qh]Qv and every transition of ∆ has one of the forms

a→ qh a→ qv qh · qv → q′h a(qh)→ qh a(qh)→ qv

where a ∈ Σ, qh, q
′
h ∈ Qh, qv ∈ Qv. The distinction between horizontal and

vertical states permits to ensure that horizontal transitions are applied left to
right in siblings. This latter model, can also compared to the forest automata
of [27], where the horizontal transitions is presented as a finite monoid of states
(Q,+, 0), and the vertical transition is defined by a function δ : Σ × Q → Q
(δ(a, 0) = q being the analogous of the transition a→ q). Forest Automata and
HA have the same expressive power. As outlined in introduction, using rewrite
rules for the definition of CF1HA transitions permitted to simplify dramatically
the construction of rewrite closure in Sections 3 and 4, compared to the former
models of HA and CFHA which are more ad-hoc. In the paper, the HA and
CFHA that we shall consider will be presented as CF1HA.

The class of HA languages is closed under Boolean operations and the class
of CFHA languages is closed under union but not closed under intersection and
complementation, see [2, 26, 1]. The intersection of a CFHA language and a HA
language is a CFHA language. All these results are effective, with PTIME (resp.
EXPTIME) constructions of automata of polynomial (resp. exponential) sizes
for the closures under union and intersection (resp. complement).

In [23] we proposed a model called CF2HA, more general than CF1HA, with
some 2-variable horizontal transitions of the form q1(x1)·q2(x2)→ q(x1·x2). The
following examples shows that CF2HA are strictly more general than CF1HA.

Example 3. The hedge language {g(an · an) | n ≥ 1} is recognized by the
CF2HA with the following transition rules: a(x1) · a(x2)→ q(x1 ·x2), q(q(x))→
q(x), g(q(x))→ qf(x) (qf is the unique final state).

11

One can observe that the language of Example 3 is not recognizable by a CF1HA.

Some models of automata strictly extending HA have been introduced to
compute on unranked trees while simultaneously testing for equalities and dis-
equalities between subtrees [28, 29]. These models can recognize the language
of Example 3 (which is not CF1HA). On the other hand, they cannot recognize
the language of T-patterns of Example 2. Hence their expressive power cannot
be compared to CF1HA.

3. Inverse Monadic Hedge Rewriting Systems

A rewrite rule `→ r over Σ is called monadic (following [5, 30]) if r = a(x)
with a ∈ Σ, x ∈ X , inverse-monadic if r → ` is monadic and r /∈ X ∪ {ε}, and
1-childvar if it contains at most one variable x and every parent node of this
variable x in ` and r has no other child than x. Intuitively, every finite, linear,
inverse-monadic, 1-childvar HRS can be transformed into a HRS equivalent
w.r.t. reachability whose rules are inverse of transitions of CF1HA. It follows
that such HRS preserve CF1HA languages.

Example 4. The HRS of Example 1 is linear, inverse-monadic, and 1-childvar.
The closure of the language {p0} is the CF1HA language of T-patterns.

3.1. Rewrite Closure

Theorem 1. Let L be the language of AL ∈ CF1HA and R be a finite, linear,
inverse-monadic, 1-childvar HRS. There exists an effectively computable CF1HA
A′ recognizing post∗R(L), of size polynomial in the size of R and AL.

Proof. Let AL = 〈Σ, QL, Qf
L,∆L〉, we construct a CF1HA A = 〈Σ, Q,Qf ,∆〉.

The state set Q contains all the states of QL, one state h for every sub-hedge
of a rhs of rule of R, one state a for each a ∈ Σ and one new state q /∈ QL.
For each p ∈ QL ∪ Σ, we denote p = a if p = a ∈ Σ and p = p otherwise. Let

Qf = Qf
L and let ∆0 contain the rules of ∆L and the following transition rules,

where a ∈ Σ, t ∈ T (Σ, {x}) and h ∈ H(Σ, {x}) \ {ε}.

t(x) · h → t · h(x) if x ∈ var(t), t · h ∈ Q
t(x) · h → q(x) if x ∈ var(t), t · h /∈ Q
t · h(x) → t · h(x) if x /∈ var(t), t · h ∈ Q
t · h(x) → q(x) if x /∈ var(t), t · h /∈ Q
a(x) → a(x)

a(h(x)) → a(h)(x) if a(h) ∈ Q
a(h(x)) → q(x) if a(h) /∈ Q
a(q(x)) → q(x)

Finally, let
∆ = ∆0 ∪ {h(x)→ a(x) | a(x)→ h ∈ R}.

Intuitively, A will accept:

• in a state p ∈ QL: the rewrite closure of the language L(AL, p) under R,

• in a state h (resp. a): the rewrite closure under R of the set of ground
instances of the hedge h (resp. a(x)),

12

• in the state q: the rewrite closure under R of the set of ground hedges not
matched by a subhedge of rhs of rule of R.

Let ` ∈ H(Σ) be such that

` −−→∗
∆

s(u) (?)

with s ∈ Q and u ∈ H(Q ∪ Σ). We show by induction on the number N
of applications of rules of ∆ \ ∆0 in (?) that there exists `′ ∈ H(Σ) such that
`′ −−→∗R ` and moreover, if s = h, then h matches `′, if s = q then `′ is not matched
by a subhedge of a rhs of a rule of R, and if s ∈ QL, then `′ ∈ L(AL, s).

If N = 0, then the property holds with `′ = `. This can be shown by
induction on the length of (?), analyzing the different cases for the last transition
used in (?). We consider the case of a transition t(x) · h → t · h(x) (the other
cases are similar). In that case, (?) has the form

` = `1 · `2 −−→∗∆0
t(u) · h −−→

∆0
t · h(u) = s(u),

with `1 −−→∗∆0
t(u) and `2 −−→∗∆0

h. Since these two derivations are shorter than (?),

by induction hypothesis, it holds that there exists `′1 −−→
∗
R `1 such that t matches

`1, and there exists `′2 −−→
∗
R `2 such that h matches `2 (i.e. h = `2). With

`′ = `′1 · `′2, we can conclude since `′ −−→∗R ` and t · h matches `′.
If N > 0, we can assume that (?) has the following form.

` = C[k] −−→∗
∆0

C[h(v)] −−−−→
∆\∆0

C[a(v)] −−→∗
∆

s(u)

It follows that h matches k, i.e. there exists w such that k = h[w], and w −−→∗
∆0

v.

Hence `′ = C[a(w)] −−→R `, and `′ −−→∗
∆0

C[a(v)] −−→
∆0

C[a(v)] −−→
∆

s(u). We can

then apply the induction hypothesis to `′ and immediately conclude for `. 2

The following Example 5 illustrates the importance of the 1-childvar and
condition in Theorem 1.

Example 5. With the following rewrite rule a(x)→ c ·a(e ·x ·g) ·d we generate
from {a} the language {cna(engn) · dn | n ≥ 1}, seemingly not CF1HA.

3.2. Backward Rewrite Closure and Typechecking

The following result directly follows from a proof in [16] that the closure of
a HA language under rewriting with a monadic HRS is a HA language.

Theorem 2. Let L be the language of AL ∈ HA and R be a finite, inverse-
monadic HRS. There exists an effectively computable HA A′ recognizing pre∗R(L).

