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Time-Accurate Anisotropic Mesh Adaptation for Three-Dimensional Time-Dependent
Problems with Body-Fitted Moving Geometries

N. Barrala, G. Oliviera, F. Alauzeta

aINRIA Saclay Ile-de-France, Projet Gamma3, 1, rue Honoré d’Estienne d’Orves,
91126 Palaiseau, France.

Abstract

Anisotropic metric-based mesh adaptation has proved its efficiency to reduce the CPU time of steady and unsteady simulations
while improving their accuracy. However, its extension to time-dependent problems with body-fitted moving geometries is far
from straightforward. This paper establishes a well-founded framework for multiscale mesh adaptation of unsteady problems
with moving boundaries. This framework is based on a novel space-time analysis of the interpolation error, within the continuous
mesh theory. An optimal metric field, called ALE metric field, is derived, which takes into account the movement of the mesh
during the adaptation. Based on this analysis, the global fixed-point adaptation algorithm for time-dependent simulations is
extended to moving boundary problems, within the range of body-fitted moving meshes and ALE simulations. Finally, three
dimensional adaptive simulations with moving boundaries are presented to validate the proposed approach.
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1. Introduction

Simulating complex moving geometries evolving in unsteady flows in three dimensions, which is more and more required
by industry, still remains a challenge because it is very time consuming. To reduce the CPU time of numerical simulations
while preserving their accuracy, anisotropic metric-based mesh adaptation has already proved its efficiency for steady problems
[5, 37, 38, 46], and appears as a promising way to reduce the complexity of such simulations. However, its extension to the
unsteady case with body-fitted moving geometries is not straightforward. Indeed, time-dependent simulations combine the
difficulties arising from unsteadiness and geometrical complexity: global time-step driven by the mesh smallest height, evolution
of physical phenomena in the whole domain, solution interpolation spoiling, and also three-dimensional meshing and remeshing
issues with an imposed discretized surface. The introduction of body-fitted moving geometries in this process even raises new
difficulties, due to the handling of the mesh movement and the deterioration of its quality, the specific numerical schemes imposed
by moving geometries as well as fluid/structure coupling and contact handling.

There exist two main branches of mesh adaptation for unsteady problems: r-adaptation and adaptive remeshing.
In the case of r-adaptation also called adaptive moving mesh methods, the mesh is continuously moved to an adapted config-

uration. The movement of the mesh vertices is governed by an extra equation that is strongly coupled to the underlying physics
equations and that is solved at the same time. Since the mesh movement is explicitly taken into account in the equations, there
are no spoiling interpolation steps. Several approaches can be found in the literature, that differ by the adaptation criteria, the
way the adaptation governs the mesh movement and the way the mesh movement is coupled with the physics equations. Recent
works on the topic include Moving Mesh PDEs [8, 28], and Lagrangian methods with ALE rezoning [40]. A Monge-Ampère
equation has also been used to drive the adaptation and has shown interesting results in 3D in [15, 17]. However, the solution of
the extra moving mesh equation is often costly in terms of CPU in 3D, and the optimality of the adapted mesh is not achieved
temporally as the same number of degrees of freedom is used through the whole simulation. Moreover, it is unsure how these
methods can be coupled to moving boundary problems.

The other branch consists in performing frequent adaptive remeshings. Three different approaches can be distinguished in
the literature. First [30, 33, 49, 52], an isotropic mesh is adapted frequently in order to maintain the solution within refined
regions and introduce a safety area around critical regions. Another approach is to use an unsteady mesh adaptation algorithm
[14, 16, 20, 48, 54] based on local or global remeshing techniques and the estimation of the error every n flow solver iterations. If
the error is greater than a prescribed threshold, the mesh is re-adapted. In [27], the authors combine both approaches mentioned
above. Local adaptive remeshing enabling the construction of anisotropic meshes has been also considered. In this case [46, 50],
the mesh is frequently adapted in order to guarantee that the solution always evolves in refined regions. All these approaches
involve a large number of mesh adaptations leading to a large increase in CPU time due to the generation of many meshes1, and

1The generation of a mesh is usually more costly than a few flow solver time-steps.
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the numerous IOs and database initializations2. This large number of mesh adaptations also introduces unquantified errors due
to the transfer of the solution from the old mesh to the new one. In the context of conservative equations, this can result in a
time-shift of the solution if a non-conservative solution transfer is considered [2]. Moreover, these methods can result in a time
shift between the mesh and the solution, since the adapted mesh is generated at one time-step, from the solution at that time-step,
and is kept for the next few time-steps. Finally, none of them consider the inherent non-linear nature of the mesh adaptation
problem: the convergence of the mesh adaptation process is never addressed and therefore obtaining the optimal mesh cannot be
expected.

A first answer to these issues has already been proposed [3, 22, 25, 41]. It is based on a control of the space-time interpolation
error in L∞ norm, the subdivision of the time interval into large sub-intervals on which the mesh is kept constant and on a local
fixed-point algorithm to address the prediction of the solution and the convergence of the non-linear mesh adaptation problem.
Since then, multiscale anisotropic mesh adaptation [5, 38] (i.e., the control of the interpolation error in Lp norm) and goal-oriented
anisotropic mesh adaptation [37] (i.e., the control of a goal-oriented error estimate in L1 norm) have proved to be a lot more
efficient for steady CFD computations. Therefore, it seems relevant to extend these approaches to time-dependent simulations.
Time-accurate multiscale and goal-oriented anisotropic mesh adaptation have been derived in [6] and [13], respectively, but for
fixed meshes. They are based on a space-time interpolation error analysis and a global fixed-point mesh adaptation algorithm.
The present paper extends the time-accurate multiscale anisotropic mesh adaptation of [6] to the case of moving geometries with
dynamic meshes.

Three classes of methods exist to deal with moving geometries: immersed/embedded methods, chimera/overset methods,
and body-fitted methods. In this work, we select the last class. If very frequent remeshings are performed (each n flow solver
time-steps), the movement of the geometries and thus of the meshes can be dealt with by the remeshings [18, 21]. But, this leads
to the issues stated above. In our case, the adaptive remeshings are much less frequent as only one adapted mesh is generated
for each sub-interval, so the handling of the moving geometries is crucial, both from the purely moving mesh point of view and
from the solver point of view. Indeed, algorithmically (to keep a simple mesh adaptation scheme) and theoretically (to derive the
error analysis), it is fundamental to only remesh when it is required by the adaptation, i.e., for each sub-interval, and to never
remesh because the mesh becomes too distorted due to the mesh deformation. Many works exist on mesh deformation strategies
and Arbitrary-Lagrangian-Eulerian (ALE) numerical schemes [12, 26, 34, 43, 47], but generally they are not able to handle large
geometry displacement without any remeshing throughout the simulation. Here, we consider the connectivity-change moving
mesh algorithm proposed in [1, 11] which proves to be very efficient to handle any 3D geometry displacements thanks to mesh
optimizations based on connectivity changes that manage efficiently any shearing inside the mesh deformation.

Regarding adaptive strategies for moving mesh simulations, only a few attempts can be found in the literature among
which [18, 26, 29, 31, 32, 51]. As impressive as they can be, these results nevertheless still suffer from some of the weaknesses
described above, i.e., mainly very frequent remeshing and spoiling interpolation stages. Moreover, there is no well-established
framework for the space-time error estimate and for the consideration of the dynamic of the mesh. The contribution of this paper
is to propose an extension of the time-accurate multiscale anisotropic mesh adaptation to moving-geometry problems, and to
demonstrate numerically that three-dimensional moving mesh adaptation simulations can actually be run with this algorithm.

To this aim, we first (Section 2) recall the extension of the space-time error analysis of [13] to time-accurate multiscale
anisotropic mesh adaptation, which provides a control of the space-time interpolation error in Lp norm and is thoroughly detailed
in [6]. Section 3 describes the global fixed-point mesh adaptation algorithm and its practical implementation. The extension of
the space-time analysis and of the mesh adaptation algorithm to moving mesh simulations is then addressed in Sections 4 and 5.
The contributions of this work are the following:

• propose an ALE metric field formulation which takes into account the displacement of the mesh. This ALE metric field
formulation is validated on several analytic examples by analyzing the quality of the resulting meshes and by performing
a convergence study of the error.

• extend the space-time interpolation error analysis to dynamic meshes using the ALE metric field formulation. The idea is
to match instantaneous interpolation error using the ALE metric field in order to map the error onto the initial continuous
mesh configuration, this removes the dependence of the continuous mesh in time.

• modify the connectivity-change moving mesh algorithm [1] to take into account anisotropic adapted dynamic meshes. In
particular, a dynamic metric field is considered to perform the mesh optimizations.

• demonstrate that body-fitted ALE numerical simulations involving large displacement of complex geometries and coupled
with anisotropic mesh adaptation is now achievable in a very robust and efficient way. To this end, many numerical
examples of 3D unsteady adaptive moving mesh simulations are presented and analyzed (Section 6).

2Unless a flow solver with dynamic data fully coupled with the adaptive remesher is used.
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2. Time-accurate multiscale anisotropic mesh adaptation for unsteady problems

This section first recalls the context of metric-based mesh adaptation, then a space-time interpolation error analysis is pre-
sented. Presenting the context and the time-accurate anisotropic mesh adaptation framework is essential to understand the
analysis with dynamic meshes. Note that the results are only presented in dimension three.

2.1. Metric-based generation of anisotropic adapted meshes

Metric-based generation of anisotropic adapted meshes uses the notion of Riemannian metric space [23, 35, 36]. For a
computational domain Ω ⊂ R3, a Riemannian metric space (M(x))x∈Ω is a spatial metric field that defines at any point of Ω a
metric tensor M(x), e.g. a 3 × 3 symmetric positive definite matrix. It is then possible for a mesh generator to work, i.e., to
evaluate all geometric quantities, in this Riemannian metric space instead of working in the canonical Euclidean space. In a
Riemannian metric space, the dot product is defined locally by metric tensorM: 〈u, v〉M = 〈u,Mv〉 for (u, v) ∈ R3 × R3. Thus,
the computation of geometric quantities requires integral formulae to take into account the variation of the metric field. In that
case, the length of edge ab is computed using the straight line parameterization γ(t) = a + t ab, where t ∈ [0, 1]:

`M(ab) =

∫ 1

0
‖γ′(t)‖M dt =

∫ 1

0

√
abT M(a + t ab) ab dt ,

and the volume of element K is:
|K|M =

∫
K

√
detM(x) dx .

The main idea of metric-based mesh adaptation, initially introduced in [24], is to generate a unit mesh in the prescribed
Riemannian metric space, e.g. a mesh of Ω ⊂ R3 such that each edge has a unit length and each tetrahedron is regular (or
equilateral) with respect to (M(x))x∈Ω:

∀e, `M(e) = 1 and ∀K, |K|M =

√
2

12
.

The resulting mesh in the canonical Euclidean space will be anisotropic and adapted. As it is not possible to tesselate R3 with
the regular tetrahedron, we seek for a mesh such that all its edges have a length close to unity and such that all the elements are
almost regular in the considered Riemannian metric space.

Following the duality introduced in [35, 36], a metric tensor (when it is defined point-wise) is a continuous element, and a
Riemannian metric space (when it is defined all-over the domain) - also called metric field - is a continuous mesh. One or the
other of these names will be used thereafter.

2.2. Space-time Lp interpolation error analysis

The space-time error analysis is based on the continuous mesh framework presented in [35, 36]. However, the multiscale
mesh adaptation described in these papers only controls spatial errors. In the context of time-dependent problems, temporal
errors must be controlled as well. In [13], a space-time error analysis is performed for a goal-oriented error estimate. Here, we
recall the extension of this analysis to the control of the space-time interpolation error in Lp norm. In what follows, we do not
account for time discretization errors but we focus on a space-time analysis of the spatial errors in unsteady simulations. In other
words, we seek for the optimal space-time mesh controlling the space-time spatial discretization error.

The following assumption is made: as an explicit time scheme is used for time advancing, the error in time is controlled
by the error in space under the CFL condition. The proof of this assumption for the 1D scalar advection equation is provided
in [3] and the extension of this proof to the multi-dimensional linear advection problem is given in [44]. However, there is no
proof of this fact for multi-dimensional non-linear problems. This assumption is illustrated on Sod’s shock tube problem in [44]
where, for explicit and implicit schemes with a CFL number less than one, we observe that no error in time appears while for
implicit schemes with a CFL number larger than one large error in time appears. Therefore, if implicit schemes with arbitrary
large time-steps are considered, an adaptive time-stepping method is required to control the error in time such as the analysis
proposed in [19] for incompressible unsteady simulations and [44] for the multi-dimensional linear advection problem. As far
as the above assumption is true, the spatial interpolation error is a good measure of the total space-time error of the discretized
unsteady system.

