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Competition Between Regulation-Providing and
Fixed-Power Charging Stations for Electric Vehicles

Wenjing Shuai, Patrick Maillé, Alexander Pelov
Institut Mines-Telecom/Telecom Bretagne

Abstract—This paper models a non-cooperative game between
two EV charging stations. One is a fixed-power charging station
purchasing electricity from the grid at wholesale price and
reselling the energy to EV owners at a higher retail price; the
other is regulation-providing and varies the recharging power
level of its clients to provide regulation services to the grid, so
its profit comes from both EV owners (who buy energy) and the
grid (which pays for regulation services). Users are reluctant to
charging power variations and prefer shorter overall charging
times, hence regulation-providing charging has to be cheaper
than fixed-power charging.

We analyze the competition among those charging providers,
and examine the performance at the equilibrium in terms of
user welfare, station revenue and electricity prices. As expected,
competing stations provide users with lower charging prices than
when both charging solutions are offered by a monopolistic
provider. Moreover, while competition benefits users, it also
benefits the grid in that the amount of regulation services
increases significantly with respect to the monopolistic case.

I. INTRODUCTION

Among the main difficulties of the penetration of Electric
Vehicles (EVs) in the smart city is the associated energy equa-
tion: how can the power grid accommodate the corresponding
demand? [1]. And together with the technical limitations, the
question of economic incentives to elicit the most efficient
use of resources needs also to be considered (see [2] and
references therein). But EVs do not use the energy in real
time, they just store it in their batteries until leaving the
charging station. This particularity of EV charging demand
can be leveraged, in particular for regulation purposes. In
practice, when there is extra (resp. a lack of) energy production
with respect to demand, the grid can send a “down” (resp.,
“up”) regulation signal so that the production side—or here,
the consumption side-reacts accordingly. In this paper, we
consider the economic aspects of such an option, from the
point of view of EV owners and charging stations.

Previous work focuses on fairness issues among users in
terms of final state-of-charge [3]; on incentivizing EV owners
to contribute to regulation [4], [S]; or on the resulting user
welfare [6], [7]. The closest works to ours are [8], [9], where
the focus is on the pricing strategies of the charging stations:
in [8], Gao et al. consider a regulator designing contracts
to incentivize EVs to participate so that the station profit
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is maximized. On the other hand, in [9] we considered a
charging station offering two simple options, namely a fixed-
power charging (no regulation) and a varying-power charging
(following regulation signals). Another difference is that [8]
allows vehicle-to-grid energy exchanges while in [9] the
regulation services are just provided by varying the current
charging power. But both of those works, as well as [10],
assume a monopolistic revenue-maximizing charging station.

In this paper, we focus on the effect of competition, by
considering two competing charging stations, one implement-
ing only regulation-based charging and the other only fixed-
power charging. When compared to monopolistic situations,
we expect competition to benefit to users, through lower
recharging prices. But also, we investigate the viability of each
competitor: indeed, regulation is rewarded through financial
incentives, and providing regulation during charging may not
yield sufficient revenues if those incentives are not large
enough. Hence some regions of reward values where EV-
charging-based regulation can occur; this was investigated in
the monopolistic case in [9], here we study the effect of
competition on that aspect as well.

Our results indicate that, as expected, competition is ben-
eficial to users, through lower recharging prices. Also, com-
petition appears to be better from the grid perspective, since
both the region of rewards for which regulation is viable and
the amount of regulation offered are larger in the competition
setting. The remainder of the paper is organized as follows.
Section II presents our model; Section III analyzes the price
competition and the resulting Nash equilibrium; In Section IV
we compare the performance of the competition with the
monopolistic case and Section V concludes the paper.

II. MODEL DESCRIPTION

According to a national household travel survey of the
United States [11], [12], a passenger vehicle spends on average
75 minutes a day on journey, hence is parked most of the time.
We assume this to remain true for EVs. So this is interesting, at
least for some EV drivers, to accept longer charging durations
for cheaper energy. This opens an opportunity for charging
stations to increase revenue through the rewards offered to
regulation-contributing entities, as well as for EV owners to
save on their energy bill.