The Reachability problem is the problem to decide, given two hedges h, h′ ∈
H(Σ) and a rewrite system R/A whether h −−−−→∗R/A h′.

The Typechecking problem (see e.g. [10]) is the problem to decide, given two sets
of trees Lin and Lout called input and output types (generally presented as HA)
and a rewrite system R/A whether post∗R/A(Lin) ⊆ Lout. Note that reachability
is a special case of typechecking, when both Lin and Lout are singleton sets.
Hence typechecking is undecidable whenever reachability is.

13

Corollary 1. Typechecking is decidable for finite inverse-monadic HRS and HA
languages as input and output types.

Proof. Given languages Lin and Lout recognized respectively by HAs Ain and
Aout, one can built a HA recognizing the complement Lout of Lout, by closure
of HA languages under complementation, a HA recognizing pre∗R(Lout), by The-
orem 2, and finally a HA recognizing Lin ∩ pre∗R/A(Lout), by closure of HA
languages under intersection. This reduces the problem of typechecking for
inverse-monadic HRS to the emptiness for HA, which is a decidable problem.2

We conjecture that the intersection of a CF1HA language and a HA language is
a CF1HA language (and the result is effective). Using Theorem 1, that would
permit to decide typechecking for input types in CF1HA and output types in
HA, by reduction to emptiness of CF1HA (Property 2).

4. Update Hedge Rewriting Systems

In this section, we turn to our motivation of studying XQuery Update Fa-
cility primitives modeled as parameterized rewriting rules.

Let A = 〈Σ, Q,Qf ,∆〉 be a HA. A hedge rewriting system over Σ parametri-
zed by A (PHRS) is given by a finite set, denoted R/A, of rewrite rules `→ r
where ` ∈ H(Σ,X) and r ∈ H(Σ]Q,X) and symbols of Q can only label leaves
of r (] stands for disjoint union, hence we implicitly assume that Σ and Q are
disjoint sets). In this notation, A may be omitted when it is clear from context
or not necessary. The rewrite relation −−−−→R/A associated with a PHRS R/A
is defined as the rewrite relation −−−−→R[A]

where the HRS R[A] is the (possibly

infinite) set of all rewrite rules obtained from rules `→ r in R/A by replacing
in r every state p ∈ Q by a ground hedge of L(A, p). Note that when there are
multiple occurrences of a state p in a rule, each occurrence of p is independently
replaced with a hedge in L(A, p), which can generally be different from one
another. Given a set L ⊆ H(Σ,X), we define post∗R/A(L) to be post∗R[A](L)
We call updates parametrized rewrite rules of the following form

a(x)→ b(x) node renaming (ren)
a(x)→ a(u1 · x · u2) u1, u2 ∈ Q∗ addition of child nodes (ac)
a(x)→ v1 · a(x) · v2 v1, v2 ∈ Q∗ addition of sibling nodes (as)
a(x)→ b

(
a(x)

)
addition of parent node (ap)

a(x)→ u u ∈ Q∗ replacement/recursive deletion (rpl)
a(x)→ x single node deletion (del)

Note that the particular case of (rpl) of rpl with u = ε corresponds to the deletion
of the whole subtree a(x). In the rest of the paper, a PHRS containing only
updates will be called update PHRS (uPHRS).

Example 6. The data of patients in a hospital is stored in an XML document
whose schema can be characterized by an HA A with the following transition

14

rules, where the vertical ones are given before the horizontal ones:

hospital → qhospital hospital(qhospital) → qhospital
patient(qepatient) → qepatient patient(qpatient) → qpatient

name(qname) → qname treatment(qtreatment) → qtreatment

drug(qdrug) → qdrug diagnosis(qdiagnosis) → qdiagnosis
date(qdate) → qdate

a→ qstr b→ qstr . . . a · qstr → qstr . . .
qstr → qname qstr → qdrug

qstr → qdiagnosis qstr → qdate

qdrug · qdiagnosis · qdate → qtreatment

qname → qepatient qname · qtreatment → qpatient

qepatient → qhospital qpatient → qhospital

qepatient · qhospital → qhospital qpatient · qhospital → qhospital

In this example, the states with superscripts correspond to hedges, and states
with subscripts (except qstr) correspond to trees. The state qepatient represents
the type of a patient with an empty treatment and qpatient represents the other
patients. The state qhospital is the only final state i.e. it represents the type of
the valid documents (it is sometimes also called entry point of the schema).

A (rpl) rule such as patient(x)→ ε will delete one patient in the base and a
(ac) rule hospital(x) → hospital(x · qpatient) will insert a new patient at the last
node below the root node hospital. We can ensure that the newly added patient
has an empty treatment list using hospital(x)→ hospital(x ·qepatient). A (as) rule
name(x) → name(x) · qtreatment can be used to insert later a treatment next to
the patient’s name. 3

As illustrated by the above Example 6, the class PHRS can be used to model
XML update operations for XML documents. More precisely, rules of type (ren),
(ac), (as), (rpl) correspond to primitives defined in the XQUF standard [12] for
the node renaming, insertion and replacement in XML documents. The deletion
of a whole subtree, which is also a primitive of [12] is also a particular case of
(rpl) of the form a(x)→ ε. The two other kinds of rules (ap) and (del) are not
in [12]. We believe that they can be useful as well for modeling some inplace
modifications of XML documents. For instance, (del) deletes a single node n
whose arguments inherit the position. In other words, it replaces a tree with the
hedge containing its children. This operation is employed to build user views of
XML documents e.g. in [17], and can also be useful for updates as well.

Example 7. Assume that some patients of the hospital of Example 6 are
grouped in one department like in hospital(. . . surgery(q∗patient) . . .), and that we
want to suppress the department surgery while keeping its patients. This can
be done with the (del) rule surgery(x) → x. If on the contrary we want
to include surgery in a larger department emergency, we apply an (ap) rule
surgery(x)→ emergency(surgery(x)). 3

The rules of type (ren), (as), (ap) and (rpl) can be easily simulated by the
HRS of Theorem 1, Section 3. In particular, the parameters’ semantics can be
simulated using ground rewrite rules (with such rules, a symbol can generate
a HA language). The rules (ac) are not 1-childvar and the rule (del) is not
inverse-monadic.

15

The main result of this section, is a proof of forward rewrite closure for
uPHRS, using automata completion techniques: starting from an automaton
recognizing the initial set, we add transition for, roughly, simulating the rewrite
rules. Since we do not add new states, the construction terminates with a
fixpoint.

In Section 4.2, we consider first (Theorem 3) the case of loop-free uPHRS,
introduced in Section 4.1, which do not permit looping sequences of renaming.
Then we lift to the general case (Corollary 3) using results of Section 4.1. In
Section 4.3 we recall a result of backward rewrite closure (Theorem 4) and
application of the above results to typechecking for uPHRS (Corollary 4).

4.1. Loop-free uPHRS
In the proof of the next Theorem 3, we will reduce the class of rewrite systems

in consideration to the case where there exists no looping sequence of renaming,
for simplification purposes. Therefore we introduce the following definition:

Definition 2. An uPHRS R/A is loopfree if there exists no sequence a1, . . . , an
(n > 1) such that for all 1 ≤ i < n, ai(x) → ai+1(x) is a renaming rule of R
and a1 = an.

