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Abstract

Metabarcoding on amplicons is rapidly expanding as a method to pro-
duce molecular based inventories of microbial communities. Here, we
work on freshwater diatoms, which are microalgae possibly inventoried
both on a morphological and a molecular basis. We have developed an
algorithm, in a program called diagno-syst, based a the notion of infor-
mative read, which carries out supervised clustering of reads by mapping
them exactly one by one on all reads of a well curated and taxonomically
annotated reference database. This program has been run on a HPC (and
HTC) infrastructure to address computation load. We compare optical
and molecular based inventories on 10 samples from Léman lake, and 30
from Swedish rivers. We track all possibilities of mismatches between
both approaches, and compare the results with standard pipelines (with
heuristics) like Mothur. We find that the comparison with optics is more
accurate when using exact calculations, at the price of a heavier compu-
tation load. It is crucial when studying the long tail of biodiversity, which
may be overestimated by pipelines or algorithms using heuristics instead
(more false positive). This work supports the analysis that these methods
will benefit from progress in, first, building an agreement between molec-
ular based and morphological based systematics and, second, having as
complete as possible publicly available reference databases.

1 Introduction

Unexpected diversity of unicellular Eucaryots (nanoplankton) or hydrothermal
sediments has been revealed in 2001 by sequencing ribosomal DNA (18S), using
BLAST for comparison with databases, and establishing molecular phylogenies
of these unexplored worlds, [26, 25]. At the same time, unexpected diversity
of oceanic picoplankton has been revealed using 18S and phylogenies too [28].

1

http://arxiv.org/abs/1611.09410v1


Since then, exploration of microbial diversity, be it in protists, bacteria or ar-
chaea by molecular based tools has exploded, and has become a standard for
biodiversity assessments. Soon after, Hebert and coll. launched the barcoding
of life for animals [16], which has been quickly extended to other kingdoms (see
e.g. [17]), and to protists [31]. The advance of sequencing technologies, espe-
cially NGS, producing first hundreds of thousands of reads with pyrosequencing,
then millions with Ilumina, have paved the way for metagenomics, and metabar-
coding for biodiversity or biomonitoring studies (see e.g., among many others,
[15, 6, 43, 20, 11, 19, 32]).

Metabarcoding is expected to yield inventories of species diversity similar to
those provided by morphological based methods, if molecular and morpholog-
ical taxonomies agree. One way for a rigorous verification is by isolating and
culturing, and comparing with results of metabarcoding. [34] cites a well known
case of a bacteria in the Mediterranean Sea (Leeuwenhoekiella blandensis), which
has been isolated and cultivated but never found in repeated molecular inven-
tories on the same spot. A still more controlled way to estimate the quality
of the information given by metabarcoding is to build artificial samples in the
laboratory, and run the metabarcoding protocol on these laboratory-assembled
communities (see [36] for nematodes, [21] for diatoms), or in silico experiments
(see e.g. [9]).

A second way to estimate this quality, on which we will focus here, is by compar-
ing morphological based inventories with molecular based inventories on same
natural communities. Such an approach has been used for alveolates in a fresh-
water lake [27], tintinnids (ciliates, microzooplankton) [5], arthropods and birds
[18], seegrass communities [10], freshwater diatoms [46], the latter insisting on
the need to derive tools for assigning a taxon name to a sequence (what will be
referred to in the sequel as taxonomic assignment), and estuarine plankton [1],
where completing the reference database was found to settle most of inconsis-
tencies between both approaches in zooplankton. Such an approach permits to
study a still open question: how reliable is metabarcoding for inventorying or un-
veiling rare species? How to estimate the so called rare biosphere [41, 33, 23, 12]
? But see [37, 22].

We develop here a data analysis framework without any heuristics, doing ex-
act computations using High Performance Computing techniques, in order to
produce as accurate as possible molecular based inventories, quantify the com-
parison between morphological based and molecular based inventories, facilitate
the localization of major sources of errors, and propose some priorities to fix
them.

Discrepancies in comparing a morphological based and a molecular based inven-
tory on the same sample can have three origins: (i) inappropriate morphological
based inventory (ii) inappropriate molecular based inventory (iii) both inven-
tories are correct but do not give the same information (differences in species
delineation between molecular phylogenies and morphological based identifica-
tion, for example). The latter is crucial, and deserves further research. As an
example, accurate comparison between molecular and morphological taxa delin-
eation in angiosperms has been shaped over many decades through collaboration
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between many teams (see [45] in 2009, after APG in 1998 and APGII in 2003).
Such a comparison remains crucial, as a benchmark for ongoing characterization
of currently unseen biodiversity in eukaryotic communities. Here, we develop
a tool, named diagno-syst, for having an as accurate as possible molecular
based inventory, relying on High Performance Computing for handling massive
data, without any heuristics to speed up calculation process. We focus on best
possible quality for molecular based inventories, assuming that morphological
based inventories are correctly evaluated (i.e. we will not discuss here morpho-
logical based taxonomy of diatoms).

