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Abstract

Bisimulation up-to enhances the coinductive proof method for bisimilarity, providing efficient
proof techniques for checking properties of different kinds of systems. We prove the soundness of
such techniques in a fibrational setting, building on the seminal work of Hermida and Jacobs. This
allows us to systematically obtain up-to techniques not only for bisimilarity but for a large class
of coinductive predicates modeled as coalgebras. The fact that bisimulations up to context can be
safely used in any language specified by GSOS rules can also be seen as an instance of our framework,
using the well-known observation by Turi and Plotkin that such languages form bialgebras.

In the second part of the paper, we provide a new categorical treatment of weak bisimilarity on
labeled transition systems and we prove the soundness of up-to context for weak bisimulations of
systems specified by cool rule formats, as defined by Bloom to ensure congruence of weak bisimilarity.
The weak transition systems obtained from such cool rules give rise to lax bialgebras, rather than
to bialgebras. Hence, to reach our goal, we extend the categorical framework developed in the first
part to an ordered setting.

1 Introduction

1.1 Coinduction up-to
The rationale behind coinductive up-to techniques is the following. Suppose you have a characterisation
of an object of interest as a greatest fixed-point. For instance, behavioural equivalence in CCS is the
greatest fixed-point of a monotone function B on relations, describing the standard bisimulation game.
This means that to prove two processes equivalent, it suffices to exhibit a relation R that relates them,
and which is a B-invariant, i.e., R ⊆ B(R). However, such a task may be cumbersome or inefficient,
and one might prefer to exhibit a relation which is only a B-invariant up to some function A, i.e.,
R ⊆ B(A(R)).

Not every function A can safely be used: A should be sound for B, meaning that any B-invariant up
to A should be contained in a B-invariant. Instances of sound functions for behavioural equivalence in
process calculi usually include transitive closure, contextual closure and congruence closure. The use of
such techniques dates back to Milner’s work on CCS [34]. A famous example of an unsound technique
is that of weak bisimulation up to weak bisimilarity. Since then, coinduction up-to proved useful, if not
essential, in numerous proofs about concurrent systems (see [41] for a list of references); it has been used
to obtain decidability results [16], and more recently to improve standard automata algorithms [12].

The theory underlying these techniques was first developed by Sangiorgi [45]. It was then reworked
and generalised by one of the authors to the abstract setting of complete lattices [40, 41]. The key
observation there, is that the notion of soundness is not compositional: the composition of two sound
functions is not necessarily sound itself. The main solution to this problem consists in restricting to
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compatible functions, a subset of the sound functions which enjoys nice compositionality properties and
contains most of the useful techniques.

An illustrative example of the benefits of a modular theory is the following: given a signature Σ,
consider the congruence closure function, that is, the function Cgr mapping a relation R to the smallest
congruence containing R. This function has proved to be useful as an up-to technique for language
equivalence of non-deterministic automata [12]. It can be decomposed into small pieces as follows:
Cgr = Trn ◦ Sym ◦ Ctx ◦ Rfl , where Trn is the transitive closure, Sym is the symmetric closure, Rfl is
the reflexive closure, and Ctx is the context closure associated to Σ. Since compatibility is preserved
by composition (among other operations), the compatibility of Cgr follows from that of its smaller
components. In turn, transitive closure can be decomposed in terms of relational composition, and
contextual closure can be decomposed in terms of the smaller functions that close a relation with respect
to Σ one symbol at a time. Compatibility of these functions can thus be obtained in a modular way.

A key observation in the present work is that when we move to a coalgebraic presentation of the
theory, compatible functions generalise to functors equipped with a distributive law (Section 3).

1.2 Fibrations and coinductive predicates
Coalgebras are our tool of choice for describing state based systems: given a functor F determining its
type (e.g., labeled transition systems, automata, streams), a system is just an F -coalgebra (X, ξ). When
F has a final coalgebra (Ω, ω), this gives a canonical notion of behavioural equivalence [27]:

X

ξ

��

J·K
// Ω

ω

��

FX
F J·K

// FΩ

two states x, y ∈ X are equivalent if they are mapped to the same element in the final coalgebra.
When the functor F preserves weak pullbacks—which we shall assume throughout this introduc-

tory section for the sake of simplicity—behavioural equivalence can be characterised coinductively using
Hermida-Jacobs bisimulations [23, 51]: given an F -coalgebra (X, ξ), behavioural equivalence is the largest
B-invariant for a monotone function B on RelX , the poset of binary relations over X. This function B
can be decomposed as

B , ξ∗ ◦ Rel(F )X : RelX → RelX

Let us explain the notations used here. We consider the category Rel whose objects are relations R ⊆ X2

and morphisms from R ⊆ X2 to S ⊆ Y 2 are maps from X to Y sending pairs in R to pairs in S. For
each set X the poset RelX of binary relations over X is a subcategory of Rel, also called the fibre over
X. The functor F has a canonical lifting to Rel, denoted by Rel(F ). This lifting restricts to a functor
Rel(F )X : RelX → RelFX , which in this case is just a monotone function between posets. The monotone
function ξ∗ : RelFX → RelX is the inverse image of the coalgebra ξ, mapping a relation R ⊆ (FX)2 to
(ξ × ξ)−1(R).

To express other predicates than behavioural equivalence, one can take arbitrary liftings of F to Rel,
different from the canonical one. Any lifting F yields a functor B defined as

B , ξ∗ ◦ FX : RelX → RelX (†)

The final coalgebra, or greatest fixed-point for such a B is called a coinductive predicate [23, 22]. Con-
sidering appropriate liftings F , one obtains, for instance, various behavioural preorders: similarity on
labeled transition systems (LTSs), language inclusion on automata, or lexicographic ordering of streams.

This situation can be further generalised using fibrations. We refer the reader to the first chapter
of [26] for a gentle introduction, but Section 4 provides all the definitions required for the understanding
of our results. The running example of a fibration is the functor p : Rel→ Set mapping a relation R ⊆ X2

to its support set X, see Section 4. In this fibration, the inverse image ξ∗ is the reindexing functor of ξ.
By choosing a different fibration than Rel, one can obtain coinductive characterisations of objects that

are not necessarily binary relations, e.g., unary predicates like divergence, ternary relations, or metrics.
Our categorical generalisation of compatible functions provides a natural extension of this fibrational

framework with a systematic treatment of up-to techniques: we provide functors (i.e., monotone functions

2



in the special case of the Rel fibration) that are compatible with those functors B corresponding to
coinductive predicates.