Given a uPHRS R/A, we consider the directed graph G whose set of nodes
is Σ and containing an edge 〈a, b〉 iff a(x) → b(x) is in R. For every strongly
connected component in G we select a representative. We denote by â the
representative of a in its component and more generally by ĥ the hedge obtained
from h ∈ H(Σ) by replacing every function symbol a by its representative â.

We define R̂ to be R where every rule ` → r is replaced by ˆ̀→ r̂ (if the two
members get equal we can remove the rule). We define Â analogously.

Lemma 1. Given an uPHRS R/A the uPHRS R̂/Â is loopfree and for all

h, h′ ∈ H(Σ) we have h −−−−→∗R/A h′ iff ĥ −−−→∗
R̂/Â

ĥ′.

Proof. By induction on the length of derivations. 2

4.2. Rewrite Closure
The rest of the section is devoted to the construction of CF1HA for the

forward closure by updates.

Theorem 3. Let A be a HA over Σ, and L be the language of AL ∈ CFHA,
and R/A be a loop-free uPHRS. There exists an effectively computable CFHA
recognizing post∗R/A(L), of size polynomial in the size of R/A and AL and
exponential in the size of the alphabet Σ.

The construction of the CFHA works in 2 steps: construction of an initial au-
tomaton and completion step. We need first a notion of normalization of CFHA
in order to simplify the proofs: a CFHA 〈Σ, Q,Qf ,∆〉 is called normalized if for
all a ∈ Σ and q ∈ Q, there exists one unique state of Q denoted qa such that
a(qa) → q ∈ ∆, and moreover, qa does neither occur in a left hand side of an
horizontal transition of ∆ nor in a right hand side of a vertical transition of ∆.

Lemma 2 (Normalization). For all CFHA A, there exists a normalized CFHA
A′ such that L(A′) = L(A), of size linear in the size of A and which can be
constructed in PTIME.

The proof of Lemma 2 follows the lines of the similar construction for nor-
malized HA, see Remark 8.2.6 (and above) in [1].

16

Initial automaton. Let A = 〈Σ, QA, Qf
A,∆A〉 and AL = 〈Σ, QL, Qf

L,∆L〉. We
assume that the state sets QA and QL are disjoint. We will construct a CF1HA
A′ for the recognition of post∗R/A(L).

First, in order to simplify the construction, let us merge A and AL into a
CFHA B = 〈Σ, P, P f ,Γ〉 obtained by the normalization of 〈Σ, QA]QL, Qf

L,∆A]
∆L〉. Below, the states of P will be denoted by the letters p or q. Let Pin be the
subset of states of P of the form qa (remember that qa is a state of P uniquely
characterized by a ∈ Σ, q ∈ P , since B is normalized). We assume wlog that
Pin and P f are disjoint and that B is clean, i.e. for all p ∈ P , L(B, p) 6= ∅.

Preliminary transformation. Next, in a preliminary construction step, we trans-
form the initial automaton B into a CFHA A0 = 〈Σ, Q,Qf ,∆0〉 (presented as a
CF1HA, see Section 2.3). Let us call renaming chain a sequence a1, . . . , an of
symbols of Σ such that n ≥ 1 for all 1 ≤ i < n, ai(x) → ai+1(x) ∈ R. Since R
is loop-free, the length of every renaming chain is bounded by |Σ|. The fresh
state symbols of Q are defined as extensions of the symbols of P \ Pin with
renaming chains. We consider two modes for such states: the hedge and tree
modes, characterized by a chain respectively in superscript or subscript.

Q = P ∪ {qa | qa ∈ Pin} ∪
{
qa1...an

∣∣ q ∈ P \ Pin, n ≥ 2,
qa1...an

∣∣ a1, . . . , an is a renaming chain

}
Let Qf = P f be the subset of final states. Intuitively, in the state qa1...an , the
chain of Σ+ represents a sequence of renamings, with R/A, of the parent of the
current symbol, starting with a1 and ending with an. Note that the states of Pin

are particular cases of such states, with a chain of length one. A state qa1...an
will be used below to represent the tree an(qa1...an).
The initial set of transitions ∆0 is defined as follows

∆0 = Γh ∪ {qa1 → q | qa1 ∈ Q}
∪ {an

(
qa1...an

)
→ qa1...an | qa1...an , qa1...an ∈ Q,n ≥ 1}

where Γh is the subset of horizontal transitions of Γ. Note that A0 is not
normalized. The following lemma is immediate by construction of Γ and A0.

Lemma 3. For all q ∈ QA (resp. q ∈ QL) L(A0, q) = L(A, q) (resp. L(AL, q)).

Proof. Every vertical transition in Γ has the form a(qa) → q and can be sim-
ulated by the 2 steps a(qa) → qa → q. Moreover, all the states qa1...an and
qa1...an with n ≥ 2 are empty for A0. 2

Completion. For the construction of A′, we shall complete ∆0 into ∆′ by adding
some transition rules, according to a case analysis of the rules of R/A presented
in Table 1. In the rules of Table 1, a1, . . . , an, b are symbols of Σ, and u, v are
sequences of Q∗A. Only a bounded number of rules can be added to ∆0. Let
A′ = 〈Σ, Q,Qf ,∆′〉 be the completed automata that we obtain.

Example 8. Let A be the HA of Example 6, let R/A = {hospital(x) →
hospital(x · qepatient)}, and let L be recognized by a HA AL obtained from A
by deleting the four transitions containing qepatient or qepatient.

The CFHA A′ obtained by completion of AL wrt R/A recognizes (in its final
state qhospital) the set of trees hospital(hpa · hepa), where hpa and hepa are finite

17

R/A contains ∆′ = ∆0∪

(ren) an(x)→ b(x)
{qa1...an → qa1...anb | qa1...anb ∈ Q}

∪ {qa1...anb → qa1...an | qa1...anb ∈ Q}
(ac) an(x)→ an(u · x · v) {u · qa1...an · v → qa1...an | qa1...an ∈ Q}
(as) an(x)→ u · an(x) · v {u · qa1...an · v → qa1...an | qa1...an ∈ Q}
(ap) an(x)→ b

(
an(x)

)
{b
(
qa1...an

)
→ qa1...an | qa1...an ∈ Q}

(rpl) an(x)→ u {u→ qa1...an | qa1...an ∈ Q}
(del) an(x)→ x {qa1...an → qa1...an | qa1...an ∈ Q}

Table 1: CFHA Completion

sequences of trees respectively of the form: patient(name(. . .) · treatment(. . .))
and patient(name(. . .)). The completion indeed adds to A′ a new horizontal
transition qhospital · qepatient → qhospital, using the line (ac) of Table 1. 3

Example 9. Let A be again the HA of Example 6, and let R/A = {name(x)→
name(x) ·qtreatment, patient(x)→ ε}. The first rule is the insertion of a treatment
for a patient and the second ones deletes a patient.

Let L = {hospital(patient(name(a)))}. This language is recognized by the
following HA AL =

(
{q0, q1, q2, q3}, {q3}, {a→ q0, name(q0)→ q1, patient(q1)→

q2, hospital(q2)→ q3}
)
.