One of the requirements for metabarcoding is selecting markers which are, as
much as possible, universal, resolutive, and technologically easy to work with.
Most of this work is inherited from barcoding. A synthesis paper on marker
choice for Eukaryotes from CBOL Protist Working Group is [31]. In the remain-
ing of this paper, we assume that a marker has been selected. Knowing that,
several sources of errors have been recognized in metabarcoding data analysis
(see [5] and references therein). There exists several studies or reviews (see e.g.
[47, 8]) which focus on well known pitfalls and caveats of molecular approaches,
but very few on the pitfalls and caveats when using heuristics instead of exact
computations because of the size of data sets. We focus here on isolating bioin-
formatics challenges from biological challenges, by running exact calculation for
sequence comparisons, without any heuristics.

A molecular based inventory is built on sequence comparisons between a set
of queries and a reference database, often on amplicons. Such a comparison
can be made exactly by Needleman-Wunsch algorithm [29] for global alignment
or Smith-Waterman algorithm [40] for local alignment. These algorithms are
well understood and exact [14]. They work well on small size data sets as those
produced by Sanger technologies. However, they are quadratic in time as scal-
ing with the number of queries × the number of references. BLAST [4] is a
well established tool for exploring quickly a huge database of references. We
have the opposite in metabarcoding communities of a given group of organisms:
the reference database is often of reasonable size (a few thousands specimen),
whereas the number of queries to match becomes huge (about 105 or even 106).
Moreover, it is known that BLAST can produce bad results [13]. Therefore, as
in [13], we developed specific assignation tools based on local alignment (here,
Smith-Waterman score). As being exact is paid by a heavier computation load,
we have exploited the fact that this algorithm belongs to the category of mas-
sively parallel problem: the 105 or 106 local alignments of each query with all
specimen in the reference database are all independent, and can be run in par-
allel on different cores of a computer. Hence, we have opted for a massively
parallel implementation of exact local alignment, which answers exactly to the
raised question of sequence comparison between a reference database and a set
of queries.
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2 Material

We have worked on inventories of diatom communities, as diatom species can
be identified both optically (by looking at the frustule), and molecularly (many
reference sequences for diatom barcodes are available). This enables to test the
quality of the dictionary between both approaches.

The starting point for data analysis is a set of several sets: each sample is
given as a set of sequences (the reads), and we have a set of samples. We have
one reference database, R-Syst::Diatoms [38], which will be used for all envi-
ronmental samples. The reference database is given as a set of n specimens.
For each specimen, we have a sequence identifier (a code), a sequence (of the
same marker with the same primers), and a hierarchical list of names, naming
Order, Family, Genus and Species. We have a set of 10 environmental samples
from Léman lake, and a second set of 20 environmental samples from Swedish
rivers. For each environmental sample, we have an optic inventory, made by
a trained diatomist, and a set of reads, which are produced after amplification
of a given marker with given primers. An optical inventory has been produced
for each environmental sample by counting about 400 diatom valves in a micro-
scope and identifying them via standard diatom literature using CEN (European
Standardization Committee) methods [2, 3].

2.1 Environmental samples

Two datasets were analyzed: one from Léman lake, and one from Sweden. The
Léman lake dataset contains one site sampled at ten different dates (about one
month between two sampling campaigns). The Swedish dataset contains data
of 13 streams and one lake distributed over the whole country, six of the streams
sampled in two subsequent years. The streams covered different ecological re-
gions and stream types, including lowland agricultural streams common also in
Central Europe, small boreal streams and mountain streams with no forest cover
in the catchment. In this way, we could test if the reference data base of diatoms
developed to match Léman Lake communities can be used also for other regions
of the world. We expected more problems when using it for Swedish data.

2.2 Reference database: names

The taxonomic names selected in this study are those selected in Thonon Refer-
ence Database, R-Syst::Diatoms, which has been built first at Thonon (Thonon
Culture Collection, TCC, see www.inra.fr/carrtel-collection), and com-
plemented by careful curation of freshwater diatom sequences in NCBI [21].
The privileged taxonomic level is the species level. Names in the reference
database are as much as possible accepted authored names. However, in sev-
eral circumstances, a discrepancy between molecular based species delineation
by phylogenies and morphological based species delineation have been acknowl-
edged. In such a case, a compromise has been made (e.g. Fragilaria group) in
order to have the best agreement between morphological based and molecular
based taxonomic identification of specimen in the reference database. It is not
the purpose of this paper to discuss diatom systematics, and the current state of
the art, even if acknowledged as perfectible, is taken for granted and accepted.
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Any accepted evolution or change in diatom’s systematics can be taken into
account in a further step just by changing the accepted names. Taxa in this
study should be considered as operational taxonomic units as close as possible
to species level and accepted species names, knowing that some discrepancies
still exist in the current state of the art. For sake of simplicity, they will be
referred to as species in the sequel of this paper.

