-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Structured low rank decomposition of multivariate
Hankel matrices

Jouhayna Harmouch, Houssam Khalil, Bernard Mourrain

» To cite this version:

Jouhayna Harmouch, Houssam Khalil, Bernard Mourrain.  Structured low rank decomposi-
tion of multivariate Hankel matrices.  Linear Algebra and its Applications, Elsevier, 2017,
10.1016/j.1aa.2017.04.015 . hal-01440063

HAL Id: hal-01440063
https://hal.inria.fr /hal-01440063
Submitted on 18 Jan 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/80442914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01440063
https://hal.archives-ouvertes.fr

Structured low rank decomposition of multivariate Hankel matrices

J. Harmouch®®, H. Khalil®, B. Mourrain®

“UCA, Inria, AROMATH, Sophia Antipolis, France
b Laboratory of mathematics and its applications LaMa-Lebanon, Lebanese University

Abstract

We study the decomposition of a multivariate Hankel matrix H, as a sum of Hankel matrices of small rank
in correlation with the decomposition of its symbol ¢ as a sum of polynomial-exponential series. We present
a new algorithm to compute the low rank decomposition of the Hankel operator and the decomposition of
its symbol exploiting the properties of the associated Artinian Gorenstein quotient algebra A,. A basis of
A, is computed from the Singular Value Decomposition of a sub-matrix of the Hankel matrix H,. The
frequencies and the weights are deduced from the generalized eigenvectors of pencils of shifted sub-matrices
of H,. Explicit formula for the weights in terms of the eigenvectors avoid us to solve a Vandermonde system.
This new method is a multivariate generalization of the so-called Pencil method for solving Prony-type
decomposition problems. We analyse its numerical behaviour in the presence of noisy input moments, and
describe a rescaling technique which improves the numerical quality of the reconstruction for frequencies of
high amplitudes. We also present a new Newton iteration, which converges locally to the closest multivariate
Hankel matrix of low rank and show its impact for correcting errors on input moments.

AMS classification: 14Q20, 68W30, 47B35, 15B05
Keywords: Hankel; polynomial; exponential series; low rank decomposition; eigenvector; Singular Value
Decomposition.

1. Introduction

Structured matrices such as Toeplitz or Hankel matrices appear in many problems. They are naturally
associated to operations on polynomials or series [Fuhl2]. The correlation with polynomial algebra can
be exploited to accelerate matrix computations [BP94]. The associated algebraic model provides useful
information on the problem to be solved or the phenomena to be analysed. Understanding its structure
often yields a better insight on the problem and its solution. In many cases, an efficient way to analyze the
structure of the underlying models is to decompose the structured matrix into a sum of low rank matrices
of the same structure. This low rank decomposition has applications in many domains [MarI2] and appears
under different formulations [Lanlll BCMT10, BBCM13].

In this paper, we study specifically the class of Hankel matrices. We investigate the problem of decompos-
ing a Hankel matrix as a sum of indecomposable Hankel matrices of low rank. Natural questions arise. What
are the indecomposable Hankel matrices? Are they necessarily of rank 1 ? How to compute a decomposition
of a Hankel matrix as a sum of indecomposable Hankel matrices? Is the structured low rank decomposition
of a Hankel matrix unique ?

These questions have simple answers for non-structured or dense matrices: The indecomposable dense
matrices are the matrices of rank one, which are the tensor product of two vectors. The Singular Value
Decomposition of a dense matrix yields a decomposition as a minimal sum of rank one matrices, but this
decomposition is not unique.

It turns out that for the Hankel structure, the answers to these questions are not so direct and involve
the analysis of the so-called symbol associated to the Hankel matrix. The symbol is a formal power series
defined from the coefficients of the Hankel matrix. As we will see, the structured decomposition of an Hankel
matrix is closely related to the decomposition of the symbol as a sum of polynomial-exponential series.



The decomposition of the symbol of a Hankel matrix is a problem, which has a long history. The
first work on this problem is probably due to Gaspard-Clair-Frangois-Marie Riche de Prony [Bar95]. He
proposed a method to reconstruct a sum of exponentials from the values at equally spaced data points, by
computing a polynomial in the kernel of a Hankel matrix, and deducing the decomposition from the roots of
this polynomial. Since then, many works have been developed to address the decomposition problem in the
univariate case, using linear algebra tools on Hankel matrices such as Pencil method [HS90], ESPRIT method
[RK89] or MUSIC method [SK92]. Other methods such as [GP03|, approximate Prony Method [BMO05],
[PT11] use minimization techniques, to recover the frequencies or the weights in the sum of exponential
functions. See [PS12][chap. 1] for a survey on some of these approaches.

The numerical behavior of these methods has also been studied. The condition number of univariate
Hankel matrices, which decomposition involves real points has been investigated in [Tyr94], [Bec97]. It is
shown that it grows exponentially with the dimension of the matrix. The condition number of Vandermonde
matrices of general complex points has been studied recently in [Panl6]. In [BGLOT], the numerical sensitivity
of the generalized eigenvalues of pencils of Hankel matrices appearing in Prony’s method has been analysed.

The development of multivariate decomposition methods is more recent. Extension of the univariate
approaches have been considered e.g. in [ACd10], [PT13], [PPS15]. These methods project the problem in
one dimension and solve several univariate decomposition problems to recover the multivariate decomposition
by least square minimization from a grid of frequencies. In [PPS15)], [KPRv16], the decomposition problem
is transformed into the solution of an overdetermined polynomial system associated to the kernel of these
Hankel matrices, and the frequencies of the exponential terms are found by general polynomial solver. These
methods involves Hankel matrices of size exponential in the number of variables of the problem or moments
of order at least twice the number of terms in the decomposition. In [Saul6], an H-basis of the ideal
defining the frequencies is computed from Hankel matrices built from moments of big enough order. Tables
of multiplications are deduced from the H-basis and their eigenvalues yield the frequencies of the exponential
terms. The weights are computed as the solution of a Vandermonde linear system. Moments of order bigger
than twice the degree of an H-basis are involved in this construction.