The space-time Lp interpolation error analysis is thoroughly detailed in [6]. However, it is absolutely essential to understand
well the reasoning to understand its extension to the moving mesh case, which is why some of it is recalled in the present paper.
Our goal is to solve an unsteady PDE which is set in the computational space-time domain Q = Ω × [0,T ] where Ω ⊂ R3 is
the spatial domain and T is the (positive) maximal time. An essential ingredient of our discretization and of our analysis is the
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element-wise linear interpolation operator. We define our working functional space which is the set of measurable functions that
are continuous with square integrable gradients:

V =
[
H1(Ω) ∩ C(Ω̄)

]
, and V = H1{[0,T ]; V} .

We assume that Ω is covered by a finite-element partition made of simplicial elements denoted K. The mesh, denoted by H , is
the set of the elements. Let us introduce the following approximation spaces:

Vh =
{
ϕh ∈ V

∣∣∣ ϕh |K is affine ∀K ∈ H
}
, and Vh = H1{[0,T ]; Vh} ⊂ V.

Let Πh be the usual P1 projector:

Πh : V → Vh such that Πhϕ(x) = ϕ(x), ∀ x vertex ofH .

We extend it to time-dependent functions:

Πh : V → Vh such that (Πhϕ) (t) = Πh (ϕ(t)) , ∀ t ∈ [0,T ].

The problem of mesh adaptation consists in finding the space-time meshH ofQ that minimizes the space-time linear interpolation
error u − Πhu in Lp norm, for a given sensor function u and for a given number of space-time mesh vertices Nst. The problem is
thus stated in an a priori way:

FindHopt having Nst space-time vertices such that ELp (Hopt) = min
H
‖u − Πhu‖Lp(Ωh×[0,T ]) . (1)

As it, this problem is a global combinatorial problem which turns out to be intractable in practice. This ill-posed problem can
be reformulated in the continuous mesh framework [35, 36]. In this framework, we propose the following continuous model
of a mesh. A continuous mesh M of a domain Ω is identified to a Riemannian metric space M = (M(x))x∈Ω that, at each
point x of Ω, prescribes a density, a set of anisotropy directions and the stretching along these directions, this information
being locally contained in metric tensor M(x). The spatial size of the continuous mesh is given by its spatial complexity:
C(M) =

∫
Ω

√
detM(x)dx which is the continuous counterpart of the number of vertices. Continuous mesh M defines a class of

equivalence of discrete meshes, which are all unit meshes with respect to M. We also define a continuous model of the linear
interpolation operator Πh denoted πM. It is then possible to recast (1) into a well-posed continuous global optimization problem
of finding the optimal space-time continuous mesh minimizing the space-time continuous interpolation error in Lp norm, for a
given sensor u and for a given space-time complexity Nst:

Find MLp = (MLp (x, t))(x,t)∈Q such that ELp (MLp ) = min
M
‖u − πMu‖Lp(Ω×[0,T ]) , (2)

under the space-time complexity constraint:

Cst(M) =

∫ T

0
τ(t)−1

(∫
Ω

√
det(M(x, t)) dx

)
dt = Nst . (3)

The continuous mesh space-time complexity Nst enables the user to control the level of accuracy of the mesh, and thus, to
implicitly control the number of space-time vertices of the resulting discrete mesh. In its definition, τ(t) is the time-step used at
time t of interval [0,T ] and

√
det(M(x, t)) represents the continuous mesh local density. The continuous space-time error model

can be written as follows (see [35]):

ELp (M) =

(∫ T

0

∫
Ω

trace
(
M−

1
2 (x, t)|Hu(x, t)|M−

1
2 (x, t)

)p
dx dt

) 1
p

. (4)

where Hu is the Hessian of sensor u. To find the optimal space-time continuous mesh (see [6, 13]), Problem (2-3) is solved in
two steps: first a spatial minimization is done for a fixed t, then a temporal minimization is performed.

Spatial minimization for a fixed t. At time t, we seek for the optimal continuous mesh MLp (t) which minimizes the instantaneous
interpolation error ẼLp in which the integral in time of Relations (3) and (4) was removed. Similarly to [35], solving the optimality
conditions provides the optimal instantaneous continuous mesh in Lp norm MLp (t) = (MLp (x, t))x∈Ω at time t defined by:

MLp (x, t) = N(t)
2
3

(∫
Ω

(det |Hu(x̄, t)|)
p

2p+3 dx̄
)− 2

3

(det |Hu(x, t)|)−
1

2p+3 |Hu(x, t)| . (5)

We set: K(t) =

∫
Ω

(det |Hu(x̄, t)|)
p

2p+3 dx̄. The corresponding optimal instantaneous interpolation error in Lp norm at the power p

at time t is:

ẼLp (MLp (t)) = 3pN(t)−
2p
3

(∫
Ω

(det |Hu(x, t)|)
p

2p+3 dx
) 2p+3

3

= 3pN(t)−
2p
3 K(t)

2p+3
3 . (6)
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Temporal minimization. To complete the resolution of optimization Problem (2-3), we perform a temporal minimization. We
need to find the optimal time law t → N(t) for the instantaneous mesh size. We consider the case where the time-step τ is
specified by the user as a function of time t → τ(t). A similar analysis is done in [6] to deal with the case of an explicit time
advancing solver subject to Courant time-step condition. After the previous spatial minimization, optimization Problem (2-3)
becomes: find space-time continuous mesh MLp such that:

(ELp (MLp ))p = min
M

∫ T

0
ẼLp (MLp (t)) dt = min

M
3p

∫ T

0
N(t)−

2p
3 K(t)

2p+3
3 dt under constraint

∫ T

0
τ(t)−1N(t) dt = Nst .

After computations detailed in [6], the expression of the optimal space-time continuous mesh MLp = (MLp (x, t))(x,t)∈Q for a
prescribed time-step is:

MLp (x, t) = N
2
3
st

(∫ T

0
τ(t)−

2p
2p+3 K(t)dt

)− 2
3

τ(t)
2

2p+3 (det |Hu(x, t)|)−
1

2p+3 |Hu(x, t)| . (7)

The following optimal error is obtained:

ELp (MLp ) = 3N−
2
3

st

(∫ T

0
τ(t)−

2p
2p+3 K(t)dt

) 2p+3
3p

. (8)

2.3. Space-time Lp error analysis with time sub-intervals

The previous analysis provides the optimal adapted meshes for each time level, it thus requires the mesh to be adapted at each
flow solver time-step which is inconceivable in practical applications. In [3, 6], the use of a coarse adapted discretization of the
time axis is proposed. The basic idea consists in splitting the simulation time frame [0, T ] into nadap adaptation sub-intervals:

[0, T ] = [0 = t1, t2] ∪ . . . ∪ [ti, ti+1] ∪ . . . ∪ [tnadap , tnadap+1 = T ] ,

and to keep the same adapted spatial mesh for each time sub-interval. On each sub-interval, the mesh is adapted to control
the solution accuracy from ti to ti+1. Consequently, the time-dependent simulation is performed with nadap different adapted
meshes. This drastically reduces the number of meshes generated during the simulation, hence the number of solution transfers.
Moreover, the flow solver performs many iterations (hundreds to thousands) on the same fixed spatial mesh. This provides a
first answer to the adaptation of the whole space-time mesh, the spatial mesh being kept constant for each sub-interval when the
global space-time mesh is visualized.

In the following, we extend the previous error analysis to the fixed-point unsteady mesh adaptation algorithm context where
the simulation time interval [0,T] is split into nadap sub-intervals [ti, ti+1] for i = 1, .., nadap. Each spatial continuous mesh Mi is
kept constant during each sub-interval [ti, ti+1], thus it has no more dependency in time. As previously, a spatial minimization
problem is solved first, followed by a temporal minimization resolution (see [6, 13] for details of the demonstration).

Spatial minimization for a given sub-interval. Given the continuous mesh spatial complexity N i for the single adapted mesh
used during sub-interval i, we seek for the optimal continuous mesh Mi

Lp = (Mi
Lp (x))x∈Ω solution of the following problem:

Ei
Lp (Mi

Lp ) = min
Mi

∫ ti+1

ti

∫
Ω

trace
(
(Mi)−

1
2 (x) |Hu(x, t)| (Mi)−

1
2 (x)

)p
dx dt

= min
Mi

∫
Ω

trace
(
(Mi)−

1
2 (x) Hi

u(x) (Mi)−
1
2 (x)

)p
dx such that C(Mi) = N i , (9)

where matrix Hi
u on the sub-interval is defined by:

Hi
u(x) =

∫ ti+1

ti
|Hu(x, t)| dt . (10)

This comes to moving the integral over time into the trace in Expression (9). This can be done because Mi does not depend any-
more on t, i.e., the mesh is static. Note that this cannot extend directly when meshes become dynamic. The spatial minimization
gives the solution of Problem (9) where the expressions of the optimal continuous mesh and of the optimal error are identical to
Relations (5) and (6) where Hu is substituted with Hi

u.
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Temporal minimization. Again, we consider the case where the time-step τ is specified by a function of time. After the spatial
minimization, the temporal minimization problem becomes:

(ELp (MLp ))p = min
M

nadap∑
i=1

Ei
Lp (Mi

Lp ) such that
nadap∑
i=1

N i

∫ ti+1

ti
τ(t)−1dt

 = Nst .

After the temporal minimization, the expression of the optimal continuous mesh MLp = {Mi
Lp }i=1,..,nadap =

{
(Mi

Lp (x))x∈Ω
}
i=1,..,nadap

and error are:

Mi
Lp (x) = N

2
3
st

(nadap∑
j=1

K j
(∫ t j+1

t j
τ(t)−1dt

) 2p
2p+3

)− 2
3 (∫ ti+1

ti
τ(t)−1dt

)− 2
2p+3 (det Hi

u(x))−
1

2p+3 Hi
u(x) (11)

ELp (MLp ) = 3N−
2
3

st

(nadap∑
i=1

K i
(∫ ti+1

ti
τ(t)−1dt

) 2p
2p+3

) 2p+3
3p

, (12)

where K i =

∫
Ω

(
det Hi

u(x)
) p

2p+3 dx.

3. Global fixed-point mesh adaptation algorithm

In [3], a local transient fixed-point mesh adaptation algorithm for time-dependent simulations has been proposed. However,
this algorithm cannot be used here as the computation of the optimal continuous mesh given by Relation (11) involves a global
normalization term which requires the knowledge of quantities over the whole simulation time frame. Thus, the complete
simulation must be performed before evaluating any space-time continuous mesh. To this end, we consider a global fixed-point
mesh adaptation algorithm covering the whole time frame [0,T ]. This iterative algorithm is used to converge the non-linear mesh
adaptation problem, and also to predict the solution evolution.

The global fixed-point unsteady mesh adaptation algorithm is schematized in Algorithm 1 whereH , S and M denote respec-
tively meshes, solutions and metric fields (i.e., continuous meshes). H is the Hessian-metric given by Relation (10). Several steps
of the previous algorithm are not straightforward, and need to be further detailed.

Algorithm 1 Mesh Adaptation Loop for Unsteady Flows
Initial mesh and solution(H0,S

0
0) and set targeted space-time complexity Nst

// Fixed-point loop to converge the global space-time mesh adaptation problem
For j = 1, npt f x

1. // Adaptive loop to advance the solution in time on time frame [0,T ]
For i = 1, nadap

(a) Si, j
0 = Interpolate conservatively next sub-interval initial sol. from (H i−1, j,Si−1, j,H i, j);

(b) Si, j = Compute solution on sub-interval from pair (Si, j
0 ,H

i, j);
(c) |H|i, j = Compute sub-interval Hessian-metric from sol. sample (H i, j, {Si, j(k)}k=1,nk);

EndFor
2. C j = Compute space-time complexity from all Hessian-metrics ({|H|i, j}i=1,nadap );

3. {Mi, j
Lp }i=1,nadap = Compute all sub-interval unsteady metric fields (C j, {|Hmax|

i, j}i=1,nadap );

4. {H i, j+1}i=1,nadap = Generate all sub-interval adapted meshes ({H i, j, Mi, j
Lp }i=1,nadap );

EndFor

3.1. Computation of the optimal continuous mesh

Computation of the Hessian-metric. The optimal Lp metric involves an averaged Hessian-metric Hi
u on sub-interval i given by

Relation (10), but it still remains to know how to compute it practically, i.e., how it is discretized. The strategy adopted in [3] is to
sample the solution on the time sub-interval. More precisely, nk solutions equally distributed on the sub-interval time frame are
saved, including the initial solution at ti and the final solution at ti+1. Positive Hessian |Hu(x, tk)| is evaluated for each sample. The
Hessian matrices are computed using a double least-square procedure: first the gradients are computed using a linear least-square
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reconstruction procedure [42], and a similar procedure is applied to recover the Hessians. The error analysis leads to write Hi
u as

the integral over time of the Hessian matrices, and thus the following discretization is used:

Hi
u(x) =

1
2

∆ti

nk − 1
|Hu(x, ti)| +

∆ti

nk − 1

nk−1∑
k=2

|Hu(x, tk)| +
1
2

∆ti

nk − 1
|Hu(x, ti+1)| = ∆ti |Hi

avg(x)| ,

where ∆ti = ti+1 − ti is the sub-interval time length and tk = ti + k−1
nk−1 ∆ti.