2.3 Reference database: sequences

Marker choice: Before the bloom of barcoding, molecular taxonomy of plank-
ton has been studied using 18S as a marker. Over the subsequent years, several
hypervariable regions of 18S have been progressively selected in scientific com-
munity to study plankton, and more generally protists, i.e. unicellular eukaryots
(see [31, 8, 44]). A second criteria for a marker choice is the availability of a
well curated database. PR2 (see [13] and http://ssu-rrna.org/) has been
designed specifically for marine plankton. [21] have compared rbcL, 18S and
CO1 for freshwater diatoms, the three of them being acknowledged as poten-
tial barcodes for diatoms, making a balance between resolution and richness of
existing database. They have shown that rbcL was more resolutive than 18S,
and that public information was available for both of them. Hence, a choice
has been made to work with rbcL, and to complete the existing database. Sub-
sequently, an inner marker has been selected, of 312 bp long to comply with
technological requirements of NGS sequencing facilities, which could not pro-
vide ≥ 500bp long reads as Sanger technology could. For amplifying this re-
gion, the primer pair Diat_rbcL_708F [42] and R3 [7] was used directly for
samples from Léman lake, and was modified for the Swedish samples as fol-
low: forward primer combine an equimolar mix of Diat_rbcL_708F_1 (AGGT-
GAAGTAAAAGGTTCWTACTTAAA), Diat_rbcL_708F_2 (AGGTGAAGT-
TAAAGGTTCWTAYTTAAA) and Diat_rbcL_708F_3 (AGGTGAAACTAAAG-
GTTCWTACTTAAA); reverse primer combine an equimolar mix of R3_1 (CCTTC-
TAATTTACCWACWACTG) and R3_2 (CCTTCTAATTTACCWACAACAG).
The resolution of the selected short barcode has been checked, and the drop from
full rbcL fragment, even if noticeable, was found to be non significant.

3 Methods

For each set of samples (Léman lake and Swedish rivers), the work has been
processed along a sequence of three steps

• have an optical based inventory

• build a molecular based inventory

• identify and classify mismatches between both.

Methods for each of these steps are given in what follows, with a focus on molec-
ular based inventories and classification of mismatches.

Let us note that an output of a Proton sequencer for an environmental sample
typically counts about 105 reads, of 312bp long each. Here, instead of using
heuristics to speed up the analysis, we have kept on the choice to use exact
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algorithm, which scale linearly with the number of reads. We have designed
as well automatic procedures to handle a large number of environmental sam-
ples, i.e. data flows between different steps in calculation. Therefore, we have
used a High Performance Computing Center for intensive computing (IDRIS,
see http://www.idris.fr/eng/), and iRODS as a file manager for managing
data flows.

3.1 Molecular based inventories: data analysis

The algorithms used for taxonomic annotation of queries knowing a reference
database (supervised clustering) are given here. The motivations for such a
choice, i.e. the notion of informative read and sliding barcoding gap, which dis-
tinguish these algorithms from, say, those encapsulated in Mothur, are presented
in the discussion section (section 5.1).

Notations: Let us give some notations. The set of references is denoted R.
Each reference is a 312bp long sequence, with little variations in length, with
an identifier, and a taxonomic annotation (species, genus, family). There is a
set of queries per environmental sample i, denoted Qi. Each query is a 312bp
long sequence, with some variatons in length, with an identifier. The number
of references is denoted |R|, and the number of queries in sample i is denoted
|Qi|. We have for this study |R| = 1446. The barcode gap is denoted α, and
maximum barcode gap θ.

Distance between sequences: We have implemented in C the Smith-Waterman
algorithm [40] producing a score of local alignment between two sequences. Let
(q, r) be a pair query × reference. Let sw(q, r) be the Smith-Waterman score
between the query and the reference. Then sw(q, r) is the highest sore of global
alignment between a substring α ⊂ q and a substring β ⊂ r over all pairs (α, β)
(see [14]). Selected costs are +1 for a match, and −1 for a gap (for one base) or
a substitution. This can easily be extended to more diverse evolution models.
The score has been translated into a distance as follows: let ℓ(q) be the length
of the query, ℓ(r) be the length of the reference. Then

d(q, r) =
min{ℓ(r), ℓ(q)} − sw(q, r)

2
(1)

The program computing d(q, r) from q and r as inputs is called disseq.

Step 1: Step 1 is to compute d(q, r) for any pair (q, r) ∈ Q × R. This has
been done by a double loop. This is the intensive part of the computation.
It has been run both on Babel and Turing. Babel is a BlueGene P (IBM)
located at Idris in Saclay. It offers massive parallelization, fully adapted to
the computation of large matrices of pairwise distances. Its characteristics are:
40,960 cores PowerPC 450, 20 To of memory, 139 Tflop/s peak power, and
800 To of memory on disks. Turing is a BlueGene Q (IBM) located at IDRIS
too. Its architecture is made of 6 racks, of 1024 nodes each, and 16 cores per
node, hence 98 304 cores. We have used Turing with up to 214 = 16384 cores
(one rack). Its peak power is 1,258 Pflop/s. Their main advantage (apart
from massive parallelization) is a low energy consumption: 300 kW, at a cost
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of lower frequency in cores, but larger number of cores. Such an architecture
is particularly suitable for massive embarassingly parallel jobs. The loop for
computing all pairwise distances has been run with Message Passing Interface
(MPI) programming, by a dedicated program called mpi-disseq, written in
C and MPI for this purpose. The program has been tested first on Avakas
(Mésocentre de Calcul Intensif Aquitain, 264 computing nodes, 12 cotes each)
and then ported to Babel and Turing. The program scales perfectly.