Contributions. We study the decomposition of a multivariate Hankel matrix as a sum of Hankel matrices
of small rank in correlation with the decomposition of its symbol ¢ as a sum of polynomial-exponential
series. We show how to recover efficiently this decomposition from the structure of the quotient algebra A,
of polynomials modulo the kernel of the corresponding Hankel operator H,. In particular, a basis of A,
can be extracted from any maximal non-zero minor of the matrix of H,. We also show how to compute the
matrix of multiplication by a variable in the basis of A, from sub-matrices of the matrix of H,. We describe
how the frequencies of the polynomial-exponential decomposition of the symbol can be deduced from the
eigenvectors of these matrices. Exploiting properties of these multiplication operators, we show that the
weights of the decomposition can be recovered directly from these eigenvectors, avoiding the solution of a
Vandermonde system. We present a new algorithm to compute the low rank decomposition of H, and the
decomposition of its symbol as a sum of polynomial-exponential series from sub-matrices of the matrix of H,,.
A basis of A, is computed from the Singular Value Decomposition of a sub-matrix. The frequencies and the
weights are deduced from the generalized eigenvectors of pencils of sub-matrices of H,. This new method is
a multivariate generalization of the so-called Pencil method for solving Prony-type decomposition problems.
It can be used to decompose series as sums of polynomial-exponential functions from moments and provides
structured low rank decomposition of multivariate Hankel matrices. We analyse its numerical behaviour in
the presence of noisy input moments, for different numbers of variables, of exponential terms of the symbol
and different amplitudes of the frequencies. We present a rescaling technique, which improves the numerical
quality of the reconstruction for frequencies of high amplitudes. We also present a new Newton iteration,
which converges locally to the multivariate Hankel matrix of a given rank the closest to a given input Hankel
matrix. Numerical experimentations show that the Newton iteration combined the decomposition method
allows to compute accurately and efficiently the polynomial-exponential decomposition of the symbol, even
for noisy input moments.



Structure of the paper. The next section describes multivariate Hankel operators, their symbol and the
generalization of Kronecker theorem, which establishes a correspondence between Hankel operators of finite
rank and polynomial-exponential series. In Section [3] we recall techniques exploiting the properties of
multiplication operators for solving polynomial systems and show how they can be used for the Artinian
Gorenstein algebra associated to Hankel operators of finite rank. In Section 4] we describe in details the
decomposition algorithm. Finally in section[5} we present numerical experimentations, showing the numerical
behaviour of the decomposition method for noisy input moments and the improvements obtained by rescaling
and by an iterative projection method.

2. Hankel matrices and operators

Hankel matrices are structured matrices of the form

H = [Ui+j]0$isl,03jgm

where the entry o;,; of the it" row and the j* columns depends only on the sum i + j. By reversing the
order of the columns or the rows, we obtain Toeplitz matrices, which entries depend on the difference of
the row and column indices. Exploiting their structure leads to superfast methods for many linear algebra
operations such as matrix-vector product, solution of linear systems, ... (see e.g. [BP94]).

A Hankel matrix is a sub-matrix of the matrix of the Hankel operator associated to a sequence o = (oy) €

CcN:
H,:Ly(CY) - Y
(pk)k ind (Zpkalﬁl)lel\]
k

where Lo(CY) is the set of sequences of CY with a finite support.
Multivariate Hankel matrices have a similar structure of the form

H= [004+,8]QEA,,BEB

where A, B c N" are subsets of multi-indices « = (a1, ...,a,) € N* 8= (01,...,0,) € N” indexing respectively
the rows and columns. Multivariate Hankel operators are associated to multi-index sequences ¢ = (04 )aene €
CN".

H,:Lo(CY")y - ¢V (1)
(pa)oz = (ZpaJaJrB)ﬁeN”

where Lo((CNn) is the set of sequences of CN" with a finite support. In order to describe the algebraic prop-
erties of Hankel operators, we will identify hereafter the space Lo(CN") with the ring C[x] = C[z,...,2y]
of polynomials in the variables x = (21, ...,2,) with coefficients in C.

The set of multi-index sequences CN" can be identified with the ring of formal power series C[[y1, ..., Yn]] =
Cl[[y]]- A sequence o = (04)q is identified with the series

7()= ¥ 0%y < Clly]

where y* =y --yo, ol = [TiL; o;! for @ = (o, ..., a,) € N”. It can also be interpreted as a linear functional
on polynomials as follows:

C
(U | p) = ZaeAcN“ Palq-

o:C[x] -
p= ZaeAan paxa =



The identification of o with an element of C[x]* = Hom¢(C[x],C) is uniquely defined by its coefficients
0q = (0| x*) for a € N”, which are called the moments of o. This allows us to identify the dual C[x]* with
C[[y]] or with the set of multi-index sequences CV" .

The dual space C[x]* = C[[y]] has a natural structure of C[x]-module, defined as follows:

Vo e Cl[y]],Vp,q € C[x], (pxo|q) = (o] pg).