Choice of the optimal continuous mesh. The optimal adapted mesh for each sub-interval is obtained according to analysis of
Section 2.3. For the numerical results presented below, we select the optimal mesh given by Relation (11) and the following
particular choices have been made:

• the space-time error is controlled in L2 norm (p = 2)

• all sub-intervals have the same time length ∆t = T/nadap

• function τ : t → τ(t) is constant and equal to ∆t, thus
∫ ti+1

ti τ(t)−1dt = 1.

In that case, we can just consider the time-step τ(t) constant and equal to ∆t (thanks to the global normalization term) so the

integral
∫ ti+1

ti τ(t)−1dt reduces to 1 (see [6] for details). With these choices, the optimal continuous mesh ML2 = {Mi
L2 }i=1,..,nadap =

{(Mi
L2 (x))x∈Ω}i=1,..,nadap simplifies to:

Mi
L2 (x) = N

2
3
st

nadap∑
j=1

(∫
Ω

(det |H j
u(x)|)

2
7 dx

)
− 2

3 (
det |Hi

u(x)|
)− 1

7
|Hi

u(x)| . (13)

In that case, as we assume that theoretically one time-step is done by sub-interval,Navg = Nst/nadap represents the average spatial
complexity by sub-interval. We do not prescribe the temporal complexity, i.e., we do not control the number of time-steps done
at each sub-interval.

In practice, the user prescribes the number of sub-intervals nadap and the sub-interval average spatial complexityNavg leading
to a total space-time complexity of

Nst = nadap × Navg . (14)

This prescription is the theoretical complexity. In practice, the total number of space-time vertices Nst of the simulation discrete
meshes is directly proportional to the prescribed total space-time complexity Nst = c Nst, where coefficient c depends on the
geometry of the problem, the mesh gradation, and the local remesher. The total number of space-time vertices of the simulation
run on nadap adapted meshes is computed as follow:

Nst =

nadap∑
i=1

ni
iter × N i ,

where the time discretization corresponds to the number of time-steps of the flow solver at each sub-interval, e.g. ni
iter is the

number of time-steps for the ith sub-interval, and N i is the number of spacial vertices for the ith sub-interval.

Comments on parametersNst,Navg and nadap. A very detailed analysis and convergence study of these parameters has been done
in [6]. The total space-time complexityNst can be increased by fixing nadap and increasingNavg or by fixingNavg and increasing
nadap. The finer adapted meshes obtained with these two approaches have the same theoretical complexity but increasing nadap

leads to a mesh having less space-time vertices than increasingNavg. In other words, a better adapted space-time mesh is obtained
by increasing nadap. Therefore, when convergence studies are performed, the number of sub-intervals should be increased to
increase the space-time complexity in order to obtain a better rate of convergence.

3.2. Matrix-free P1-exact conservative solution transfer
Between each sub-interval, the solution needs to be transferred from the previous mesh to the next one to pursue the compu-

tation. This stage becomes critical in the context of unsteady problems and even more if a large number of transfers is performed,
as the error introduced by this stage can spoil the overall accuracy of the solution. In the context of the resolution by a second
order numerical scheme of a PDE system of conservation laws, such as the compressible Euler system, it is crucial for the inter-
polation method to satisfy the following properties in order to obtain a consistent mesh adaptation scheme: (i) mass conservation,
(ii) P1-exactness preserving the second order of the adaptive strategy and (iii) verify the maximum principle. This matrix-free
P1-exact conservative solution transfer method, and its properties, is thoroughly described in [2].
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3.3. The remeshing step

The remeshing step is also crucial in the adaptation process, as a poorly adapted mesh or a mesh with bad quality elements
will impact the accuracy of the solution and spoil the efforts on all other parts of the process. In this paper, the remesher Amg [39]
was used. Amg belongs to the class of 3D anisotropic local remeshers that aim at generating a unit mesh with respect to a
prescribed metric field. Its main particularity is to adapt the volume and the surface mesh in a coupled way so that a valid 3D
mesh is always guaranteed in output. It uses a unique cavity-based operator (that generalizes standard operators: point insertion,
edge removal, edges swapping, point smoothing). This operator is governed by dedicated metric-based quality functions. This
allows us to reach a good balance between high level of anisotropy, necessary to capture the physical features of the solution, and
mesh quality, necessary to ensure the stability and accuracy of the numerical scheme. Amg has several enhancements designed for
CFD computations, including explicit control and optimization of tetrahedra height to ensure a maximal time-step for unsteady
simulations, and surface mesh re-projection based either on CAD or on background discrete meshes.

3.4. The ALE flow solver

We consider the compressible Euler equations for a Newtonian fluid in their Arbitrary-Lagrangian-Eulerian (ALE) formula-
tion. The ALE formulation allows the equations to take arbitrary motion of the mesh into account. Assuming that the fluid is a
perfect gas and that there is no thermal diffusion, the ALE formulation of the Euler equations is written for any arbitrary closed
volume C(t) of boundary ∂C(t) moved with mesh velocity w:

d
dt

(∫
C(t)

Wdx
)

+

∫
∂C(t)

(F (W) · n −W(w · n)) ds =

∫
C(t)

Fext dx (15)

where


W = (ρ, ρu, ρe)T is the conservative variables vector

F (W) =
(
ρu, ρuxu + pex, ρuyu + pey, ρuzu + pez, ρuh

)
is the flux tensor

Fext = (0, ρ fext, ρu · fext)T is the contribution of the external forces

and we have noted ρ the density of the fluid, p the pressure, u = (ux, uy, uz) its Eulerian velocity, q = ‖u‖, ε the internal energy
per unit mass, e = 1/2 q2 + ε the total energy per unit mass, h = e + p/ρ the enthalpy per unit mass of the flow, fext the resultant
of the volumic external forces applied on the particle and n the outward normal to interface ∂C(t) of C(t). The fixed mesh case is
obtained by simply taking w = 0.

The following examples were run using our in-house flow solver, Wolf. The spatial discretization relies on an edge-based
vertex-centered Finite Volume numerical scheme using an HLLC Riemann approximate solver to compute the numerical fluxes.
A second-order scheme is derived according to a MUSCL type method with a low dissipation gradient reconstruction combined
with a generalization of the Superbee limiter with three entries. The main difference when translating these schemes from the
standard formulation to the ALE formulation is the addition of the mesh velocities w in the wave speeds of the Riemann problem
and the re-evaluation of the finite volume cells at each time-step [10]. In this work, the temporal discretization is explicit and
based on strong stability preserving Runge-Kutta (SSPRK) schemes [53]. The 5-stage order-2 SSPRK is considered with a CFL
number equal to 3. The discrete geometric conservation law (DGCL) is strictly enforced at the discrete level by determining
when and how geometrical parameters that appear in the fluxes should be computed [45].

3.5. Parallelization of the mesh adaptation loop

All the steps of the adaptation loop have been parallelized. Two different approaches are used for the two big parts of the
loop. The solution computation and the solution transfer procedure are parallelized using a p-thread paradigm at the element
loop level [4]. As regards the computation of the metrics, the metric gradation and the generation of the adapted meshes, a
pipeline approach was used. These operations have to be done at the end of the loop, as many times as there are sub-intervals,
but the operations for one sub-interval are totally independent from the operations for another. Consequently, they can all be run
in parallel: if N processors are available, N metrics can be computed and their associated meshes generated simultaneously in
serial on one processor.

3.6. Example of a 3D blast on the London Tower Bridge

Let us illustrate the efficiency of the time-accurate multiscale anisotropic mesh adaptation method on an example involving
a very complex geometry. We consider a blast on the London Tower Bridge, whose geometry was the object of the meshing
contest of the 23rd International Meshing Roundtable. A CAD description of the bridge was provided, from which an initial
surface (Figure 1, left) and volume mesh were generated. This very detailed geometry is a challenge for mesh adaptation,
because it results in complex pattern of the solution that the error estimate has to be able to capture, and because the adaptive
remesher has to be able to preserve them and preserve the anisotropy in their vicinity.
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The gas is initially at rest in a box of dimension [−130, 130]×[−72, 77]×[0, 100]. The gas is in a constant state W0 = (1, 0, 2.5)
everywhere, except for a sphere of radius 1 centered in (3.5, 20, 10) containing a high density and high energy gas defined by
Wblast = (10, 0, 250). The gas is then left to evolve freely until dimensionless time T = 25, and wall conditions are imposed on
the boundaries. The spherical shock expands in the volume, hits the walls of the towers, and insinuates itself in any hole of the
geometry, see Figure 3 (right). We observe numerous shock waves reflected by the walls that then interact with each other, and
even recirculations around the pillars of the bridge. Many reflected shock waves impact the low-density bubble region located at
the center of the explosion. A mushroom-shape instability develops from all these shock-bubble interactions as can be seen in
Figure 2. We observe that all these phenomena - the shocks and as many of their reflections as possible as well as the smaller scale
instabilities of the mushroom - are automatically captured and highly resolved thanks to the time-accurate multiscale anisotropic
mesh adaptation method.

To obtain that highly resolved result, the simulation interval was split into nadap = 80 sub-intervals and a theoretical average
spatial complexity of Navg = 800, 000 per sub-interval has been set. This represents a total space-time complexity Nst equal
to 64 million. The density field of the solution was chosen as sensor for the adaptation. Five fixed-point iterations were used
to converge the non-linear mesh adaptation problem. Practically, at the last fixed-point iteration, the discrete meshes have an
average number of spatial vertices of Navg = 2, 970, 984 vertices and a total of niter = 16, 353 time-steps have been performed.
The total number of space-time vertices used to compute that solution is Nst = 47.7 billion. To give an idea of the accuracy of the
mesh, at t = 3.125, the mesh accuracy is around 1.4 e−3, and 1.1 e−3 at t = 25. The CPU time of the last fixed-point iteration (error
estimate, adaptive mesh generation, solution interpolation, and flow solver) is 21 hours on 20 cores using a 2 Xeon E5-2670 v2
chip processor (10 cores at 2.5 GHz for each chip), both chips being connected by 2 QPI links with a speed of 16 GB/s.

Figure 1: London tower bridge case: initial surface mesh and adapted surface mesh at dimensionless time t = 21.

Figure 2: London tower bridge case: zoom on details of the mesh and the solution at dimensionless time t = 21 in the region where the explosion originated.
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Snapshots of the adapted meshes and solutions are shown in Figure 3. The mesh adaptation for the whole sub-interval is
clearly illustrated. Indeed, the mesh refinement along band-shaped regions, which is typical of the fixed-point algorithm, is
clearly visible. These band-shaped areas correspond to the evolution zone of the physical phenomena during an adaptation
sub-interval.

Figure 3: London tower bridge case: snapshots of adapted meshes and solution at dimensionless times t = 0.63, t = 8.6, t = 17.2, t = 25.
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4. Extension of the space-time Lp error analysis to moving mesh simulations

In the previous sections, we have only considered fixed meshes in the adaptation process. Due to its efficiency in those cases,
it seems natural to try to extend the global fixed-point mesh adaptation algorithm (Algorithm 1) to moving mesh simulations. In
the context of body-fitted moving mesh simulations, the mesh is deformed to follow the displacement of the moving geometry
inside the domain. The mesh deformation consists in prescribing a displacement to each mesh vertex by solving a PDE or by
using an interpolation method where the boundary conditions are the geometry displacement. Thus, the general ideas driving
the global fixed-point mesh adaptation algorithm are still valid: iterating the process to converge the couple mesh/solution and
splitting the simulation time interval into sub-intervals. By design, we are only remeshing between two adaptation sub-intervals,
which leads to a unique dynamic mesh on each sub-interval that is deformed because of the moving geometry. But, the previous
adaptation algorithm cannot directly be extended to moving mesh simulations because it does not take into account the movement
of the mesh. The error analysis of Section 2.3 from which the optimal continuous mesh is deduced, assumes that the mesh is
constant in time inside a sub-interval, therefore it does not take into account the local deformation of the mesh which necessarily
impacts local errors. Indeed, the mesh deformation is driven by the boundary displacement, so the mesh distortion does not
necessarily follow the physical phenomena. This may in particular interfere with the adaptation of the mesh.