Step 2: A barcoding gap α being selected, step 2 is to derive the neighborhood
of any query q ∈ Q as the set Nα(q) of all sequences in R such that d(q, r) ≤ α

Nα(q) = {r ∈ R : d(q, r) ≤ α} (2)

Step 3: This step is assigning a name, or not, to a query, knowing its neigh-
borhood in R. A query q is called informative if all the references r ∈ Nα(q)
belong to the same taxon. A query can be informative for the genus, but not
for the species. Hence, a small program has been written (in python) which
implements the following procedure:

Algorithm 1 pseudocode for taxonomic assignation through informative reads:
tax annot = informative(q,α)

1: input: q ∈ Q {query}
2: input α {barcoding gap}
3: get Nα(q)
4: if Nα(q) == ∅ then
5: tax annot ← ’unknown’

6: else

7: T ← list of taxa in Nα(q)
8: |T | ← number of taxa in T

9: if |T | == 1 then

10: tax annot ← the unique taxon in T

11: else

12: tax annot ← ’ambiguous’

13: end if

14: end if

15: return tax annot

Then, procedure tax annot = informative(q,α) has three possible out-
comes:

• unknown if the query is too far from the reference database

• ambiguous if there are several references in the neighborhood of q, but of
different taxa

• a taxon if all the references in the neighborhood of q belong to the same
taxon
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Step 4: Programme informative is run as a loop over all reads q ∈ Qi. For
2.105 queries, it takes less than 30 seconds in python on an standerd laptop with
Linux Ubuntu. If there are n queries, this gives a vector of strings v of length n.
Step 4 simply is to produce a table which counts the number ni of occurrences
of item i (where i can be unknown, ambiguous or any taxon for which at least
a read is informative). This step is called diagno syst(tax annot).

Step 5: Step 4 is run for any barconding gap α ∈ {0, θ}. Steps 3, 4 and 5
have been associated into a single program called diagno syst loop, and reads

Algorithm 2 pseudocode for diagno syst loop

1: input: Q

2: input θ

3: for α ∈ 0, . . . , θ do

4: v ← [.]
5: for q ∈ Q do

6: v[q]← informative(q, α)
7: end for

8: xα ← diagno syst(v)
9: end for

10: return X = [x0| . . . |xθ]

Notes: First, We have not looked at an optimization of calculation time here,
but have focused on exact calculation. For example, [24] have proposed CUD-
ASW++, an optimization of SW algorithm for or CUDA-enabled GPUs. See
for example [30] for recent background. Second, we have filtered the set Q by
keeping queries with a length 300 ≤ ℓ(q) ≤ 315, as we wish a high homology
between the query and some references. About one half of the queries only have
been kept with this filter for each environmental sample. Third, in the discus-
sion section, we will compare the inventories produced this way with inventories
produced with Mothur [39].

3.2 Classification of mismatches

Detecting and quantifying eventual problems was done by directly comparing
the abundance of taxa in the molecular inventory and the optical inventory.
Abundances were divided into low abundance and high abundance. Low abun-
dance in the optical inventories was defined as ≤ 1% relative abundance of a
taxon, high abundance was ≥ 1%. In the molecular inventories, low abundance
was defined as a low number of amplicon reads ≤ 1000, high abundance then
was defined as ≥ 1000 reads. Comparison was then done between the abun-
dance of a taxon in the optical inventory and the abundance of reads for each
barcoding gap. Hence, each taxon encountered in at least one of the inventories
has been allocated a category per inventory

• ∅: absent

• ℓ: low abundance
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• A: high abundance.

For example, a taxon absent in optics and present in low abundance in molec-
ular inventories will be tagged (∅, ℓ). In an ideal case, both the list of species
and their abundance would match exactly between both methods (only (ℓ, ℓ) or
(A,A). In practice, this is not the case.

The mismatches have been studied, and allocated to the following possible
causes (first code for optics, second for molecular):

• (∅, ℓ):

– the optical inventory could be made down to genus only; hence, the
taxon was not identified to species and could therefore not be ad-
dressed to one of the species sequences of the molecular database:
code e

– the species has been detected with large gap (≥ 15), hence is likely
a match on another nearby species: code i

– there exists a discrepancy between DNA based classification and mor-
phological based classification: code a

– the species is rare, has been detected in molecular inventory, but not
in optical: code b

• (∅, A): All codes a, e, i can explain such a discrepancy as well (as in (∅, ℓ))
when the reads assigned to a given taxon are abundant too. This is how-
ever not the case for code b (rare species) where the reads cannot be
abundant. Hence, code e cannot be found in such a situation.

