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A projection method on measures sets

Nicolas Chauffert ∗, Philippe Ciuciu †, Jonas Kahn ‡, Pierre Weiss §

January 31, 2016

Abstract

We consider the problem of projecting a probability measure π on a
setMN of Radon measures. The projection is defined as a solution of the
following variational problem:

inf
µ∈MN

‖h ? (µ− π)‖22,

where h ∈ L2(Ω) is a kernel, Ω ⊂ Rd and ? denotes the convolution opera-
tor. To motivate and illustrate our study, we show that this problem arises
naturally in various practical image rendering problems such as stippling
(representing an image with N dots) or continuous line drawing (repre-
senting an image with a continuous line). We provide a necessary and suf-
ficient condition on the sequence (MN )N∈N that ensures weak convergence
of the projections (µ∗N )N∈N to π. We then provide a numerical algorithm
to solve a discretized version of the problem and show several illustrations
related to computer-assisted synthesis of artistic paintings/drawings.

Keywords — Constructive quantization, measure theory, nonconvex opti-
mization, halftoning, continuous line drawing.

1 Introduction

Digital Halftoning consists of representing a grayscale image with only black
and white tones [30]. For example, a grayscale image can be approximated by
a variable distribution of black dots over a white background. This technique,
called stippling, is the cornerstone of most printing digital inkjet devices. A
stippling result is displayed in Figure 1b. The lion in Figure 1a can be recognized
from the dotted image shown in Figure 1b. This is somehow surprising since the
differences between the pixel values of the two images are far from zero. One
way to explain this phenomenon is to invoke the multiresolution feature of the
human visual system [8, 24]. Figures 1c and 1d are blurred versions of Figures
1a and 1b respectively. These blurred images correspond to low-pass versions
of the original ones and are nearly impossible to distinguish.
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(a) (b)

(c) (d)

Figure 1: Explanation of the stippling phenomenon. Images (a) and (b) are
similar while the norm of their difference is large. Figures (c) and (d) are
obtained by convolving (a) and (b) with a Gaussian of variance equal to 3
pixels. After convolution, the images cannot be distinguished.

Assuming that the dots correspond to Dirac masses, this experiment suggests
placing the dots at locations p1, . . . , pN corresponding to the minimizer of the
following variational problem:

min
(p1,...,pN )∈ΩN

∥∥∥∥∥h ?
(
π − 1

N

N∑
i=1

δpi

)∥∥∥∥∥
2

2

(1)

where Ω ⊂ R2 denotes the image domain, δpi denotes the Dirac measure at
point pi ∈ R2, π denotes the target probability measure (the lion) and h is
a convolution kernel that should depend on the point spread function of the
human visual system. By letting

M(ΩN ) =

{
µ =

1

N

N∑
i=1

δpi , (pi)1≤i≤N ∈ ΩN

}
(2)

denote the set of N -point measures, problem (1) rereads as a projection problem:

min
µ∈M(ΩN )

‖h ? (π − µ)‖22 . (3)
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This variational problem is a prototypical example that motivates our study. As
explained later, it is intimately related to recent works on image halftoning by
means of attraction-repulsion potentials proposed in [26, 28, 14]. In references
[12, 10, 11] this principle is shown to have far reaching applications ranging from
numerical integration, quantum physics, economics (optimal location of service
centers) or biology (optimal population distributions).

In this paper, we extend this variational problem by replacingM(ΩN ) with
an arbitrary set of measures denoted MN . In other words, we want to approx-
imate a given measure π by another measure in the set MN . We develop an
algorithm that is shown to converge to critical points of this projection problem
in a general setting.

To motivate this extension, we consider a practical problem: how to perform
continuous line drawing with a computer? Continuous line drawing is a starting
course in all art cursus. It consists of drawing a picture without ever lifting the
pencil from the page. Figure 2 shows two drawings obtained with this technique.
It is also used in marketing, quilting designs, steel wire sculptures, connect the
dot puzzles,... A few algorithms were already proposed in [20, 33, 15, 5, 32].
We propose an original solution which consists of setting MN as a space of
pushforward measures associated with sets of parameterized curves.

Apart from the two rendering applications discussed above, the proposed
methodology has potential for diverse applications in fields such as imaging,
finance, biology,... As an application example, the interested reader can have a
look at our recent preprint on the generation of sampling schemes in magnetic
resonance imaging [6].

(a) (b)

Figure 2: Two examples of continuous line drawing. (a) A sketch of Marylin
Monroe by Pierre Emmanuel Godet http://pagazine.com/ using a continuous
line. A close inspection reveals that the line represents objects and characters.
(b) Meisje met de Parel, Vermeer 1665, represented using a spiral with variable
width. Realized by Chan Hwee Chong http://www.behance.net/Hweechong.

The remaining of this paper is structured as follows. We first describe the
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notation and some preliminary remarks in Section 2. We propose a mathemati-
cal analysis of the problem for generic sequences of measures spaces (MN )N∈N
in Section 3. We propose a generic numerical algorithm in Section 4 and derive
some of its theoretical guarantees. In Section 5, we study the particular prob-
lem of continuous line drawing from a mathematical perspective. Finally, we
present some results in image rendering problems in Section 6.

2 Notation and preliminaries

In this paper, we work on the measurable space (Ω,Σ), where Ω = Td denotes
the torus Td = Rd/Zd. An extension to other spaces such as Rd or [0, 1]d is
feasible but requires slight adaptations. Since drawing on a donut is impractical,
we will set Ω = [0, 1]d in the numerical experiments.

The space of continuous functions on Ω is denoted C(Ω). The Sobolev space
(Wm,p([0, T ]))d, where m ∈ N, is the Banach space of d dimensional curves in
Ω with derivatives up to the m-th order in Lp([0, T ]). LetM∆ denote the space
of probability measures on Ω, i.e. the space of nonnegative Radon measures p
on Ω such that p(Ω) = 1. Throughout the paper π ∈ M∆ will denote a target
measure. Let M denote the space of signed measures on Ω with bounded total
variation, that is µ = µ+ − µ− where µ+ and µ− are two finite nonnegative
Radon measures and ‖µ‖TV = µ+(Ω) + µ−(Ω) <∞.

Let h : Ω→ R denote a continuous function. Let µ ∈M denote an arbitrary
finite signed measure. The convolution product between h and µ is defined for
all x ∈ Ω by:

µ ? h(x) :=

∫
Ω

h(x− y)dµ(y) (4)

= µ(h(x− ·))

In the Fourier space, the convolution (4) translates to, for all ξ ∈ Zd (see e.g.,
[16]):

µ̂ ? h(ξ) = µ̂(ξ)ĥ(ξ),

where µ̂ is the Fourier-Stieltjes series of µ. The Fourier-Stieltjes series coeffi-
cients are defined for all ξ ∈ Zd by:

µ̂(ξ) :=

∫
Ω

e−2iπ〈ξ,x〉 dµ(x).