The previous error analysis has to be modified to take into account the movement of the mesh. As regards the discrete
representation of the metric field for moving meshes, two options are available. The first approach is a Eulerian approach: a
metric is associated with a fixed position in space, thus the metric field is a ”background” field evolving in space and time but
independently from the moving mesh. To know the value of the metric at a vertex, an interpolation has to be performed. But, the
representation of this metric on a background mesh is problematic due to the displacement of the boundaries and to the definition
of an adequate background mesh to support the metric field. That is why the approach considered in this work is a Lagrangian
approach: a metric is attached to a moving vertex and moves with it, i.e., we haveM(x(t), t) which we will writeM(x(t)) in what
follows.

In the context of dynamic meshes, the optimization problem is still given by Relations (2) and (3) where the space-time error
model is given by Relation (4). As in Section 2.3, to perform the space-time Lp error analysis with time sub-intervals, we first
do a spatial minimization for a given sub-interval. We consider the ith sub-interval [ti, ti+1]. Given the continuous mesh spatial
complexityN i, we seek for the optimal Arbitrary-Lagrangian-Eulerian (ALE) continuous mesh Mi,ALE

Lp =
(
M

i,ALE
Lp (x(t))

)
x∈Ω(t)

for
the whole sub-interval which is solution of the following problem:

Ei,ALE
Lp (Mi,ALE

Lp ) = min
Mi

∫ ti+1

ti

(∫
Ω(t)

trace
(
(Mi)−

1
2 (x(t)) |Hu(x(t), t)| (Mi)−

1
2 (x(t))

)p
dx(t)

)
dt such that C(Mi) = N i .

Note that the continuous mesh spatial complexity is constant on this sub-interval. We name it optimal ALE continuous mesh to
stress that the continuous mesh is dynamic (i.e., it evolves in time), it represents a moving adapted mesh and it is coupled with an
ALE flow solver. Now Mi has a dependence in time, thus we cannot move the integral over time into the trace to make the mean
Hessian metric appear like in the fixed mesh analysis. The spatial minimization for a given sub-interval cannot be done directly.

To solve this issue, we first exhibit the optimal instantaneous ALE continuous mesh minimizing the interpolation error in
Lp norm at a given time t, also shortly called ALE metric field, that takes into account the mesh deformation (Section 4.1) and
then we validate it on several analytical examples (Section 4.2). This ALE metric field makes it possible to map a continuous
moving mesh of Ω(t), t ∈ [ti, ti+1], onto a continuous mesh of Ω(ti). Then, the error model can be written only on Ω(ti) and the
spacial minimization can be performed (Section 4.3). In other words, to preserve the adaptation of the mesh despite the mesh
deformation, we are looking for a mesh at the beginning of each sub-interval that will be adapted to the solution at each time-step
of the sub-interval once moved with the prescribed mesh displacement.

4.1. Optimal instantaneous ALE continuous mesh minimizing the interpolation error in Lp norm: the ALE metric
Before dealing with the case of the mesh adaptation for a sub-interval, let us solve the previous mentioned problem for one

time step. The computational domain is time-dependent Ω(t) ⊂ R3 × [0,T ]. The problem for one time-step is the following. tn

and tn+1 are two times, Ωn and Ωn+1 are the spatial domains at tn and tn+1 respectively, and generally we have Ωn , Ωn+1. We
denote by d the given mesh displacement field. Then, we want to find the optimal continuous mesh Mn,ALE

Lp = (Mn,ALE
Lp (x))x∈Ωn

defined on Ωn from which we will generate a mesh at time tn that, once moved with displacement d, will be adapted to a sensor
un+1 at time tn+1 on domain Ωn+1. We consider that un+1 is a scalar sensor function, the extension to vector sensor functions
being straightforward. The resolution of this problem leads to the optimal instantaneous ALE continuous mesh defined on Ωn

minimizing the interpolation error of sensor un+1 in Lp norm at time tn+1 on Ωn+1 after being deformed by displacement d. This
ALE metric field involves the gradient of the mesh transformation between tn and tn+1 to take into account the mesh deformation.
A first draft of this analysis was given in [7].

For the coming mathematical analysis involving spatial derivatives, it is very important to state on which domain/mesh these
derivatives are computed. To this end, the following notations will be used:
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• ∇n denotes the gradient operator3 performed on domain Ωn, i.e., computed on meshHn

• Hn+1 denotes the Hessian operator performed on domain Ωn+1, i.e., computed on mesh Hn+1. As operator Hn+1 is always
applied to sensor un+1 at time tn+1, simplified notation Hn+1

u will stand for Hn+1[un+1]

• Mn+1
Lp [un+1] denotes the point-wise optimal Lp metric for sensor un+1 computed on domain Ωn+1, i.e., on mesh Hn+1.

Again, simplified notationMn+1
Lp will stand forMn+1

Lp [un+1]

• Mn+1
Lp = (Mn+1

Lp (x))x∈Ωn+1 is the associated continuous mesh with complexity C(Mn+1
Lp ) = Nn+1.

Now, let us introduce φ the mapping between domains4 Ωn and Ωn+1:

φ : Ωn −→ Ωn+1

xn 7−→ xn+1 = φ (xn) ,
(16)

and d the corresponding mesh displacement field, such that:

xn+1 = φ(xn) = xn + d(xn) . (17)

Since φ is a diffeomorphism, we have, for any infinitesimal vector δxn ∈ Ωn:

δxn+1 =
[
∇nφ(xn)

]T
δxn with ∇nφ(xn) = I + ∇nd(xn) , ∀xn ∈ Ωn . (18)

Finally, a .̂ operator is defined which transports a quantity from Ωn+1 to Ωn. We note Ĥn+1
u the Hessian of un+1 computed on Ωn+1

and transported on domain Ωn. This mathematically writes:

Ĥn+1
u : Ωn −→ R

xn 7−→ Hn+1
u (φ(xn)) = Ĥn+1

u (xn) .

According to error analysis of Section 2.2, the optimal instantaneous continuous mesh Mn+1
Lp = (Mn+1

Lp (x))x∈Ωn+1 at time tn+1 is
given by Relation (5). Thus, an optimal mesh of Ωn+1 adapted to un+1 can be built by generating a unit mesh Hn+1 with respect
to Mn+1

Lp . This means that the length of any arbitrary edge en+1 ofHn+1 is one in metricMn+1
Lp (see Section 2.1):

1 = (en+1(xn+1))T Mn+1
Lp (xn+1) en+1(xn+1) , ∀en+1(xn+1) ∈ Hn+1 . (19)

Let en be the edge of Hn having en+1 as image by φ in Hn+1. As we are only interested in controlling the prevailing term of the
interpolation error, we can use the following relation:

en+1(xn+1) = en+1 (φ(xn) ) =
[
∇nφ(xn)

]T
en(xn) , (20)

which is true at first order in the demonstration. The idea is to unravel how Condition (19) writes when transposed onto mesh
Hn. Using Relations (5) and (20), unit length Equation (19) can be re-written:

1 =
(
en+1 (φ(xn) )

)T
Mn+1

Lp (φ(xn) ) en+1 (φ(xn) )

=
([
∇nφ(xn)

]T en(xn)
)T

(Nn+1

Kn+1

) 2
3 (

det |Hn+1
u (φ(xn))|

)− 1
2p+3

∣∣∣Hn+1
u (φ(xn))

∣∣∣ ([
∇nφ(xn)

]T en(xn)
)

=
(
en(xn)

)T

(Nn+1

Kn+1

) 2
3 (

det |Ĥn+1
u (xn)|

)− 1
2p+3
∇nφ(xn)

∣∣∣Ĥn+1
u (xn)

∣∣∣[∇nφ(xn)
]T

 en(xn)

=
(
en(xn)

)T
M

n,ALE
Lp (xn) en(xn) .

Consequently, if we create a unit mesh of Ωn with respect to ALE continuous mesh Mn,ALE
Lp =

(
M

n,ALE
Lp (x)

)
x∈Ωn

, rewriting the
above calculus upside down, we get the following implication:(

en(xn)
)T
M

n,ALE
Lp (xn) en(xn) = 1 =⇒

(
en+1(xn+1)

)T
Mn+1

Lp (xn+1) en+1(xn+1) = 1 ,

3Here, the gradient is not the Jacobian, i.e., for an arbitrary vector field f = ( f1, .., fk), its gradient matrix is ∇f =

(
∂ f j

∂xi

)
i j
.

4Even if Ωn , Ωn+1 in general, we assume there is diffeomorphism mapping φ from Ωn to Ωn+1, .i.e., these two spatial domains can be mapped one onto the
other.
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for all edges en of mesh Hn having en+1 as image by φ in mesh Hn+1. Therefore, if a unit mesh is generated with respect to
Mn,ALE

Lp at tn, then the deformed mesh moved with displacement d until time tn+1 is unit for the optimal metric associated with
sensor un+1, meaning that it is optimal to control the interpolation error in Lp norm of the sensor u at tn+1.

The optimal instantaneous ALE continuous mesh reads:

M
n,ALE
Lp (xn) =

(
Nn+1

Kn+1

) 2
3 (

det |Ĥn+1
u (xn)|

)− 1
2p+3
∇nφ(xn)

∣∣∣Ĥn+1
u (xn)

∣∣∣[∇nφ(xn)
]T
,

with Kn+1 =

∫
Ωn+1

(
det |Hn+1

u (xn+1)|
) p

2p+3 dxn+1. The number of vertices of the mesh remains the same when it is moved with

displacement d. Indeed, for our moving mesh simulations, connectivity-changes can occur but no vertex addition or deletion is
allowed (see Section 5.1). Consequently, the continuous mesh complexity remains constant in time:

C
(
Mn+1

Lp

)
= C

(
Mn,ALE

Lp

)
⇐⇒

∫
Ωn+1

√
detMn+1

Lp (xn+1)dxn+1 =

∫
Ωn

√
detMn,ALE

Lp (xn)dxn ,

thus, according to the definition of K and using det(αA) = α3 detA (we are in R3), we have:

Kn+1 = Kn,ALE =

∫
Ωn

(
det

((
det |Ĥn+1

u (xn)|
)− 1

2p+3 ∇nφ(xn)
∣∣∣Ĥn+1

u (xn)
∣∣∣[∇nφ(xn)

]T
)) 1

2 dxn

=

∫
Ωn

∣∣∣det∇nφ(xn)
∣∣∣(det |Ĥn+1

u (xn)|
) p

2p+3 dxn

Moreover,Mn,ALE
Lp can be re-written to recover the same form as Relation (5) which will be useful for the error analysis involving

dynamic meshes. To this end, we set:

|Hn,ALE
u (xn)| =

∣∣∣det∇nφ(xn)
∣∣∣ 1

p
(
∇nφ(xn) |Ĥn+1

u (xn)|
[
∇nφ(xn)

]T )
, (21)

from which we deduce:

det |Hn,ALE
u (xn)| =

∣∣∣det∇nφ(xn)
∣∣∣ 3

p +2
det |Ĥn+1

u (xn)| and Kn,ALE =

∫
Ωn

(
det |Hn,ALE

u (xn)|
) p

2p+3 dxn .

After some algebra, we finally get:

M
n,ALE
Lp (xn) =

(
Nn+1

Kn,ALE

) 2
3 (

det |Hn,ALE
u (xn)|

)− 1
2p+3
|Hn,ALE

u (xn)| .

