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Abstract. We propose a modified local discontinuous Galerkin (LDG) method for
second–order elliptic problems that does not require extrinsic penalization to ensure
stability. Stability is instead achieved by showing a discrete Poincaré–Friedrichs
inequality for the discrete gradient that employs a lifting of the jumps with one
polynomial degree higher than the scalar approximation space. Our analysis covers
rather general simplicial meshes with the possibility of hanging nodes.

1 Introduction

It is well–known that the local discontinuous Galerkin (LDG) method for
second–order elliptic problems can be formulated, in part, by replacing the
differential operators in the variational formulation by their discrete counter-
parts [3–5]. For example, on the space of discontinuous piecewise polynomials
of degree at most k, the discrete gradient operator is composed of the element-
wise gradient corrected by a lifting of the jumps into the space of piecewise
polynomial vector fields. The original formulation of the LDG method [3] em-
ploys liftings of same polynomial degree k as the scalar finite element space,
while liftings of order k−1 have also been considered, see the textbook [5] and
the references therein. Part of the motivation for these choices of the order of
the lifting is the correspondence to the order of the element-wise gradient and
reasons of ease of implementation. However, unlike the continuous gradient
acting on the space H1

0 , the discrete gradient operators with liftings of order
k− 1 or k fail to satisfy a discrete Poincaré–Friedrichs inequality. Therefore,
the LDG method requires additional penalization with user–defined penalty
parameters to ensure stability.

In this note, we construct a modified LDG method with guaranteed sta-
bility without the need for extrinsic penalization. This result is obtained by
simply increasing the polynomial degree of the lifting operator to order k+ 1
and exploiting properties of the piecewise Raviart–Thomas–Nédélec finite ele-
ment space. Our analysis covers the case of meshes with hanging nodes under
a mild condition of face regularity which we introduce in this work. We recall
that the order of the lifting in the LDG method does not alter the dimension
or stencil of the resulting stiffness matrix. As a result, the proposed method
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has a negligible increase of computational cost and inherits the advantages
of the standard LDG method in terms of locality and conservativity.

The rest of the paper is organized as follows. In Sec. 2 we give the no-
tation used throughout the manuscript and state some preliminary results.
We define the lifted gradient operator with increased polynomial degree in
Sec. 3 and show that the L2 norm of this operator is equivalent to a discrete
H1 norm on piecewise polynomial spaces. We establish by means of a coun-
terexample that the increased polynomial degree is necessary to obtain this
stability estimate in Sec. 4. In Sec. 5 we propose and study the modified LDG
method in the context of the Poisson equation.

2 Notation

Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded polytopal domain with Lipschitz
boundary ∂Ω. Let {Th}h>0 be a shape- and contact–regular sequence of
simplicial meshes on Ω, as defined in [5, Definition 1.38]. For each element
K ∈ Th, let hK := diamK, with h = maxK∈Th hK for each mesh Th. We de-
fine the faces of the mesh as in [5, Definition 1.16], and we collect all interior
and boundary faces in the sets F ih and Fbh, respectively, and let Fh := F ih∪Fbh
denote the skeleton of Th. In particular, F ∈ F ih if F has positive (d − 1)-
dimensional Hausdorff measure and if F = ∂K1 ∩ ∂K2 for two distinct mesh
elements K1 and K2. For an element K ∈ Th, we denote F(K) the set of faces
of K, i.e. E ∈ F(K) if E is the closed convex hull of d vertices of the simplex
K. Note that on a mesh with hanging nodes, a mesh face may be a proper
subset of an element face, see Fig. 1, hence the notions of mesh faces and
element faces do not need to coincide. In this work, the meshes are allowed
to have hanging nodes, provided that they satisfy the following notion of face
regularity.

Definition 1. A face F ∈ Fh is called regular with respect to the element
K if F ∈ F(K). We say that the mesh Th is face regular if every face of Fh
is a regular face with respect to at least one element of Th.

Fig. 1 illustrates the notion of face regularity with two examples. We
remark that any matching mesh is face regular. On a face regular mesh, any
boundary face is necessarily regular with respect to the element to which it
belongs. It appears that meshes of practical interest are most likely to be face
regular, so this restriction is rather mild in practice.

For integrable functions φ defined piecewise on either Th or Fh, we use
the convention∫

Ω

φ dx =
∑
K∈Th

∫
K

φ dx,

∫
Fh

φds =
∑
F∈Fh

∫
F

φ ds.