For instance, when the chosen lifting F is a fibration map, the functor corresponding to a technique
called “up to behavioural equivalence” is compatible (Theorem 15). The canonical lifting of a functor is
always such a fibration map, so that when F is the functor for LTSs, we recover the soundness of the
first up-to technique introduced by Milner, namely “bisimulation up to bisimilarity” [34]. One can also
check that another lifting of this same functor but in another fibration yields the divergence predicate,
and is a fibration map. We thus obtain the validity of the “divergence up to bisimilarity” technique.

1.3 Bialgebras and up to context
Another important class of techniques comes into play when considering systems with an algebraic
structure on the state space (e.g., the syntax of a process calculus). A minimal requirement for such
systems usually is that behavioural equivalence should be a congruence. In the special case of bisimilarity
on LTSs, several rule formats have been proposed to ensure such a congruence property [1]. At the
categorical level, the main concept to study such systems is that of bialgebras. Assume two endofunctors
T, F related by a distributive law λ : TF ⇒ FT . A λ-bialgebra is a triple (X,α, ξ) consisting of a
T -algebra (X,α) and an F -coalgebra (X, ξ), compatible in the sense that a certain diagram involving
λ commutes. It is well known that in such a bialgebra, behavioural equivalence is a congruence with
respect to T [54]. This is actually a generalisation of the fact that bisimilarity is a congruence for all
GSOS specifications [6]: GSOS specifications are in one-to-one correspondence with distributive laws
between the appropriate functors [54, 4].

This congruence result can be strengthened into a compatibility result [43]: in any λ-bialgebra, the
contextual closure function that corresponds to T is compatible for behavioural equivalence. However [43]
deals only with the canonical relational liftings. Using fibrations, we generalise this result to arbitrary
liftings, both on the coalgebraic and on the algebraic side. Using other fibrations than Rel we obtain up
to context techniques for arbitrary coinductive predicates, e.g., for unary predicates like divergence. Our
framework also encompasses other relations than behavioural equivalence, like the behavioural preorders
mentioned above.

The technical device we need to establish this result is that of bifibrations, fibrations p whose opposite
functor pop is also a fibration. We keep the running example of the Rel fibration for the sake of clarity;
the results are presented in full generality in the remaining parts of the paper. In such a setting, any
morphism f : X → Y in Set has a direct image

∐
f : RelX → RelY . Now given an algebra α : TX → X

for a functor T on Set, any lifting T of T gives rise to a functor on the fibre above X, defined dually
to (†):

C ,
∐
α ◦ TX : RelX → RelX (‡)

When we take for T the canonical lifting of T in Rel, then C is the contextual closure function corre-
sponding to the functor T . We shall see that we sometimes need to consider variations of the canonical
lifting to obtain a compatible up-to technique (e.g., up to “monotone” contexts for checking language
inclusion of weighted automata—Section 8.1).

Now, starting from a λ-bialgebra (X,α, ξ), and given two liftings T and F of T and F , respectively,
the question is whether the above functor C is compatible with the functor B defined earlier in (†). The
simple condition we give in this paper is the following: the distributive law λ : TF ⇒ FT should lift to
a distributive law λ : T F ⇒ F T (Theorem 21).

This condition is always satisfied in the bifibration Rel, when T and F are the canonical liftings of T
and F . Thus we obtain as a corollary the compatibility of bisimulation of up to context in λ-bialgebras,
which is the main result from [43] and appeared in a slightly different form in [33]—soundness was
previously observed by Lenisa et al. [31, 32] and then Bartels [4].

1.4 Contributions and Applications
The main contributions of this paper are as follows. Firstly, Section 6 develops an abstract framework
for proving soundness of up-to techniques. Secondly, this allows us to derive the soundness of a wide
range of both novel and well-established up-to techniques for arbitrary coinductive predicates. These
results are summarised in two tables in Section 6.4 and illustrated by examples in Section 8. We further
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extend our results in Section 7 to deal with abstract GSOS specifications [54, 29]. Thirdly, in the second
part of the paper (Sections 10-13) we extend our theoretical framework to an ordered setting, to provide
up-to techniques for weak bisimulations and simulations.

In Section 8.2 we prove the compatibility of a novel technique called “divergence up to behavioural
equivalence and left contextual closure”. In this example we use the predicate fibration on Set that,
in general, is suitable to characterise formulas from modal logic as coinductive predicates. (See [17]
for an account of coalgebraic modal logic.) One can also change the base category: by considering
the fibration of equivariant relations over nominal sets, we show how to obtain up-to techniques for
language equivalence of non-deterministic nominal automata [7]. In Section 8.3, these techniques allow
us to prove the equivalence of two nominal automata using an orbit-finite relation, where the standard
method would require an infinite one (recall that the determinisation of a nominal automaton is not
necessarily orbit-finite).

The second part of this paper deals with other applications for which an ordered setting is required.
The main motivation comes from weak bisimilarity, a behavioural equivalence allowing to abstract over
internal transitions, labeled with the special action τ . When the player proposes a transition a→, the
opponent must answer with a saturated transition a⇒, which is roughly a transition a→ possibly combined
with internal actions τ→. This slight dissymmetry results in a much more delicate theory of up-to
techniques. For instance, up-to weak bisimilarity and up-to transitive closure are no longer sound for
weak bisimulations. And up-to context has to be restricted: the external choice from CCS cannot be
freely used [46].

The results we prove in Sections 6 and 7 require bialgebras and, unfortunately, the saturated transition
system does not form a bialgebra. Intuitively, in a bialgebra all and only the transitions of a composite
system can be derived from transitions of its components. For the saturated transition relation ⇒, one
implication fails: a composite system performs weak transitions which are not derived from transitions
of its components (see Example 31). But the other implication holds, which is made precise by the
observation that the saturated transition relation gives rise to a so-called lax bialgebra. This is the key
observation that leads to the rather involved refinement we propose in Section 10. This allows us to prove
in Section 11 that up-to context is compatible for lax models of positive GSOS specifications [1] and thus
to obtain in Section 12 the soundness of up-to context for weak bisimulations in systems specified by the
cool rule format from [55].

Finally, in Section 13 we consider up-to techniques for similarity. Using the coalgebraic presentation
of similarity in terms of lax relation lifting, (see, e.g., [25]) and the infrastructure developed in Section 11,
we obtain that “up to context” is compatible whenever we start from a monotone distributive law. In
the special case of LTSs, this monotonicity condition amounts to the positive GSOS rule format [20]:
GSOS without negative premises.

Previous Work. This paper is an extended version of [10] and [11]. We extended the previous works
with careful explanations and detailed proofs, three motivating examples (Section 2) and several side
results (such as those in Sections 3.1 and 7).