According to Section 2.2, this expression of the ALE metric field represents the optimal instantaneous continuous mesh mini-
mizing the interpolation error in Lp norm for the sensor having as second derivatives Hn,ALE

u on Ωn. Therefore, we can derive the
expression of the interpolation error associated with continuous mesh Mn,ALE

Lp . The instantaneous interpolation error in Lp norm
at the power p is given by Relation (6):

ẼLp (Mn,ALE
Lp ) =

∫
Ωn

trace
(
(Mn,ALE

Lp )−
1
2 (xn) |Hn,ALE

u (xn)| (Mn,ALE
Lp )−

1
2 (xn)

)p
dxn

= 3p (Nn+1)
2p
3 (Kn,ALE)

2p+3
3 = 3p (Nn+1)

2p
3 (Kn+1)

2p+3
3

=

∫
Ωn+1

trace
(
(Mn+1

Lp )−
1
2 (xn+1) |Hn+1

u (xn+1)| (Mn+1
Lp )−

1
2 (xn+1)

)p
dxn+1 = ẼLp (Mn+1

Lp ) .

Now, we can state the main result:

Proposition 1 (Optimal instantaneous ALE continuous mesh). Let Ωn and Ωn+1 be two spatial domains at tn and tn+1, and φ
the mapping between these domains. The optimal instantaneous ALE continuous mesh Mn,ALE

Lp =
(
M

n,ALE
Lp (x)

)
x∈Ωn

defined on Ωn

reads:

M
n,ALE
Lp (x) =

(
Nn+1

) 2
3

(∫
Ωn

(
det |Hn,ALE

u (x̄)|
) p

2p+3 dx̄
)− 2

3 (
det |Hn,ALE

u (x)|
)− 1

2p+3
|Hn,ALE

u (x)| , (22)

with the ALE Hessian-metric given by

|Hn,ALE
u (x)| =

∣∣∣det∇nφ(x)
∣∣∣ 1

p
(
∇nφ(x) |Ĥn+1

u (x)|
[
∇nφ(x)

]T )
.

The following properties hold:
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i) Let us assume continuous mesh Mn,ALE
Lp is used to generate a unit meshHn

ALE of Ωn and let us denote byHn+1
ALE the mesh of

Ωn+1 which is the image of meshHn
ALE by mapping φ. Then, meshHn+1

ALE is optimal to control the interpolation error in Lp

norm of sensor un+1 on Ωn+1.
ii) Continuous mesh Mn,ALE

Lp has the same complexity Nn+1 as continuous mesh Mn+1
Lp .

iii) Continuous mesh Mn,ALE
Lp achieves on Ωn the same level of interpolation error as continuous mesh Mn+1

Lp on Ωn+1:

ẼLp (Mn,ALE
Lp ) = ẼLp (Mn+1

Lp ) where ẼLp is given by Relation (6).

iv) There is no reason for adapted meshHn
ALE, which is a unit mesh for Mn,ALE

Lp , to be optimal for the control of the interpolation
error of sensor un at tn.

4.2. Validation on two-dimensional analytic examples

We validate the result of Proposition 1 on analytic examples in two dimensions, three-dimensional examples being available
in [9, 44]. A uniform meshHn

0 of domain Ω = [−1, 1]2, a displacement field d between two times tn and tn+1, and a sensor un+1

at time tn+1 are given. We choose to control the interpolation error in L1 norm and theoretical spatial complexities from 10, 000
to 400, 000 are prescribed to perform a convergence study. We generate a unit mesh Hn,ALE with respect to Mn,ALE

L1 (given by
Relation (22)) at time tn that, once moved into Hn+1,ALE = φ(Hn,ALE) is expected to be adapted to the sensor un+1 according to
the above developments. At the same time, a reference adapted mesh Hn+1 is generated that is directly adapted to sensor un+1

using optimal continuous mesh Mn+1
L1 (given by Relation (5)). To validate the optimality of Hn+1,ALE, we are going to compare

the interpolation error in L1 norm of sensor un+1 on both meshes and analyse the quality of the meshes elements. Algorithm 2
describes the procedure to generate both meshes. Note that, for the ALE cases, the meshes are directly moved from their initial
position at tn to their final position at tn+1 in one step. No mesh optimizations are performed after the displacement.

Algorithm 2 Procedure to generate adapted meshes with the ALE L1 metric field and the regular L1 metric field.

• Generation of an adapted mesh with the optimal ALE L1 metric field

1. ∇nφ = Compute transformation gradient
(
Hn

0 ,d
)

2. Hn+1
0 = Move mesh

(
Hn

0 ,d
)

3. un+1 = Compute target sensor
(
Hn+1

0

)
4. Mn,ALE

L1 = Compute ALE metric field
(
Hn+1

0 , un+1,Hn
0 ,∇

nφ
)

5. Hn,ALE = Adapt mesh
(
Hn

0 ,M
n,ALE
L1

)
6. Hn+1,ALE = Move mesh

(
Hn,ALE,d

)
• Generation of an adapted mesh with the optimal L1 metric field

1. un+1 = Compute target sensor
(
Hn

0

)
2. Mn+1

L1 = Compute metric field
(
Hn

0 , u
n+1

)
3. Hn+1 = Adapt mesh

(
Hn

0 ,M
n+1
L1

)

The following two-dimensional analytic functions are used as sensor functions:

un+1
1 (x, y) =


0.01 sin (50xy) if |xy| ≥

2π
50

sin (50xy) if |xy| <
2π
50

and un+1
2 (x, y) = 0.1 sin(50 x) + arctan

(
0.1

sin(5 y) − 2 x

)
.

They are shown in Figures 5 and 6. First sensor exhibits features of different scales, small oscillations of amplitude 0.01 and
large oscillations of amplitude 1, which makes it a suitable example for our multiscale mesh adaptation process. The second
sensor exhibits a strong discontinuity-like sinusoidal feature - through the arctangent - crossing small amplitude waves.

14



Two displacements di : Ωn −→ Ωn+1 are considered:

d1(x, y) =



 −0.3 (x + 1)
(
y2 − 1

)
exp

(
−5x2

)
, if x ≥ 0

0.3 (x − 1)
(
y2 − 1

)
exp

(
−5x2

)
, if x < 0

 −0.3
(
x2 − 1

)
(y + 1) exp

(
−5y2

)
, if y ≥ 0

0.3
(
x2 − 1

)
(y − 1) exp

(
−5y2

)
, if y < 0


and d2(x, y) =

 0.5 (x2 − 1) (y2 − 1)

0

 .

They are illustrated in Figure 4 where the displacements have been applied to a uniform-size mesh composed of 53, 262 vertices

Figure 4: Left, an initial uniform-size mesh. Middle and right, resulting meshes after applying displacements dn+1
1 (midlle) and dn+1

2 (right) to the initial
uniform-size mesh. These displacements are used to validate the ALE metric formulation.

Figure 5: Mesh adapted with the ALE metric for a spatial complexity of 50, 000 at time tn (left) and tn+1 (middle) - i.e., after moving the mesh - for analytical
function un+1

1 (right), and displacements d1 (top) and d2 (bottom).
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to emphasize the mesh distortion induced by these mesh deformations. It is important to note that these functions lead to very
large displacement: ‖d1‖max ≈ 0.1944 and ‖d2‖max = 0.5 which are a lot larger than the mesh size in all cases. Hence, even if the
theory considers infinitesimal displacement, these test cases validate the result in a more realistic context.

Figures 5 and 6 show the resulting meshes for both sensors and both displacements for a prescribed theoretical spatial
complexity of 50, 000 leading to discrete adapted meshes composed of almost 60, 000 vertices. Initial adapted meshesHn,ALE at
time tn are displayed on the left picture, and the resulting adapted meshHn+1,ALE at time tn+1 after applying the mesh displacement
are shown on the middle picture. Note that the optimal meshesHn+1 obtained directly from Mn+1

L1 are very similar to the meshes
shown on the middle picture.

A quantitative analysis of these examples is required to make sure our ALE procedure results in effectively adapted meshes.
To this end, we compare the mesh generated with a classic adaptation procedure and the mesh generated with the ALE procedure
through two quantities:

• The interpolation error ‖un+1 − Πhun+1‖Ω committed when the sensor function is projected on the mesh remains the best
way to evaluate if the mesh is really adapted to the considered sensor.

• To analyse any possible distortion of the mesh due to the mesh deformation, we can check that the shape of the elements is
in accordance with the reference adapted metric. To this end, we compute the mesh elements quality with respect to metric
field Mn+1

L1 used to generate the reference adapted mesh. The 2D element quality in the metric is given by:

QMn+1
L1

(K) =

√
3

12

3∑
i=1
`2
Mn+1

L1
(ei)

|K|Mn+1
L1

∈ [1, +∞]

where the ei are the three edges of the triangle, and length and area formula in the metric are given in Section 2.1. To give
an idea, QM(K) = 1 corresponds to a perfectly regular element in the metric, QM(K) < 2 correspond to excellent quality
elements, while a high value (> 100) of QM(K) indicates a nearly degenerate element.

Figure 6: Mesh adapted with the ALE metric for a spatial complexity of 50, 000 at time tn (left) and tn+1 (middle) - i.e., after moving the mesh - for analytical
function un+1

2 (right), and displacements d1 (top) and d2 (bottom).
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The interpolation error convergence curves are represented in Figure 7 where the interpolation error in L1 norm is plotted with
respect to the number of vertices. We observe that, for both sensors and both displacements, the interpolation error obtained with
the ALE continuous mesh is almost similar or only slightly higher than the interpolation error obtained with the direct adaptation.
This slight difference is due notably to approximations made when establishing the formulation of the ALE continuous mesh
whereas large displacement are performed between tn and tn+1. This confirms the optimality of the ALE continuous mesh, i.e.,
the property i) of Proposition 1. Note that the interpolation error is one order of magnitude smaller on adapted meshes than on
uniform meshes, or that ten times more vertices are required on uniform meshes to achieve the same level of interpolation error.
This clearly establishes the interest of the adaptation.

In regard to mesh elements quality, results are given in Tables 1 and 2. The reference adapted meshes have an almost perfect
quality with respect to the prescribed metric Mn+1

L1 , which was expected and is achieved thanks to the efficient local remesher Amg
[39]. The quality of the meshes adapted with the ALE procedure at time tn+1 with respect to metric Mn+1

L1 is very good, which
shows that resulting adapted meshes from both standard and ALE continuous mesh are very similar in terms of element-shape
quality. This points out that the mesh deformation is perfectly taken into account in the ALE metric field formulation. Again,
this validates property i) of Proposition 1.
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Figure 7: Interpolation error convergence curves for sensor un+1
1 (left) and un+1

2 (right).

Hn+1
re f Hn+1

ALE with d1 Hn+1
ALE with d2

Average quality 1.07 1.20 1.23

Worst quality 3.28 23.7 66.0

1.00 < Q < 2.00 127303 99.92 % 122473 96.69 % 121585 96.02 %

2.00 < Q < 3.00 97 0.08 % 3283 2.59 % 3641 2.88 %

3.00 < Q < 4.00 6 0.00 % 611 0.48 % 843 0.67 %

4.00 < Q < 5.00 0 0.00 % 170 0.13 % 244 0.19 %

5.00 < Q < 10.00 0 0.00 % 121 0.10 % 258 0.20 %

10.00 < Q < 50.00 0 0.00 % 7 0.01 % 49 0.04 %

50.00 < Q < 100.00 0 0.00 % 0 0.00 % 2 0.00 %

Table 1: Adapted meshes elements quality for sensor un+1
1 and a spatial complexity of 50, 000.

4.3. Space-time error analysis for dynamic meshes

Section 4.1 provides the optimal instantaneous ALE continuous mesh which takes into account the mesh deformation. Now,
we can extend the space-time error analysis with time sub-intervals done for fixed meshes - Section 2.3 - to the case of dynamic
meshes. The simulation time interval is split into nadap sub-intervals. On each sub-interval, the mesh size (number of vertices)
remains constant, but the mesh is deformed to follow the geometry displacement. At each time-step of the sub-interval, we
want the moved mesh to be adapted to the current sensor. The key idea to perform the error analysis is to seek for the optimal
dynamic continuous mesh at the beginning of the sub-interval, this continuous mesh being optimal for the whole sub-interval
when deformed, instead of seeking for the expression of the optimal continuous mesh at each instant, i.e., as a function of the
time.
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Hn+1
re f Hn+1

ALE with d1 Hn+1
ALE with d2

Average quality 1.06 1.19 1.21

Worst quality 13.8 20.5 24.4

1.00 < Q < 2.00 126406 99.95 % 121522 96.87 % 121146 96.36 %

2.00 < Q < 3.00 59 0.05 % 3054 2.43 % 3631 2.89 %

3.00 < Q < 4.00 5 0.00 % 594 0.47 % 652 0.52 %

4.00 < Q < 5.00 0 0.00 % 152 0.12 % 177 0.14 %

5.00 < Q < 10.00 0 0.00 % 118 0.09 % 109 0.09 %

10.00 < Q < 50.00 1 0.00 % 4 0.00 % 5 0.00 %

Table 2: Adapted meshes elements quality for sensor un+1
2 and a spatial complexity of 50, 000.