Conventional recharging services are provided by what we
will call an S-charging station, purchasing electricity at the low
wholesale unit price *€/kWh and reselling it to EV owners
at a higher price; whereas in a R-charging, charging power



is not guaranteed but subject to variations over time, as a
response to regulation requests issued by grid operators. We
model the interactions among both stations (or sets of stations,
each set controlled by a separate entity) as a noncooperative
game since they compete over prices to attract EV owners.
User preferences between price and charging power variations
are assumed heterogeneous, so each station seeks the best
tradeoff between market shares and per-client profit in order
to maximize its expected revenue.

A. Regulation mechanism

Frequency regulation, depending on the response time, is
mainly divided into: primary, secondary, and tertiary control,
with the response time increasing from seconds, to minutes
and finally to half an hour respectively [13]. In our proposal,
the R-charging station modulates the EV charging power to
provide the secondary control: one regulation time slot lasts
for A hours, with A typically between 0.1 (6 minutes) and
0.25 (15 minutes). Periodically, the grid operator, buyer of the
regulation service, sends a regulation request to the R-charging
station specifying its demand, which can be regulation-up, -
down or -null. Receiving the signal, the R-charging station
sets the EV recharging power to be 0 kW', P; kW, or P,
kW respectively: P; is the maximum acceptable power level
allowed by the EV supply equipment in the station, and P, is
the default recharging power (0 < P,, < P,) defined by the R-
charging station itself, when no regulation is needed, namely
regulation null. Note that this mechanism increases (decreases)
the EV consumption responding to regulation-down (-up). This
counter-intuitive naming stems from conventional regulation
services, where providers are generation units whereas the task
is given to consumers here. For later convenience we will use
the notation z := %, so that z € [0, 1].

At the S-charging station, EVs are always charged at full
speed P; kW. Figure 1 illustrates the charging power profiles
for the two stations as well as the energy accumulated in an
EV battery being charged for a given scenario of regulation
requests. We denote by Cp the energy demand of an EV,
and by p, (pgq) the probability of occurrence of regulation-
up (-down) at each time slot, those signals being assumed
independent at each regulation period in this paper.

There may be concerns that varying the charging power for
all EVs in R-charging station(s) simultaneously and drastically
following this “ping-pong” policy can lead to an oversupply
of regulation, i.e., the aggregated increase or decrease in
power is larger than that actually needed by the grid operator.
This is hardly possible since in the scale of a grid operator,
the disposable regulation capacity scattered in EVs is non-
dominant if not negligible given the current penetration levels.
For example data from RTE (Réseau de transport d’electricité),
the biggest independent system operator in France, show that
the regulation-down demand in 30 minutes? can easily go over

'We do not allow here EVs to deliver energy to the grid (the so-called
vehicle-to-grid transfer).
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Fig. 1: Power and cumulated energy an EV obtained with and
without regulation (simulation with C'z =50kWh, P; =20kW,
P, =16kW, A =0.1hour, p, = pg =0.45 [9])

100 MWh, a quantity that could only be absorbed by at least
ten thousand EVs doing level 2 recharging (19.2kW [14]) at
the same time. Since the whole country has an EV population
of 30 thousand, sharing 8600 public charging facilities, the
regulation oversupply problem is not of concern so far. But
it can rapidly become one if EV penetration increases; never-
theless we expect that in this case, the incentives to provide
regulation will be adjusted (regulation being rewarded less)
so that market mechanisms will reduce supply. In addition,
demand for regulation is likely to increase in the next future,
with the development of renewable energy production which
cannot be controlled like fossil-based electricity plants can:
the overall supply-demand balance will be more difficult to
maintain, hence a probable larger need for ancillary services
such as regulation.

B. Regulation incentives

In return for providing regulation, the R-charging station
receives monetary incentives, with respect to the default
wholesale price t.

o In regulation-null periods, it charges each plugged EV
with power P, kW, and pays AtP, monetary units (no
compensation) over such a duration-A;

e in regulation-up periods, the grid operator “re-buys” the
energy saved at a unit price r,t, hence the station pays
At(1 — r,)P, monetary units over such a period (note
that we can expect to have r, > 1, although it is not
always the case in practice);

o similarly, in a regulation-down, the R-charging station
pays for the extra energy it consumes at a discount price
t(1—rq) monetary units per kWh, thus a total price paid
A(Pyt + (Py — Py)t(1 — r4)) monetary units per EV.