We recall the Parseval formula:∫
Ω

|h(x)|2 dx =
∑
ξ∈Zd

∣∣∣ĥ(ξ)
∣∣∣2 .

Let J : Rn → R denote a function and ∂J its limiting-subdifferential (or
simply subdifferential) [22, 1]. Let C ⊆ Rn denote a closed subset. The indicator
function of C is denoted iC and defined by

iC(x) =

{
0 if x ∈ C,
+∞ otherwise.
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The set of projections of a point x0 ∈ Rn on C is denoted PC(x0) and defined
by

PC(x0) = Arg min
x∈C

‖x− x0‖22.

The notation Arg min stands for the whole set of minimizers while arg min
denotes one of the minimizers. Note that PC is generally a point-to-set mapping
except if C is convex closed, since the projection on a closed convex set is unique.
The normal cone at x ∈ Rn is denoted NC(x). It is defined as the limiting-
subdifferential of iC at x. A critical point of the function J + iC is a point
x∗ that satisfies 0 ∈ ∂J(x∗) + NC(x∗). This condition is necessary (but not
sufficient) for x∗ to be a local minimizer of J + iC .

3 Mathematical analysis

Let
Nh(µ) := ‖h ? µ‖2. (5)

In this section, we study some basic properties of the following projection prob-
lem:

min
µ∈MN

Nh(π − µ), (6)

where (MN )N∈N denotes an arbitrary sequence of measures sets in M∆.

3.1 Norm properties

We first study the properties of Nh on the space M of signed measures with
bounded total variation. The following proposition shows that it is well defined
provided that h ∈ C(Ω).

Proposition 1. Let h ∈ C(Ω) and µ ∈M. Then h ? µ ∈ L2(Ω).

Proof. It suffices to remark that ∀x ∈ Ω, |h ? µ(x)| ≤ ‖µ‖TV ‖h‖∞ < +∞.
Therefore, h ? µ ∈ L∞(Ω). Since Ω is bounded, h ∈ L∞(Ω) implies that h ∈
L2(Ω).

Remark 1. In fact, the result holds true for weaker hypotheses on h. If h ∈
L∞(Ω), the set of bounded Borel measurable functions, h ? µ ∈ L2(Ω) since

∀x ∈ Ω, |h ? µ(x)| ≤ ‖µ‖TV
(

sup
x∈Ω
|h(x)|

)
< +∞.

Note that the L∞-norm is defined with an ess sup while we used a sup in the
above expression. We stick to h ∈ C(Ω) since this hypothesis is more usual when
working with Radon measures.

The following proposition gives a necessary and sufficient condition on h
ensuring that Nh defines a norm on M.

Proposition 2. Let h ∈ C(Ω). The mapping Nh defines a norm on M if and

only if all Fourier series coefficients ĥ(ξ) are nonzero.
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Proof. Let us assume that ĥ(ξ) 6= 0, ∀ξ ∈ Zd. The triangle inequality and
absolute homogeneity hold trivially. Let us show that µ 6= 0⇒ Nh(µ) 6= 0. The
Fourier series of a nonzero signed measure µ is nonzero, so that there is ξ ∈ Zd

such that µ̂(ξ) 6= 0. According to our hypothesis ĥ(ξ) 6= 0, hence µ̂ ? h(ξ) 6= 0
and Nh(µ) 6= 0.

On the contrary, if there exists ξ0 ∈ Zd such that ĥ(ξ0) = 0. The non-zero
measure defined through its Fourier series by

µ̂(ξ) =

{
1 if ξ = ξ0
0 otherwise

satisfies Nh(µ) = 0 and belongs to M.

From now on, owing to Proposition 2, we will systematically assume - some-
times without mentioning - that h ∈ C(Ω) and that ĥ(ξ) 6= 0, ∀ξ ∈ Zd. Finally,
we show that Nh induces the weak topology on M. Let us first recall the
definition of weak convergence.

Definition 1. A sequence of measures (µN )N∈N is said to weakly converge to
µ ∈M, if

lim
N→∞

∫
Ω

f(x)dµN (x) =

∫
Ω

f(x)dµ(x)

for all continuous functions f : Ω → R. The shorthand notation for weak
convergence is

µN ⇀
N→∞

µ.

Proposition 3. Assume that h ∈ C(Ω) and that ĥ(ξ) 6= 0, ∀ξ ∈ Zd. Then for
all sequences (µN )N∈N in M satisfying ‖µN‖TV ≤M < +∞, ∀N ∈ N,

lim
N→∞

Nh(µN ) = 0 ⇔ µN ⇀
N→∞

0.

Proof. Let (µN )N∈N be a sequence of signed measures in M.

If µN ⇀ 0, then µ̂N (ξ) = µN (ei2π〈ξ,·〉)→ 0 for all ξ ∈ Zd. Since |µ̂N (ξ)ĥ(ξ)| ≤
2M |ĥ(ξ)| for all ξ ∈ Zd and

∑
ξ∈Zd
|2Mĥ(ξ)|2 <∞, dominated convergence yields

that Nh(µN )→ 0.
Conversely, assume that Nh(µN )→ 0. Since the µN are bounded, there are

subsequences µNs that converge weakly to a measure ν that depends on the
subsequence. We have to prove that ν = 0 for all such subsequences. Since
Nh(µN )→ 0, we have µ̂N (ξ)→ 0 for all ξ ∈ Zd. Therefore, ν̂(ξ) = 0, ∀ξ ∈ Zd.
This is equivalent to ν = 0 (see e.g. [16, p.36]), ending the proof.

3.2 Existence of solutions

The first important question one may ask is whether Problem (6) admits a
solution or not. Proposition 4 provides sufficient conditions for existence to
hold.

Proposition 4. If MN is weakly compact, then Problem (6) admits at least
a solution. In particular, if MN is weakly closed and bounded in TV-norm,
Problem (6) admits at least a solution.
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Proof. Assume MN is weakly compact. Consider a minimizing sequence µn ∈
MN . By compacity, there is a µ ∈ MN and a subsequence (µnk)k∈N such
that µnk ⇀

k→+∞
µ. By Proposition 3, Nh induces the weak topology on any

TV-bounded set of signed measures, so that lim
k→∞

Nh(π − µk) = Nh(π − µ).

Since closed balls in TV-norms are weakly compact, any weakly closed TV-
bounded set is weakly compact.