To perform the spatial minimization for a sub-interval, we consider the ith sub-interval [ti, ti+1]. Given the continuous mesh
spatial complexity N i, we seek for the optimal ALE continuous mesh Mi,ALE

Lp =
(
M

i,ALE
Lp (x(t))

)
x∈Ω(t)

for the whole sub-interval
which is solution of the following problem:

Ei,ALE
Lp (Mi,ALE

Lp ) = min
Mi

∫ ti+1

ti

(∫
Ω(t)

trace
(
(Mi)−

1
2 (x(t)) |Hu(x(t), t)| (Mi)−

1
2 (x(t))

)p
dx(t)

)
dt , such that C(Mi) = N i . (23)

The continuous mesh spatial complexity is constant on this sub-interval. To remove the time dependency of continuous mesh Mi,
we propose to use the optimal instantaneous ALE continuous mesh and property iii) of Proposition 1 which provides equality
between interpolation errors. Indeed, continuous mesh

(
Mi(x(t))

)
x∈Ω(t)

can be mapped back to Ω(ti) using
(
Mi,ALE(x(ti))

)
x∈Ω(ti)

where φ maps Ω(ti) onto Ω(t), and property iii) of Proposition 1 states that

ẼLp (Mi,ALE) = ẼLp (Mi) ,

thus expression of the interpolation error for each time t can be re-written at time ti. As we seek for the dynamic continuous
mesh at time ti which is optimal to control the interpolation error for the whole sub-interval, we can recast Error Model (23) into
the following error model where the metric is independent of the time:

Ei,ALE
Lp (Mi) =

∫ ti+1

ti

(∫
Ω(ti)

trace
(
(Mi,ALE)−

1
2 (x(ti)) |Hi,ALE

u (x(ti))| (Mi,ALE)−
1
2 (x(ti))

)p
dx(ti)

)
dt ,

where the x(ti) are in domain Ω(ti). The time dependency in Hi,ALE
u is hidden in mapping φ and operator .̂ . The previous

expression can now be written on Ω(ti):

Ei,ALE
Lp (Mi) =

∫
Ω(ti)

trace
(
(Mi,ALE)−

1
2 (x(ti)) Hi,ALE

u (x(ti)) (Mi,ALE)−
1
2 (x(ti))

)p
dx(ti) ,

where the mean ALE Hessian metric is: Hi,ALE
u (x(ti)) =

∫ ti+1

ti
|Hi,ALE

u (x(ti))| dt. The expression of the error has exactly the same

form as in Problem (9) in Section 2.3, thus the spatial minimization gives the same optimal metric where Hi
u is replaced by Hi,ALE

u .
Then, the temporal minimization leads to the following optimal space-time ALE continuous mesh MALE

Lp = {Mi,ALE
Lp }i=1,..,nadap :

M
i,ALE
Lp (x(ti)) = N

2
3
st

(nadap∑
j=1

K j,ALE
(∫ t j+1

t j
τ(t)−1dt

) 2p
2p+3

)− 2
3 (∫ ti+1

ti
τ(t)−1dt

)− 2
2p+3 (det Hi,ALE

u (x(ti)))−
1

2p+3 Hi,ALE
u (x(ti)) ,

where the x(ti) are in domain Ω(ti). The ALE continuous mesh dependence in time is hidden in Hi,ALE
u by means of mapping φ.

This way, the mesh generated at time ti is adapted to the solution at any time t > ti within the sub-interval [ti, ti+1] once moved
with the mesh deformation displacement. Once again, we stress that preserving the number of degrees of freedom when moving
the mesh is essential in this analysis.
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5. Global fixed-point mesh adaptation algorithm for moving meshes

The optimal space-time ALE continuous mesh is designed to fit in the global fixed-point unsteady mesh adaptation algorithm
described in Algorithm 1. Nevertheless, a few things need to be modified to extend this algorithm to moving mesh ALE simula-
tions. In this section, we first recall the connectivity-change moving mesh strategy, how connectivity-changes are handled in the
ALE numerical scheme, and how the ALE metric field is updated in time. Then, we specify the modifications to Algorithm 1.

5.1. Connectivity-change moving mesh strategy

The moving mesh strategy used in this paper is detailed in [1]. The mesh adaptation framework makes us consider body-fitted
simulations. Our strategy is designed to deal with large displacement of the boundaries, when the volume mesh quickly gets too
distorted. The aim of this strategy is to preserve a good mesh quality all along the movement without costly remeshings, thanks
to an improved mesh deformation step and an improved mesh optimization step.

The aim of the mesh deformation step is to compute a displacement for all inner vertices from the displacement of the
boundaries, so that the volume mesh follows the moving geometries and thus remains valid. This is achieved by solving a linear-
elasticity-like PDE on the whole domain, the inside of the meshed domain being taken for a nearly incompressible elastic material
and the displacement of the boundaries being the boundary conditions of the elasticity problem. To improve the CPU efficiency
of this step, the number of such solutions is significantly reduced: the mesh deformation problem is solved for large time-steps,
and the trajectories are constant over these large time-steps. To improve the precision of this step, higher-order trajectories are
computed: two elasticity problems are solved, thus providing a speed and an acceleration to the inner vertices. In the present
strategy, boundary vertices do not slide on the surfaces (mainly because it requires an accurate geometric re-projection on a CAD
model), except in the specific case of simple planar surfaces such as a symmetry plane.

To preserve a good mesh quality, local mesh optimizations are performed between two mesh deformation steps, using only
vertex smoothing and generalized edge/face swapping. No vertices are added or removed. Vertex smoothing consists in moving
vertices close to the center of gravity of their vertex ball, and helps recovering nicely shaped elements. The swap operator
changes the connectivity of the mesh, and is especially powerful in handling shear and large deformation movement. These mesh
optimizations are simulated on the current mesh considering the current metric field to evaluate quality criteria, and we also
analyse their impact on the mesh at the end of the mesh deformation (i.e., in the future) considering the metric field at the end
of the mesh deformation. A node repositioning or an edge/face swapping is accepted and performed if and only if it satisfies the
quality criteria on the current mesh and the quality criteria on the mesh at the end of the mesh deformation, see [1] for details.
For instance, a face swap operation that improves the quality of the current mesh but invalidate an element at the end of the mesh
deformation will be rejected. The definition of the appropriate metric field - as the metric field evolves in time - is discussed in
Section 5.3. This way, the mesh optimizations cannot affect the accuracy and the directional features of the mesh, otherwise the
quality check will reject such optimizations.

These optimization steps are not performed at every solver time-step, but only when vertices have crossed a certain prede-
termined number of elements, considering a geometric CFL-like condition (generally every few tens or hundreds of flow solver
time-steps). Moreover, quality optimizations are simulated only on elements having a quality greater than a given threshold
which is generally set to 3, and they are applied only if they fulfill the considered quality criteria. Therefore, most of the time,
mesh optimizations impact less that one or just a few percents of the mesh elements.

Remark 1. The connectivity-change moving mesh algorithm has been designed such that there is uniqueness of the result. If
a simulation is re-run with the same data and on the same computer, then the result will be the same (the same smoothing and
swapping operations will be performed). This uniqueness is also preserved in parallel.

5.2. Dealing with connectivity-change in the ALE numerical scheme

In [10], this moving mesh algorithm has been successfully coupled to the flow solver described in Section 3.4. The numerical
flow solver uses an Arbitrary Lagrangian Eulerian (ALE) numerical schemes to deal with flow simulations where the mesh
is moving independently from the physical phenomena. In the ALE framework, the number of degrees of freedom and the
connectivity of the mesh are supposed to be constant [12, 47]. However, the efficiency of the moving mesh algorithm relies on
the connectivity-change optimization. To devise a connectivity-change moving mesh algorithm fitting within this framework, the
following choices have been made. First, the number of degrees of freedom of the simulation is kept constant. In two dimensions,
an ALE formulation of the swap operator was proposed in [45], but its extension to the three dimensions case is rather tedious.
In [10], we have shown that the impact of swaps on the solution accuracy is very small when a linear interpolation method is
considered. Nevertheless, a conservative P1-interpolation (see Section 3.2) is applied on each swap configuration in order to
conserve the mass of the problem variables. Note that the CPU time over-cost of this conservative interpolation on each swap
configuration is negligible because the number of swaps is small (it impacts only a small number of elements) at each mesh
optimization and that mesh optimizations are only performed each tens or hundreds flow solver time-steps.

19



5.3. Update of the ALE metric field for optimizations
The mesh optimization procedure (smoothing and swapping) of the connectivity-change moving mesh strategy requires a

proper metric field to evaluate geometric quantities and elements qualities of anisotropic adapted meshes. But, at a given fixed-
point iteration j and sub-interval i, the input is the optimal ALE continuous mesh Mi,ALE

Lp defined on Ω(ti). Therefore, when the
mesh is deformed during the sub-interval due to the geometry displacement, the input metric is no more compatible with the
moved mesh at a given time t. The use of an incorrect metric field will drive the smoothing to move vertices to a wrong location
and the swaps to break the anisotropy, thus spoiling the adaptation of the mesh. As the mesh is evolving in time, the input metric
field (i.e., the input continuous mesh) must also evolve in time. Consequently, we have to apply the deformation of the adapted
mesh to the continuous mesh in order to maintain the consistency between the discrete and the continuous meshes.

But, in the theory developed in the previous sections, the mesh deformation correction is applied to the Hessian-metric |Hi,ALE
u |

and not directly to the continuous mesh. Therefore, from the optimal ALE continuous mesh
(
M

i,ALE
Lp (x(ti))

)
x∈Ω(ti)

at the beginning

of sub-interval [ti, ti+1], we cannot directly find the deformed optimal ALE continuous mesh
(
M

i,ALE
Lp (x(t))

)
x∈Ω(t)

for t ∈ [ti, ti+1].

Two possibilities arise from these remarks. First, several ALE metric field samples
{(
M

i,ALE
Lp (x(tk))

)
x∈Ω(tk)

}
k

can be pre-

calculated for each sub-interval at the previous fixed-point iteration, and when an ALE metric field is required at time t, it is
linearly interpolated in time on the current mesh from two of these pre-calculated ALE metric fields. This method has two
drawbacks: it requires computing and saving all these ALE metric fields and it requires a metric interpolation stage at each mesh
optimization which leads to consequent memory, I/Os and CPU time overhead. The second possibility is to modify the input
ALE metric field according to the current mesh deformation to get a consistant metric field at time t. To deform the continuous
mesh defined at the beginning of the sub-interval, we adopt the same reasoning as the one that leads to the optimal instantaneous
ALE continuous mesh in Section 4.1, but on a reverse time frame.

Let us consider sub-interval [ti, ti+1], tk a time in this sub-interval and d the displacement field of the mesh between ti and
tk. Here, the problem is reversed, we seek for the continuous mesh at time tk that will result in the continuous mesh at time
ti once moved with displacement −d. At time ti, the continuous mesh is Mi,ALE

Lp (the adapted mesh at time ti is generated
directly using this metric field). Displacement d is the displacement of vertices between ti and tk: xk = xi + d(xi) and we write
d′(xk) = xi − xk = −d(xi). We define

φ′ : Ωk −→ Ωi

xk 7−→ xi = φ′
(
xk

)
= xk + d′(xk) .

(24)

We start from an adapted mesh which is unit for metric field Mi,ALE
Lp at time ti and we search for the expression of the metric field

at time tk for which the deformed adapted mesh at time tk is unit. Following Section 4.1, we consider an edge ek at time tk having
edge ei as image by φ′ at time ti. They verify:

1 =
(
ei(xi)

)T
M

i,ALE
Lp

(
xi
) (

ei(xi)
)

=
[
ei

(
φ′(xk)

)]T
M

i,ALE
Lp

(
xi
)

ei
(
φ′(xk)

)
=

([
∇kφ′(xk)

]T
ek(xk)

)T
M

i,ALE
Lp (xi)

([
∇kφ′(xk)

]T
ek(xk)

)
=

(
ek(xk)

)T
{
∇kφ′(xk) Mi,ALE

Lp (xi)
[
∇kφ′(xk)

]T
} (

ek(xk)
)
.