Together with the probabilities of regulation-up (p,,) and down

(pa), the expected net revenue (possibly negative) over one
regulation slot is:

EA :tA(puruPn _pd(l_rd)(Pd_Pn)_Pn) (1)

C. User preferences

We assume that each EV owner needs Cp kWh of energy,
say, per day, the owner can choose to charge at the constant



power Py in the S-charging station, or to charge at a variable
power in the R-charging station. They can also choose neither
solution (a no_charging choice) if they consider both too
expensive. Naturally, users are assumed to:

« prefer to recharge faster, i.e., at higher power rate;

« be reluctant to uncertainty in the recharging power caused
by regulations. Additionally, batteries can be sensitive
to power variations in the recharging process, another
reason for EV owners to be reluctant to contributing to
regulation.

Following these criteria, we define the wuser utility
(willingness-to-pay minus price paid) for a recharging option
as being of the form

V =0(P —~§(P)) —TCp

where P is the expected charging power, and §( P) its standard
deviation. € is user-specific: we assume it to be exponentially
distributed, with mean @, over the EV owner population. The
parameter -y is the reluctance toward power fluctuations, and
is assumed the same for all users. Finally, 7" represents the
unit energy price set by the charging station chosen by the
user. (We take T' = 0 for users who choose no_charging).

Let us define P, as the value of P — v§(P) for the R-
charging option, which can easily be expressed from P, P,,
paq and p,. The parameter () we choose always guarantees
P4 > 0 which means that this proposal does not target users
with a too high sensitivity to power fluctuation. The probability
a, (resp., o) that a user chooses the R-charging (resp., S-
charging) station can then be expressed as

Cp(Ts—Tr)

— CpTyr Cp(Ts—T, . P
ar = qexp(— ) — exp(— L) if 0 < Th < AT ()
0 otherwise
CpTs :
o exp(— gﬁ:? ) if Ts < %Tr 3
° exp(— % ) otherwise.

Note that we allow negative charging prices with the R-
charging station: indeed, since that station can make money
from the grid thanks to EV owners, the corresponding rewards
could be so large that the station would be willing to attract a
large number of EVs, even by paying them. This case is for
completeness of the model, we think it is not very likely to
occur but we cover it in this paper.

Following the classical backward induction method, we first
assume P, (or equivalently z) fixed and analyze the pricing
game (defined bellow). The outcome is dependent on z so the
R-charging station can maximize its profit through altering its
value. We examine the first part analytically while the second
numerically due to complexity.

Definition 1. The pricing game between the S-charging station
and the R-charging station as a collection: (N, T,(R;)),
where the player set N consists of the two stations, the price
profile T is a vector (T, T,) on the semi-plane R>o x R, and
the payoff function R; : T — R gives each station’s expected
revenue obtained from one EV.

Table I summarizes the notations used in our model.

TABLE I: Model notations

t unit price of energy paid by stations (unit: €/kWh)

T remuneration ratio for regulation-up (no unit)

rq discount ratio for regulation-down (no unit)
pu (resp. pgq) probability of an “up” (resp. “down”) regulation signal

B average energy recharged per EV per day

(% user sensitivity to recharging power (including variabil-

ity)

0 average value of 6 among users

o7 user reluctance to power variation
P, (resp. Py) | default (resp. “regulation-down”) recharging power

e Pu

P paPa+ (1 — pu—pa)Pn

(P) VPuP? + pa(Pg — P)? + (1 — pu — pa)(Pn — P)?)

Py(z),or Py | P—~6(P)(>0)

III. ANALYSIS OF THE GAME

In this section, we analyze the non-cooperative strategic
game defined in 1. We derive their respective best-response
prices, to characterize the Nash equilibria.

A. Best-response prices

1) S-charging station revenue and best-response price T°":
For the S-charging station owner, its average income R
depends on the market share o, and the unit price Ty it offers:

Rs = Cp(Ts — t)as

_ [Cp(Te = en(=) T. < fAT, )
Cp (T, — t)exp(— L2ty 1, > Fa,

Depending on its opponent’s strategy 7., the price T that
maximizes R provides the best-response price.

Proposition 1. The S-charging station has a unique best-
response price as follows:

0 . 0 Py
t Py — Pa)— if T < (¢ Py —Py)—)— (5
+ (Pa A)C,Blf (t+ (Pa A)CB)Pd(a)

0 6 P
s T d CB T ( dCB) Pd
P,
Tr—d otherwise (5¢)
Py

Proof: The proof is provided in the Appendix of the full

paper version [15]. [ ]

Figure 2 illustrates the S-charging station revenue as a
function of T}, and the best-response 17" (T}.).