• (ℓ, A) or (A, ℓ): It is highly likely that there has been an amplification
problem: code g

• (ℓ, ∅)

– as a symmetry to (∅, ℓ), there exists a discrepancy between DNA
based classification and morphological based classification: code a

– the barcode of corresponding species, as as well as of nearby species,
is absent from reference database: code c

– the optics has probably lead to count dead frustules: code f

• (A, ∅):

– as in the case (ℓ, ∅), situations described by code a or c are possible

– code f , however, is unlikely,

The key for possible misclassification causes is given in table 1.

The classification of mismatches par sample according to these codes has been
done with expertise of diatomists who have done the optical inventories.
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4 Results

There are three results per set of sample (Léman lake and Swedish rivers):

• the optical inventories

• the molecular based inventories

• the likely causes for mismatch between both

Optical inventories are given in file Léman optics.txt for Léman lake and
Sweden optics.txt for Swedish rivers. An example of molecular based in-
ventory with the number of informative reads per gap (see methods) is given in
file L6.txt. Mismatch classification are given in tables 2 for Léman lake and
table 3 for Swedish rivers.

5 Discussion

5.1 Molecular based inventories

Similarity based data retrieval: The pipeline presented here for supervised
clustering can be summarized as a two steps process for each query: (i) a search
for neighbors in the reference database, (ii) a post-processing of this set. The
search can be processed either by BLAST, or here by exact local alignment
scores. We have selected the latter because it is easily parallelizable. The key
point is on post-processing. The question of allocating a query to a reference,
knowing a reference database and a distance, has been thoroughly studied in
many areas under the name of similarity search, or similarity based data retrieval
(see e.g. [35]). The model behind taxonomic assignment is the model behind
barcoding: there exists a barcoding gap α such that if two sequences x, y are at
a distance d(x, y) < α, they belong to the same taxon, whereas if they are at
a distance d(x, y) > α, they belong to different taxa. We discuss here how to
assign a name knowing a gap (notion of informative read), and how to extend
the procedure to a set of barcoding gaps (notion of sliding barcoding gap).

Notion of informative read: The notion of informative read is at the basis
of our assignment pipeline, and is developed here. For a given barcoding gap
α, the neighborhood of a query is retrieved as the set of references at distance
d ≤ α. If all belong to same taxon in reference database, this taxon is assigned
to the query. If not, the annotation is called ambiguous. If the neighborhood is
the empty set, the annotation is unknown. Let us illustrate this on the example
given in figure 1. Let us have two different taxa shown here with blue dots,
called here taxon 1 and taxon 2. Each taxon is a clique, as they have been
derived by a mixture of morphological and molecular based basis. Let us have
two queries, one green one, and one red one. There are edges between each
query and all references at distance less that the barcoding gap α whatever
their taxon. Both edges from green query are towards nodes in taxon 1. Hence
the read is informative and the label taxon 1 can be assigned to it. On the
contrary, one edge from red query is towards taxon 1 and one is towards taxon
2. Then, red query is not informative, and assignment is ambiguous.
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Sliding barcoding gap: The barcoding gap is a value such that two reads
separated by a distance larger than the gap are expected to belong to different
taxa, and to the same taxon if their distance is smaller than the gap. The gap
depends on the taxonomic level. It is commonly accepted that an homology of
97% or more is relevant for assignation at species level. As the marker used here
is 312 bp long, this leads to a gap of 9 bp (either mismatch or unitary indel).
However, it is commonly accepted as well that the barcoding gap may depend
on the clade, and is not uniform. Hence, we have implemented the procedure
deciding whether a read is informative, or not, and the taxonomic assignment
if it is informative for a range of barcoding gaps between gap = 0 (the more
stringent choice) to gap = 20, as it is not expected to have distances larger than
20 bp (less than 93% of homology) within the same species. This procedure
has been run for all reads. This means that we have produced an array with
N rows if the sample is made of N reads, and 21 columns, one column for each
barcoding gap between 0 and 20. At row i and column α, we have either a
taxon if read i is informative for gap α, or the character ambiguous or unknown.
Then, for each gap α with 0 ≤ α ≤ 20, and for each taxon t in the reference
database, we have computed the number n(t, α) of reads which are informative
with taxon t at barcoding gap α. Interestingly, for a given taxon t, the curve
plotting the number n(t, α) of informative reads in the sample hitting a given
taxon as a function of the barcoding gap α is often, but not always, unimodal.
This means that this number can increase or decrease when the gap decreases.
It is likely that it increases for small values because the neighborhood (the set
of specimen at distance equal to or less than the gap) increases and specimens
in it belong to the same taxon, and decreases for larger values because for
some reads the neighborhood becomes taxonomically heterogeneous when the
distance increases. This phenomenon is driven by the shape of the reference
database, and is under study with tools from multivariate analysis or machine
learning. An example of such a phenomenon for one read is given in figure 2. It
can be shown that if a read is informative for a given species at a given gap, it
cannot be informative for another species at a different gap. The advantage of
such an assignment procedure is that it permits assignment without a selection
of a unique barcoding gap: it is an adaptive procedure, without a model for
barcoding gap (either constant or clade dependent).