A key concept that will appear in the continuous line drawing problem is that
of pushforward or empirical measure [4] defined hereafter. Let (X, γ) denote an
arbitrary probability space. Given a function p : X → Ω, the empirical measure
associated with p is denoted p∗γ. It is defined for any measurable set B by

p∗γ(B) := γ(p−1(B)),

where γ denotes the Lebesgue measure on the interval [0, 1]. Intuitively, the
quantity p∗γ(B) represents the “time” spent by the function p in B. Note
that p∗γ is a probability measure since it is positive and p∗γ(Ω) = 1. Given a
measure µ of kind µ = p∗γ, the function p is called parameterization of µ.

Let P denote a set of parameterizations p : X → Ω and M(P) denote the
associated set of pushforward-measures:

M(P) := {µ = p∗γ, p ∈ P}.

In the rest of this paragraph we give sufficient conditions so that a projection
on M(P) exists. We first need the following proposition.

Proposition 5. Let (pn)n∈N denote a sequence in P that converges to p point-
wise. Then (pn∗γ)n∈N converges weakly to p∗γ.

Proof. Let f ∈ C(Ω). Since Ω is compact, f is bounded. Hence dominated
convergence yields

∫
X
f(pn(x))− f(p(x))dγ(x)→ 0.

Proposition 6. Assume that P is compact for the topology of pointwise con-
vergence. Then there exists a minimizer to Problem (6) with MN =M(P).

Proof. By Proposition 4 it is enough to show that M(P) is weakly compact.
First, M(P) is bounded in TV-norm since it is a subspace of probability mea-
sures. Consider a sequence (pn)n∈N in P such that the sequence (pn∗γ)n∈N
weakly converges to a measure µ. Since P is compact for the topology of point-
wise convergence, there is a subsequence (pnk)k∈N converging pointwise to p ∈ P.
By Proposition 5, the pushforward-measure p∗γ = µ so that µ ∈ M(P) and P
is weakly closed.

3.3 Consistency

In this paragraph, we consider a sequence (MN )N∈N of weakly compact subsets
of M∆. By Proposition 4 there exists a minimizer µ∗N ∈ MN to Problem
(6) for every N . We study conditions on (MN )N∈N that ensure consistency,
i.e. µ∗N ⇀

N→∞
π. In the case of image rendering, it basically means that if N

is taken sufficiently large, the projection µ∗N and the target image π will be
indistinguishable from a perceptual point of view.
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In order to evaluate distances between µ∗N and π, the most natural met-
ric is the minimized norm Nh(µ∗N − π). However, its analysis is easy in the
Fourier domain, whereas all measures sets in this paper are defined in the space
domain. We therefore prefer to use another metrization of weak convergence,
given by the transportation distance. Moreover we will see in Theorem 1 that
the transportation distance defined below dominates Nh.

Definition 2. The L1 transportation distance, also known as Kantorovitch or
Wasserstein distance, between two measures with same TV norm is given by:

W1(µ, ν) := inf
c

∫
‖x− y‖1 dc(x, y)

where the infimum runs over all couplings of µ and ν, that is the measures c
on Ω × Ω with marginals satisfying c(A,Ω) = µ(A) and c(Ω, A) = ν(A) for all
Borelians A.

Equivalently, we may define the distance through the dual, that is the action
on Lipschitz functions:

W1(µ, ν) = sup
f :Lip(f)≤1

µ(f)− ν(f). (7)

We define the point-to-set distance as

W1(MN , π) := inf
µ∈MN

W1(µ, π).

Obviously this distance satisfies:

W1(MN , π) ≤ δN := sup
π∈M∆

inf
µ∈MN

W1(µ, π). (8)

Theorem 1. Assume that h ∈ C(Ω) denote a Lipschitz continuous function
with Lipschitz constant L. Then

Nh(µ− π) ≤ LW1(µ, π) (9)

and
Nh(µ∗N − π) ≤ LW1(MN , π) ≤ LδN . (10)

Proof. Let τx : h(·) 7→ h(x − ·) denote the symmetrization and shift operator.
Let us first prove inequality (9):

‖h ? (µ− π)‖22 =

∫
Ω

[h ? (µ− π)(x)]
2
dx

=

∫
Ω

|µ(τxh)− π(τxh)|2 dx

≤ |Ω|L2W 2
1 (µ, π),

where we used the dual definition (7) of the Wasserstein distance to obtain the
last inequality.

Let µN denote a minimizer of inf
µ∈MN

W1(µ, π). If no minimizer exists we may

take an ε-solution with arbitrary small ε instead. By definition of the projection
µ∗N , we have:

Nh(µ∗N − π) ≤ Nh(µN − π) ≤W (µN , π) ≤ δN . (11)
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Even though the bound (10) is pessimistic in general, it provides some insight
on which sequences of measures spaces allow a fast weak convergence.

3.4 Application to image stippling

In order to illustrate the proposed theory, we first focus on the case of N -point
measures M(ΩN ) defined in Eq. 2. This setting is the standard one considered
for probability quantization (see [13, 18] for similar results). As mentioned
earlier, it has many applications including image stippling. Our main results
read as follows.

Theorem 2. Let h denote an L-Lipschitz kernel. The set of N -point measures
M(ΩN ) satisfies the following inequalities:

δN = sup
π∈M∆

inf
µ∈M(ΩN )

W1(µ, π) ≤

(√
d

2
+ 1

)
1

N1/d − 1
(12)

and

sup
π∈M∆

inf
µ∈M(ΩN )

Nh(µ− π) ≤ L

(√
d

2
+ 1

)
1

N1/d − 1
. (13)

As a direct consequence, we get the following corollary.

Corollary 1. Let MN = M(ΩN ) denote the set of N-point measures. Then
there exist solutions µ∗N to the projection problem (6). Moreover, for any L-
Lipschitz kernel h ∈ C(Ω):

i) µ∗N ⇀
N→∞

π.

ii) Nh(µ∗N − π) = O
(
LN−

1
d

)
.

Proof. We first evaluate the bound δN defined in (8). To this end, for any given
π, we construct an explicit sequence of measures µ0, . . . , µN , the last of which
is an N -point measure approximating π.

Note that Td can be thought of as the unit cube [0, 1)d. It may therefore be
partitioned in Cd smaller cubes of edge length 1/C with C = bN1/dc. We let
(ωi)1≤i≤Cd denote the small cubes and xi denote their center. We assume that
the cubes are ordered in such a way that ωi and ωi+1 are contiguous.

We define µ0 =

Cd∑
i=1

π(ωi)δxi . The measure µ0 satisfies

W1(π, µ0) 6
1

2
sup
i

Diameter(ωi)

6

√
d

2
bN1/dc−1

6

√
d

2

1

N1/d − 1
,

but is not an N -point measure since Nπ(ωi) is not an integer.
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To obtain an N -point measure, we recursively build µl as follows:

µl({xl}) =
1

N
bNµl−1({xl})c ,

µl({xl+1}) = µl−1({xl+1, xl})−
1

N
bNµl−1({xl})c

if l ≤ (1/C)d − 1,

µl({xi}) = µl−1({xi}) if i /∈ {l, l + 1}.