2) R-charging station revenue and best-response price
TP (Ty): Let us now consider the R-charging station owner,
having to decide its price 7.

To estimate how much net renumeration the R-charging
station gets from recharging EVs through regulation, we
multiply the regulation revenue per slot, i.e. Ea in (1), by
the average number of slots a regulating EV remains plugged-
in before its battery is fully recharged, i.e. Cg/(AP). To
facilitate the writing we further divide the product, which has
a unit of €, by the EV energy demand (Cz kWh), so that its
final unit is €/kWh and has a form of

P,
Er = t(purur — pa(1 —rq)(1 — ) — x)?d
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Fig. 2: S-charging station revenue as a function of T, and Ts (t = 0.03,

6 = 0.3, Cp = 50kWh, z = 0.8). The red, yellow and blue areas are
separated by T, = (¢t + (Pg — PA)%)% and T = (¢t + Pd%)%;‘,
referring to (5).

The average R-charging station revenue consists of renu-
meration from providing regulation and income from charging
EVs:

R, =
Cp(Ts—Tr)
Cp(T, + Ey)[1 — ex};(—Tmnc P T, <0 .
Cp(Tr + Ep)lexp(— Bz — exp(— BT 0 < T, < 2ATL 6
0 otherwise

The following result summarizes the optimal R-charging
station reaction to its competitor.

Proposition 2. The R-charging station has a unique best-
response price as follows:

T} (Ts) =
T 5 if Ts < —Er 5
0 lfTs € {Ts : Er,l(Ts) < Er < ET‘,Q(TS)}

7
{T, eR: Gl =0} M

C (min{0, — E,}, max{0, min{éc,LEfx - Er, I;—;‘TS}}) otherwise

where
6(Py— Pa)(1— eXP(—g%))
Er’l(Ts) = C Py 1 CpTs
5(py — 1+ (5 )
lzﬂj (713 Ts
Ero(Ts) = Er1(Ts)(1 — -1 —)).
rall) = Bra(T) (1 + (52— D espl(grp )

Proof: The proof is provided in the Appendix of the full
paper version [15]. ]

Figure 3 shows the R-charging station revenue as well as
the best-response price 7" (T}), as a function of 7.

B. Nash equilibrium

Proposition 3. The pricing game defined in 1 has either a
unique Nash equilibrium or a unique Pareto-dominant one

Best-response price T,l?r (Ts)

Revenue at best-response price T2" (T )

Y IIII

[//N] L7
s

/X
s

L7
'lbr 2

S-charging station revenue (€/EV)

T's (€/kWh)

Ty (€/kWh)

Fig. 3: R-charging Station revenue as a function of T} and Ts (¢ = 0.03,
rqg = 0.7, 7y, = 2.1, Cg = 50kWh, pg = 0.48, p, = 0.48, v = 0.05,

0 =03 2=

T, _ T.
PA<Pd

0.8). Red region corresponds to non-negative revenue, i.e.

when there exist i Eﬁnite number of Nash equilibria. The
equilibria prices N* in different circumstances are:
T, = —EMTS = _&Er
Py
Py 0
if B < ———[t+ (Py — P, 8
if Br < Pd[ (Pg A)CB (8a)
. 0P4 Py 0
T, € (0, ZA B CAT)Y T =t 4 (Py — Py)—
(0, min{ On P, $)hTs =t+ (Pa A)CB
P 0 0
if ——2[t+ (Pg—Pa)=—] < Er < Ep1(t+ (Pg— Pa)=—) (8b)
}:11 (j713 (:713
0
T =0;Ts =t+ (Py— Pp)—
Cp
) 0 0
fE1(t+ (Pg—Pa)=) <Er < Epo(t+ (Py—Pa)=) (8
Cs Cp
0
Tr € (—Er,0);Ts =t + (Pg — Pa)——
Cp
0
if Bra(t+ (Py— PA)C—) < E, (8d)
B

Proof: The proof is provided in the Appendix of the full
paper version [15]. |
Note that N¥(8a) which occurs when E, < —%‘[t—i— (Py—
PA)CLB] is not profitable for the R-charging stations since zero
revenue is obtained, and that the condition for a positive R-
charging station revenue is —%‘ [t+ (Pg— PA)%] < E,. We
will refer to this condition in Section IV-B.