5.2 Classification of mismatches

Interpretation of the results: The fraction of perfect matches between mor-
phological based and molecular based inventories is of 14 % for Léman lake, and
7 % for Swedish rivers. This could appear as desperately low. The main causes
for mismatches are

• for Léman lake: case b (rare species not recognized in optics) for 41 %,
then c (absence of barcode in R-Syst) for 17 %, i (likely match on a
nearby species) for 14 %, and a (mismatch between molecular based and
morphological based taxonomy) for 11 %.

• for Swedish rivers: a (mismatch between molecular based and morpholog-
ical based taxonomy) for 26 %, c (absence of barcode in R-Syst) for 24 %,
then b (rare species not recognized in optics) for 13 %, i (likely match on
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a nearby species) for 9 % and e (optical inventory at genus level only) for
8 %

All others causes can be considered as negligible (less than 5 %). It appears
that the main sources of mismatches are not due to the lack of resolution of
molecular marker or accuracy of the pipeline, but to taxonomical and technical
difficulties, which can be arranged in three categories:

• a still ongoing mismatch for some groups or clades between morphological
based and molecular based taxonomy (case a)

• a difficulty in optics to accurately detect rare species (case b)

• the incompleteness of the reference data base (cases c and i), preventing
an accurate molecular based inventory.

Hence, the conditions for a molecular based inventory in metabarcoding to be
accurate are that (i) there is an agreement between morphological based and
molecular based systematics and (ii) the reference molecular database encom-
passes the whole diversity of the sampled communities. If those conditions are
fulfilled, there is a slight advantage for molecular based inventories which could
be more accurate for detecting rare species.

Incompleteness of the reference database: Regarding the Swedish dataset,
about 50% of all taxa found in the optical inventory were not present in the ref-
erence database, so were impossible to find by the NGS method. Checking
the different streams, we found that many of the diatom species dominating the
streams of the boreal region are not present in database and that taxa from acid
streams are especially missing. Examples of Swedens most frequent taxa missing
from the reference database are Brachysira neoexilis Lange-Bertalot, Eunotia in-

cisa W. Smith & W. Gregory and Eunotia implicata Nörpel, Lange-Bertalot &
Alles. Additionally, taxa from high mountain regions are missing as well. Best
represented are typical agricultural streams from the non-boreal region of Swe-
den, ecologically most similar to Central Europe. On the contrary, 17% only of
taxa found optically in Léman lake are absent in the reference database. They
are therefore impossible to detect in the molecular inventories. It is the case
for taxa such as species of the Encyonopsis genus or Calonei bacillum, Navicula
radiosafallax, N. utermoehlii, Nitzschia lacuum. There are also several species
of the Achnanthidium genus (A. catenatum, A. eutrophilum) which were not
detected in the molecular inventory but were observed in microscopy for the
same reason. This is in line with recent works of [1] which ranked complete-
ness/incompleteness of reference database as first among causes for mismatch
between optical and molecular based inventories.

Discrepancy between molecular based and morphological based tax-

onomy: Such a discrepancy is a major limit for building an agreement between
classical optical inventories and metabarcoding. A most prominent example for
this category of problems is the genus Fragilaria, recorded as a problem in all
but four of the 20 samples of the Swedish dataset. Even if a number of recent
publications are trying to unravel the taxonomy of this genus, its identification
and separation between species are far from clear. Identification literature gives
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often no clear limits between species, some features are only visible in electronic
microscopy, and most of all, different references are often giving different char-
acters for the different species (see e.g. the case of F.gracilis Østrup, which is
very common in Fennoscandia, but not so much in Central Europe, where it
often is identified as F. rumpens (Kützing) Lange-Bertalot instead). This leads
to problems when trying to separate these species in optical inventories, and
also especially when giving a name to a species in a reference database leading
in turn to problems when comparing optical and molecular inventories to each
other. In some circumstances, we can today not even say which of the given
names in an inventory are correct, but have to go back and harmonize the way
of identifying species. There is as well a need to make close studies of molecular
and optical characters of taxa which were until now considered as a species, and
study the accuracy of separations to closely related species. If none can be found,
it may lead to pool species in order to enable clear identifications. Other taxon
complexes suffer of similar problems, represented in the Swedish dataset by
for example Achnanthidium minutissimum and related species, Nitzschia palea

and related species, Navicula cryptocephala and N. cryptotenella and related
species, Eolimnia minima and related species, certain Gomphonema species,
the genera Staurosira, Ulna, Encyonema Cymbella, Mayamaea, Amphora, and
Planothidium.

5.3 Comparison with existing pipelines

Mismatches between optical based and molecular based inventories can come
from biases in one of the inventory (or both ...), as well as disagreements between
morphology based and molecular based systematics. Hence, we have tried to
minimize the possible biases due to the computing phase in building a molecular
based inventory. Therefore, we have favored exact calculations, i.e. calculation
of all local alignments between queries and references. We have compared our
inventories with the ones issued on same datasets with standard tools, here
Mothur [39].