In other words, the metric field Mi,optim
Lp we are looking for at time tk is:

M
i,optim
Lp (x(tk)) = ∇kφ′

(
x(tk)

)
M

i,ALE
Lp

(
x(ti)

) [
∇kφ′

(
x(tk)

)]T
. (25)

This metric field is easy to compute on the fly, because the central term is the input metric fieldMi,ALE
Lp

(
x(ti)

)
which is known,

and the gradients of φ′ are easy to compute, since the displacement considered in φ′ is the opposite of the current displacement
at each vertex. Note that the gradients of φ′ should be computed on Ω(tk) that is to say on the current mesh.

5.4. Modifications of the global fixed-point mesh adaptation algorithm
The overall global fixed-point mesh adaptation algorithm remains unchanged: the simulation time frame is still divided into

sub-intervals, and a global fixed-point strategy is used to converge the meshes and the solutions. On each sub-interval, the mesh
number of vertices remains the same. However, and it is the first difference, within a sub-interval, the mesh is moved using the
connectivity-change moving mesh algorithm presented in Section 5.1 and fully detailed in [1]. One or several mesh deformation
steps are performed during a sub-interval. The connectivity-change moving mesh algorithm uses mesh optimizations to make
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the mesh deformation efficient and robust. These mesh optimizations, smoothing and swapping operators, use the dynamic
(corrected) metric field presented in Section 5.3 to be compliant with the current dynamic adapted mesh.

The second difference concerns the computation of the ALE Hessian-metric for the next adaptation step. ALE Hessian-
metrics |Hi,ALE

u | need to be sampled in time. To compute each sample, we use the displacement given by the mesh deformation
step without taking into account the smoothing optimization. In our numerical experiments, we did not see any significant
difference on the solution accuracy and the quality of the adapted meshes by considering or not the smoothing in the ALE
Hessian-metrics computations. This is due mainly to the fact that the mesh smoothing has only a slight influence in 3D, the
mesh displacement is predominantly governed by the mesh deformation [1]. The mesh smoothing is only a slight perturbation
around the mesh deformation displacement to get better shaped elements. Nevertheless, we prefer not to consider the smoothing
displacement when computing ALE Hessian-metrics because:

• the geometry displacement is clearly defined, thus the mesh deformation is converging toward a unique mesh deformation
and therefore we converge toward a unique optimal ALE continuous mesh

• the smoothing correction for one node may change from one fixed-point iteration to the other, thus for each node it does
not converge to a fixed correction.

The gradient of the mesh deformation displacement field is computed on the mesh position at the beginning of the sub-interval.
The Hessian of the sensor is computed on the mesh current position and is mapped back to the mesh position at the beginning of
the sub-interval. Then, as in the standard algorithm, the ALE Hessian-metrics are computed at each vertex.

Note that the connectivity-change moving mesh algorithm allows the mesh vertices to move to their final position given by the
mesh deformation solution while it would be impossible to reach such positions without skewing mesh elements with a classical
method. Thanks to the robustness of this algorithm, we are always able to calculate the ALE hessian-metrics.

6. Numerical examples

We now present several three-dimensional CFD simulations to illustrate the efficiency of the moving-mesh unsteady fixed-
point adaptation algorithm. The presented examples were run on 20 cores using a 2 Xeon E5-2670 v2 chip processor (10 cores
at 2.5 GHz for each chip), both chips being connected by 2 QPI links with a speed of 16 GB/s.

6.1. A shock tube in expansion

The first example is a variation of the classic Sod shock-tube problem, with a tube being homogeneously expanded in one
direction. This a priori simple test case shows that the refined regions follow the physical phenomena of interest, and that the
anisotropy is well preserved despite the mesh being moved.

The tube initial dimensions are [0, 1] × [−0.15, 015] × [0, 1], and the gas is split in two regions: for x ≤ 0.82 the state is
(ρleft,uleft, pleft) = (1, 0, 1) whereas for x > 0.82 the state is (ρright,uright, pright) = (0.125, 0, 1). The gas is then left free to
evolve, and the classic rarefaction wave, contact discontinuity and shock discontinuity appear and evolve in the tube. The tube is
expanded to the right with the following movement imposed to the mesh vertices:

x(t) = x0 + 1.5 x0 t

y(t) = y0

z(t) = z0 .

The simulation is run until time T = 0.6 so that the size of the tube doubles in the x-direction. For this case, 5 fixed-point
iterations and 20 sub-intervals were prescribed, and the density field is used as sensor for the adaptation. A space-time complexity
Nst = 80, 000 was prescribed leading to a sub-interval average spatial complexity Navg = 4, 000. The resulting adapted meshes
at the last fixed-point iteration have an average number of spatial vertices equal to 24, 500. A total of niter = 7, 075 time-steps
have been performed in the last fixed-point iteration. The total number of space-time vertices at the last fixed-point iteration
is Nst = 174 million. For this simulation, the CPU time to compute the solution at the last fixed-point iteration (flow solver
and interpolation steps on the last set of sub-interval adapted meshes) represents 43% of the total CPU time. In other words,
the overhead of the iterative process to obtain the optimal adapted space-time mesh is slightly higher than a factor two. This is
mainly due to the fact that the accuracy of the mesh is increased at each fixed-point iteration as the mesh-solution convergence is
being established.

The meshes at different time-steps and the corresponding solution are shown in Figure 8. Not only do the waves evolve in the
refined bands, but these bands also move as the tube is expanded. The adapted regions are transported together with the mesh in
accordance with our algorithm, that associates metrics to moving vertices rather than to fixed positions in space. In Figure 9, we
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show the mesh at the beginning and at the end of the fourteenth sub-interval, to emphasize the movement of the adapted regions
throughout a sub-interval, together with the movement of the tube boundaries, still preserving the anisotropy. In Figure 10, we
zoom on the solution at the beginning and the end of the fourteenth sub-interval to stress that the evolving physical phenomena
remain inside the adaptation bands during a sub-interval, despite the mesh deformation and the fact that bands themselves are
moving. We notice that the region where the shock wave evolves during the sub-interval is a lot larger than the refined band
size because the refined band moves forward together with the shock wave. Therefore, the size of refined band has been reduced
thanks to the ALE metric.

This case has the advantage of having a known analytic solution, which makes it possible to analyze quantitatively the effects
of the adaptation. Three versions of this case are compared: the first one is a moving mesh ALE simulation without adaptation,
the second one is an adaptive simulation with no moving mesh, the tube being fixed in expanded position, and the third one is
a fully moving mesh adaptive simulation. In all three simulations, the same space-time complexity is prescribed. The results

Figure 8: Adapted meshes and density solutions for the expanding shock tube case at time 0, 0.5 and 0.66. Cuts into the volume mesh are made along the plane
y = 0.

Figure 9: Mesh at the beginning (top) - t = 0.42 - and end (bottom) - t = 0.45 - of the fourteenth sub-interval. One can see the refined bands are moved forward
as the tube is being expanded.

Figure 10: Zoom on the mesh and solution at the beginning (top) - t = 0.42 - and at the end (bottom) - t = 0.45 - of the fourteenth sub-interval. One can see the
two waves move forward inside the adapted bands while the refined bands are moving forward.
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Figure 11: Density solution extraction along a line inside the domain for a moving mesh ALE simulation without adaptation, an adaptive simulation with no
moving mesh, and moving mesh adaptive simulation. The extractions are compared to the analytic solution on the whole simulation interval (first graph) and on
zooms on the different features.

are presented in Figure 11 and point out that the moving mesh adapted solution matches the analytic solution as well as the
fixed mesh adapted solution, both being much more accurate than the non-adapted ALE simulation in the shock, the contact
discontinuity and the expansion regions.

To emphasize the efficiency of the proposed approach, a quantitive CPU analysis of this simulation is carried out by comparing
the adaptive simulations with non-adaptive simulations using uniform meshes. Then, we quantify the CPU overhead due to
moving meshes by comparing the adaptive simulations with and without moving meshes. Please note that in general, one does
not run a moving mesh simulation when a fixed mesh simulation is possible.

Adaptive mesh versus uniform mesh simulations CPU efficiency. We compare the CPU time obtained with the global fixed-point
mesh adaptation for moving mesh simulations (Algorithm 1 and Section 5.4) and simulations on uniform meshes on this shock
tube in expansion problem. The CPU time in each case is analyzed with respect to the solution accuracy at final time T = 0.6,
i.e., the spatial error in L1-norm of the solution at time T = 0.6 with respect to the analytical solution. For a reliable analysis, the
comparison is done for many simulations to observe the convergence of the error with respect to the CPU time. This CPU time
analysis was run on 12 cores using a Xeon E5-2697 v2 chip processor at 2.7 GHz.

All parameters of the ALE flow solver are identical for all simulations. The CPU time for the uniform mesh simulations
corresponds to the CPU time of the ALE flow solver to run such simulations. Four uniform mesh simulations have been run
with a number of vertices ranging from 450, 000 to 3.5 million. The CPU time in the adaptive case corresponds to the sum of
all the CPU times for each stage of the adaptive algorithm (flow solver, interpolation, metric fields construction, and remeshing)
for all fixed-point iterations. Fifteen adaptive mesh simulations have been run using 6, 12 and 18 sub-intervals and a theoretical
average complexity of 1, 000, 2, 000, 4, 000, 6, 000 and 8, 000 leading to sub-interval adapted meshes with a size ranging from
6, 420 to 46, 204 vertices. The convergence in the adaptive case can be either observed by fixing the number of sub-intervals
and increasing the theoretical complexity, see Figure 12 (left), or by fixing the theoretical complexity and increasing the number
of sub-intervals, see Figure 12 (right). In these plots, we clearly see the superiority of the adaptive simulations. Indeed, the
error is reduced by a factor 4 for the more accurate simulations, and we also observe a higher order of convergence for adaptive
simulations. To reach the accuracy of the adaptive simulations, the uniform mesh simulations would need a lot more vertices.

A more detailed error analysis has been done in the fixed-boundary case [6] showing the great improvement of the adaptive
simulations versus non-adaptive simulations. This work also explains why, in terms of convergence, it is more advantageous to
increase the number of sub-intervals5 while performing a convergence study instead of increasing the average complexity as can
be seen in Figure 12.

5Changing the number of sub-intervals optimizes (adapts) the space-time mesh in the time direction.
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Figure 12: Convergence curves of the spatial error of the final solution with respect to the CPU time for uniform mesh simulations (black) and adaptive mesh
simulations (red, green, blue, pink and cyan). The convergence in the adaptive case can be either observed by fixing the number of sub-intervals and increasing
the theoretical complexity (left) or by fixing the theoretical complexity and increasing the number of sub-intervals (right).

CPU overhead of moving mesh simulations. We analyze the CPU overhead of the ALE solver with respect to the solver on fixed
meshes. This overhead is due to the update of the finite volume cells, the computation of the mesh velocities, and the extra terms
in the ALE fluxes. When an explicit time-stepping is considered, if the cost of the solver on fixed mesh is 1 then the cost of
the solver on moving meshes is around 1.75. There is also an overhead due to mesh deformation: the elasticity solutions, the
mesh optimizations, moving the mesh and checking its validity. For this case, if the cost of the solver on fixed mesh is 1 then
the cost of the mesh deformation is 0.2. Moreover, in this very specific case, a total of 7, 075 time-steps have been performed
for the moving mesh adaptive simulation whereas 3, 721 time-steps have been performed for the fixed mesh adaptive simulation.
Indeed, as the tube is expanding and to preserve the solution accuracy, the ALE metric field prescribes a mesh with a size smaller
than required in the x-direction at the beginning of the sub-intervals because this size is going to grow during the sub-intervals.
Thus, a larger number of time-steps are performed for the moving mesh adaptive simulation. For the whole simulation, adding
all these overheads, the cost of the ALE flow solver is 3.31 times the cost of the flow solver on fixed meshes, see Table 3.

We can then analyze the global cost of the adaptive simulations. In Table 3, we observe that there is no overhead for the
interpolation or the remeshing parts. Thus, the adaptive moving mesh case is 2.85 times the cost of the adaptive fixed mesh case.
The percentage of the total CPU time for the different stages of the fixed-point mesh adaptation algorithm for both cases are
given in Table 4. It is clear that for these cases most of the CPU time is spent in the flow solver.

Interpolation CPU Flow Solver CPU Metric & Remeshing CPU Total

Fixed mesh case 0.07 0.80 0.13 1

Moving mesh case 0.07 2.65 0.13 2.85

Table 3: Sod shock-tube problem. CPU ratio with respect to the total CPU time of the adaptive fixed mesh simulation for the different stages of the fixed-point
mesh adaptation algorithm, for the fixed mesh and for the moving mesh cases.