Outline. We present motivating examples in Section 2. Then we introduce coinduction and up-to
techniques in a categorical setting (Section 3), before recalling the basic definitions of fibrations (Sec-
tion 4) and coinductive predicates (Section 5). The main results are developed in Section 6, where we
obtain up-to techniques in a fibrational setting. Section 7 is devoted to technical results allowing to
import tools from abstract GSOS specifications. At this point we give several examples of our theory
at work (Section 8). Then we explain the difficulties that arise with weak bisimulation in Section 9,
which motivates an extension of our framework to an ordered setting (Section 10). In Section 11 we
come back to abstract GSOS specifications in the ordered setting, before dealing with weak bisimulation
in Section 12, and simulation in Section 13. We conclude with directions for future work in Section 14.
For the sake of clarity, we postponed many proofs to the appendices, whose structure follows that of the
main text.
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2 Motivating Examples
Before starting the main technical development, we present three motivating examples where we provide
a coinductive perspective on some classical results of automata theory. First, we recall the basic notions
of deterministic automaton, bisimulation and coinduction in a lattice theoretic setting.

A deterministic automaton on the alphabet A is a pair (X, 〈o, t〉), where X is a set of states and
〈o, t〉 : X → 2 ×XA is a function with two components: o, the output function, determines if a state x
is final (o(x) = 1) or not (o(x) = 0); and t, the transition function, returns for each input letter a ∈ A
the next state.

Every automaton (X, 〈o, t〉) induces a function [[−]] : X → 2A
∗
mapping each state of the automaton

to the language that it accepts. Formally this function is defined for all x ∈ X, a ∈ A and w ∈ A∗ as
follows.

[[x]](ε) = o(x)
[[x]](aw) = [[t(x)(a)]](w)

Two states x, y ∈ X are said to be language equivalent, in symbols x ∼ y, iff [[x]] = [[y]]. Alternatively,
language equivalence can be defined coinductively as the greatest fixed-point of a function B on RelX ,
the lattice of relations over X. For all R ⊆ X2, B : RelX → RelX is defined as

B(R) = {(x, y) | o(x) = o(y) and for all a ∈ A, (t(x)(a), t(y)(a)) ∈ R}.

Indeed, one can check that B is monotone and that the greatest fixed-point of B, hereafter denoted by
νB, coincides with ∼. A post fixed-point of B, i.e., a relation R ⊆ B(R), is called a bisimulation.

The Knaster-Tarski fixed-point theorem characterises νB as the union of all post-fixed points of B:

νB =
⋃
{R ⊆ X2 | R ⊆ B(R)}.

This immediately leads to the coinduction proof principle

∃R, S ⊆ R ⊆ B(R)

S ⊆ νB
(1)

which allows to prove x ∼ y by exhibiting a bisimulation R such that {(x, y)} ⊆ R.
For an example of a bisimulation, consider the following deterministic automaton, where final states

are overlined and the transition function is represented by labeled arrows. The relation consisting of
dashed and dotted lines is a bisimulation witnessing, for instance, that x ∼ u.

x
a,b

// y
a,b

// z a,bdd

v

a,b
**
w

a,b
oo

u

a 44

b

77

2.1 Hopcroft and Karp’s algorithm
The famous algorithm by Hopcroft and Karp for checking language equivalence [24] relies on coinduc-
tion implicitly, long before Milner’s pioneering work on bisimulation. Hopcroft and Karp actually use
coinduction up to equivalence closure. Consider the function Eqv : RelX → RelX mapping every relation
R ⊆ X2 to its equivalence closure. A bisimulation up to Eqv is a relation R such that

R ⊆ B(Eqv(R)).

For example, consider the automaton above and the relation R containing only the dashed lines: since
t(x)(b) = y, t(u)(b) = w and (y, w) /∈ R, then (x, u) /∈ B(R). This means that R is not a bisimulation;
however it is a bisimulation up to Eqv , since (y, w) belongs to Eqv(R) and (x, u) to B(Eqv(R)) .

In general, bisimulations up-to can be smaller than plain bisimulation and this feature can have a
relevant impact in the performance of algorithms for checking language equivalence. A naive version of
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Hopcroft and Karp’s algorithm that does not use up-to equivalence might have to explore n2 pairs of states
(where n is the number of states) while, by exploiting this technique, Hopcroft and Karp’s algorithm
visits at most n pairs (that is the number of equivalence classes). The case of non-deterministic automata
is even more impressive: another up-to technique, called up-to congruence, allows for an exponential
improvement on the performance of algorithms for checking language equivalence [12]. In Section 8.3,
we will provide an example of bisimulation up-to congruence in the setting of non-deterministic nominal
automata.

2.2 Regular Expressions and Kleene Algebra
Beyond algorithms, up-to techniques are useful to prove different sorts of properties of systems specified
by a given syntax. Indeed, this was the original motivation for the introduction of up-to techniques in
Milner’s work on CCS [34]. To keep the presentation simpler and, at the same time, to show to the
reader the large spectrum of applications of up-to techniques, we consider regular expressions and we
provide coinductive proofs for some of the axioms of Kleene Algebra [30] with respect to the regular
language interpretation.

First, recall that regular expressions are generated by the following grammar

e ::= 0 | 1 | a | e+ e | e · e | e?

where a ranges over symbols of the alphabet A. To make the notation lighter we will often avoid to write
·, so that ef stands for e · f .

We will prove language equivalence of regular expressions by considering bisimulations on an au-
tomaton having as state space the set RE of regular expressions. This automaton is constructed using
Brzozowski derivatives [15]. The following inference rules

−
1 ↓

e↓
(e+ f)↓

f↓
(e+ f)↓

e↓ f↓
(e · f)↓

−
e?↓

define the output function o : RE → 2 as o(e) = 1 iff e↓. The following inference rules

−
0

a→ 0

−
1

a→ 0

−
a

a→ 1

b 6= a

a
b→ 0

e
a→ e′ f

a→ f ′

e+ f
a→ e′ + f ′

e
a→ e′ f

a→ f ′

e · f a→ e′ · f + o(e) · f ′
e
a→ e′

e?
a→ e′ · e?

define the transition function t : RE → REA as t(e)(a) = e′ iff e
a→ e′. The above presentation of

Brzozowski derivatives by means of inference rules is unusual, but it is convenient here to stress the
similarity with GSOS specifications [6] that will be pivotal for our development in Section 7.

The deterministic automaton (RE, 〈o, t〉) uniquely defines the map [[−]] : RE → 2A
?

and Kleene
Algebra provides a sound and complete axiomatisation for ∼. The soundness of these axioms can be
now proved by means of coinduction. For instance, commutativity of +,

e+ f ∼ f + e

is simply proved by checking that the relation R = {(e+ f, f + e) | e, f ∈ RE} is a bisimulation. Indeed
(e+ f)↓ ⇔ e↓ ∨ f↓ ⇔ (f + e)↓ and for all a ∈ A,

e+ f
a
��

f + e
a
��

e′ + f ′ R f ′ + e′

In a similar way, one can prove that (RE,+, 0) is a monoid, but things get trickier for distributivity, for
instance on the right:

e(f + g) ∼ ef + eg.