Then, in addition to the transitions of A and AL, the completed CFHA
A′ contains the transitions qname · qtreatment → qname (according to the line
(as) of Table 1) and ε → qpatient (according to the line (rpl) of Table 1). It
recognizes the language containing the tree hospital and all trees of the form
hospital(patient(name(a)·h)) where h is a sequence of trees of the form treatment(. . .).
This language is indeed the forward closure of L by R/A. 3

Example 10. Let us come back again to Example 6, with a slight variation
Av of A, obtained by the replacement of the rule patient(qepatient)→ qepatient by
patient′(qepatient)→ qepatient where patient′ is a new symbol (for patients without
treatment). We consider the following PHRS

R/Av = {patient′(x)→ patient(x), patient(x)→ qpatient · patient(x)}

and the language L = {hospital(patient′)} recognized by the following HA

AL =
(
{q, q1}, {q1}, {patient′ → q, hospital(q)→ q1}

)
.

The initial normalization step introduces a transition patient′(qpatient
′
) → q

where the state qpatient
′

recognizes only ε, and the preliminary transformation
adds the transitions qpatient′ → q, patient′(qpatient

′
)→ qpatient′ , and

patient(qpatient
′patient) → qpatient′patient (note that patient′patient is a renaming

chain).
The completion procedure introduces the following transitions: qpatient

′ →
qpatient

′patient and qpatient′patient → qpatient′ by the line (ren) of Table 1, and qpatient ·
qpatient → qpatient by (as). Moreover, it also generates, by (as) again: qpatient ·
qpatient′patient → qpatient′patient.

18

The automaton obtained after the completion recognizes hospital(patient′)
and all the trees of the form hospital(t1 · · · tn·patient) where n ≥ 0 and t1, . . . , tn ∈
L(A′, qpatient). 3

4.2.1. Correctness.

The following Lemma 4 shows that the automata computations simulate the
rewrite steps, i.e. that L(A′) ⊆ post∗R/A(L). Let us abbreviate R/A by R. We

use the notation h −−−−−→R
a1...an h′, for a renaming chain a1, . . . , an (n ≥ 1), if there

exists h1, . . . hn ∈ H(Σ) such that

h = a1(h1) −−→∗R a1(h2) −−→
ren

a2(h2) −−→∗R . . . −−→∗R an−1(hn) −−→
ren

an(hn) −−→∗R h′

where the reductions denoted −−→
ren

are rewrite steps with rules of R/A of type
(ren), applied at the nodes labeled a1,. . . , an, and all the other rewrite steps
(denoted −−→∗R) involve no rule of type (ren).

Lemma 4 (Correctness). For all h ∈ H(Σ),

i. if h −−→∗A′ qa1...an , with n ≥ 1, then there exists h1 ∈ H(Σ) such that

a1(h1) −→∗B q and a1(h1) −−−−−→R
a1...an h,

ii. if h −−→∗A′ qa1...an , with n ≥ 1, then there exists h1 ∈ H(Σ) such that

h1 −→∗B qa1 , and a1(h1) −−−−−→R
a1...an an(h),

iii. if h −−→∗A′ q ∈ P \ Pin, then there exists h′ ∈ H(Σ) such that

h′ −→∗B q and h′ −−→∗R h.

Proof. Let s ∈ Q be such that h −−→∗A′ s and let us call ρ this reduction. With a
commutation of transitions, we can assume that ρ has the following form,

ρ : h = t1 · · · tm −−→∗A′ s1 · · · sm −−→∗A′ s︸ ︷︷ ︸
ρ0

where t1, . . . , tm ∈ T (Σ), s1, . . . , sm ∈ Q, and for all 1 ≤ i ≤ m, ti −−→∗A′ si, and
the last step of this reduction involves a vertical transition a(qa1...an) → si or
b(qa1...an)→ si. The proof is by induction on the length of ρ.

The shortest possible ρ has 2 steps: h = t1 = a(ε) −−→A0
a(qa) −−→A0

q = s and

(iii) holds immediately with h′ = h, by Lemma 3.

For the induction step, we consider the length of ρ0.
If |ρ0| = 0, we have necessarily m = 1, and the reduction ρ has one of the two
following forms (~v ∈ Q∗).

h = t1 = b(h′) −−→∗A′ b(~v) −−→∗A′ b(qa1...an) −−→A′ qa1...an = s1 = s (1)

h = t1 = an(h′) −−→∗A′ an(~v) −−→∗A′ an(qa1...an) −−→A0
qa1...an = s1 = s (2)

In the case (1), assume that the vertical transition b(qa1...an) → qa1...an
has been added to A′ because R/A contains a rule an(x) → b

(
an(x)

)
. By

induction hypothesis (i) applied to the sub-reduction h′ −−→∗A′ qa1...an , there

exists h1 ∈ H(Σ) such that a1(h1) −→∗B q, and a1(h1) −−−−−→R
a1...an h′. It follows in

19

particular that there exists hn such that an(hn) −−→∗R h′, and using the above (ap)

rewrite rule, an(hn) −−→R b
(
an(hn)

)
−−→∗R b(h′) = h. Therefore, a1(h1) −−−−−→R

a1...an h
and (i) holds for h and s.

In the case (2), by induction hypothesis (ii) applied to the sub-reduction
h′ −−→∗A′ qa1...an , there exists h1 ∈ H(Σ) such that h1 −→∗B qa1 , hence a1(h1) −→∗B q,

and a1(h1) −−−−−→R
a1...an an(h′) = h. Therefore (i) holds for h and s.

Assume now that |ρ0| > 0, and let us analyze the horizontal transition rule used
in the last step of ρ0.

Case ∆0.1. The last step of ρ0 involves q1 · · · qn → q ∈ Γh (horizontal transition
of B), with n ≥ 0. In this case, the reduction ρ has the form

h = h1 · · ·hn −−→∗A′ s1 · · · sm −−→∗A′ q1 · · · qn −−→A0
q = s

with n ≤ m, hi ∈ H(Σ) and hi −−→∗A′ qi for all i ≤ n. By induction hypothesis
(iii) applied to the latter reductions, for all i ≤ n, there exists h′i such that
h′i −→

∗
B qi and h′i −−→

∗
R hi. Hence (iii) holds for h and s with h′ = h′1 · · ·h′n, since

h′ −→∗B q1 · · · qn −→B q, and h′ −−→∗R h.

Case ∆0.2. The last step of ρ0 uses qa1 → q ∈ ∆0. In this case, the reduction
ρ has the form

h −−→∗A′ qa1 −−→A0
q = s

By induction hypothesis (i) applied to h −−→∗A′ qa1 , there exists h1 ∈ H(Σ) such

that a1(h1) −→∗B q and a1(h1) −−→R
a1 h. Hence, (iii) holds with h′ = a1(h1).

Case (ren).1. The last step of ρ0 uses qa1...an−1 → qa1...an and this transition
has been added to ∆′ because R/A contains a rule an−1(x) → an(x). In this
case, the reduction ρ has the form

h −−→∗A′ qa1...an−1 −−→A′ qa1...an = s (3)

By induction hypothesis (ii) applied to h −−→∗A′ qa1...an−1 , there exists h1 ∈
H(Σ) such that h1 −→∗B qa1 , and a1(h1) −−−−−−−→R

a1...an−1 an−1(h). Since by hypothesis

an−1(h) −−→R an(h), we have a1(h1) −−−−−→R
a1...an an(h) and (ii) holds for h and s.