For a polynomial p = Y cyn Pax® with p, = 0 for almost all a € N*, we have
y()é
p*xo= Z ( Z pa0a+ﬂ)7'~
BeN™  aeN™ a:

We check that pxo =p(01,...,0,)(0) =p(8)(c) where 8 = (01,...,0,) and 0; is the derivation with respect
to the variable y;.
Identifying LO((CN") with C[x], the Hankel operator (1)) is nothing else than the operator of multiplication
by o:
H,:Clx] - C[[y]]
b = pxo
Truncated Hankel operators are obtained by restriction of Hankel operators. For A, B c N, let (x?) c C[x],

(y*) c C[[y]] be the vector spaces spanned respectively by the monomials x° for 5 ¢ B and y® for a € A.
The truncated Hankel operator of o on A, B is

HAP (xP) - (%)
p= ZﬂeB pﬁxﬁ = ZozéA(ZﬁeB anoﬁﬁ)% =P * O|(x4)

The matrix of H2Z in the bases (x”)gep and (%)MA is of the form:

H?’B = [0a+6]aeA,BeB~

It is also called the moment matriz of 0. Multivariate Hankel matrices have a structure, which can be
exploited to accelerate linear algebra operations (see e.g. [MP00] for more details).

2 2 3 2
Ezample. Consider the series o = 1+ 2y; + 3yz + 44 + 5y1yp + 6% + 7%1 + 842 4 e Cl[y1,y2]] Tts
truncated Hankel matrix on A = [(0,0),(1,0),(0,1)] (corresponding to the monomials 1,x1,22), B =

[(0,0),(1,0),(0,1), (2,0)] (corresponding to the monomials 1,21, zq,z7) is

A,B _
H> " =

W o —
[ BN
o ol w
P IEN N

n+d).

For d € N, we denote by C[x]4 the vector space of polynomials of degree < d. Its dimension is s4 = ( M

For d,d" € N, we denote by H g’d’ the Hankel matrix of ¢ on the subset of monomials in x respectively of
degree < d and < d’. We also denote by Hg’d’ the corresponding truncated Hankel operator of H, from
C[x]a to (C[x]a)*. More generally, for U = {uy,...,u;} c C[x], V ={v1,...,0m} c C[x], the Hankel matrix
of o on U, Vis HV = ((¢ | u Vi) 1<igl,1<j<m- We use the same notation HYYV for the truncated Hankel
operator from (V) to (U)*.

2.1. Hankel operator of finite rank

We are interested in structured decompositions of Hankel matrices (resp. operators) as sums of Hankel
matrices (resp. operators) of low rank. This raises the question of describing the Hankel operators of finite
rank and leads to the problem of decomposing them into indecomposable Hankel operators of low rank.

A first answer is given by the celebrated theorem of Kronecker [Kro&1].



Theorem 2.1 (Kronecker Theorem). The Hankel operator

Hy : (pr) € Lo(CY) = (3 proiet)iew € CV
%

is of finite rank r, if and only if, there exist polynomials w,...,w. € C[y] and &,...,& € C distinct s.t.
T,
On = Zwl(n)gzn
i=1

with Z;;’l(deg(wi) +1)=r.

This results says that the Hankel operator H, is of finite rank, if and only if, its symbol ¢ is of the form

n T”
o(y) = Y ot = Y @i(y)et
neN T8 3
for some univariate polynomials &;(y) € C[y] and distinct complex numbers &; i = 1,...,7". Moreover, the
rank of H, is r = Z;Ll(deg(dzi) +1).
The previous result admits a direct generalization to multivariate Hankel operators, using polynomial-
exponential series.

Definition 2.2. For ¢ = (£1,...,&,) € C", we denote e¢(y) = e1&1+tnln = 5 . €2 3;—(: € C[[y]] where
¥ =& L0 fora=(a,...,ap) €N '

Let POLYEXP(y) = {0 =X wi(y)eg (y) e C[[y]] | & € C",wi(y) € C[y]} be the set of polynomial-
exponential series. The polynomials w;(y) are called the weights of o and &; the frequencies.

For w(y) € C[y], we denote by u(w) the dimension of the vector space spanned by w and its derivatives
0% (y) = 0705 w(y) of any order for o= (o, ..., o) € N

The next theorem characterizes the multivariate Hankel operators of finite rank in terms of their symbol
[Moul6]:

Theorem 2.3 (Generalized Kronecker Theorem). Let o(y) € C[[y]]. Then rank H, = r < oo, if and only
if, o(y) = S0 wi(y)ee, (y) € POLYEXP(y) with wi(y) € Cly]~ {0} and & € C" pairwise distinct, with
r= Zf;l w(w;) where p(w;) is the dimension of the inverse system spanned by w;(y) and all its derivatives
0%w;i(y) for a=(aq,...,a,) e N".

Example 2.4. For £ € C", the series e¢(y) = X qenn £ % = e¥"¢ represents the linear functional correspond-

ing to the evaluation at &:

VpeR, (e§|p) = Z Pa ga :p(ﬁ).

aeNn
The Hankel operator He, : p+ p * e¢ = p(§)ee is of rank 1, since its image is spanned by e¢. For A, B c N",
the Hankel matrix of e is H?’B = [P seB.oen. If H?’B # 0, it is a matrix of rank 1.

Hankel operators associated to evaluations e are of rank 1. As shown in the next example, a Hankel
operator of rank > 1 is not necessarily the sum of such Hankel operators of rank 1.

Example 2.5. Forn=1 and o =y, we check that H, is of rank 2, but it cannot be decomposed as a sum of
two rank-one Hankel operators. If A ={1,x,2%}, we have

010 1 & & 1 & &
HM=[10 0|zM| & & & |+2]| & & &
000 & & & & & &

for A, A2,&1,& € C. This shows that the symbol y is indecomposable as a sum of polynomial-exponential
series, though it defines an Hankel operator of rank 2.



Definition 2.6. For o € C[[y]], we say that o is indecomposable if o cannot be written as a sum o = o1 + 09
with img H, = img H,, ® img H,,.

Proposition 2.7. The series w(y) eg(y) with w(y) € Cly] ~ {0} and & € C™ is indecomposable.