6



Indeed, let us check whether the relation R = {(e(f + g), ef + eg) | e, f, g ∈ RE} is a bisimulation. It is
immediate to check that e(f + g)↓ ⇔ (ef + eg)↓. However, the arriving states after a transition are not
related by R, hence R is not a bisimulation.

e(f + g)
a
��

ef + eg
a
��

e′(f + g) + o(e)(f ′ + g′) 6R (e′f + o(e)f ′) + (e′g + o(e)g′)

(2)

However, as we will see below, the relation R is a bisimulation up-to for a particular composite up-to
technique. Its components are the function Bhv : RelRE → RelRE defined for all relations R ⊆ RE2 as

Bhv(R) = {(e, f) | ∃e′, f ′ s.t. e ∼ e′Rf ′ ∼ f}

and the function Ctx : RelRE → RelRE mapping every relation R to its contextual closure Ctx (R). The
latter is defined inductively by the following rules.

e R f

e Ctx (R) f

−
0 Ctx (R) 0

−
1 Ctx (R) 1

e Ctx (R) e′ f Ctx (R) f ′

e+ f Ctx (R) e′ + f ′
e Ctx (R) e′ f Ctx (R) f ′

ef Ctx (R) e′f ′
e Ctx (R) f

e? Ctx (R) f?

Now, it is easy to see that the relation R = {(e(f + g), ef + eg) | e, f, g ∈ RE} is a bisimulation up to
Bhv ◦ Ctx , meaning that R ⊆ B(Bhv(Ctx (R))). Indeed (2) is proved to hold by observing that

e′(f + g) + o(e)(f ′ + g′) Ctx (R) (e′f + e′g) + (o(e)f ′ + o(e)g′)

and that (e′f + e′g) + (o(e)f ′ + o(e)g′) ∼ (e′f + o(e)f ′) + (e′g + o(e)g′) since, as shown above, + is
associative and commutative. Hence, the arriving states in (2) are related by Bhv ◦ Ctx (R).

2.3 Arden’s rule
As the last example of this section, we provide a coinductive proof of Arden’s rule. This is usually
formulated for arbitrary languages, but we rephrase it here in terms of regular expressions so to reuse
the notation introduced so far. The coinductive proof for arbitrary languages is completely analogous,
see [42].

Arden’s rule states that, given two expressions k and m, the “behavioural” equation

e ∼ ke+m

has e = k?m as solution, i.e., k?m ∼ kk?m+m. Furthermore,

(a) it is the smallest solution (up to ∼), namely if f ∼ kf +m then k?m - f ;

(b) if k 6↓, then it is the unique solution (up to ∼), namely if f ∼ kf +m then k?m ∼ f .

Here - denotes language inclusion: e - f iff [[e]] ⊆ [[f ]]. In order to proceed with a coinductive proof of
Arden’s rule, we characterise - as νB′, the greatest fixed-point of the monotone function B′ : RelRE →
RelRE mapping R ⊆ RE2 to

B′(R) = {(e, f) | o(e) ≤ o(f) and for all a ∈ A, (t(e)(a), t(f)(a)) ∈ R}.

One can apply the Knaster-Tarski fixed point theorem to B′ so to obtain the analogue of (1) which allows
to prove e - f by showing a relation R such that {(e, f)} ⊆ R and R is a simulation, i.e., R ⊆ B′(R).

The proof proceeds as follows. First observe that k?m is indeed a solution since k?m ∼ (kk? +
1)m ∼ kk?m + m. For (a), we prove that S = {(k?m, f)} is a simulation up-to. For the outputs,
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k?m↓ ⇒ m↓ ⇒ (kf +m)↓ ⇒ f↓ where the last implication follows from f ∼ kf +m. For every a ∈ A,
we have

k?m
a
��

f
a
��

(k′k?)m+ 1 ·m′ ∼ k′(k?m) +m′ Ctx (S) k′f +m′ - (k′f + o(k)f ′) +m′ ∼ f ′
(3)

where the leftmost transition is derived as on the left below and (k′f + o(k)f ′) + m′ ∼ f ′ follows from
kf +m ∼ f and the transition derived on the right below.

k
a→ k′

k?
a→ k′k? m

a→ m′

k?m
a→ k′k?m+ 1 ·m′

k
a→ k′ f

a→ f ′

kf
a→ k′f + o(k)f ′ m

a→ m′

kf +m
a→ (k′f + o(k)f ′) +m′

Observe that S is not a simulation up to Bhv ◦Ctx , since in (3) it is necessary to use -. We have to use
a further up-to technique Slf : RelRE → RelRE defined for all R as

Slf (R) = {(e, f) | ∃e′, f ′ s.t. e - e′ R f ′ - f}.

Since k′f + m′ - (k′f + o(k)f ′) + m′ ∼ f ′, then k′f + m′ - f ′ and therefore S is a simulation up to
Slf ◦ Ctx , i.e., S ⊆ B′(Slf (Ctx (S))).

For (b), we assume k 6↓ and f ∼ kf + m, and we show that R = {(k?m, f)} is a bisimulation up to
Bhv ◦Ctx . For the outputs, since k?↓, k 6↓ and f ∼ kf +m, we have k?m↓ ⇔ m↓ ⇔ (kf +m)↓ ⇔ f↓. For
every a ∈ A, the transitions are the same as in (3), and the proof that the arriving states are related by
Bhv ◦ Ctx (S) is similar. The only difference is that the step k′f +m′ - (k′f + o(k)f ′) +m′ is replaced
by k′f +m′ ∼ (k′f + o(k)f ′) +m′, which is valid since k 6↓ by assumption.

3 Coalgebras and Compatible Functors
In the previous section, we have seen three examples of coinductive proofs exploiting up-to techniques:
bisimulation up to Eqv , bisimulation up to Bhv ◦ Ctx and simulation up to Slf ◦ Ctx . Note that, so
far, we have no elements to deduce that these coinductive proofs are correct: we need a formal proof
principle.

In this paper we provide a framework to prove soundness of (a) different sorts of up-to techniques
for (b) different sorts of coinductive properties, like ∼ or -, defined on (c) different sorts of state based
systems. Moreover, (d) we would like to make these proofs modular so to be able to entail the soundness
of a composite technique, like Bhv ◦ Ctx or Slf ◦ Ctx , from the soundness of its components.

In order to achieve (a) and (b), we use poset fibrations and coinductive predicates, introduced in
Sections 4 and 5. For (c), we model state machines as coalgebras, and we recall the basic definitions
next. For (d), we introduce compatible functors, defined later in this section.