Comparison with Mothur: methods Mothur requires that the reference
database is aligned, whereas diagno-syst does not. For each query, mothur
searches the read in reference database closer to the query (the best hit), makes
a local alignment between both, and provides some information on the quality
of the alignment. When the quality of the alignment is considered as sufficient
(some threshold have to be defined for that), next step is to accept the alignment
as good, look at the identity of the aligned reference, look at its name, and
transfer it to the query, considered as an element of the inventory. Different
tools can be selected as options, as kmers, suffix tree or BLAST for searching
closest reference, and global or local alignment for the quality of the alignment.
We have selected a search with kmers, and local alignment with gotoh. We have
been stringent with the quality of the alignment (300 aligned bp or more among
312 bp). Beyond the necessity to have an aligned reference database, and use of
heuristics by mothur, the main difference between mothur and diagno-syst is a
taxonomic annotation from the best hit by mothur, and by an informative read
by diagno-syst. Diagno-syst is more stringent, in the sense that, for a given gap,
it requires that all neighbors in reference database at distance less than the gap
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belong to the same taxon. Then the name is transferred. It is therefore expected
that Mothur has more false positive, and diagno-syst more false negative.

Comparison with Mothur: an example A comparison between both in-
ventories has been made for each sample of swedish rivers and Léman lake,
and results for one sample (UR 775, Swedish rivers) are presented here as an
example. The comparison is given in file UR 757 compare.txt. The sample
is oligotrophic and neutral, and from the pristine mountains. 45 species have
been recognized by optics, 69 with diagno-syst, and 134 with Mothur. 10 false
positive have been produced by diagno-syst, and 34 by Mothur. It has been
more difficult to quantify the amount of false-negatives, as into the category
“taxonomical/barcoding problems”: they might have been hit but as a closely
related taxon. Another possibility is that there is a mismatch between optical
and molecular based species delineation, like for Cocconeis placentula. Hence,
we have counted the taxa that diagno-syst and Mothur found and were absent
from optical inventory, and assessed which were probably (e.g. earlier found)
or likely (i.e. oligotrophic, clean-water taxa) in the sample. This represents 13
species (out of 24 false positive) for diagno-syst, and 25 (out of 89) for Mothur.
This shows that diagno-syst inventories are closer to optical based inventories
than mothur inventories. This is probably due to the fact that, in order to be
quick, mothur runs one local alignment only, and diagno-syst, in order to be
more exact, runs them all (in this early version). Mothur assignment relies on
the alignment with the best hit only, whereas diagno-syst relies on the alignment
with all reference reads in a given neighborhood, and hence is more stringent.

Comparison with Mothur at genus level: This can be checked by a com-
parison between both approaches at the genus level, where taxonpic discrep-
ancies between different approaches are less developed. The result is given in
table UR 757 compare genera.txt. Looking at it indicates in nice global cor-
relation (better seen on a log-log scale), but a few important discrepancies. A
major one is for genus Cymbella, and all the other ones are in a long tail of rare
genera, found by Mothur and not by diagno-syst Placoneis, Craticula, Acantho-
ceras, Fallacia, .... This comparison between Mothur and diagno-syst has to be
studied further and in more details.

6 Conclusions

We have designed and run a new pipeline, called diagno-syst for molecular
based inventories in metabarcoding. We have produced a pipeline which en-
ables an industrialization of production of such inventories. It relies on comput-
ing exact distances, without heuristics, between each read of an environmental
sample and each sequence of a reference database. Such distances are then used
to build molecular based inventories on environmental samples. We have com-
pared the results of inventories of freshwater benthic diatom communities with
optical based inventories on two contrasted sets of environmental samples: 10
samples from Léman lake, and 20 samples from Swedish rivers. All samples
have been inventoried optically, and with metabarcoding, with a same protocol,
and using a reference database specifically designed for freshwater diatoms (R-
Syst::diatoms, see [38]). We have compared the outputs of our pipeline with the
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standard existing one for metabarcoding inventories in microbial communities:
Mothur. We have found that our pipeline is more stringent: both recovered
species which had been recognized optically, but they differed in the number
and types of false positive: more positive, and sometimes taxonomically more
distant from what could be expected, with Mothur. The higher quality and
accuracy of diagno-syst inventories is paid by a longer computation time, which
is reasonable with parallelization (which has been implemented).

We have studied a main question: is it possible to quantify the fraction of
match/mismatch between both ways of performing an inventory on a same sam-
ple, split according to potential causes? We have been interested in answering
to two further questions: first, a focus on rare species, by definition difficult to
detect, but a key component of biodiversity, and, second, having two contrasted
datasets handled with the same protocol permits to have an idea of the depen-
dence of the result on regional idiosyncrasies.