Interpolation CPU % Flow Solver CPU % Metric & Remeshing CPU %

Fixed mesh case 6.96% 79.97% 13.07%

Moving mesh case 2.57% 92.78% 4.65%

Table 4: Sod shock-tube problem. Percentage of the total CPU time for the different stages of the fixed-point mesh adaptation algorithm, for the fixed mesh and
the moving mesh cases.

6.2. A moving ball in a shock tube

In the second example, we consider again a Sod shock tube, but instead of expanding the tube, we add a moving ball inside
it, that interacts with the shock and the contact discontinuity.

The dimensions of the tube are [0, 1]× [−0.15, 0.15]× [−0.1, 0.1]. At initial time, the gas is split in two states: for x ≤ 0.5 the
state is (ρleft,uleft, pleft) = (1, 0, 1) whereas for x > 0.5 the state is (ρright,uright, pright) = (0.125, 0, 1). A ball of radius r = 0.02 is
immersed in the gas, its center being in position (0.75, 0, 0). The tube is fixed, while the ball has a constant speed vball = −0.3 ex.
The simulation is run until final time T = 0.5. After a while, the ball goes through the shock and the contact discontinuity,
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creating complex patterns both in front of it and in its wake. We expect all these physical phenomena to be captured correctly by
the multiscale adaptation algorithm. For this case, 80 sub-intervals and 5 fixed-point iterations were prescribed, and the density
field is used as sensor for the adaptation. A space-time complexity of 12 million was prescribed leading to a sub-interval average
spatial complexity of Navg = 150, 000. The resulting adapted meshes at the last fixed-point iteration have an average number of
spatial vertices equal to 265, 000 with sizes ranging from 100, 000 to 450, 000 vertices. A total of niter = 1, 854 time-steps have
been performed in the last fixed-point iteration. The total number of space-time vertices Nst at the last fixed-point iteration is 500
million. For this simulation, the CPU time to compute the solution at the last fixed-point iteration (flow solver and interpolation
steps on the last set of sub-interval adapted meshes) represents 20% of the total CPU time.

The adapted meshes at different time-steps and the corresponding solutions are shown in Figure 13. Since we are interested
in the interaction of the ball with the shock and the contact discontinuity, we only show the part x > 0.5 of the tube. The
meshes shown are the ones at the end of the sub-intervals, i.e., the meshes that have been moved. Thanks to the anisotropic mesh
adaptation, a highly resolved solution is obtained: the shock wave and the contact discontinuity are accurately captured all along

Figure 13: Adapted meshes and density solutions for the moving ball in a shock tube test case, at times 0.07, 0.12, 0.19 and 0.44. Cuts into the volume mesh are
made along the plane y = 0.
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the simulation, and more complex features around the ball and in its wake are represented in detail. It is interesting to note that
the shock is perfectly meshed as soon as the ball has gone through it. A closer look at the surface of the ball also shows that it is
adapted with highly anisotropic elements, and the anisotropy close to the surface is well preserved.

For this simulation, allowing mesh optimization (smoothing and edge/face swapping) is mandatory, otherwise, the shearing
created by the advance of the ball in the volume mesh quickly creates invalid elements. Consequently, it is crucial to compute the
quality criteria that trigger optimization with regards to the actual metric of the mesh. In this case, it is clear in figures shown that
the connectivity-change optimization did not break the anisotropy in the adapted regions, although nearly 4.5 millions of swaps
were performed during the last fixed-point iteration, i.e., on average 55, 000 swaps per sub-interval are performed. To give an
idea of the impact of the swaps on the numerical scheme, it represents nearly 2, 500 swaps per time-step as 1, 854 time-steps have
been performed at the last fixed-point iteration. These 2, 500 swaps have to be compared to the number of elements in the meshes
which is 1.6 millions on average for each sub-interval, i.e., one swap for 640 elements per time-step. The CPU distribution
between the different stages of the fixed-point mesh adaptation algorithm are given in Table 5.

6.3. Nosing-up F117 aircraft

The third example is a subsonic notional F117 aircraft geometry nosing up, that creates a vortical wake. An inflow of air
at Mach 0.4 arrives in front of the aircraft, initially in horizontal position, that noses up, stays up for a while, then noses down.
In this example, the aircraft rotates around its center of gravity. Let T = 1s be the characteristic time of the movement and
θmax = 20o the maximal angle reached, the movement is defined by its angle of rotation, of which the evolution is divided in 7
phases:

θ(t) = θmax



0 if 0 ≤ t ≤ T/2 (i)
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Phase (i) is an initialization phase, during which the flow around the aircraft is established. Phases (ii) and (iii) are respectively
phases of accelerated and decelerated ascension. Vortices start to grow behind the aircraft, and they expand during phase (iv),
where the aircraft stays in upward position. Phases (v) and (vi) are phases of accelerated and decelerated descent, the vortices
start to move away and they slowly disappear in phase (vii). Free-stream conditions are imposed on the faces of the surrounding
box, and slipping conditions on the aircraft.

The time simulation interval [0, 5] was divided into 96 sub-intervals, and 5 fixed-point iterations are performed. The adap-
tation sensor is the local Mach number. A space-time complexity of 48 million was prescribed leading to a sub-interval average
spatial complexity Navg = 500, 000. The adapted meshes at the last fixed-point iteration have between 100, 000 and 1, 400, 000
vertices, for an average number of vertices equal to 841, 000. A total of niter = 38, 980 time-steps have been performed in the
last fixed-point iteration. The total number of space-time vertices Nst at the last fixed-point iteration is equal to 35 billion. The
total CPU time of this simulation is 95 hours, 31 hours being spent to compute the solution in the last fixed-point iteration (flow
solver and interpolation steps on the last set of sub-interval adapted meshes) which represents 32% of the total CPU time. The
CPU distribution between the different stages of the fixed-point mesh adaptation algorithm are given in Table 5.

Views of the adapted meshes and the corresponding solutions are displayed in Fig. 14. The vortical wake is propagated far
from the aircraft, and the patterns of the vortices are highly resolved. The observation of the adapted meshes shows that they are
actually refined only in the vicinity of the wake, and with such a precision that one can see the vortices being created, evolving
and vanishing just by looking at the meshes. A view at several meshes within the same sub-interval shows that the mesh evolves
continuously following the physical phenomena. In the wake far from the aircraft, the elements are highly anisotropic, whereas
they have to be isotropic in the area of vorticity due to the characteristic of the physical phenomena.

6.4. Two F117 aircraft flight paths crossing

This case is an example of moving mesh simulation, described in [11]. It models two notional F117 aircraft geometries
having crossing flight paths, translating and rotating. This problem is difficult in terms of mesh movement and it illustrates the
efficiency of the connectivity-change moving mesh algorithm in handling large displacements of complex geometries without
any remeshing. When both aircraft cross each other, the mesh encounters large shearing due to the opposite flight directions. The
connectivity-change mesh deformation algorithm handles easily this complex displacement thanks to the mesh local reconnec-
tions.
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Concerning the fluid simulation, the aircraft are moved at a speed of Mach 0.4, in an initially inert uniform fluid: at t = 0
the speed of the air is zero everywhere. Transmitting boundary conditions are used on the sides of the surrounding box, while
slipping conditions are imposed on the two F117 bodies. After a short phase of initialization, the flow is established when the
two F117s pass each other, and the density fields around the aircraft and in their wake interact. Acoustic waves are created in
front of the F117s due to the instantaneous setting in motion of the aircraft.

The adaptation parameters are the following: the adaptation is performed on the density field, the time interval is divided
into 50 sub-intervals, and 4 fixed-point iterations are performed. A space-time complexity 20 million was prescribed leading to
a sub-interval average spatial complexity Navg = 400, 000. The adapted meshes at the last fixed-point iteration have between
360, 000 and 820, 000 vertices, for an average number of vertices equal to 745, 000. A total of niter = 93, 875 time-steps have
been performed in the last fixed-point iteration. The total number of space-time vertices Nst at the last fixed-point iteration is
equal to 70 billion. The total CPU time of this simulation is 130 hours, 58 hours being spent to compute the solution in the last

Figure 14: Nosing-up F117 test case: adapted meshes (view from the top) and local Mach number isolines at different time steps.
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Figure 15: Close-ups on the surface mesh and solution of the two F117s.

fixed-point iteration (flow solver and interpolation steps on the last set of sub-interval adapted meshes) which represents 44% of
the total CPU time. The CPU distribution between the different stages of the fixed-point mesh adaptation algorithm are given in
Table 5.

Note that this simulation involves only 50 remeshing and solution interpolation between meshes at each fixed-point iteration.
If we had considered a strategy where the mesh is frequently remeshed, for instance each 10 time-steps, the generation of 9, 387
adapted meshes and 9, 387 solution interpolation between meshes would have been required. It is clear that such a strategy would
have been a lot less efficient and a lot less accurate that the method proposed in this paper.

The meshes and density solutions at different time-steps are shown in Figure 16. The meshes are well adapted to the solution.
Thanks to the adaptation, the wakes of the F117s are captured far from the aircraft, and their interactions with the wakes are
clearly visible. The anisotropy of the meshes is obvious, in front of the aircraft (corresponding to the acoustic waves), and in
their wake. In Figure 15, a close up on the two aircraft is made, that shows the adapted surface mesh and solution. In this case
again, a correct handling of the mesh optimization with a dynamic ALE metric is necessary to preserve the anisotropic mesh
adaptation.

One can conclude from these examples results that the adaptive connectivity-change moving mesh algorithm has proved to
be very efficient in deforming anisotropic adapted meshes containing anisotropic elements with high aspect ratio when large
geometry displacements are involved.

Interpolation CPU Flow Solver CPU Metric & Remeshing CPU

Moving ball 10.80% 79.22% 11.04%

F117 nosing-up 4.94% 89.84% 5.73%

Two F117 crossing 0.89% 96.73% 2.37%

Table 5: Percentage of the total CPU time for the different stages of the fixed-point mesh adaptation algorithm on the last three examples.

7. Conclusion

This paper has addressed time-accurate anisotropic mesh adaptation in the case of dynamic meshes within the range of body-
fitted ALE simulations. The multiscale space-time interpolation error analysis for time-dependent problems has been extended
to the case of dynamic meshes leading to the expression of the optimal ALE continuous mesh. The mesh deformation is taken
into account in this expression: the ALE metric field is used to generate adapted meshes that will remain adapted once moved
as required by the geometry movements. Then, the global fixed-point unsteady mesh adaptation algorithm has been coupled to a
connectivity-change moving mesh algorithm. The ideas driving this algorithm remain the same, and only few modifications are
required: use the connectivity-change moving mesh algorithm to move the vertices, compute and use the ALE metric field and
use a dynamic ALE metric field that takes into account the mesh deformation for the mesh optimization.

Several numerical examples were presented in three dimensions, that validate the proposed approach. Adapted regions remain
around the solution flow features, even if the mesh vertices are moved in other directions to follow the moving boundaries, and
we have successfully managed to avoid the frequent remeshings usually performed for this kind of simulations. This results in
a better accuracy at a lesser cost. Indeed, we have shown the superiority in CPU time efficiency of the adaptive algorithm with
respect to uniform mesh simulations. These examples show both that our theoretical optimal ALE continuous mesh effectively
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Figure 16: Adapted meshes and density solutions for the two F117s test case at different time-steps. Cuts into the volume mesh are made along the plane y = 0.
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leads to highly resolved solutions, and that it can be put into practice at a reasonable time cost for complex fluids problems: in
3D, with complex boundaries undergoing large displacements.

Several improvement tracks are considered. First, it is now within our reach to extend goal-oriented unsteady error estimates
of [13] to moving boundary problems. Second, the mesh deformation due to the moving geometry may lead us to over- refine
some regions of the computational domain. For instance, if we consider an expanded tube that grows by a factor n on a sub-
interval, if an element size of h is expected at the end of the sub-interval, we may have to generate an element size of h/n at the
beginning of the sub-interval. This issue is recurrent, for instance in piston engine simulations. In that case, we may want to
adapt the sub-interval time length ∆t in order to control this over-refinement by a given factor. This will also provide a control on
the time step. Finally, this paper has only discussed the case of an explicit temporal scheme. If an implicit scheme is considered
with possibly arbitrary large time-steps to increase the flow solver efficiency, the size of the time-steps should be adapted in order
to control the error introduced by the temporal scheme. To this end, the time step has to be introduced in the space-time error
analysis. A first work in this direction has been proposed in [19].
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