Given an endofunctor F on a category C, an F -coalgebra is a pair (X, ξ) where X is an object of
C and ξ : X → F (X) is a morphism. State machines can be thought of as coalgebra for some functor
on Set, the category of sets and functions. In this case, X is the set of states of the machine and ξ its
transition function (or dynamics) [44]. The functor F represent the type of the machine: for F = 2×IdA,
F -coalgebras are just deterministic automata. An F -homomorphism from an F -coalgebra (X, ξ) to an
F -coalgebra (Y, ζ) is a morphism h : X → Y such that ζ ◦ h = F (h) ◦ ξ. We denote by Coalg(F ) the
category of F -coalgebras and their morphisms and by U : Coalg(F ) → C the forgetful functor mapping
every coalgebra (X, ξ) to X. An F -coalgebra (Ω, ω) is said to be final if for any F -coalgebra (X, ξ)
there exists a unique F -homomorphism [[−]] : X → Ω. For C = Set, Ω can be thought as the set of all
F -behaviours and [[−]] as the function assigning to each state of the machine its behaviour. Two states
x, y ∈ X are said behaviourally equivalent, written x ∼ y, iff [[x]] = [[y]]. In the case of deterministic
automata behavioural equivalence coincides with language equivalence. Another important example, is
that of labeled transition systems (LTSs). These are coalgebras for the functor FX = (PωX)L where L
is a set of labels and Pω is the finite powerset functor. In this case behavioural equivalence coincides
with the standard notion of bisimilarity.

In our exposition, coalgebras will play a double role:
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1. as usual, we will view state machines as coalgebras for a functor F on some base category B, with
typical choice B = Set (or the category Nom of nominal sets for the example of nominal automata
in Section 8.3);

2. in addition, coalgebras for some monotone function B over some poset category C will represent
invariants.

As a particular instance of the second point, the final B-coalgebra will be the greatest fixed-point of
B, namely the coinductive predicate that we are interested in proving. For instance, bisimulations and
simulations from the previous section are coalgebras for, respectively, B and B′ on the poset category
RelX , and language equivalence ∼ and inclusion - are the respective final coalgebras. The double role
of coalgebras is summarised in the following table.

F : B → B B : C → C
Coalgebras Systems Invariants

Final coalgebra Behaviour Coinductive predicate

With this perspective in mind, we can rephrase in coalgebraic terms several notions and results developed
for coinduction up-to in a lattice-theoretic setting [41]. In particular, up-to techniques can be thought of
as functors A : C → C, and B-invariants up to A as BA-coalgebras. For such a functor A to be of interest
it has to be B-sound, meaning that it can safely be used to prove the coinductive predicate defined by
B. Formally, we say that A is B-sound if there exists a functor G : Coalg(BA)→ Coalg(B) and a natural
transformation κ : U ⇒ UG.

Coalg(BA)

U

��

G // Coalg(B)

U

��

C
Id

//

⇒
C

(4)

When C is a partial order, the soundness of A entails that for every B-invariant up-to A, there exists a
greater B-invariant. Combined with the coinduction principle (1), this leads to the enhanced principle
of coinduction up-to.

∃R, S ⊆ R ⊆ BA(R)

S ⊆ νB

It is somehow inconvenient to prove soundness directly since, as we discussed in the Introduction, sound-
ness is not preserved by composition. To avoid this problem, we restrict to those up-to techniques A that
are B-compatible, i.e., such that there exists a natural transformation γ : AB ⇒ BA. The most impor-
tant properties of B-compatible functors, which we show next, are that (a) they are sound (Theorem 1),
and (b) they are closed under composition and various other operations (Proposition 3). The following
result generalises [41, Theorem 6.3.9] from lattices to categories.

Theorem 1. Let A,B be endofunctors on a category C with countable coproducts. If A is B-compatible
then it is B-sound.

Proof. Following the proof of [4, Theorem 3.8], for any BA-coalgebra ξ one can inductively define a
family of coalgebras (ξi : A

iX → BAi+1X)i<ω by setting ξ0 = ξ and ξi+1 = γAi+1X ◦Aξi. Postcomposing
with the coproduct injections κi : AiX → AωX into the coproduct AωX =

∐
i<ω A

iX yields a cocone
(Bκi+1 ◦ ξi : AiX → BAωX)i<ω and hence we obtain from the universal property of the coproduct AωX
a B-coalgebra ξ† making the next diagram commute.

X

ξ

��

κ0 // AωX

ξ†

��

BAX
Bκ1

// BAωX

The mapping ξ 7→ ξ† extends to a functor between the corresponding categories of coalgebras, making
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the square in the following diagram commute.

Coalg(BA)

U

��

(−)†
// Coalg(B)

U

��

C Aω //

Id

;;
⇑

C

We obtain a natural transformation as in (4) using the naturality of κ0.
Alternatively, we can replace the countable coproduct Aω by the free monad on A, assuming the

latter exists. In this case, the result is an instance of the generalised powerset construction [47].

To exploit the compositional aspect of compatible up-to techniques to its full potential, it is useful to
extend the notion of compatibility to arbitrary functors of type C → C′ rather than just endofunctors.

Definition 2. Consider two endofunctors B : C → C and B′ : C′ → C′. We say that a functor A : C → C′
is (B,B′)-compatible when there exists a natural transformation γ : AB ⇒ B′A.

The pair (A, γ) is a morphism between endofunctors B and B′ in the sense of [32]. Since the examples
dealt with in this paper only involve categories which are posets, in these examples we only have one
choice of natural transformation γ, so we omit it from the notation. Moreover, given an endofunctor
B : C → C, we will simply write that A : Cn → Cm is B-compatible, when A is (Bn, Bm)-compatible.

The following Proposition generalises the compositionality results for compatible functions on lattices,
see [40] or [41, Proposition 6.3.11].

Proposition 3. Compatible functors are closed under the following constructions:

(i) composition: if A is (B,C)-compatible and A′ is (C,D)-compatible, then A′◦A is (B,D)-compatible;

(ii) pairing: if (Ai)i∈ι are (B,C)-compatible, then 〈Ai〉i∈ι is (B,Cι)-compatible;

(iii) product: if A is (B,C)-compatible and A′ is (B′, C ′)-compatible, then A × A′ is (B×B′, C×C ′)-
compatible;

Moreover, for an endofunctor B : C → C,

(iv) the identity functor Id : C → C is B-compatible;

(v) the constant functor to the carrier of any B-coalgebra is B-compatible, in particular the final one
if it exists;

(vi) the coproduct functor
∐

: Cι → C is (Bι, B)-compatible.