Case (ren).2. The last step of ρ0 uses qa1...an → qa1...an−1 and this transition
has been added to ∆′ because R/A contains a rule an−1(x) → an(x). In this
case, the reduction ρ has the form

h −−→∗A′ qa1...an −−→A′ qa1...an−1
= s (4)

By induction hypothesis (i) applied to h −−→∗A′ qa1...an , there exists h1 ∈ H(Σ)

such that a1(h1) −→∗B q, and a1(h1) −−−−−→R
a1...an h. It follows, by definition of

a1(h1) −−−−−→R
a1...an h at the begining of Section 4.2.1, that a1(h1) −−−−−−−→R

a1...an−1 ht

(because −−→
ren

is included, as a relation, in −−→∗R).

20

Case (ac). The last step of ρ0 uses u · qa1...an · v → qa1...an and this transition
has been added to ∆′ because R/A contains a rule an(x) → an(u · x · v), with
u, v ∈ Q∗A. In this case, the reduction ρ has the following form,

h = ` · h′ · r −−→∗A′ u · qa1...an · v −−→A′ qa1...an = s (5)

where ` −−→∗A′ u, h′ −−→∗A′ qa1...an , and r −−→∗A′ v. By induction hypothesis

(ii) applied to h′ −−→∗A′ qa1...an , there exists h1 such that h1 −→∗B qa1 and

a1(h1) −−−−−→R
a1...an an(h′), and by induction hypothesis (iii) applied to ` −−→∗A′ u

(resp. r −−→∗A′ v), and by Lemma 3, there exists `′ ∈ H(Σ) (resp. r′ ∈ H(Σ))

such that `′ −−→∗A u (resp. r′ −−→∗A v) and `′ −−→∗R ` (resp. r′ −−→∗R r). It follows that

an(h′) −−→R an(`′ · h′ · r′) −−→∗R an(` · h′ · r) = an(h). Hence a1(h1) −−−−−→R
a1...an an(h)

and (ii) holds for h and s.

Case (as). The last step of ρ0 uses u · qa1...an · v → qa1...an and this transition
has been added to ∆′ because R/A contains a rule an(x) → u · an(x) · v, with
u, v ∈ Q∗A. In this case, the reduction ρ has the following form,

h = ` · h′ · r −−→∗A′ u · qa1...an · v −−→A′ qa1...an = s

where ` −−→∗A′ u, h′ −−→∗A′ qa1...an , and r −−→∗A′ v. By induction hypothesis

(i) applied to h′ −−→∗A′ qa1...an , there exists h1 such that a1(h1) −→∗B q and

a1(h1) −−−−−→R
a1...an h′. To be more precise, the latter reduction has the form

a1(h1) −−→∗R a1(h2) −−→
ren

a2(h2) −−→∗R . . . −−→∗R an−1(hn) −−→
ren

an(hn) −−→∗R h′

for some h2, . . . , hn ∈ H(Σ).
Moreover, by induction hypothesis (iii) applied to ` −−→∗A′ u (resp. r −−→∗A′ v),

and by Lemma 3, there exists `′ ∈ H(Σ) (resp. r′ ∈ H(Σ)) such that `′ −−→∗A u

(resp. r′ −−→∗A v) and `′ −−→∗R ` (resp. r′ −−→∗R r). Therefore, an(hn) −−→R `′ ·an(hn) ·
r′ −−→∗R ` · an(hn) · r −−→∗R ` · h′ · r = h. Hence a1(h1) −−−−−→R

a1...an h and (i) holds for
h and s.

Case (rpl). The last step of ρ0 uses u → qa1...an , and this transition has been
added to ∆′ because R/A contains a rule an(x) → u, with u ∈ Q∗A. In this
case, the reduction ρ has the following form,

h −−→∗A′ u −−→A′ qa1...an = s

By induction hypothesis (iii) applied to h −−→∗A′ u and by Lemma 3, there exists

h′ ∈ H(Σ) such that h′ −−→∗A u and h′ −−→∗R h. Since B is assumed clean, there

exists h1 ∈ L(B, qa1), and, using the above (rpl) rewrite rule, an(h1) −−→R h′ −−→∗R
h. Hence a1(h1) −→B q and a1(h1) −−−−−→R

a1...an h and (i) holds for h and s.

Case (del). The last step of ρ0 uses qa1...an → qa1...an and this transition has
been added to ∆′ because R/A0 contains a rule an(x) → x. In this case, the
reduction ρ has the following form,

h −−→∗A′ qa1...an −−→A′ qa1...an = s

21

By induction hypothesis (ii) applied to h −−→∗A′ qa1...an there exists h1 ∈ H(Σ)

such that h1 −→∗B qa1 and a1(h1) −−−−−→R
a1...an an(h). Therefore, a1(h1) −→B q and

a1(h1) −−−−−→R
a1...an h, and (i) holds for h and s. 2

Corollary 2. L(A′) ⊆ post∗R/A(L)

Proof. By definition of Qf , h ∈ L(A′) iff h −−→∗A′ q ∈ P f = Qf
L, and P f ⊆ P \Pin.

By Lemma 4, case (iii), it follows that h ∈ post∗R/A(L(B, q)) ⊆ post∗R/A(L). 2

4.2.2. Completeness.

Lemma 5 (Completeness). For all h ∈ H(Σ) and s ∈ Q, if h −−→∗A0
s and

h −−→∗R h′, then h′ −−→∗A′ s.

Proof. The proof is by induction on the length of the rewrite sequence h −−→∗R h′

If the length is 0, the result is immediate.
Otherwise, we analyze the last rewrite step. More precisely, assume that the
rewrite step has the following form

h −−→∗R C[an(hn)] −−→R C[rσ] = h′

for some context C[], where the last step applies one rewrite rule ρ = an(x)→ r
and the substitution σ associates x with hn ∈ H(Σ). By induction hypothesis,
C[an(hn)] −−→∗A′ s. This latter reduction can be decomposed as follows, modulo
permutation of transitions,

C[an(hn)]p −−→∗A′ C[an(s1 · · · sm)] −−→∗A′ C[an(qa1...an)] −−→A0
C[qa1...an] −−→∗A′ s

where s1, . . . , sm ∈ Q and a1, . . . , an−1 ∈ Σ. We show, with a case analysis over
ρ, that rσ −−→∗A′ qa1...an , which implies that h′ = C[rσ] −−→∗A′ C[qa1...an] −−→∗A′ s.