We stop the process for l = (1/C)d and let µ̃ = µ(1/C)d . Notice that Nµl(xi) is
an integer for all i 6 l and that µl is a probability measure for all l. Therefore
µ̃ is an N -point measure. Moreover:

W1(µl, µl+1) 6
1

N
‖xl − xl+1‖2

6
1

N(N1/d − 1)
.

Since the transportation distance is a distance, we have the triangle inequality.
Therefore:

W1(π, µ̃) ≤W1(π, µ0) +

N∑
l=1

W1(µl−1, µl),

=

√
d

2

1

N1/d − 1
+N

1

N(N1/d − 1)

=

(√
d

2
+ 1

)
1

N1/d − 1
.

The inequality (13) is a direct consequence of this result and Proposition 1.
We now turn to the proof of Corollary 1. To prove the existence, first notice

that the projection problem (6) can be recast as (1). Let p = (p1, · · · , pN ) ∈
ΩN . The mapping p 7→

∥∥∥h ? (π − 1
N

∑N
i=1 δpi

)∥∥∥2

2
is continuous. Problem (1)

therefore consists of minimizing a finite dimensional continuous function over a
compact set. The existence of a solution follows. Point ii) is a direct consequence
of Theorem 1 and bound (13). Point i) is due to the fact that Nh metrizes weak
convergence, see Proposition 3.

4 Numerical resolution

In this section, we propose a generic numerical algorithm to solve the projection
problem (6). We first draw a connection with the recent works on electrostatic
halftoning [26, 28] in subsection 4.1. We then recall the algorithm proposed in
[26, 28] whenMN is the set of N -point measures. Finally, we extend this prin-
ciple to arbitrary measures spaces and provide some results on their theoretical
performance in section 4.3.

4.1 Relationship to electrostatic-halftoning

In a recent series of papers [26, 28, 12, 14], it was suggested to use electrostatic
principles to perform image halftoning. This technique was shown to produce
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results having a number of nice properties such as few visual artifacts. Motivated
by preliminary results in [26], the authors of [28] proposed to choose theN points
locations p = (pi)1≤i≤N ∈ ΩN as a solution of the following variational problem:

min
p∈ΩN

1

2N2

N∑
i=1

N∑
j=1

H(pi − pj)︸ ︷︷ ︸
Repulsion potential

− 1

N

N∑
i=1

∫
Ω

H(x− pi) dπ(x)︸ ︷︷ ︸
Attraction potential

, (14)

where H was initially defined as H(x) = ‖x‖2 in [26, 28] and then extended to
a few other functions in [12]. The attraction potential tends to attract points
towards the bright regions of the image (regions where the measure π has a large
mass) whereas the repulsion potential can be regarded as a counter-balancing
term that tends to maximize the distance between all pairs of points. Deriving
an algorithm to solve problem (14) with good precision can be seen as a general-
ization of Thomson’s problem [29], which belongs to Smale’s list of mathematical
questions to solve for the XXIst century [27].

Proposition 7 below shows that this attraction-repulsion problem is actually
equivalent to the projection problem (6) on the set of N -point measures defined
in (2). We let P∗ denote the set of solutions of (14) and M(P∗) = {µ =
1
N

∑N
i=1 δp∗i , p

∗ ∈ P∗}. We also let M∗ denote the set of solutions to problem
(6).

Proposition 7. Let h ∈ C(Ω) denote a kernel such that |ĥ|(ξ) > 0, ∀ξ ∈ Zd.

Define H through its Fourier series by Ĥ(ξ) = |ĥ|2(ξ). Then problems (6) and
(14) yield the same solutions set:

M∗ =M(P∗).

Proof. First, note that since H and h are continuous both problems are well
defined and admit at least one solution. Let us first expand the L2-norm in (6):

1

2
‖h ? (µ− π)‖22 =

1

2
〈h ? (µ− π), h ? (µ− π)〉

=
1

2
〈H ? (µ− π), µ− π〉

=
1

2
(〈H ? µ, µ〉 − 2〈H ? µ, π〉+ 〈H ? π, π〉) .

Therefore

Arg min
µ∈MN

1

2
‖h ? (µ− π)‖22 = Arg min

µ∈MN

1

2
(〈H ? µ, µ〉 − 2〈H ? µ, π〉) .

To conclude, it suffices to remark that for a measure µ of kind µ = 1
N

∑N
i=1 δpi ,

1

2
(〈H ? µ, µ〉 − 2〈H ? µ, π〉)

=
1

2N2

N∑
i=1

N∑
j=1

H(pi − pj)−
1

N

N∑
i=1

∫
Ω

H(x− pi) dπ(x).
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Remark 2. It is rather easy to show that a sufficient condition for h to be
continuous is that H ∈ C3(Ω) or H be Hölder continuous with exponent α > 2.
These conditions are however strong and exclude kernels such as H(x) = ‖x‖2.

From Remark 1, it is actually sufficient that h ∈ L∞(Ω) for Nh to be well
defined. This leads to less stringent conditions on H. We do not discuss this
possibility further to keep the arguments simple.

Remark 3. Corollary 1 sheds light on the approximation quality of the mini-
mizers of attraction-repulsion functionals. Let us mention that consistency of
problem (14) was already studied in the recent papers [12, 10, 11]. To the best
of our knowledge, Corollary 1 is stronger than existing results since it yields a
convergence rate and holds true under more general assumptions.

Though formulations (6) and (14) are equivalent, we believe that the pro-
posed one (6) has some advantages: it is probably more intuitive, shows that the
convolution kernel h should be chosen depending on physical considerations and
simplifies some parts of the mathematical analysis such as consistency. However,
the set of admissible measuresM(ΩN ) has a complex geometry and this formu-
lation as such is hardly amenable to numerical implementation. For instance,
M(ΩN ) is not a vector space, since adding two N -point measures usually leads
to (2N)-point measures. On the other hand, the attraction-repulsion formula-
tion (14) is an optimization problem of a continuous function over the set ΩN .
It therefore looks easier to handle numerically using non-linear programming
techniques. This is what we will implement in the next paragraphs following
previous works [26, 28].