Proof. (i) Given γ : AB ⇒ CA and γ′ : A′C ⇒ DA′ we obtain

A′AB
A′γ +3 A′CA

γ′A +3 DA′A

(ii) Given natural transformations γi : AiB ⇒ CAi for all i ∈ ι we obtain a natural transformation

〈Ai〉i∈ιB 〈AiB〉i∈ι
〈γi〉i∈ι +3 〈CAi〉i∈ι Cι〈Ai〉i∈ι

(iii) Given γ : AB ⇒ CA and γ′ : A′B′ ⇒ C ′A′ we construct the natural transformation γ × γ′ : (A ×
A′)(B ×B′)⇒ (C × C ′)(A×A′).

Items (iv), (v) and (vi) are trivial. For example, the latter is immediate using the universal property of
the coproduct.

Proposition 3 plays a key role in our strategy to prove the soundness of up-to techniques. For
instance, to prove B-soundness of the equivalence closure Eqv : RelX → RelX (Section 2.1), we will first
decompose it as Eqv , Trn ◦ Sym ◦ Rfl , where Trn,Sym,Rfl : RelX → RelX are, respectively, functors
that map a relation to the transitive, symmetric and reflexive closure. In Section 6.2, we will show the
B-compatibility of Trn, Sym and Rfl (based, in fact, on a further decomposition of Sym and Rfl). Then
B-compatibility of Eqv follows by Proposition 3. Soundness will be a consequence of Theorem 1.
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3.1 Respectful functors
There exist up-to techniques which are not B-compatible, but are nevertheless B-sound. We will see
such an example in Section 8.2. In this case, the up-to technique at issue is B-respectful [45], i.e., B× Id-
compatible. A similar problem arises for CCS and more generally, as explained in Section 7, it may
happen for any GSOS specification. Being B-respectful is a weaker property than B-compatibility that
still implies soundness.

Proposition 4. Let A,B : C → C be functors.

(i) If A is B-compatible then it is B × Id-compatible.

(ii) If A is B × Id-sound and there is a natural transformation η : Id⇒ A then A is B-sound.

(iii) If A is B × Id-compatible, then A is B-sound.

Proof. (i) Given a natural transformation γ : AB ⇒ BA, we have a natural transformation 〈γ ◦
Aπ1, Aπ2〉 : A(B × Id)⇒ (B × Id)A.

(ii) Consider the following diagram.

Coalg(BA)
〈−,η〉

//

��

Coalg((B × Id)A) //

��

Coalg(B × Id)
π1◦− //

��

Coalg(B)

��

C C
Id

//

⇒
C C

The existence of the middle square is the B × Id-soundness of A. The left and right squares are
equalities. The above diagram asserts that A is B-sound.

(iii) Since A is B × Id-compatible, by Proposition 3 the functor A + Id is also B × Id-compatible.
Hence, by Theorem 1, A + Id is B × Id-sound. By item (ii), choosing η to be the coproduct
injection κ0 : Id⇒ A+ Id, we obtain that A+ Id is B-sound. Using the other coproduct injection
κ1 : A⇒ A+ Id, this implies that A is B-sound:

Coalg(BA)
Bκ1 //

��

Coalg(B(A+ Id)) //

��

Coalg(B)

��

C C
Id

//

⇒
C

where the left square is an equality and the right square comes from the B-soundness of A+Id.

4 Poset Fibrations
Here, we give the basic definitions about fibrations, with the fibration of relations over sets as a running
example. We refer the reader to [26] for a more thorough introduction.

An essential example used throughout this paper is that of the fibration of relations over sets p : Rel→
Set. The category Rel has as objects pairs (R,X) where R ⊆ X2 is a relation on X. The morphisms
in Rel are relation preserving maps, that is, a morphism f : (R,X) → (S, Y ) is a function f : X → Y
between the underlying sets, such that (x, y) ∈ R implies (f(x), f(y)) ∈ Y . The functor p maps a relation
R ⊆ X2 to its underlying set X. Given a set X we denote by RelX the subcategory of Rel that has as
objects pairs (R,X) and whose morphisms are inclusions: they have as underlying arrow the identity on
X. That is, RelX is the poset of relations on X ordered by inclusion and seen as a category.

For every function f : X → Y in Set and every relation S ⊆ Y 2 we can obtain a relation on X denoted
f∗(S) as the inverse image of S: (x, y) ∈ f∗(S) if and only if (f(x), f(y)) ∈ S.

11



RelX RelY

Rel

SetX Y
f

pf∗

The relation f∗(S) has a universal property: it is the largest among all the relations R on X such that the
function f defines a Rel morphism f : (X,R)→ (Y, S), i.e., such that (x, y) ∈ R implies (f(x), f(y)) ∈ S.

The formal definition of a fibration is rather technical, but it essentially captures the idea of having
a category of “properties” indexed over a base category. Moreover, for each morphism f in the base
category we have a functor f∗ satisfying a universal property generalising the one we mentioned above
in the special case of relations.

Definition 5. Given a functor p : E → B and an object X of B, the fibre above X is the subcategory EX
of E whose objects are mapped by p to X and whose arrows are mapped by p to the identity on X.

Definition 6. A functor p : E → B is called a poset fibration when

1. For every object X in B, the fibre EX is a poset.

2. For every morphism f : X → Y in B and every R in E with p(R) = Y there exists an object f∗(R)

above X (i.e., in EX) and a map f̃R : f∗(R) → R such that every u : Q → R in E sitting above
f (i.e., pu = f) factors through f̃R: there exists a unique map v : Q → f∗(R) in EX such that
u = f̃Rv.

Q

∃!v
��

∀u

$$
f∗(R)

f̃R

// R

X
f
// Y

A map f̃R as above is called a (weak) Cartesian lifting of f and is unique up to isomorphism. If
we make a choice of Cartesian liftings, the association R 7→ f∗(R) gives rise to the so-called reindexing
functor f∗ : EY → EX . We have that (idX)∗ = idEX , and, since Cartesian liftings are closed under
composition, we have (f ◦ g)∗ = g∗ ◦ f∗.

Remark 7. All our proofs work just as fine in the more general setting of arbitrary fibrations, but we
considered that the definition of poset fibrations is easier to grasp. For this reason we do not explicitly
mention hereafter that the fibrations are posetal, but the reader can safely assume this and skip the rest of
the remark. The general definition, see [26], does not require EX be a poset, but the maps f̃R : f∗(R)→ R
satisfy a slightly stronger universal property: for any maps g : Z → X in B and for any u sitting above
fg, there exists a unique v such that u = f̃Rv and p(v) = g. Such a map f̃R is called a Cartesian lifting
(as opposed to weak Cartesian lifting), and, in general, we have an isomorphism (f ◦ g)∗ ∼= g∗ ◦ f∗ rather
than an equality (as is the case in poset fibrations).