Figure 4 illustrates best-response prices and resulting Nash
equilibria in four different circumstances. Figure on the left
hand side shows that when regulation remuneration is not
significant (eg. 7, = 1 and r4 = 0 in the figure), it is
likely to encounter equilibrium N (8a) or N¥ (8b), due to
small regulation profit ;.. On the right hand side, equilibrium
NP (8c) or N¥ (8d) happens when regulation revenue is very
attractive. Note that we choose very high regulation prices
just to depict the case where free recharging or even negative
price recharging is offered. To our knowledge, such high prices
rarely exist on the market.

1) Optimization of P,: The pricing game defined in 1 is
played given a fixed P,, set by the R-charging station, who
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Fig. 4: Four Nash equilibria in different cases

can afterwards modify its value to pursue a higher equilibrium
revenue. Due to the complexity of the equilibrium price profile
we resort to numerical search for the optimal P,.

IV. COMPARISON BETWEEN THE NASH EQUILIBRIUM AND
THE MONOPOLISTIC CASE

In this section we compare the competition model with the
monopolistic case where a single manager sets both the S-
charging price as well as the R-charging price to maximize
its overall revenue. We do not repeat the results in [9] for the
monopolistic case due to space limit, but simply compare their
performances under the same parameters.

A. User welfare

User welfare is the average user utility over the distribution
of user preference parameter, i.e. 6. The following formula
works for both the monopolistic case and the Nash equilib-
rium.

(Ts—Tr)Cp

U Py—Py4
TrCp

Pa

(0P — TTCB)% exp(—%)d@

. o0 (0P, — T.C )1 (—Q)de
(Ts—Tr)Cp d sUB éexp 7

PP

zaré_?PA + asépd

The first column in Figure 5 shows a significant increase
of user welfare (U™ for monopoly and U? for equilibrium)
after breaking a monopolistic station into two competing ones.
Although the total station revenue decreases, the social welfare
which is the user utility plus station revenue has a net increase
of over 20%. The second column illustrates an increase of EVs
being served, thanks to a decrease of energy prices depicted
in the third column.

B. Application in a real world market

Figure 6 compares the regions for rewards {rq,r,} where
offering R-charging is profitable. At equilibria (second row),
the black zones where R-charging is not preferred is remark-
ably smaller than those in the monopolistic case. This is be-
cause that in a monopoly, feasible region for rewards {rgq, r,}
is composed of those that make the following equation of x
solvable in the interval of [0, 1] [9]:

puru — pa(l —ra)(1 — x) —x — P(x)Pa(z)P; > >0

Whereas in competition, (8a) and (8b) give the condition of:
t(puruz — pa(1 —ra)(1 — ) — 2z — PPaPy %)

+115PAP;2[Pd - PA]i >0
t Cgp

Comparing these two we find that the competition enlarges the
viable region of {rg4,r,}. The blue and red areas in Figure 6
are referring to the optimal default recharging power P, in
these regions, i.e. the optimal x after exhaustive search. In
most combinations of {ry,r,}, this optimal z is either 0 or
1, except for a few {rgy, r,} observed in the gap between the
blue region and the red, in the figures on the third column
where average user preference on power is smaller: § = 0.1
and user sensitivity to variation is greater: v = 0.5. We also
plot the actual {rq,r,} offered by a French operator RTE on
these figures. The blue circles correspond to the 48 {rg,r,}
pairs on the day of 20/07/2015 and the red rectangles are
showing the daily averages during the week from 20/07/2015
to 26/07/2015.

V. CONCLUSION AND PERSPECTIVES

This paper considers a competition between two self-
interested charging stations. At the Nash equilibrium of this
non-cooperative game, both stations tends to offered lower
prices to EV owners than a monopolistic controller would do,
thus more clients are attracted and greater regulation services
is provided to the grid operator. This work can be extended in
several ways including: bring in more actors such as charging
stations with private renewable energy sources; considering the
actor of a “Grid” who can play with the wholesale electricity
price imposed on both R-charging and S-charging station; or
differentiate two charging stations by their locations, which
effect users’ preferences among them.
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