Proof. Let 0 = weg and 7 = p(w) the rank of H,. Suppose that o = 01 + 02 with img H,, = img H,, ®img H,,.
We assume that the rank of H,, is minimal. By the Generalized Kronecker Theorem, o1 = 37!, w1 e, ,,
09 = Z:fl w24 e&)i with Wi i € (C[X], gl,i € C™ and

71 T2
weg = Zwu €¢, + Zu)g,i ¢y it

i=1 i=1
By the independence of the polynomial-exponential series [Moul@][Lem. 2.7], we can assume that &1 =
&1 = ¢ and that w = wy 1 +wa (possibly with wsq = 0) and that wy; = —ws; for i =2,...,r; =7y . As
rank H,, = ¥i% p(wi ;) is minimal, we can assume moreover that wy; =0 for i =2,...,7, that is, r; =y = 1.
Then, we have 0 =weg, 01 = wi €¢ 02 = wa € With w = wy +we. As img H,, = (0%(w;) €¢), i = 1,2, we have
img H,, nimg H,, 3 e and img H, is not the direct sum of img H,, and img H,,. This shows that o is
indecomposable. O

The goal of this paper is to present a method to decompose the symbol of a Hankel operator as a sum of
indecomposable polynomial-exponential series from truncated Hankel matrices.

3. Structured decomposition of Hankel matrices

In this section, we show how the decomposition of the symbol o of a Hankel operator H, as a sum
of polynomial-exponential series reduces to the solution of polynomial equations. This corresponds to the
decomposition of H, as a sum of Hankel matrices of low rank. We first recall classical techniques for solving
polynomial systems and show how these methods can be applied on the Hankel matrix H,, to compute the
decomposition.

3.1. Solving polynomial equations by eigenvector computation

A quotient algebra A = C[x]/I is Artinian if it is of finite dimension over C. In this case, the ideal I
defines a finite number of roots V(I) = {&1,...,&} ={{ € C" | VpeI,p(¢) =0} and we have a decomposition
of A as a sum of sub-algebras:

A=C[x]/I=A1® oA,

where A; = ug, A ~ C[x]/Q; and Q; is the primary component of I associated to the root § € C". The
elements uy, ..., u,s satisfy the relations

ugi(x) = uﬁi(x)’ Zrzl Ug, (x)=1.

The polynomials ug,,...,ue, are called idempotents of A. The dimension of A; is the multiplicity of the
point &;. For more details, see [EMO07][Chap. 4].
For g € C[x], the multiplication operator M, is defined by

Mg: A - A
h o Mgy(h)=gh.

The transpose M of the multiplication operator M, is

Mg: A - A7
A = My(A)=AoMy,=g*A.

The main property that we will use to recover the roots is the following [EMOT7][Thm. 4.23]:



Proposition 3.1. Let I be an ideal of C[x] and suppose that V(I) = {&1,&a,...,&}. Then

e for all g € A, the eigenvalues of My and M are the values g(&1),-..,9(&) of the polynomial g at the
roots with multiplicities p; = dim A;.

e The eigenvectors common to all My with g € A are - up to a scalar - the evaluations eg,, ..., e, .

If B={b1,...,b.} is a basis of A, then the coefficient vector of the evaluation eg, in the dual basis of B
is [(eg;|bj)] 5. = [6j(&i)]i=1..r = B(&). The previous proposition says that if M, is the matrix of My in the
basis B of A, then

M] B(&) = 9(&) B(&).

If moreover the basis B contains the monomials 1,21, 2, ...,7,, then the common eigenvectors of M, are
of the form v; =¢[1,&1,...,&in,...] and the root & can be computed from the coefficients of v; by taking
the ratio of the coefficients of the monomials z1,...,z, by the coefficient of 1: & j = V“,—"Il Thus computing
the common eigenvectors of all the matrices M for g € A yield the roots &; (i=1,... 7).

In practice, it is enough to compute the common eigenvectors of My ,...,M; , since Vg € C[x], M, =
g(Myg, ..., My ). Therefore, the common eigenvectors M ,..., M, are also eigenvectors of any M.

The multiplicity structure, that is the dual Q7 of each primary component @; of I, also called the inverse
system of the point & can be deduced by linear algebra tools (see e.g. [Mou96]).

In the case of simple roots, we have the following property [EMO7][Chap. 4]:

Proposition 3.2. If the roots {£1,&2,...,&} of I are simple (i.e. p; = dim A; = 1) then we have the
following:

e u={ug,...,u } is a basis of A.

o The polynomials ug,, ..., ue
otherwise.

are interpolation polynomials at the roots &;: ug, (&) =1 ifi=j and 0

T

e The matriz of My in the basis u is the diagonal matriz diag(g(&1),...,9(&))-

This proposition tells us that if g is separating the roots, i.e. g(&) # g(&;) for ¢ # j, then the eigenvectors
of M, are, up to a scalar, interpolation polynomials at the roots.

3.2. Artinian Gorenstein algebra of a multivariate Hankel operator

We associate to a Hankel operator H,, the quotient A, = C[x]/I, of the polynomial ring C[x] modulo
the kernel I, = {p e C[x]| Vg€ R,{c | pq) =0} of H,. We check that I, is an ideal of C[x], so that A, is an
algebra.

As A, = C[x]/I, ~ img H,, the operator H, is of finite rank r, if and only if, A, is Artinian of dimension
dim(c .A,g' =T.

A quotient algebra A is called Gorenstein if its dual A* = Homc (A, C) is a free A-module generated by
one element.

In our context, we have the following equivalent properties [Moul6]:

e 0= 22;1 wi(y)eg, (y) with w; € Cly], & € C" and 22;1 pw(wi) =7,
e H, is of rank r,
e A, is an Artinian Gorenstein algebra of dimension r.