For the integer k ≥ 1, we define the discontinuous finite element spaces
Vh,k as the space of real-valued piecewise-polynomials of degree at most k on
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Fig. 1. Face regularity of meshes: the mesh on the left has interior faces
F ih = {Fi}3i=1, each of which is regular to at least one element in the sense
of Definition 1, even though F2 and F3 fail to be regular with respect to the
element K, since F2 and F3 are only proper subsets of the elemental face
F2∪F3. Since all boundary faces are also regular, the mesh on the left is face
regular in the sense of Definition 1, whereas the mesh on the right is not: the
mesh face F̄3 fails to be regular with respect to any element of the mesh.

Th, and Σh,k+1 the space of vector-valued piecewise-polynomials of degree at
most k + 1 on Th. We define the mesh-dependent norm ‖·‖1,h on Vh,k by

‖vh‖21,h :=
∑
K∈Th

‖∇vh‖2L2(K) +
∑
F∈Fh

1

hF
‖JvhK‖2L2(F ) ∀ vh ∈ Vh,k, (1)

where hF := diamF for each face F ∈ Fh.
We shall also make use of the (local) Raviart–Thomas–Nédélec space [7]

defined by

RTNk+1(K) := Pk(K)⊕ P̃k(K)x ⊂ Pk+1(K),

where Pk(K) is the space of vector-valued polynomials of degree at most
k on K, and P̃k(K) is the space of real-valued homogeneous polynomials of
degree k on K. We recall that τh ∈ RTNk+1(K) is uniquely determined by
the moments

∫
K
τh · µh dx and

∫
E

(τh · nE) vh ds for all µh ∈ Pk−1(K) and
vh ∈ Pk(E) for each E ∈ F(K), where nE denotes a unit normal vector of E.
We also recall that if all facial moments of τh vanish on an elemental face E,
then τh · nE vanishes identically on E.

For a face F ∈ Fh belonging to an element Kext, we define the jump and
average operators by

JwK|F := w|Kext
− w|Kint

, {w} |F := 1
2

(
w|Kext

+ w|Kint

)
, if F ∈ F ih,

JwK|F := w|Kext
, {w} |F := w|Kext

, if F ∈ Fbh,

where w is a sufficiently regular scalar or vector-valued function, and in the
case where F ∈ F ih, Kint is such that F = ∂Kext ∩ ∂Kint. Here, the labelling
is chosen so that nF is outward pointing with respect to Kext and inward
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pointing with respect to Kint. Let φ ∈ L2(Fh), then the lifting operators
rh : L2(Fh)→ Σh,k+1 and rh : L2(Fh)→ Vh,k are defined by∫

Ω

rh(φ) · σh dx =

∫
Fh

φ {σh · nF } ds ∀σh ∈ Σh,k+1, (2a)∫
Ω

rh(φ) vh dx =

∫
Fi

h

φ {vh} ds ∀ vh ∈ Vh,k. (2b)

For quantities a and b, we write a . b if and only if there is a positive constant
C such that a ≤ Cb, where C is independent of the quantities of interest,
such as the element sizes, but possibly dependent on the shape-regularity
parameters and polynomial degrees.

3 Stability of lifted gradients

We define the lifted gradient Gh : Vh,k → Σh,k+1 by

Gh(vh) = ∇hvh − rh(JvhK) ∀ vh ∈ Vh,k, (3)

where ∇h denotes the element-wise gradient operator. We note that Gh is
usually defined with a lifting using polynomial degrees k or k − 1, see for
instance [5]. However, as we shall see, by increasing the polynomial degree of
the lifting to k + 1, we obtain the following key stability result.

Theorem 2. Let {Th}h>0 denote a shape regular, contact regular and face
regular sequence of simplicial meshes on Ω. Let the norm ‖·‖1,h be defined
by (1) and let the lifted gradient operator Gh be defined by (3). Then, we have

‖uh‖1,h . ‖Gh(uh)‖L2(Ω) . ‖uh‖1,h ∀uh ∈ Vh,k. (4)

Proof. The upper bound ‖Gh(uh)‖L2(Ω) . ‖uh‖1,h is standard and we refer
the reader to [5, Sec. 4.3] for a proof. To show the lower bound, consider an
arbitrary uh ∈ Vh,k. Since Gh(uh) ∈ Σh,k+1, we have