Case (ren). Assume that ρ = an(x) → b(x). In this case, two transitions have
been added to A′: qa1...an → qa1...anb and qa1...anb → qa1...an . Hence we have,

rσ = b(hn) −−→∗A′ b(qa1...an) −−→A′ b(qa1...anb) −−→A0
qa1...anb −−→A′ qa1...an

Case (ac). Assume that ρ = an(x)→ an(u · x · v), with u, v ∈ Q∗A. In this case,
the following transition has been added to A′: u · qa1...an · v → qa1...an , and
rσ = an(h1 · hn · h2) where h1 −−→∗A u and h2 −−→∗A v. Hence, using Lemma 3 for
the first steps,

rσ = an(h1·hn·h2) −−→∗A0
an(u·hn·v) −−→∗A′ an(u·qa1...an ·v) −−→A′ an(qa1...an) −−→A0

qa1...an

Case (as). Assume that ρ = an(x) → u · an(x) · v, with u, v ∈ Q∗A. In this
case, the following transition has been added to A′: u · qa1...an ·v → qa1...an , and
rσ = h1 · an(hn) · h2 where h1 −−→∗A u and h2 −−→∗A v. Hence it holds that (using
Lemma 3 for the first steps)

rσ = h1·an(hn)·h2 −−→∗A0
u·an(hn)·v −−→∗A′ u·an(qa1...an)·v −−→A0

u·qa1...an ·v −−→A′ qa1...an

22

Case (ap). Assume that ρ = an(x) → b
(
an(x)

)
. In this case, the following

vertical transitions have been added to A′: b(qa1...an)→ qa1...an , and we have:

rσ = b
(
an(hn)

)
−−→∗A′ b

(
an(qa1...an)

)
−−→A0

b(qa1...an) −−→A′ qa1...an

Case (rpl). Assume that ρ = an(x) → u, with u ∈ Q∗A. In this case, the
following transition has been added to A′: u→ qa1...an . It holds that rσ −−→∗A u,

hence rσ −−→∗A0
u −−→A′ qa1...an , using Lemma 3 for the first steps.

Case (del). Assume that ρ = an(x) → x. In this case, the following transition
has been added to A′: qa1...an → qa1...an , and rσ = hn −−→∗A′ qa1...an −−→A′ qa1...an .

2

Example 5 shows the problems that can arise when combining in one single
rewrite rule two rules of the form (as) and (ac), forcing synchronization of two
updates. Note that the rule a(x) → c · a(e · x · g) · d of this example can be
simulated by the 2 rules a(x)→ c · a′(x) · d and a′(x)→ a(e · x · g). The former
rule is of the type of Theorem 3 (it combines types (as) and (ren)). The latter
(which is not 1-childvar) combines types (ac) and (ren). This shows that such
combinations can also lead to the behavior exposed in Example 5.

Corollary 3. Let A be a HA over Σ, and L be the language of AL ∈ CFHA,
and R/A be a uPHRS. There exists an effectively computable CFHA recognizing
post∗R/A(L), of size polynomial in the size of R/A and AL and exponential in
the size of the alphabet Σ.

Proof. We transform R/A into R̂/Â as in Lemma 1, and transform L into

L̂ = {ĥ | h ∈ L}. Then we apply Theorem 3 in order to construct a CFHA A′
recognizing post∗R̂/Â(L̂).

Then, according to Lemma 1, the CFHA A′ obtained can be transformed into
a CFHA recognizing post∗R/A(L) by adding new transitions: for every CFHA

transition of A′ of the form â(q1) → q, we add n copies a1(q1) → q, . . . ,
an(q1)→ q where â is the representative of {a1, . . . , an}. 2

4.3. Backward Rewrite Closure and Typechecking

The following theorem is a direct consequence of Theorem 1 in [16] on the
rewrite closure of HA languages under monadic HRS.

Theorem 4. Let A be a HA over Σ, and L be the language of AL ∈ HA,
and R/A be a uPHRS. There exists an effectively computable HA recognizing
pre∗R/A(L).

Corollary 4. Typechecking is decidable for uPHRS, with CFHA languages as
input types and HA languages as output types.

Proof. Let R/A be a uPHRS. Let Lin be the input type, recognized by a CFHA
Ain, and let Lout be the output type, recognized by an HA Aout. Using Corol-
lary 3, on can build a CFHA recognizing post∗R/A(Lin). By closure of HA lan-
guages under complementation, on can also build a HA recognizing the comple-
ment Lout of Lout. Then, there exists a CFHA recognizing post∗R/A(Lin) ∩ Lout,

and the typechecking of R/A wrt Lin and Lout is equivalent to the emptiness of
this latter CFHA (a decidable problem). 2

23

5. Verification of Consistency of ACP for XML Updates

In this last section we study some models of Access Control Policies (ACP)
for the update operations defined in Section 4, and the verification problems
for these ACP. We consider two kind of formalisms from the literature for the
specification of XML ACPs based on PHRS. The first formalism is the most
widespread. It consists in defining an ACP as a set of update rules, partitioned
into authorized and forbidden operations. The second one is a more recent
proposal of [13] based on [17], where the ACP is defined by adding security
annotations to a DTD.

5.1. Local Consistency of Rule-based ACPs

An ACP for XML updates can be defined by a pair (Ra/A,Rf/A) of uPHRS,
where Ra contains allowed operations and Rf contains forbidden operations (see
e.g. [22]). Such an ACP is called inconsistent [13, 22] if some forbidden operation
can be simulated through a sequence of allowed operations, i.e. if there exists
t, u ∈ T (Σ) such that t −−−−→Rf/A

u and t −−−−→∗Ra/A
u.

Example 11. Assume that in the hospital document of Example 6, it is for-
bidden to rename a patient, that is the following update of (rpl) is forbidden:
name(x)→ qname. If the following updates are allowed: patient(x)→ ε for delet-
ing a patient, and hospital(x)→ hospital(x · qpatient) to insert a new patient, then
we have an inconsistency in the sense of [22], since the effect of the forbidden
update can be obtained by a combination of allowed updates. 3

Using the results of Section 4, we can decide the above problem individually
for trees of T (Σ). More precisely, we solve the following problem called local
inconsistency :

Definition 3. Given a HAA over Σ and a tree t ∈ T (Σ), an ACP (Ra/A,Rf/A)
is locally inconsistent if there exists u ∈ T (Σ) such that t −−−−→Rf/A

u and

t −−−−→∗Ra/A
u.

Hence the term local in Definition 3 means consistency with respect to a given
tree t, i.e. consistency in general is local consistency for all t ∈ T (Σ).

Theorem 5. Local inconsistency is decidable in PTIME for ACPs specified by
pairs of uPHRS.

Proof. It can be easily shown that the set {u ∈ T (Σ) | t −−−−→Rf/A
u} is the

language of a HA of size polynomial and constructed in PTIME on the sizes
of A, Rf and t. By Theorem 3, post∗Ra/A({t}) is the language of a CFHA of
polynomial size and constructed in polynomial time on the sizes of A, Ra and
t. The ACP is locally inconsistent w.r.t. t iff the intersection of the two above
languages is not empty, and this property can be tested in PTIME. 2

It is shown in [13] that inconsistency is undecidable for an ACP defined by a
pair of rewrite systems (Ra,Rf) of a kind strictly more general than the above
uPHRS. Roughly, they extend the uPHRS with the possibility to select the
rewrite positions by XPath expressions. Moreover, for such rewrite systems, the
reachability problem (whether a given tree t can be obtained from a given tree

24

s using instances of rules of Ra which are not in Rf) is also undecidable [31],
therefore local consistency is undecidable as well in this case. A decidable
fragment is also presented in [31].

A related class of TRS are the (prefix-) controlled TRS of [32, 33] where
rewrite positions are selected for each rewrite rules using a Query Automa-
ton [34] or a regular expression. For example, with such TRS, one can specify
that a particular rule of the form a(x) → u can be applied only at a position
labeled by a and without a b occurring on the path to the root. The applica-
tion of the results of decidability and rewrite closure in [32, 33] to the decision
of inconsistency in the context of hedge rewriting is an interesting question to
investigate.