4.2 The case of N-point measures

In this section, we develop an algorithm specific to the projection on the set of
N -point measures defined in (2). This algorithm generates stippling results such
as in Fig. 1. In stippling, the measure is supported by a union of discs, i.e., a sum
of diracs convoluted with a disc indicator. We simply have to consider the image
deconvoluted with this disc indicator as π to include stippling in the framework
of N -point measures. We will generalize this algorithm to arbitrary sets of
measures in the next section. We assume without further mention that Ĥ(ξ)
is real and positive for all ξ. This implies that H is real and even. Moreover,
Proposition 7 implies that problems (6) and (14) yield the same solutions sets.
We let p = (p1, . . . , pN ) and set

J̃(p) :=
1

2N2

N∑
i=1

N∑
j=1

H(pi − pj)︸ ︷︷ ︸
F (p)

− 1

N

N∑
i=1

∫
Ω

H(x− pi) dπ(x)︸ ︷︷ ︸
G̃(p)

. (15)

The projection problem therefore rereads as:

min
p∈ΩN

J̃(p). (16)

For practical purposes, the integrals in G̃(p) first have to be replaced by numer-
ical quadratures. We let G(p) ' G̃(p) denote the numerical approximation of
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G̃(p). This approximation can be written as

G(p) =
1

N

N∑
i=1

n∑
j=1

wjH(xj − pi)πj ,

where n is the number of discretization points xj and wj are weights that depend
on the integration rule. In particular, since we want to approximate integration
with respect to a probability measure, we require that

n∑
j=1

wjπj = 1.

In our numerical experiments we use the rectangle rule. We may then take πj
as the integral of π over the corresponding rectangle. After discretization, the
projection problem therefore rereads as:

min
p∈ΩN

J(p) := F (p)−G(p). (17)

The following result [1, Theorem 5.3] will be useful to design a convergent
algorithm. We refer to [1] for a comprehensive introduction to the definition of
Kurdyka- Lojasiewicz functions and to its applications to algorithmic analysis.
In particular, we recall that semi-algebraic functions are Kurdyka- Lojasiewicz
[19].

Theorem 3. Let K : Rn → R be C1 function whose gradient is L-Lipschitz
continuous and let C be a nonempty closed subset of Rn. Being given ε ∈

(
0, 1

2L

)
and a sequence of stepsizes γ(k) such that ε < γ(k) < 1

L − ε, we consider a

sequence (x(k))k∈N that complies with

x(k+1) ∈ PC
(
x(k) − γ(k)∇K(x(k))

)
, with x(0) ∈ C (18)

If the function K + iC is a Kurdyka- Lojasiewicz function and if (x(k))k∈N is
bounded, then the sequence (x(k))k∈N converges to a critical point x∗ in C.

A consequence of this important result is the following.

Corollary 2. Assume that H is a C1 semi-algebraic function with L-Lipschitz
continuous gradient. Set 0 < γ < N

3L . Then the following sequence converges to
a critical point of problem (17)

p(k+1) ∈ PΩN

(
p(k) − γ∇J(p(k))

)
, with p(0) ∈ ΩN . (19)

If H is convex, 0 < γ < N
2L ensures convergence to a critical point.

Remark 4. The semi-algebraicity is useful to obtain convergence to a critical
point. In some cases it might however not be needed. For instance, in the case
where C is convex and closed, it is straightforward to establish the decrease of
the cost function assuming only that ∇J is Lipschitz. Nesterov in [23, Theorem

3] also provides a convergence rate in O
(

1√
k+1

)
in terms of objective function

values.
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Proof. First notice that J is semi-algebraic as a finite sum of semi-algebraic
functions.

Function J is C1 by Leibniz integral rule. Let ∂k denote the derivative with
respect to pk. Then, since H is even

∂kF (p) =
1

N2

N∑
i=1

∇H(pk − pi) (20)

and

∂kG(p) = − 1

N

n∑
j=1

wj∇H(xj − pk)πj . (21)

For any two sets of N points p(1) = (p
(1)
k )16k6N , p

(2) = (p
(2)
k )16k6N :

‖∇F (p(1))−∇F (p(2))‖22 =

N∑
k=1

∥∥∥∂kF (p(1))− ∂kF (p(2))
∥∥∥2

2

=
1

N4

N∑
k=1

∥∥∥ N∑
i=1

∇H(p
(1)
k − p

(1)
i )−∇H(p

(2)
k − p

(2)
i )
∥∥∥2

2

6
1

N4

N∑
k=1

( N∑
i=1

L‖p(1)
k − p

(1)
i − (p

(2)
k − p

(2)
i )‖2

)2

6
L2

N4

N∑
k=1

( N∑
i=1

‖p(1)
k − p

(2)
k ‖2 + ‖p(1)

i − p
(2)
i ‖2

)2

6
L2

N4

N∑
k=1

N
( N∑
i=1

(
‖p(1)
k − p

(2)
k ‖2 + ‖p(1)

i − p
(2)
i ‖2

)2)
6

2L2

N3

N∑
k=1

N∑
i=1

‖p(1)
k − p

(2)
k ‖

2
2 + ‖p(1)

i − p
(2)
i ‖

2
2

=
4L2

N2
‖p(1) − p(2)‖22,

and

‖∇G(p(1))−∇G(p(2))‖22 =

N∑
k=1

∥∥∥∂kG(p(1))− ∂kG(p(2))
∥∥∥2

2

=
1

N2

N∑
k=1

∥∥∥ n∑
j=1

wjπj
(
∇H(p

(1)
k − x)−∇H(p

(2)
k − x)

)∥∥∥2

2

6
1

N2

N∑
k=1

( n∑
j=1

wjπjL‖p(1)
k − p

(2)
k ‖
)2

=
L2

N2

( n∑
j=1

wjπj

)
‖p(1) − p(2)‖22

=
L2

N2
‖p(1) − p(2)‖22.
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Finally,

‖∇J(p(1))−∇J(p(2))‖2
6 ‖∇F (p(1))−∇F (p(2))‖2 + ‖∇G(p(1))−∇G(p(2))‖2

6
(2L

N
+
L

N

)
‖p(1) − p(2)‖2 =

3L

N
‖p(1) − p(2)‖2.

Now, if we assume that H is convex and C2 (this hypothesis is not necessary,
but simplifies the proof). Then F and G are also convex and C2. We let
∇2F denote the Hessian matrix of F . Given the previous inequalities, we have
0 4 ∇2F 4 2L

N Id and 0 4 ∇2G 4 L
N Id. Hence, the largest eigenvalue in

magnitude of ∇2(F −G) is bounded above by 2L
N .

Moreover, the sequence (x(k))k∈N is bounded since ΩN is bounded.

4.3 A generic projection algorithm

We now turn to the problem of finding a solution of (6), whereMN denotes our
arbitrary measures set. In the previous paragraph, it was shown that critical
points of J + iΩN could be obtained with a simple projected gradient algorithm
under mild assumtpions. Although this algorithm only yields critical points,
they usually correspond to point configurations that are visually pleasing after
only a few hundreds of iterations. For instance, the lion in Figure 1b was
obtained after 500 iterations. Motivated by this appealing numerical behavior,
we propose to extend this algorithm to the following abstract construction:

1. Approximate MN by a subset An of n-point measures.

2. Use the generic Algorithm (18) to obtain an approximate projection µ∗n
on An.

3. When possible, reconstruct an approximation µN ∈ MN of a projection
µ∗N using µ∗n.

To formalize the approximation step, we need the definition of Hausdorff
distance:

Definition 3. The Hausdorff distance between two subsets X and Y of a metric
space (M,d) is:

Hd(X,Y ) := max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(y, x)

}
.