The following proposition shows that the frequencies §; and the weights w; can be recovered from the
ideal I, (see [Moul6] for more details):

Proposition 3.3. Ifo(y) = Zf;l w;(y)ee, (y) with w;(y) € Cly]~ {0} and & € C" pairwise distinct, then we
have the following properties:



e The points &1,&a,...,& € C™ are the common roots of the polynomials in I, = ker H, = {p € C[x] | Vq €

C[x], {olpq) = 0}.

e The series w;(y)eg, is a generator of the inverse system of Q;, where Q; is the primary component of
I, associated to &; such that dimC[x]/Q; = p(w;).

This result tells us that the problem of decomposing ¢ as a sum of polynomial-exponential series reduces
to the solution of the polynomial equations p = 0 for p in the kernel I, of H,.
Another property that will be helpful to determine a basis of A, is the following:

Lemma 3.4. Let B = {by,...,b.}, B’ = {b},...,b.} ¢ C[x]. If the matrizc HEB = ({albib))1<i,jr s
invertible, then B and B’ are linearly independent in A, .

Proof. Suppose that Hf’B/ is invertible. If there exists p = 3; A\;b; (A; € C) such that p =0 in A,. Then
pxo=0and Vg€ R, (olpg) =0. In particular, for j =1,...,r we have

> {olbibi)A

i=1
As HE B is invertible, \; =0 fori=1,...,r and B is a family of linearly independent elements in A,. Since
we have (H;B’B”)T = Hf'*B, we prove by a similar argument that Hf’B' invertible also implies that B’ is
linearly independent in A, . O

By this Lemma, bases of A, can be computed by identifying non-zero minors of maximal size of the
matrix of H,.

Proposition 3.5. Let B, B’ be basis of A, and g € C[x]. We have

HEE = (MPYy HEP = BB M (2)

g*xo
where M_f (resp. MgB,) is the matriz of the multiplication by g in the basis B (resp. B') of A,.

Proof. Let B = {by,...,b,},B" = {b},...,b,.} be two bases of A,. We have gb; = Y.;_; m; ;b; + £ where m; ;
is the (7, ) entry of the matrix Mf of multiplication by ¢ in the basis B and « € I,. Then,

T

r ’
(Hpo? Vig = (0| gbi b)) = (o | ;mz,ibzbﬁ-) +{o|Kb;) = ;mf,xff | bub) = (M) HTZ P )i

Similarly, we have gb; = ¥.i_; m; ;b + k" where m; ; is the (7, j) entry of the matrix M f' of multiplication
by g in the basis B’ and k' € I,. For 1<i4,j<r, the entry (i,7) of Hﬁ’f’ is
(H i i = 4o [ Beg ) = (o | o mu b+ (o[ bi') = ofor | bibfymas = (M)
This concludes the proof of the relations . O
We deduce the following property:

Proposition 3.6. Let o(y) = Yy wi(y)ee, (y) with w; € C[y] ~ {0} and & € C™ distinct and let B, B’ be
bases of A,. We have the following properties:

o ForgeC[x], MZ = (HEB Y 'HEF  (ME) = HEF (HE#) 1.

e For g € C[x], the generalized eigenvalues of (Hﬁ’f’,Hf’B,) are g(&;) with multiplicity p; = p(w;),
i1=1,...,7



e The generalized eigenvectors common to all (Hﬁ’f,,Hf’B/) for g € C[x] are - up to a scalar -
(HZP) ' B(&), i=1,....r.

Proof. The two first points are direct consequences of Propositions and The third point is also a
consequence of Proposition since the coordinate vector of the evaluation e¢, in the dual basis of B is
B(&) fori=1,...,r. O

This proposition shows that the matrices of multiplication by an element ¢ in A, and thus the roots
{&1,...,& } and their multiplicity structure, can be computed from truncated Hankel matrices, provided we
can determine bases B, B’ of A,. In practice, it is enough to compute the generalized eigenvectors common
to (Hfi’fj,/, Hf7B,) fori=1,...,n to recover the roots. As Hﬁ’fi = Hf,“B’B, = fo B', the decomposition can
be computed from sub-matrices of Hf’BI+ or Hf+>B' where B = BuzyBu---uz, B, B = B'uzB'u---ux, B’.

4. Decomposition algorithm

We are given the first moments oy, |a| < d of the series o(y) = ¥i_; wieg, (y) with w; € C\(0) and & € C™.
The goal is to recover the number of terms r, the constant weights w; and the frequencies &; of the series
o(y)

4.1. Computation of a basis

The first problem is to find automatically bases B; and By of the quotient algebra A,, of maximal sizes
such that HP1B2 is invertible. Using Proposition we will compute the multiplication matrices M, ;32 for
g=x;,1=1,...,n. The frequencies &; and the weights w;, j = 1,...,r will be deduced from their eigenvectors,
as described in section

Given the set of moments (04 )|a|<d, We create two sets Ay = (X*)|qj<q, and Az = (x7)5.cq, of monomials
such that o and § are multi-indices in N™ with |o| < dy and |8] < d2. The degrees d; and dy are chosen such
that dy + dg < d. Let Ny = |A;| and N3 = |A3|. The truncated Hankel operator associated to o is:

Hyv o Clx],, - (C[x]y)"
p = p*xo

The Hankel matrix in these two monomial sets A; and Ay is defined by Hd142 = [0 (a+8)]ja)<d; -
|Bl<d2
Computing the singular value decomposition of H%1:%  we obtain

Hbd2 -y gyT

where S is the diagonal matrix of all singular values of H%1+%2 arranged in a decreasing order, U is an unitary
matrix whose columns are the left singular vectors of H ;ll’dZ, V is an unitary matrix whose columns are the
right singular vectors of H gl’dQ. We denote by U" the hermitian transpose of U and V the conjugate of V.