5.2. Local Consistency of DTD-based ACPs

A DTD over Σ is function D that maps Σ to regular expressions over Σ.
This standard formalism for defining XML types is strictly less expressive than
HA [3]. The dependency graph of a DTD D is a directed graph on the set of
vertices Σ such that the set of edges contains all (a, b) such that b occurs in the
regular expression D(a). A DTD is non recursive if this graph is acyclic.

Following the principle of DTD-based ACPs [17], [13] have proposed the
language XACUannot for the definition of ACP for XML updates in presence of
a DTD D. The idea is to add to D some security annotations specifying the
authorizations for the update operations for XML documents valid for D. This
formalism of [17, 13] imposes the condition that every document t to which we
want to apply an update operation (under the given ACP) must be valid for the
DTD D.

In our rewrite-based formalism, the latter condition may be expressed by
adding global constraints to the parametrized rewrite rules of Section 4. These
global constraints restrict the rewrite relation to trees in a given HA language.
Theorem 6 below shows that, unfortunately, adding such constraints to parame-
trized rewrite rules of type (ren) or (rpl) makes the reachability undecidable.

A hedge rewriting system over Σ, parametrized by a HA A and with global
constraints (PGHRS) is given by a PHRS, denoted R/A, (as defined in Sec-
tion 4) and a HA language L ⊆ H(Σ). We say that L is the constraint of R.
The rewrite relation generated by the PGHRS is defined as the restriction of
the relation defined in Section 4 to ground hedges such that for the application
of a rule `→ r ∈ R/A to a hedge h, we require that h ∈ L.

Theorem 6. Reachability is undecidable for PGHRS’s with rules of type (ren)
or (as) and constraint given by a non recursive DTD. 2

Proof. The proof is a variant of the one given by A. Spelten [35] for subtree and
flat prefix rewriting. We reduce the halting problem of a Deterministic Turing
Machine (TM) M that works on half a tape (unbounded on the right).

TM configurations are encoded as flat trees. We consider the same tape
alphabet Γ = {0, 1, [}, ([is the blank symbol) of M, let S = {s1, s2, . . . , sn}
be the state set of M and Θ be the set of instructions of M. We consider the
following alphabet Σ for the representation of the configurations of M.

Σ := {g} ∪ {0, 1, [} ∪ (S × Γ) ∪ (Θ× Γ).

25

For instance, the TM configuration with tape abcde · [· [. . ., symbol d under
head, state s, will be represented by the following flat tree of T (Σ):

g(abc〈s, d〉e · [· [).

We shall also use a trivial HA A = (Σ, Q,Q,∆) which recognizes only con-
stant symbols by taking Q = {pσ | σ ∈ Σ} and ∆ = {σ → pσ | σ ∈ Σ}.

We define a PGHRS R/A such that every transition ofM can be simulated
by a sequence of (at most three) rewrite steps with R/A. Let us first intro-
duce some standard auxiliary PHRS rules and some word regular languages for
controlling rule applications. We have three cases to consider:

For each instruction θ1 of M of type: ”In state s1 reading a1 go to state r1

and write b1”, we define the following HRS rule: 〈s1, a1〉(x)→ 〈r1, b1〉(x).
We also define the regular word language L〈s1,a1〉 = Γ∗〈s1, a1〉 · Γ∗.

For each instruction θ2 of M of type: ”In state s2 reading a2 go to state r2

and move right”, we define the following PHRS rules of types (ren) and (as) (we
recall that p[is a state of A):

b2(x) → 〈θ2, b2〉(x) for all b2 ∈ Γ [(x) → [(x) p[
〈θ2, b2〉(x) → 〈r2, b2〉(x) for all b2 ∈ Γ 〈s2, a2〉(x) → a2(x)

We also define the regular word languages:

L〈s2,a2〉 = Γ∗ · 〈s2, a2〉 · Γ∗
L〈θ2,a2〉 = Γ∗ · 〈θ2, a2〉 · Γ∗

L〈s2,a2〉〈θ2,b2〉 = Γ∗ · 〈s2, a2〉〈θ2, b2〉 · Γ∗ for all b2 ∈ Γ.

For each instruction θ3 of M of type: ”In state s3 reading a3 go to state r3

and move left”, we define the following HRS rules:

b3(x) → 〈θ3, b3〉(x) for all b3 ∈ {0, 1} 〈s3, a3〉(x) → a3(x)
〈θ3, b3〉(x) → 〈r3, b3〉(x) for all b3 ∈ {0, 1}

We also define the regular word languages:

L〈s3,a3〉 = Γ∗ · 〈s3, a3〉 · Γ∗
L〈θ3,a3〉 = Γ∗ · 〈θ3, a3〉 · Γ∗

L〈θ3,b3〉〈s3,a3〉 = Γ∗ · 〈θ3, b3〉〈s3, a3〉 · Γ∗ for all b3 ∈ {0, 1}.

The constraint of the PGHRS will be defined by the non recursive DTD
D : g → L where L is the finite union of the regular languages associated
with the instructions of M as above. Since the machine to be simulated is
deterministic, the union is disjoint.

Our final PGHRS is given by R/A and L so that the rewrite rules in R/A
can only be applied to trees satisfying the DTD D. With the above constraint,
the PGHRS rules of R/A can only be applied to trees valid for the DTD D,
ensuring a correct chaining for the application of these rules.

By case inspection we can show that for any couple of TM configurations
T1, T2 and their respective tree encodings t1, t2, there is a sequence of transitions
from T1 to T2 iff t1 −−−−→∗R/A t2. The theorem follows. 2

26

Note that the above result also holds for PGHRS’s whose rules are ground
(without variables nor parameters): in the above rewrite rules, every variable x
could be replaced by the empty hedge ε, and every parameter such as p[could
be replaced by the corresponding ground tree [. Hence the above result can be
contrasted with the decidability of reachability for ground tree rewriting [36].

Corollary 5. Local inconsistency is undecidable for PGHRS’s with rules of
type (ren) or (as) and with constraint given by a non recursive DTD.

This is in contrast with a result [22] of decidability of consistency for policies
tied to a different class of DTD, and which do not include updates of type (ren).

6. Future Works

As for future works on CF1HA languages several directions deserve to be
followed. A first direction might be to derive pumping properties for these
classes of languages. A second direction would be to look for an analogue
of Parikh characterization for the number of different symbols occurring in the
hedges of given CF1HA languages. One may define and study HRS with counting
constraints on horizontal and vertical paths.

One may wonder whether our result on rewrite closure computation (The-
orem 3) could be adapted to compute regular over-approximations of output
types for XML transformations, leading to an approximating forward type in-
ference algorithm, in an approach similar to e.g. [9].

Finally, it would be is worth investigating the parallel rewriting of [18], on
all a-nodes, since it is closer to the semantics of XQUF, and get an analogous
of Theorem 3 for the parallel rewrite closure.

Acknowledgements

The authors wish to thank the reviewers of [23] and Giorgio Delzanno
for valuable discussions on rewrite based models and verification techniques
for XQUF.

References

[1] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez,
S. Tison, M. Tommasi, Tree automata techniques and applications, Avail-
able on: http://tata.gforge.inria.fr/, 2007. Release October, 12th
2007.

[2] M. Murata, Hedge automata: a formal model for XML schemata, http:
//www.xml.gr.jp/relax/hedge_nice.html, 2000.

[3] T. Schwentick, Automata for XML - A Survey, J. Comput. Syst. Sci. 73
(2007) 289–315.