In words, two sets are close if any point in one set is close to at least a
point in the other set. In this paper, the relevant metric space is the space of
signed measures M with the norm Nh. The corresponding Hausdorff distance
is denoted HNh .

The following proposition clarifies why controlling the Hausdorff distance is
relevant to design approximation sets An.

Proposition 8. Let An and MN be two TV-bounded weakly closed sets of
measures such that HNh(An,MN ) ≤ ε. Let µ∗n be a projection on An. Then
there is a point µN ∈ MN such that Nh(µ∗n − µN ) ≤ ε and Nh(π − µN ) ≤

inf
µ∈MN

Nh(π − µ) + 2ε.
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Corollary 3. If lim
n→∞

HNh(An,MN ) = 0, then (µ∗n)n∈N converges weakly along

a subsequence to a solution µ∗N of Problem (6).

Proof. We first prove Proposition 8. Since An and MN are bounded weakly
closed, by Proposition 4, there exists at least one projection µ∗n on An and one
projection µ∗N on MN .

Moreover since An andMN are bounded weakly closed, they are also closed
for Nh, so that the infimum in the Hausdorff distances are attained. Hence there
exists µn ∈ An such that Nh(µn − µ∗N ) ≤ HNh(An,MN ) ≤ ε and µN ∈ MN

such thatNh(µN−µ∗n) ≤ ε. The proposition follows from the triangle inequality:

Nh(µN − π) ≤ Nh(µN − µ∗n) +Nh(µ∗n − π)

≤ ε+Nh(µn − π)

≤ ε+Nh(µn − µ∗N ) +Nh(µ∗N − π)

≤ Nh(µ∗N − π) + 2ε.

For the corollary, let us consider the sequence (µ∗n)n∈N as n tends to infinity.
Since all µn are in M∆, which is weakly compact, we have a subsequence that
converges to µ∗∞. Since Nh is a metrization of weak convergence on MN , this
µ∗∞ is indeed a solution to Problem (6):

Nh(µ∗∞ − π) = lim
n→∞

Nh(µ∗n − π)

= inf
µ∈MN

Nh(π − µ).

To conclude this section, we show that it is always possible to construct an
approximation set An ⊆ M(Ωn) with a control on the Hausdorff distance to
MN . Let Mε

N denote an ε-enlargement of MN w.r.t. the Nh-norm, i.e.:

Mε
N = ∪µN∈MN

{µ ∈M∆,Nh(µ− µN ) ≤ ε}. (22)

We may define an approximation set Aεn as follows:

Aεn =M(Ωn) ∩Mε
N . (23)

For sufficient large n, this set is non-empty and can be rewritten as

Aεn =

{
µ =

1

n

n∑
i=1

δpi , with p = (pi)1≤i≤n ∈ Pεn

}
, (24)

where the parameterization set Pεn depends on MN and ε. With this dis-
cretization ofMN at hand, one can then apply (at least formally) the following
projected gradient descent algorithm:

p(k+1) ∈ PPεn
(
p(k) − γ∇J(p(k))

)
, with p(0) ∈ Pεn. (25)

The following proposition summarizes the main approximation result:

Proposition 9. Assume that h is L-Lipschitz. Set ε =
(√

d
2 + 1

)
L

n1/d−1
and

An = Aεn, then

HNh (An,MN ) = O
(
Ln−1/d

)
.
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Proof. By construction, An satisfies

sup
µn∈An

inf
µN∈MN

Nh(µn − µN ) ≤ ε.

Let µN be an arbitrary measure in MN . By inequality (12), there exists
µn ∈ M(Ωn) such that Nh(µn − µN ) ≤ ε. Therefore µn also belongs to Aεn.
This shows that

sup
µN∈MN

inf
µn∈An

Nh(µn − µN ) ≤ ε.

The approximation process proposed (23) is non-constructive since it does
not provide any explicit formula for Pεn. Moreover, Pεn can be an arbitrary
set and the projection on Pεn might not be implementable. We will provide
constructive approximations for specific measures spaces in Section 5.

5 Application to continuous line drawing

In this section, we concentrate on the continuous line drawing problem described
in the introduction. We first construct a set of admissible measures MT that
is a natural representative of artistic continuous line drawings. The index T
represents the time spent to draw the picture. We then show that using this
set in problem (6) ensures existence of a solution and weak convergence of the
minimizers µ∗T to any π ∈ M∆. We finish by designing a numerical algorithm
to solve the problem and analyze its theoretical guarantees.

5.1 Problem formalization

Let us assume that an artist draws a picture with a pencil. The trajectory of
the pencil tip can be defined as a parameterized curve p : [0, T ]→ Ω. The body,
elbow, arm and hand are subject to non-trivial constraints [21]. The curve p
should therefore belong to some admissible parameterized curves set denoted
PT . In this paper, we simply assume that PT contains curves with bounded
first and second order derivatives in Lq([0, T ]). More precisely, we consider the
following sets of admissible curves:

1. Curves with bounded speed:

P1,∞
T =

{
p ∈ (W 1,∞([0, T ]))d, p([0, T ]) ⊂ Ω, ‖ṗ‖∞ ≤ α1

}
,

where α1 is a positive real.

2. Curves with bounded speed and acceleration:

P2,∞
T =

{
p ∈ (W 2,∞([0, T ]))d, p([0, T ]) ⊂ Ω, ‖ṗ‖∞ ≤ α1,

‖p̈‖∞ ≤ α2

}
,

where α1 and α2 are positive reals. This set models rather accurately
kinematic constraints that are met in vehicles. It is obviously a rough
approximation of arm constraints.
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3. The proposed theory and algorithm apply to a more general setting. For
instance they cover the case of curves with derivatives up to an arbitrary
order bounded in Lq with q ∈ [1,∞]. We let

Pm,qT =
{
p ∈ (Wm,q([0, T ]))d, p([0, T ]) ⊂ Ω,

∀i ∈ {1, . . . ,m}, ‖p(i)‖q ≤ αi
}
.

where (αi)i=1...m are positive reals. This case will be treated only in
the numerical experiments to illustrate the variety of results that can be
obtained in applications.

Note that all above mentionned sets are convex. The convexity property will
help deriving efficient numerical procedures.

In the rest of this section, we consider the following projection problem:

inf
µ∈M(Pm,qT )

Nh(µ− π), (26)

with a special emphasis on the set M (Pm,∞T ) since it best describes standard
kinematic constraints. This problem basically consists of finding the “best” way
to represent a picture in a given amount of time T .