‖Gh(uh)‖L2(Ω) = sup
τh∈Σh,k+1\{0}

∫
Ω
Gh(uh) · τh dx

‖τh‖L2(Ω)
,

with the supremum being achieved by the choice τh = Gh(uh). Therefore, to
show (4), it is sufficient to construct a τh ∈ Σh,k+1 such that

‖uh‖21,h .
∫
Ω

Gh(uh) · τh dx, (5)

‖τh‖L2(Ω) . ‖uh‖1,h. (6)
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Let τK ∈ RTNk+1(K) be defined by∫
K

τK · µh dx =

∫
K

∇uh · µh dx ∀µh ∈ Pk−1(K), (7a)∫
E

(τK · nE) vh ds =

{
−
∫
E

1
hE

JuhK vh ds if E ∈ Fh,
0 if E /∈ Fh,

(7b)

where (7b) holds for all vh ∈ Pk(E), for each element face E ∈ F(K). In
particular, if the element face E ∈ Fh, i.e. E is also a mesh face, then we
require that nE agrees with the choice of unit normal used to define the jump
and average operators. If E /∈ Fh, then τK · nE vanishes identically on E,
and the orientation of nE on the left-hand side of (7b) does not matter. The
global vector field τh ∈ Σh,k+1 is defined element-wise by τh|K = τK .

Since the mesh Th is assumed to be face regular, for every F ∈ Fh
there exists an element K ∈ Th and an elemental face E ∈ F(K) such that
E = F ; then E satisfies the first condition in (7b). Therefore, the facts that
{τh · nF } |F and JuhK|F both belong to Pk(F ) together with (7b) imply that
for each F ∈ Fh, one of only three situations may arise:

1. F is a boundary face and hence F ∈ F(K). In this case, we have
{τh · nF } |F = −h−1F JuhK|F .

2. F is an interior face which is regular with respect to both elements to
which it belongs. In this case, we have {τh · nF } |F = −h−1F JuhK|F .

3. F is an interior face which is regular with respect to only one of the ele-
ments to which it belongs. In this case, we have {τh · nF } |F = − 1

2h
−1
F JuhK|F ,

since τh|K′ · nF ≡ 0 for the element K ′ with respect to which F is not
regular.

Therefore, since τh ∈ Σh,k+1, the definition of the lifting operator in (2a)
implies that∫

Ω

Gh(uh) · τh dx =
∑
K∈Th

∫
K

∇uh · τh dx−
∑
F∈Fh

∫
F

{τh · nF } JuhK ds

≥
∑
K∈Th

‖∇uh‖2L2(K) +
1

2

∑
F∈Fh

1

hF
‖JuhK‖2L2(F )

≥ 1

2
‖uh‖21,h,

where the second line follows from (7) and from the fact that ∇uh|K ∈
Pk−1(K) for each K ∈ Th. Hence (5) is satisfied, and we now verify (6). A
classical scaling argument using the Piola transformation [2, p. 59] yields

‖τh‖L2(K) . sup
µh∈Pk−1(K)\{0}

∫
K
τh · µh dx

‖µh‖L2(K)

+
∑

E∈F(K)

sup
vh∈Pk(E)\{0}

h
1/2
E

∫
E

(τh · nE)vh ds

‖vh‖L2(E)
∀K ∈ Th.
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Fig. 2. Counterexample of Sec. 4: the domain Ω = (−1, 1)2 and the criss-
cross mesh Th considered in the example.

Therefore, it follows from (7) that, for each K ∈ Th,

‖τh‖2L2(K) . ‖∇uh‖
2
L2(K) +

∑
F∈F(K)∩Fh

hF ‖h−1F JuhK‖2L2(F ). (8)

Summing (8) over all elements therefore implies (6). ut

4 Counterexample to stability for equal-order liftings

Theorem 2 shows the stability of the lifted gradient operatorGh provided that
the lifting operator rh has polynomial degree k+ 1. In this section, we verify
by means of a counterexample that the stability estimate does not generally
hold for lower-order liftings, including in particular the case of equal-order
liftings, which are commonly used in practice; our example simplifies a similar
counterexample in [1].

Example. Let Ω = (−1, 1)2, and consider the finite element space Vh,k
defined on a criss-cross mesh with four triangles, as depicted in Fig. 2, using
piecewise linear polynomials, i.e. k = 1. Let uh ∈ Vh,1 be the piecewise linear
function defined by

uh|K1 = y +
2

3
, uh|K2 = x− 2

3
,

uh|K3 = −y +
2

3
, uh|K4 = −x− 2

3
.