[4] T. Touili, Computing transitive closures of hedge transformations, Inter-
national Journal of Critical Computer-Based Systems (IJCCBS) 3 (2012)
132–150.

27

[5] K. Salomaa, Deterministic tree pushdown automata and monadic tree
rewriting systems, J. Comput. Syst. Sci. 37 (1988) 367–394.

[6] A. Bouajjani, B. Jonsson, M. Nilsson, T. Touili, Regular model checking,
in: Proc. of the 12th Int. Conf. on Computer Aided Verification, volume
1855 of Lecture Notes in Computer Science, 2000, pp. 403–418.

[7] G. Feuillade, T. Genet, V. Viet Triem Tong, Reachability Analysis over
Term Rewriting Systems, Journal of Automated Reasoning 33 (3-4) (2004)
341–383.

[8] A. Bouajjani, T. Touili, On computing reachability sets of process rewrite
systems, in: Proceedings 16th Int. Conf. Term Rewriting and Applications
(RTA), volume 3467 of Lecture Notes in Computer Science, Springer, 2005,
pp. 484–499.

[9] T. Touili, Computing transitive closures of hedge transformations, in: Proc.
1st International Workshop on Verification and Evaluation of Computer
and Communication Systems (VECOS), eWIC Series, British Computer
Society, 2007.

[10] T. Milo, D. Suciu, V. Vianu, Typechecking for XML Transformers, Journal
of Comp. Syst. Sci. 66 (2003) 66–97.

[11] A. Tozawa, Towards static type checking for xslt, in: DocEng ’01: Pro-
ceedings of the 2001 ACM Symposium on Document engineering, ACM,
New York, NY, USA, 2001, pp. 18–27.

[12] D. Chamberlin, J. Robie, M. Dyck, D. Florescu, J. Melton, J. Siméon,
Xquery update facility 1.0, W3C Recommendation. http://www.w3.org/
TR/xquery-update-10/, 2011.

[13] I. Fundulaki, S. Maneth, Formalizing XML access control for update op-
erations, in: Proc. of the 12th ACM symposium on Access control models
and technologies (SACMAT), ACM, 2007, pp. 169–174.

[14] L. Bravo, J. Cheney, I. Fundulaki, ACCOn: checking consistency of
XML write-access control policies, in: Proc. 11th Int. Conf. on Extending
Database Technology (EDBT), volume 261 of ACM Int. Conf. Proc. Series,
ACM, 2008, pp. 715–719.

[15] F. Jacquemard, M. Rusinowitch, Rewrite-based verification of XML up-
dates, in: Proc. of the 12th ACM SIGPLAN Int. Symp. on Principles and
Practice of Declarative Programming (PPDP), ACM, 2010, pp. 119–130.

[16] F. Jacquemard, M. Rusinowitch, Closure of Hedge-automata languages by
Hedge rewriting, in: Proc. of the 19th RTA, volume 5117 of Lecture Notes
in Computer Science, Springer, 2008, pp. 157–171.

[17] W. Fan, C.-Y. Chan, M. Garofalakis, Secure XML querying with security
views, in: Proceedings of the 2004 ACM SIGMOD international conference
on Management of data, ACM, 2004, pp. 587–598.

28

[18] A. Solimando, G. Delzanno, G. Guerrini, Automata-based Static analysis of
XML Document Adaptation, in: Proceedings 3d International Symposium
on Games, Automata, Logics and Formal Verification, volume 96, 2012, pp.
85–98.

[19] E. Damiani, S. D. C. di Vimercati, S. Paraboschi, P. Samarati, Securing
XML documents, in: Proceedings of the 7th International Conference on
Extending Database Technology (EDBT), volume 1777 of Lecture Notes in
Computer Science, Springer, 2000, pp. 121–135.

[20] S. C. Lim, S. H. Son, Access control of XML documents considering update
operations, in: Proc. of ACM Workshop on XML Security, 2003.

[21] M. Murata, A. Tozawa, M. Kudo, S. Hada, XML access control using static
analysis, ACM Trans. Inf. Syst. Secur. 9 (2006) 292–324.

[22] L. Bravo, J. Cheney, I. Fundulaki, R. Segovia, Consistency and repair for
xml write-access control policies, VLDB Journal 21 (2012) 843–867.

[23] F. Jacquemard, M. Rusinowitch, Rewrite closure and cf hedge automata,
in: Proceedings of the 7th International Conference on Language and Au-
tomata Theory and Applications (LATA), volume 7810 of Lecture Notes in
Computer Science, Springer, 2013, pp. 371–382.

[24] J. Cocke, J. T. Schwartz, Programming languages and their compilers:
Preliminary notes, Technical Report, Courant Institute of Mathematical
Sciences, New York University, 1970.

[25] D. H. Younger, Recognition and parsing of context-free languages in time
n3, Information and Control 10 (1967) 189–208.

[26] H. Ohsaki, H. Seki, T. Takai, Recognizing boolean closed a-tree languages
with membership conditional rewriting mechanism, in: Proc. of the 14th
RTA, volume 2706 of Lecture Notes in Computer Science, Springer Verlag,
2003, pp. 483–498.

[27] M. Bojanczyk, I. Walukiewicz, Forest algebras, in: Logic and Automata:
History and Perspectives [in Honor of Wolfgang Thomas], volume 2, Ams-
terdam University Press, 2008, pp. 107–132.

[28] E. Filiot, J.-M. Talbot, S. Tison, Tree automata with global constraints, in:
12th International Conference in Developments in Language Theory (DLT
2008), volume 5257 of Lecture Notes in Computer Science, Springer, 2008,
pp. 314–326.

[29] W. Karianto, C. Löding, Unranked tree automata with sibling equalities
and disequalities, in: Proceedings of 34th International Colloquium on
Automata, Languages and Programming (ICALP), volume 4596 of Lecture
Notes in Computer Science, Springer, 2007, pp. 875–887.

[30] J.-L. Coquide, M. Dauchet, R. Gilleron, S. Vagvolgyi, Bottom-up tree
pushdown automata : Classification and connection with rewrite systems,
Theoretical Computer Science 127 (1994) 69–98.

29

[31] N. Moore, Computational complexity of the problem of tree generation
under fine-grained access control policies, Inf. Comput. 209 (2011) 548–
567.

[32] F. Jacquemard, Y. Kojima, M. Sakai, Controlled term rewriting, in:
Proceedings of the 8th International Symposium Frontiers of Combining
Systems (FroCoS), volume 6989 of Lecture Notes in Artificial Intelligence,
Springer, 2011, pp. 179–194.

[33] F. Jacquemard, Y. Kojima, M. Sakai, Term rewriting with prefix con-
text constraints and bottom-up strategies, in: 25th International Confer-
ence on Automated Deduction, CADE, Lecture Notes in Computer Science,
Springer, 2015.

[34] F. Neven, T. Schwentick, Query automata over finite trees, Theoretical
Computer Science 275 (2002) 633–674.

[35] A. Spelten, Rewriting Systems over Unranked Trees, Master’s thesis, Diplo-
marbeit, RWTH Aachen, 2006.

[36] R. Gilleron, Decision problems for term rewrite systems and recognizable
tree languages, in: 8th Annual Symposium on Theoretical Aspects of Com-
puter Science, volume 480, 1991, pp. 148–159.

30