5.2 Existence and consistency

We first provide existence results using the results derived in Section 3 for q =∞.

Theorem 4. For any m ∈ N∗, Problem (26) admits at least one solution in
M (Pm,∞T ).

Proof. From Proposition 6, it suffices to show that Pm,∞T is compact for the
topology of pointwise convergence.

Let (pn)n∈N be a sequence in Pm,∞T that converges pointwise to p. Since pn
is in Wm,∞, its (m − 1)-th derivative is Lipschitz continuous. By definition of

Pm,∞T , the p
(m−1)
n are both uniformly bounded by αm−1 and αm-Lipschitz, hence

equicontinuous. Next, by Ascoli’s theorem, up to taking a subsequence, p
(m−1)
n

uniformly converges to a continuous p(m−1). Integrating yields that p
(i)
n → p(i)

uniformly for all i ≤ m − 1, so that
∥∥p(i)

∥∥
∞ ≤ αi for i ≤ m − 1. Finally, a

limit of L-Lipschitz functions is also L-Lipschitz, so that
∥∥p(m)

∥∥
∞ ≤ αm. Hence

p ∈ Pm,∞T , ending the proof.

Let us now turn to weak convergence.

Theorem 5. Let T be an arbitrary positive real. Let µ∗T ∈ M (Pm,∞T ) denote
any solution of Problem (26). Then, for any Lipschitz kernel h ∈ C(Ω):

i) µ∗T ⇀
T→∞

π,

ii) Nh(µ∗T − π) = O
(
T−

m
m(d+1)−1

)
.

Proof. Let us consider a function u : [0, 1]→ R such that:

• The m-th derivative is bounded by αm, that is
∥∥u(m)

∥∥
∞ ≤ αm.
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• For all integers i ∈ {1, . . . ,m − 1}, endpoint values are zero, that is
u(i)(0) = u(i)(1) = 0.

• Start point is zero, that is u(0) = 0.

• Endpoint is positive, that is u(1) = C > 0.

Let x and y in Ω, such that ‖x− y‖2 = Crm, and let τxy be the unit vector
from x to y. Then, for r small enough, the function s[x, y] : t 7→ x + τxyu( tr )
belongs to Pm,∞T , with all its first (m−1) derivatives zero at its endpoints. The
condition r small enough is for controlling the norm of the i-th derivatives for
i ≤ m− 1, which scale as rm−i.

Now, let us split Ω = [0, 1]d in Nd small cubes ωi. We may order them such
that each ωi is adjacent to the next cube ωi+1. We write xi for the center of ωi.
We now build functions s ∈ Pm,∞T by concatenating paths from xi to xi+1 and
waiting times in xi:

0 = t11 ≤ · · · ≤ t2i−1 ≤ t1i ≤ t2i ≤ t1i+1 ≤ · · · ≤ t2Nd = T,

t2i − t1i =

(
1

NC

) 1
m

,

s(t) =

{
xi if t1i ≤ t ≤ t2i ,
s[xi, xi+1](t− t2i ) if t2i ≤ t ≤ t1i+1,

under the condition T ≥ TN := (Nd − 1)
(

1
NC

) 1
m , that is to say that we have

enough time to loop through all the cube centers.
Let now π ∈M∆. We may choose t2i − t1i ≤ Tπ(ωi) for all i. Then, we may

couple π and s∗γT with c(xi, ωi) =
t2i−t

1
i

T . Since the small cubes have radius√
d/N and the big one has radius

√
d, we obtain:

W1(π, s∗γT ) ≤
√
d

2N

∑
i

t2i − t1i
T

+
√
d
∑
i<Nd

t1i+1 − t2i
T

=

√
d

2N

T − TN
T

+
√
d
TN
T
.

In particular, takingN = T
m

m(d+1)−1 , we find thatW1 (M (Pm,∞T ) , π) = O
(
T−

m
m(d+1)−1

)
,

hence
⋃
TM (Pm,∞T ) is weakly dense in M∆.

5.3 Numerical resolution

We now turn to the numerical resolution of problem (26). We first discretize
the problem. We set ∆t := T

N and define discrete curves s as vectors of RN ·d.
We let s(i) ∈ Rd denote the curve location at discrete time i, corresponding to
the continuous time i∆t.

We define D1 : RN ·d → RN ·d, the discrete first order derivative operator, as
follows:

(D1s)(i) =
1

∆t

{
0 if i = 1,
s(i)− s(i− 1) if i ∈ {2, . . . , N}.
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In what follows, Di denotes a discretization of the derivative operator of order
i. In the numerical experiments, we set D2 = −D∗1D1.

We define Pm,qN , a discretized version of Pm,qT , as follows:

Pm,qN =
{
s ∈ RN ·d, such that ∀i ∈ {1, . . . N}, s(i) ∈ Ω, (27)

and ∀j ∈ {1, . . . ,m}, ‖Djs‖q 6 αj
}
. (28)

Here, ‖ · ‖q is defined by: ‖x‖q =

(
N ·d∑
i=1

‖xi‖q2

) 1
q

for q ∈ [1,+∞) and ‖x‖∞ =

max
16i6N ·d

‖xi‖2.

The measures set M(Pm,qT ) can be approximated by the set of N -point
measures M(Pm,qN ). From Corollary 3, it suffices to control the Hausdorff dis-
tance HW1

(M(Pm,qT ),M(Pm,qN )), to ensure that the solution of the discrete
problem (6) with MN = M(Pm,qN ) is a good approximation of problem (26).
Unfortunately, the control of this distance is rather technical and falls beyond
the scope of this paper for general m and q. In the following proposition, we
therefore limit ourselves to the case m = 1, q =∞.

Proposition 10. HW1
(M(P1,∞

T ),M(P 1,∞
N )) 6 α1

T
N .

Proof. 1. Let us show that sup
µ∈M(P1,∞

T )

inf
µ̃∈M(P 1,∞

N )
W1(µ, µ̃) 6

α1T

N
.

Let µ ∈ M(P1,∞
T ) and denote by p ∈ P1,∞

T a parameterization such

that µ = p∗γ. Define µ̃ =
1

N

N−1∑
i=0

δp( iTN ). Then a parameterization of

µ̃ is defined by s(i) = p
(
iT
N

)
. Moreover, for i ∈ {2, . . . N}, |(D1s)(i)| =

1

∆t

∣∣∣∣p( iTN
)
− p

(
(i− 1)T

N

)∣∣∣∣ =
1

∆t

∣∣∣∣∣
∫ iT

N

(i−1)T
N

ṗ(t) dt

∣∣∣∣∣ 6 1

∆t

∫ iT
N

(i−1)T
N

|ṗ(t)| dt 6

α1. Therefore s ∈ P 1,∞
N .