In both datasets, the largest causes of mismatches between molecular and opti-
cal dataset were a - Discrepancy between DNA-data and classical taxonomy, b
- rare species, c - no barcode in R-Syst and i - species detected for gaps ≥ 15.
However, we found that the plausible main causes of discrepancies are different
for datasets: In Léman lake, most mismatches were caused by taxa that were
found by metabarcoding but not in microscope. This category was interpreted
as rare species, which simply had been overlooked in the microscope, as only 400
valves are too be counted. As our knowledge of diatoms benthic communities
in Léman lake is fairly good, it is possible to state in most of cases that those
species actually have been found earlier in the frequent and long-term monitor-
ing of this lake. So we can assert with high confidence that the NGS method is
correct here, and that the NGS method is better in finding rare taxa. On the
other hand, in the Swedish dataset most mismatches were caused by (i) a dis-
crepancy between DNA-based and classical taxonomy and (ii) by optical taxa
missing in the reference database. Furthermore, a comparison between Mothur
and diagno-syst showed that the long tail of rare species or genera provided
by Mothur is not fully trustable: it is probably over-estimated. Most of these
discrepancies are due to an underrepresentation of boreal taxa in the reference
database.

As a consequence, much effort still has to be put into (i) implementation of
exact calculations (sequence comparisons) for comparing queries with a refer-
ence database in order to minimize an overestimation of the long tail of diver-
sity, (ii) diatom taxonomy, to unravel DNA based and optical based species
delineation, and (iii) completing reference databased with more species from
underrepresented regions.
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7 Tables

code meaning
a Discrepancy between DNA-data and classical taxonomy
b rare species
c no barcode in R-Syst
e Genus level in optics only
f If barcode in R-Syst: no DNA, dead frustule
g amplification problem
h other reasons
i species detected for gaps ≥ 15
k ok

Table 1: Coding of the possible reasons for discrepancy between optical based
and molecular based inventories
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a b c e f g h i k
L1 12 27 11 0 3 0 0 5 10
L2 7 25 12 0 1 0 0 6 11
L3 12 26 9 0 1 0 0 5 8
L4 6 38 11 0 2 0 0 9 8
L5 7 27 10 0 1 0 0 10 8
L6 7 27 12 0 1 0 0 12 9
L7 6 27 11 0 3 0 0 11 11
L8 7 25 8 0 2 0 0 10 6
L9 5 18 16 0 4 0 1 9 11
L10 8 33 15 0 2 0 1 15 10
Sum 77 273 115 0 20 0 2 92 92
(%, rounded) 11 41 17 0 3 0 0 14 14

Table 2: Counting the number of species per sample (in row) and per possible
cause of discrepency (in columns) for 10 samples of Léman lake. See table 1 for
the meaning of the codes.
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a b c e f g h i k
UR 787 20 5 9 3 0 2 4 7 3
UR 36 32 15 9 9 0 0 7 8 3
UR 775 24 11 25 5 0 2 3 4 3
UR 1 30 12 20 7 0 1 6 7 6
UR 38 29 9 31 8 0 5 4 8 2
UR 789 30 10 28 5 0 3 3 6 1
UR SAP45A 7 5 27 5 0 2 1 3 1
UR 764 6 2 14 3 0 0 4 4 5
UR 39 29 17 25 4 0 1 5 7 11
UR 790 30 21 30 6 0 1 4 10 13
UR 803 23 1 8 3 2 1 4 11 2
UR 27 35 11 16 6 0 0 3 4 4
UR 771 6 3 12 3 0 0 3 1 2
UR 785 25 20 23 5 0 4 4 9 5
UR SAM36A 8 6 6 5 1 6 0 2 5
UR 756 6 2 7 2 0 2 2 3 1
UR 53 4 5 8 4 0 1 3 5 2
UR 766 26 12 4 8 1 3 2 1 9
UR 26 34 14 17 11 1 2 6 21 14
UR 757 29 5 17 9 2 7 2 12 4
sum 433 186 336 111 7 43 70 133 96
(%, rounded) 30 13 24 8 0 3 5 9 7

Table 3: Counting the number of species per sample (in row) and per possible
cause of discrepancy (in columns) for 20 samples of swedish rivers. See table 1
for the meaning of the codes.
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8 Figures

Taxon 1 Taxon 2

Figure 1: Blue dots are references. Green and red dots represent two queries.
References have been categorized by a mixture of molecular and morphological
based assignment. Hence they are depicted as (nearly) cliques. There is an edge
between a query and a reference when the distance between them is less than α.
Green query is an informative read, because both edges lead to the same taxon,
whereas red query is ambiguous, as both edges lead to two different taxa. See
text for details.

n = 0
(unknown)

1 ≤ n ≤ 5

n > 5 (ambiguous)

Figure 2: The red dot is a read. The blue dots and green dots are two species
in the reference database, respectively. Black quarter of circle represent areas at
distance equal to the radius of the circle. For small distances, the query has no
it (n = 0). The status is unknown. For some region, the read can have between
1 and 5 hits of references belonging all to species blue (1 ≤ n ≤ 5).The status
is informative for species blue. Beyond a given radius, the read has more than
5 hits (n > 5), but on references belonging to either blue or green species. The
status is ambiguous.
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