Let u; = [Ua.i]aca, and v = [vg j]gea, be respectively the it' and j* columns of U" and V. They are
vectors respectively in CN' and C2. We denote by u;(x) = ul 4; = Ylaj<dy o, i X and vj(x) = v] Ay =
2 |8|<ds vgijﬁ the corresponding polynomials. The bases formed by these first » polynomials are denoted
Ul = (ui(x))=1,..r and V, = (vj(x))j=1,....r- We will also denote by U;' (resp. V) the corresponding
coefficient matrix, formed by the first rows (resp. columns) of U" (resp. V). We denote by S, the diagonal
matrix of the first r rows and columns of S, formed by the first r singular values.

Proposition 4.1. Let o = Z;il wi(y)eg, with w; € Cly], & € C" and Z:;l pw(w;) = r. If rank H3d2 = o)
then the sets of polynomials U and V, are bases of A,. The matriz M;/T associated to the multiplication
operator by x; in the basis V, of A, is MXT =S 1U! Hj;;i? Vei=1,...,n.



" —
Proof. The (i, ) entry of the matrix HI™V" of the truncated Hankel operator of o with respect to U and
V., is equal to:

(HY V)51 = (ol ()03 ()

S0l Y uax) (X vpx®)) = Y uas Y {ohx)va, 3)

lor|<dy |Bl<d2 |ov|<dy |Bl<d
dv,doT7
= [U:Hal ZVT‘][ZJ]

Using the SVD decomposition of H, gl’d2, we have
" —
1V = UM HS R, = UrUSVTV, = S,

since UH U = Idn,, VTV = Idn,. Asr = rankH;ll’d?7 S, is invertible and by Lemma U;' and V, are
linearly independent in A,, which is a vector space of dimension 7. Thus they are bases of A,.

H —
Let Hf.a;,vr be the matrix of the truncated Hankel operator of x; x ¢ on the two bases U}' and V.

A similar computation yields Hg Z’;/ =U “Hgl;'ffvh where Hﬁj]fff is the matrix of the truncated Hankel
operator of x; * o in the bases Ay and A, for all i = .,m. Since S, is an invertible matrix, by Proposition
We obtain MY~ = (HY V- ch, = STlU;'Hﬁj;‘ffVT. O

By this proposition U" and V) are bases of A,. By Proposition the eigenvalues of MZ " are the 70
coordinates x;(&;) = &;; of the roots §; fori=1,...,n,5=1,...,r

4.2. Computation of the weights
The weight w;,7=1,...,7 of the decomposition of o can be easily computed using the eigenvectors of all
M;;f,j =1,...,n as follows.

Proposition 4.2. Let 0 = Y;_; w;eg, with w; € CN{0}, & = (&1,...,&.n) € C" distinct and let MZT be the

matriz of multiplication by x; in the basis V. Let v; be a common eigenvector of MZ", j=1,..,n for the
eigenvalues & ;. Then the weight of e¢, in the decomposition of o is
[1]T Hgl’dz V?" V;
[£’L ]QGAQ VT Vi

Proof. According to Proposition @ the eigenvectors of the multiplication operator M, are, up to scalar,
the interpolation polynomials u,;(x) at the roots. Let ug, be the coefficient vector associated to ug,(x)
in the basis V, of A,. Let v; = Aug, be the eigenvector of M;/ " associated to the eigenvalue §;; for
j=1,...,m4=1,...,n such that v;(x) = Ay" v; = 2|8<ds {Iigxﬁ where v; = V,. v;. Applying the series on all
the idempotents, we obtain

T

(0] ug (x)) = Z wjee; (¥) [ ug, (%)) = wing, (&) = wi.

Therefore, we have w; = <""\“§i(x)> - <U|V/i\(x)) _ <UV|V(£("))> because of v;(&;) = (Aug,)(&) = A. Then

<o |vi(x)>=[1]THI v, = [1]" HIV 2V, vy,

where [1] is the vector of coefficients of the polynomial 1 in the monomial basis A; = (X%)|4/<q, and

vl(fl) - [ i ]ozeAz v, = [gz ]OéEAQV Vi.

- [1]T Hgl’dQ Vr Vi
We deduce that w; = e v O
i daeAy
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4.8. Algorithm
T
We describe now the algorithm to recover the sum o(y) = Y wjeg, (y), w; € C\ {0},&; € C", from the
yf;l
first coefficients (04 )jaj<q Of the formal power series o = Z Oa™
= al

Algorithm 4.1: Decomposition of polynomial-exponential series with constant weights

Input: the moments o, of o for |a| < d.
Let dy and ds be positive integers such that dy + ds + 1 = d, for example d; := [%] and ds := [%J
1. Compute the Hankel matrix Hd1:92 = [a(a+3)]|a|sd1 of o in for the monomial sets Ay = (x)|<q, and

|Bl<dz
Az = (x7)j51<d,-
2. Compute the singular value decomposition of H%:92 = USVT with singular values s1 > s3 > - > 5,,, > 0.
3. Determine its numerical rank, that is, the largest integer r such that Z—: > €.

4. Form the matrices MZT = S;lU;‘ng;‘ffVT,i =1,...,n, where ng;‘ff is the Hankel matrix associated
tox; xo.
5. Compute the eigenvectors v; of ;' [;M,, for a random choice of I; in [-1,1],4=1,...,n and for each

j=1,...,r do the following:
e Compute &, ; such that M;v; =¢;,;v; for i=1,...,n and deduce the point &; := (§;1,...,&n)-

T pdi.da oo
e Compute w; = (‘:,lvég(x))) = [1[].§-QHT01 %V:,VJ where [1] is the coefficient vector of 1 in the basis A;.
EASY i daeay Vr Vi

Output: 7 €N, w; € C\(0), {; € C", j=1,...,r such that o(y) = ¥’_; w; e¢,(y) up to degree d.