Let us consider the transportation map coupling the curve arcs between
times (i − 1) TN and i TN and the Diracs at p

(
i TN
)
. Then W1(p∗γ, s∗γ) 6

N∑
i=1

1

N
sup

(i−1) TN6t6i TN

∥∥∥∥s(t)− s((i− 1)
T

N

)∥∥∥∥ 6 α1
T

N
.

2. Let us fix µ ∈ M
(
P 1,∞
N

)
and let s ∈ P 1,∞

N such that s∗γ = µ. We set

p(0) = s(1), and:

p(t)=

{
s(1) for t ∈

]
0, TN

]
,

s(i)+
(
t

∆t − i
)

(s(i+ 1)−s(i))for t ∈
]
iT
N ,

(i+1)T
N

]
, i ∈ {1, . . . N − 1}.

Since s ∈ ΩN and Ω is convex, p([0, T ]) ⊂ Ω. Moreover, p is continu-
ous and piecewise differentiable. Finally, for i ∈ {1, . . . , N − 1} and t ∈]
iT
N ,

(i+1)T
N

]
, ṗ(t) = 1

∆t (s(i+ 1)− s(i)) = D1(s)(i). Therefore, ‖ṗ‖∞ 6
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α1, ensuring that p ∈ P1,∞
T . With the same coupling as above, we have

W1(p∗γ, s∗γ) 6 α1
T
N , which ends the proof.

To end up, let us describe precisely a solver for the following variational
problem:

inf
µ∈M(P1,∞

T )
Nh(µ− π). (29)

We let M∗ denote the set of minimizers and P∗ denote the associated set of
parameterizations.

Algorithm 1 A projection algorithm on M
(
P1,∞
T

)
.

Input:

- π: target measure.

- N : a number of discretization points.

- s(0) ∈ P 1,∞
N : initial parameterized curve.

- H: a semi-algebraic function with Lipschitz continuous gra-
dient.

- nit: number of iterations.

Output:

- s(nit): an approximation of a curve in P∗.

- µ(nit) = (s(nit))∗γT : an approximation of an element of
M∗.

for 0 ≤ k ≤ nit do

- Compute η(k) = ∇J(s(k))

- Set s(k+1) = PP 1,∞
N

(
s(k) − τη(k)

)

Remark 5. The implementation of Algorithm 1 requires computing the gradi-
ents (20) and (21) and computing a projection on P 1,∞

N . Both problems are
actually non trivial.

The naive approach to compute the gradient of F consists of using the explicit
formula (20). This approach is feasible only for a small amount of points N
(less than 1000) since its complexity is O

(
N2
)
. In our numerical experiments,

we therefore resort to fast summation algorithms [25, 17] commonly used in
particles simulation. This part of the numerical analysis is described in [28]
and we do not discuss it in this paper.

The set P 1,∞
N and more generally the sets Pm,qN are convex for q ∈ [1,∞].

Projections can be computed using first-order iterative algorithms for convex
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functions. In our numerical experiments, we use accelerated proximal gradient
descents on the dual problem [3, 23, 31]. A precise description is given in [7].

6 Results

To illustrate the results, we focus on the continuous line drawing problem dis-
cussed throughout the paper. It is performed using Algorithm 1. In the follow-
ing experiments, we set H as a smoothed L1-norm. This is similar to what was
proposed in the original halftoning papers in [26, 28].

We first concentrate on the projection onto P 1,∞
N . In Figure 3, we show the

evolution of the curve s(k) across iterations, for different choices of s(0). After
30, 000 iterations, the evolution seems to be stabilized. The cost function during
the 400 first iterations is depicted in Figure 4 for the three different initializa-
tions. As can be seen, the curve evolves toward a satisfactoryt representation of
the lion, whatever the initialization. This is a very nice feature that is somehow
surprising since our algorithm simply consists of minimizing a highly nonconvex
function with a first order method.

In Figure 5, we show the projection onto P 1,∞
N of the famous Meisje met de

Parel painting (Girl with a Pearl Earring), after 10, 000 iterations. To really see
the precision of the algorithm, we advise the reader to blink the eyes or to take
a printed version of the paper away. From a close distance, the curves or points
are visible. From a long distance, only the painting appears.

To finish, we consider projections onto more general measure spaces, such as
M (Pm,qT ). In Fig. 6, we show different behaviours for different m ∈ {1, 2} and
q ∈ {1, 2,∞}. We also show a large scale example with a picture of Marylin
Monroe in Figure 7.

7 Conclusion

We analyzed the basic properties of a variational problem to project a target
Radon measure π on arbitrary measures setsMN . We then proposed a numer-
ical algorithm to find approximate solutions of this problem and gave several
guarantees. An important application covered by this algorithm is the projec-
tion on the set of N -point measures, which is often called quantization and
appears in many different areas such as finance, imaging, biology,... To the best
of our knowledge, the extension to arbitrary measures set is new, and opens
many interesting application perspectives. As examples in imaging, let us men-
tion open topics such as the detection of singularities [2] (e.g. curves in 3D
images) and sparse spike deconvolution in dimension d [9].

To finish, let us mention an important open question. We provided necessary
and sufficient conditions on the sequence (MN )N∈N for the sequence of global
minimizers (µ∗N )N∈N to weakly converge to π. In practice, finding the global
minimizer is impossible and we can only expect finding critical points. One may
therefore wonder whether all sequences of critical points weakly converge to π.
An interesting perspective to answer this question is the use of mean-field limits
[10].
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Figure 3: Projection of the lion image onto P 1,∞
N with N = 8, 000. The figure

depicts s(k) with several values of the iterate k in Algorithm 1.
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Figure 4: Decay of the cost function J for the three experiments depicted in
Fig. 3. We represent log10(J(k)−m) for k ≤ 400 where m is the mimimal value
of J during the first 30, 000 iterations.
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Figure 5: Projection of Meisje met de Parel, Vermeer 1665, onto P 1,∞
N with

N = 150, 000. The figure depicts s(10,000) obtained with Algorithm 1.
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m = 1, q = 1 m = 1, q = 1
(small α1) (large α1)

m = 1, q = 2 m = 1, q =∞

m = 2, q =∞ m = 2, q =∞
(isotropic norm)

Figure 6: Projection of the lion image onto Pm,qN with N = 8, 000, and m ∈
{1, 2} and q ∈ {1, 2,∞}.
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Figure 7: Projection of Marylin image, onto the set:
C = {p ∈ (W 2,∞([0, T ]))2, sup

i∈[1,N ]

(‖D1p(i)‖2) ≤ α1, sup
i∈[1,N ]

(‖D2p(i)‖2) ≤ α2},

with N = 100, 000. The figure depicts s(10,000) obtained with Algorithm 1.
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