Definition 8. A functor p : E → B is called a bifibration if both p : E → B and pop : Eop → Bop are
fibrations.

A fibration p : E → B is a bifibration if and only if each reindexing functor f∗ : EY → EX has a left
adjoint

∐
f a f∗, see [26, Lemma 9.1.2].
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Example 9. The fibration p : Rel → Set considered in the beginning of this section is a bifibration with
the left adjoints

∐
f given by direct images.

RelX RelY

Rel

SetX Y
f

pf∗

⊥

∐
f

Notice that for any relation R on X, the relation
∐
f (R) has a similar universal property to the reindexing,

namely it is the smallest among all the relations S on Y such that f : X → Y maps elements related by
R to elements related by S.

Example 10. A second example of a bifibration is that of predicates over sets. Let Pred be the category
of predicates whose objects are pairs of sets (P,X) with P ⊆ X and morphisms f : (P,X)→ (Q,Y ) are
arrows f : X → Y that can be restricted to f

∣∣
P

: P → Q.
The functor mapping predicates to their underlying sets is a bifibration. The fibre PredX sitting above

X is the poset of subsets of X ordered by inclusion. The reindexing functors are given by inverse images
and their left adjoints by direct images.

Given fibrations p : E → B and p′ : E ′ → B and F : B → B, we call F : E → E ′ a lifting of F when
p′F = Fp.

E F //

p

��

E ′

p′

��

B
F
// B

Notice that a lifting F restricts to a functor between the fibres FX : EX → E ′FX . When the subscript X
is clear from the context we will omit it.

A fibration map from p : E → B to p′ : E ′ → B is a pair (F , F ) such that F is a lifting of F that preserves
Cartesian liftings, i.e., for any B-morphism f and Cartesian lifting f̃ the map F f̃R : Ff∗(R) → FR is
a Cartesian lifting of Ff . This entails that (Ff)∗F ∼= Ff∗ for any B-morphism f (in fact, in a poset
fibration, this isomorphism is an equality). We denote by Fib(B) the category of fibrations with base B.

Every Set endofunctor F has a canonical lifting in the fibration Rel→ Set, which we call the canonical
relation lifting of F and denote by Rel(F ) : Rel → Rel. In order to define it, represent R ∈ RelX as a
jointly mono span X π1←− R π2−→ X and apply F . Then Rel(F )(R) is obtained as the image of the induced
map FR → FX × FX. Below, we list a number of important properties of the canonical relation
lifting. We use ∆X to denote the diagonal relation on X, R−1 to denote the converse relation of R and
R⊗ S = {(x, z) | ∃y. x R y ∧ y R z} for the composition of relations R and S.

Lemma 11. The canonical relation lifting of any F,G : Set→ Set satisfies:

1. Rel(Id) = Id

2. Rel(F )(∆X) = ∆FX

3. Rel(F )(R−1) = (Rel(F )(R))−1

4. Rel(F )(R⊗ S) ⊆ Rel(F )(R)⊗ Rel(F )(S)

5. Rel(F )(f∗(R)) ⊆ (Ff)∗Rel(F )(R)

6. Rel(F )(Gr(f)) ⊆ Gr(Ff) where Gr(f) denotes the graph of a Set-function f .
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7. Rel(FG) = Rel(F )Rel(G)

8. Rel(F ×G) ∼= Rel(F )× Rel(G)

9. Any λ : F ⇒ G restricts to a natural transformation λ : Rel(F )⇒ Rel(G).

If F : Set→ Set preserves weak pullbacks, then:

8. (Rel(F ), F ) is a fibration map (i.e., Item 5 above is an equality).

9. Item 4 is an equality.

Proof. For 1, 2, 3, 4 and 7, 8, 9 see [27, Propositions 4.4.2, 4.4.3; Exercise 4.4.6]. Items 6, 7 and 8 are
standard, but we prove 7 in Lemma 58 in Appendix 4.

For a fibration p : E → B we say that p has fibred finite (co)products if each fibre has finite (co)products,
preserved by reindexing functors. If p is a bifibration with fibred finite products and coproducts, and B
has finite products and coproducts, then the total category E also has finite products and coproducts,
strictly preserved by p [26, Propositions 9.1.1 and 9.2.2, Example 9.2.5]. In this paper, we assume the
bifibration under consideration to have fibred (co)products only in Section 7.

5 Coinductive Predicates
In Section 3 we have argued that systems are modeled as coalgebras in a certain “base” category, whereas
coinductive predicates and invariants are coalgebras in categories of “properties”. As explained in [22, 23],
the basic infrastructure for modeling systems and their coinductive properties is provided in a systematic
manner by fibrations, as we recall next. Given a fibration p : E → B, the idea is that the systems of
interest are modeled as coalgebras for a functor F : B → B. Coinductive predicates for a coalgebra
ξ : X → FX are then coalgebras themselves, for a functor on the fibre EX above X. The key idea is to
define such a functor uniformly for each coalgebra by taking a lifting F : E → E of F . Then, given a
coalgebra ξ : X → FX we define the functor

F ξ = ( EX
F // EFX

ξ∗
// EX ) (5)

The F ξ-coalgebras are then the invariants of interest, and the final F ξ-coalgebra, if it exists, is the
coinductive predicate defined on ξ by the lifting F .

Example 12. Consider the Set functor FX = 2 × XA of deterministic automata. In Section 2 we
have defined a monotone function B whose invariants (post-fixed points) are bisimulations on a given
deterministic automaton ξ, and whose greatest fixed point is language equivalence. This B arises as an
instance of (5), by taking the fibration to be the relation fibration p : Rel → Set, and the lifting F to be
the canonical relation lifting Rel(F ) of F . In this case,

Rel(F )(R ⊆ X ×X) = {((p, ϕ), (q, ψ)) | p = q and ∀a ∈ A.ϕ(a) R ψ(a)} .

It is easy to compute that Rel(F )ξ(R) = B(R). Hence, Rel(F )ξ-coalgebras are bisimulations on deter-
ministic automata.

In fact, given an arbitrary Set endofunctor F and a coalgebra ξ : X → FX, Rel(F )ξ-coalgebras are
Hermida-Jacobs bisimulations [23]. But instantiating F to a different lifting than the canonical one gives
rise to different coinductive predicates.

Example 13. Consider the lifting of the functor FX = 2 ×XA in the relation fibration p : Rel → Set,
defined by

F (R ⊆ X ×X) = {((p, ϕ), (q, ψ)) | p ≤ q and ∀a ∈ A.ϕ(a) R ψ(a)} .