5. Experimentation

In this section, we present numerical experimentations for the decomposition of o = ¥ cn a(y% from
its moments o,. For a given number of variables n and a fixed degree d, we compute the coefficients
a0 =0(x%) = X1 w;i& such that |o,| < d where w; € C\(0) and & = (&1,...,&n),%=1,...,r have random
uniform distributions such that 0.5M < ;| <1.5M, -7 < arg(&; ;) <, 0.5 < |w;| <1 and -7 < arg(w;) <,
for M > 1. To analyse the numerical behaviour of our method, we compare the results with the known
frequencies and weights used to compute the moments of o.

We use Maple 16 to implement the algorithms. The arithmetic operations are performed on complex
numbers, with a numerical precision fixed to Digits = 15.

5.1. Numerical behavior against perturbation

We apply random perturbations on the moments of the form o, + €(pa + % ¢o) where p, and g, are two
random numbers in [-1,1] with a uniform distribution, and € = 107¢ where e is a fixed positive integer.

To measure the consistency of our algorithm, we compute the maximum error between the input fre-
quencies &; and the output frequencies f;, and between the input weights w; and the output weights w;:

err = max(err(&:,€;), err(wi, ;) where err(wi,w;) = max i - wi| and err(6,€)) = max |6 £, (5)

In each computation, we compute the average of the maximum errors resulting from 10 tests.

In Figures and we study the evolution of the error in terms of the perturbation ¢ = 10(-¢), for
a fixed degree d = 10, a number of variables n = 3, different ranks r = 5,10,20,30 and for two different
amplitudes of the frequencies M =1 and M = 100.

In Figure for M = 1, the lower error is for the lower rank r = 5. Between ¢ ~ 107'? and ¢ = 1, the
error err increases in terms of the perturbation as err= exp(te) for some slope ¢ ~» 1. The slope ¢ remains
approximately constant but the error increases slightly with the rank r. Before € = 10713, it is approximately

11
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Figure 1: The influence of the amplitude of the frequencies on the maximum error.
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Figure 2: The influence of the degree and dimension on the maximum error.

constant (approximately 10712 for r = 5) This is due to the fact, in this range, the perturbation is lower than
the numerical precision.

In Figure [Ib] for M = 100, the lower error is also for the lower rank. The error has almost a constant
value when e varies. It is bigger than for M = 1 for small perturbations. For r = 5,10 the error slightly
increases between e = -2 and e = 0, with a similar slope. This figure clearly shows that the error degrades
significantly from M =1 to M =100 and that the degradation increases rapidly with the rank r.

In Figure we fix the number of variables n = 3, the rank r = 20 and we change the degree d which
induces a change in the dimensions of the Hankel matrices. For e € [-19,0], the error decreases when we
increase the degree from d = 8 to d = 10. It is slightly lower when d = 12 than when d = 10, and error is
similar for d = 10 and d = 16. This increase of the precision with the degree can be related to ratio of number
of moments by the number of values to recover in the decomposition.

In Figure we fix the degree d = 10 and the rank r = 15 and we change the number of variables
n = 2,3,4,5. The dimension of the matrices increases polynomially with n. We observe that the error
decreases quickly with n. It shows that the precision improves significantly with the dimension.

12



5.2. Numerical Rank

To compute the number r of terms in the decomposition of o, we arrange the diagonal entries in the
decreasing order s1 > s9 2 -+ 2 8y > Spy1 2 -+ 2 SN, and we determine the numerical rank of thd? by fixing
the largest integer r such that s,/s; > €.

It is known that the ill-conditioning of the Hankel matrix associated to Prony’s method is in the origin
of a numerical instability with respect to perturbed measurements

&a+ﬁ =0a+B T Ea+p |Ol + B| <d.

In our algorithm the computation of the numerical rank can be affected by this instability. We can explain
this instability, using a reasoning close to [Saulf], as follows.

We denote by s; (resp. 3;) the 5" largest singular value of H := H%% (resp. H := Hgl’d2). The
perturbation result for singular values satisfies the estimate (see [GLI6])

|sj =85 < s1(e) = le]la-
Then, as long as the perturbation is small relative to the conditioning of the problem, that is
lel2 < 25, provided that r = rank(H),
then |s; - 5| < sr Vj and therefore §, > ;sr and §,41 < %sr. Hence by taking e < %sr as a threshold level
we will be sure that the rank is calculated correctly.
But the problem may be badly ill-conditioned and then such a level will not be reasonable. In fact

'
T
H = (0a+,3 lolgdy = (szfaw) < :Zwivi7dlvi,dz7
«|say

<d 1 =1
|Bl<dz  \d |Bl<ds

where v; 4, = (5 I)‘a|<d1 (resp. v a, = (5 )IB\<dz) is the i*® column of the Vandermonde matrix Vy, = (£%) 1<i<r
laf<ds

(resp. Vg, = (fl. )i<i<r ). Then

|Bl<d2

=1

i=1

H = Z indl €¢6?Vd2 le (Z Wi€i€; ) Vd2 le CVd,I;

where C = diag ((w;)1<i<r) is the diagonal matrix with w; on the diagonal.

Now, using the fact that

sr(H) = min | Halz = min |Va, OV o,
Hzxz+0 H:mt()

we remark that if Vg, (resp. Vy,) is ill-conditioned then Vg, 2|2 (resp. [Va, CV x[) may be very small and
s-(H) is small as well. This situation can also be produced if maxj<j<, w; is very small. In our numerical
experiments, the w; are chosen randomly in [0.5,1] and then they don’t cause any numerical instability.

On the other hand, the &; vary in such a way that their amplitude can be large, which can generate very
ill-conditioned Vandermonde matrices. In fact, it is known (see [Panl€]), that for a nonsingular univariate
Vandermonde matrix V' = (a?)oi jen—1, where (a;)oci<n-1 denotes a vector of n distinct knots, the condition
number of V' is exponential in n if maxogj<n-1|a;| > 1 or in k if |a;| < 1 for at least k knots a;. Therefore an
nxn Vandermonde matrix is badly ill-conditioned unless all knots lie in or near the disc D(0,1) ={z: |z| <1}
and unless they lie mostly on or near its boundary C'(0,1).