Direct calculations show that {uh}|F ≡ 0 on all interior faces F ∈ F ih, and
that

∫
K
uh dx = 0 for all elements K ∈ Th. Consequently, if the lifting opera-

tor r̃h is defined in (2a) with the polynomial degree k+ 1 replaced by k, and
if G̃h(uh) := ∇huh − r̃h(JuhK) denotes the equal-order lifted gradient, then
we have for all τh ∈ Σh,1,∫
Ω

G̃h(uh) · τh dx =
∑
K∈Th

∫
K

∇huh · τh dx−
∑
F∈Fh

∫
F

{τh · nF } JuhK ds

= −
∑
K∈Th

∫
K

uh(∇h · τh) dx+
∑
F∈Fi

h

∫
F

{uh}Jτh · nF K ds = 0.
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Since G̃h(uh) ∈ Σh,1, we deduce that G̃h(uh) = 0, and thus it is found that

no bound of the form ‖uh‖1,h . ‖G̃h(uh)‖L2(Ω) is possible. ut

5 A modified LDG method without penalty parameters

As an application of Theorem 2, consider the discretization of the homoge-
neous Dirichlet boundary-value problem of the Poisson equation by a mod-
ified LDG method [3,4] as follows. For f ∈ L2(Ω), let u ∈ H1

0 (Ω) be the
unique solution of∫

Ω

∇u · ∇v dx =

∫
Ω

f v dx ∀ v ∈ H1
0 (Ω). (9)

Let the bilinear form ah : Vh,k × Vh,k → R be defined by

ah(uh, vh) =

∫
Ω

Gh(uh) ·Gh(vh) dx ∀uh, vh ∈ Vh,k, (10)

where the lifted gradient operator Gh was defined in (3). The bilinear form
ah(·, ·) defines a modified LDG method for (9): find uh ∈ Vh,k such that

ah(uh, vh) =

∫
Ω

f vh dx ∀vh ∈ Vh,k. (11)

It follows from Theorem 2 that ah(·, ·) is uniformly stable with respect to
the norm ‖·‖1,h, and thus (11) is well-posed for each h. Moreoever, the dis-
crete Poincaré inequality [5] implies that ‖uh‖1,h . ‖f‖L2(Ω) for all h, so
that the numerical solutions uh are uniformly bounded with respect to the
mesh-dependent norms ‖·‖1,h. The a priori error analysis for the numerical
method defined by (11) may be developed following the frameworks of [3,5,6],
although for reasons of space we do not present the arguments here.

An interesting feature of the modified LDG method (11) is that it does
not require any additional stabilization, such as added penalty terms of the
form

∫
Fh

σF

hF
JuhKJvhK ds for some user-defined parameter σF . The absence of

such penalty terms enables us to show the following discrete conservation
property. We define the lifted divergence Dh : Σh,k+1 → Vh,k by

Dh(σh) = divh σh − rh(Jσh · nF K), σh ∈ Σh,k+1, (12)

where divh denotes the element-wise divergence operator, and where rh is the
scalar lifting operator defined in (2b). We note that we have the integration-
by-parts identity∫

Ω

σh ·Gh(vh) dx = −
∫
Ω

Dh(σh) vh dx ∀ vh ∈ Vh,k, σh ∈ Σh,k+1, (13)
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which should be compared with the analogous continuous identity between
the spaces H1

0 (Ω) and H(div, Ω). Therefore, the numerical scheme (11) can
be equivalently expressed in the strong form

−
∫
Ω

Dh(Gh(uh)) vh dx =

∫
Ω

f vh dx, (14)

which implies that the numerical solution uh ∈ Vh,k solves

−Dh(Gh(uh)) = Πk
hf, (15)

in the pointwise sense on each element K, where Πk
hf denotes the element-

wise L2-projection of f into Vh,k. Although we have shown here how the
lifted gradient operator Gh of degree k + 1 may be used to achieve a stable
discretization of the Poisson equation, it is by no means restricted to this
model problem, as the lifted gradients may be used to discretize the second-
order terms of more general differential operators.

6 Conclusions

In this article, we studied an intrinsically stable modified LDG method with-
out additional parameter dependent penalization. For this, we showed that
increasing the degree of the lifting operator by one order leads to stability of
the discrete gradient operator on face regular meshes with hanging nodes.
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