In the multivariate case, it appears that the condition number of multivariate Vandermonde matrices has
the same behavior as in univariate case. That is, it is exponential in the highest degree of the entries.

According to the foregoing, when the amplitude M of the frequencies increases (even for moderate values
of M) the numerical rank calculated by truncating the singular values of H will be different from the exact
rank of H. An idea to remedy this problem is to rescale the frequencies &; in order to obtain points with
coordinates close to the unitary circle C'(0,1).
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5.83. Rescaling

As we have seen in Figures|[laland the error increases significantly with the amplitude M. To remedy
this issue, we present a rescaling technique and its numerical impact. It’s done like this:

e For a chosen non-zero constant A, we transform the input moments of the series as follows:

y* . o Y
a(y)= Y, oas —5(y)=c(y)= Y Mo, ",
aeN™ a: aeN™ Q!

which corresponds to the scaling on the frequencies e¢(\y) = exe(y).

e We compute decomposition of 5(y) = ¢(\y) from the moments &, = Al%lo,.

e We apply the inverse scaling on the computed frequencies fl which gives &; = &= ( 35,0, 25

A

. . mMaZ|y|=d|0 a . . . .
To determine the scaling factor \, we use \ := —;L where m = mawaa]oa] lT‘ddlﬂall' This is justified as follows:
al=d— [e%

If lwj| < 1,5 = 1,...,7, then |oa] = [ Y] w;&;*] = M for |a| = d big and for M is the highest modulus of

max|q|=
|a\7d|‘704| . M
Mmaz|ql=d-1/0a|

frequencies. Similarly ||~ M for |a'| = d - 1. Then we have m =

logh)

-3
Log(rel ert)

[r=5] — - [=10] == [r=20] — -[r=30]]

n=3 d=10 with rescaling

Figure 3: The rescaling influence

To study the numerical influence of the rescaling, we compute the maximum relative error between the
input frequencies &; and the output frequencies &;, and the maximum error between the input weights w;
and the output weights @;, and we take their maximum:

rel.err = max(rel.err(&;, &), err(w;, @;)) (6)

Hﬁ‘r&_‘i llo
‘le 2 ’
In Figure|3| we see the influence of the rescaling on the maximum relative error. The perturbation on the

moments is of the order € = 107. Each curve for r = 5,10, 20,30, has almost a constant evolution with the
increasing values of M between 10 and 10'°. The maximum relative error is lower when M = 100 than when
M =1 which is confirmed with the results shown in Figures [Ta] and [[l] When we increase r the maximum
relative error decreases slightly.

In conclusion, the rescaling has an important influence on the computation of the maximum relative error
when the modulus M of points is quite big.

The scaling of moments by some computed factor A also enhances the computation of the numerical rank
r and leads to a better decomposition as we have seen in

where err(w;,@;) = max; << |w; — @;| and rel.err(§;, é) = maxi <<,
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5.4. Newton iteration

Given a perturbation ¢ = Y, 5a’;—j of a polynomial-exponential series ¢ = Yi_; w;e¢, (y), we want to
remove the perturbation on & by computing the polynomial-exponential series of rank r, which is the closest
to the perturbed series ¢. Starting from an approximate decomposition, using the previous method on the
perturbed data, we apply a Newton-type method to minimize the distance between the input series and a
weighted sum of r exponential terms.

To evaluate the distance between the series, we use the first moments &, for o € A, where A is a finite
subset of N". For a € A, let F,(E) = Y- wi& — 6 be the error function for the moment &,, where w;,&; ;
are variables. We denote by = = (& j)1<icr,0<j<n this set of variables, with the convention that & o = w;
fori=1,...,r. Let I =[1,7]x[0,n] ={(4,7) |1 <4 <r0<j<n} be the indices of the variables and
N =(n+1)r=|I|. We denote by F(Z) = (Fy(Z))aeca the vector of these error functions.

We want to minimize the distance

Z Fa(B) = *HF(E)HQ-
aEA
Let M(E;) = [wi&f]aea. We denote by V(E) = (8(1-1]-)M(Ei))(i el the |A| x N Vandermonde-like matrix,
which columns are the vectors 9(; jyM (Z;). The gradient of E(Z) is

VE(E) = (0. ) M(Z3), F(E))) (i, jyer = V(E)TF(Z)

where J(; ;) is the derivation with respect to Z; ; for (4,7) € I. We denote by V(E) = (8(17])M(HZ))(Z el the
|A| x N Vandermonde-like matrix, which columns are the vectors d; jyM(Z;), (i,7) € I.

To find a local minimizer of E(Z), we compute a solution of the system VE(Z) = 0, by Newton method.
The Jacobian of VE(Z) with respect to the variables = is

J=(VE) = (00 jyM(Z;), 00 jyM(Z;:)) + ((a(i,j)a(i’,j’)M(Ei)’ F(E»)(i,j)el,(i’,j’)el
=V(E)V(E) + ({050 ./ M(Es), F(E)>)(i,j)el7(i’7j’)e[ :

Notice that d; ;O j-)M(Z;) = 0 if i # i’ so that the first matrix is a block diagonal matrix. Then, Newton
iteration takes the form:
Ens1 = E, - J=(VE) 'VE(E,).

To study the numerical influence of Newton method, we compute the maximum absolute error between
the input frequencies fl and the output frequencies El, and the maximum error between the input weights
w; and the output weights w; as in

Figures [4a] and [4D] show that Newton iterations improve the error. The error decreases by a factor of
~ 102 compared to the computation without Newton iterations. In Flgurem 4Db|for M = 100 the error is smaller
than without Newton iterations by a similar order of magnitude (see in Figure
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