Then given a deterministic automaton ξ : X → FX, the functor F ξ coincides with the functor B′ defined
in Section 2.3. So, F ξ-coalgebras are simulations on deterministic automata.

As explained above, a lifting F of F defines a functor on the fibre above any F -coalgebra. The
following result emphasises that these functors are defined uniformly.
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Proposition 14. Suppose (F , F ) is a fibration map on a given fibration p : E → B. If f : X → Y is a
coalgebra homomorphism from ξ : X → FX to ζ : Y → FY then there is an adjunction

Coalg(F ξ)
--

⊥ Coalg(F ζ)mm

which lifts the adjunction
∐
f a f∗.

Proof. Using that Ff ◦ ξ = ζ ◦ f (since f is a homomorphism) and that FX ◦ f∗ ∼= (Ff)∗ ◦ FY (since
(F , F ) is a fibration map) we have the following isomorphism:

F ξf
∗ = ξ∗FXf

∗ ∼= ξ∗(Ff)∗FY ∼= (Ff ◦ ξ)∗FY = (ζ ◦ f)∗FY ∼= f∗ζ∗FY = f∗F ζ .

The statement of the Lemma now follows from [23, Corollary 2.15].

The right adjoint maps the final F ζ-coalgebra, i.e., the coinductive predicate defined on ζ by F , to the
final F ξ-coalgebra, i.e., the coinductive predicate defined on ξ (which is [22, Proposition 3.11 (ii)]). This
captures formally the idea that coinductive predicates, defined in the above way by a functor lifting, are
preserved and reflected by coalgebra homomorphisms, if F is a fibration map. For the canonical lifting
Rel(F ) this is the case whenever F preserves weak pullbacks, see Lemma 11. Since bisimilarity on an
F -coalgebra ξ is the final Rel(F )ξ-coalgebra, the above proposition is a generalisation of the well-known
fact that coalgebra homomorphisms preserve and reflect bisimilarity [44].

6 Up-to Techniques in a Fibration
Throughout this section we fix a bifibration p : E → B, an endofunctor F : B → B, a lifting F : E → E
of F and a coalgebra ξ : X → FX. As explained in Section 5, the studied system ξ lives in the base
category B. The lifting F defines a coinductive predicate on X as the final coalgebra of the functor
F ξ = ξ∗ ◦ FX : EX → EX , and the associated coinductive proof technique amounts to the construction
of suitable F ξ-invariants, i.e., F ξ-coalgebras.

We instantiate the theory of up-to techniques and compatible functors from the previous section
to the category EX and the functor F ξ. In this context, a (potential) up-to technique is a functor
A : EX → EX . If such a functor A is sound then the construction of F ξ-invariants up to A is a valid proof
technique for the coinductive predicate defined by F ξ. In this section we introduce three families of up-to
techniques A. For each family we provide abstract conditions on the lifting F and on A that guarantee
their compatibility, and hence their soundness. More specifically, we consider up-to techniques based
on behavioural equivalence (Section 6.1), transitive and equivalence closure (Section 6.2) and contextual
closure (Section 6.3).

6.1 Compatibility of Behavioural Equivalence Closure
In Section 2.2, we have seen that, in coinductive proofs of language equivalence, one can exploit language
equivalence itself by using the up-to technique Bhv . In [34], Milner introduced up to bisimilarity [34]
motivated by a similar intent. From a coalgebraic perspective these two techniques are essentialy the
same: both language equivalence and bisimilarity are instances of behavioural equivalence ∼, i.e., the
kernel of the final morphism [[−]].

For a coalgebra ξ : X → FX, the function Bhv : RelX → RelX is defined as

Bhv(R) = {(x, y) | ∃x′, y′ s.t. x ∼ x′ R y′ ∼ y} .

By unfolding the definition of ∼, this is equivalent to

Bhv(R) = {(x, y) | ∃x′, y′. [[x]] = [[x′]], [[y]] = [[y′]] and (x′, y′) ∈ R}
= [[{([[x′]], [[y′]]) | (x′, y′) ∈ R}]]−1

= [[[[R]]]]−1

which is just direct image followed by reindexing in the fibration Rel → Set, namely, [[[[R]]]]−1 = [[−]]∗ ◦∐
[[−]](R). This observation allows us to generalise the above function Bhv to an arbitrary bifibration
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p : E → B, a functor F : B → B with a final coalgebra, and a coalgebra ξ : X → FX. In this setting
behavioural equivalence closure Bhv : EX → EX is defined as

Bhv = [[−]]∗ ◦
∐

[[−]] .

For instance, in the predicate fibration Pred→ Set, we have

Bhv(P ) = [[[[P ]]]]−1 = [[{[[x′]] | x′ ∈ P}]]−1 = {x | ∃x′ ∈ P. [[x]] = [[x′]]} .

The compatibility of Bhv is an instance of:

Theorem 15. Suppose that (F , F ) is a fibration map. For any F -coalgebra morphism f : (X, ξ)→ (Y, ζ),
the functor f∗ ◦

∐
f is F ξ-compatible.

Proof sketch. We exhibit a natural transformation

f∗ ◦
∐
f ◦ (ξ∗ ◦ F )⇒ (ξ∗ ◦ F ) ◦ f∗ ◦

∐
f

obtained by pasting the 2-cells (a), (b), (c), (d) in the following diagram:

EX EFX EX

EY EFY EY

EX EFX EX

⇓
(d)

⇓
(b)

⇓
(a)

⇓
(c)

ξ∗

ζ∗

ξ∗

f∗ (Ff)∗ f∗

∐
f

∐
Ff

∐
f

F

F

F

(a) Since (F , F ) is a fibration map we have that Ff∗ ∼= (Ff)∗F .

(b) is a consequence of Lemma 60 in Appendix B.

(c) is a natural isomorphism and comes from the fact that f is a coalgebra map.

(d) is obtained from (c) using the counit of
∐
f a f∗ and the unit of

∐
Ff a (Ff)∗.

(Note that this proof decomposes into a proof that
∐
f is (F ξ, F ζ)-compatible, by pasting (b) and (d),

and a proof that f∗ is (F ζ , F ξ)-compatible, by pasting (a) and (c). These two independent results can
be composed by Proposition 3(i) to obtain the theorem.)

Corollary 16. If F is a Set-functor preserving weak pullbacks then the behavioural equivalence closure
functor Bhv is Rel(F )ξ-compatible.

Proof. The result follows from Lemma 11 and Theorem 15.

Both the functor FX = (PωX)L for labeled transition systems and the functor FX = 2 × XA for
deterministic automata preserve weak pullbacks. Hence, Corollary 16 provides the compatibility of both
Milner’s up-to-bisimilarity and Bhv as used in Section 2.2.

From Theorem 15 we also derive the soundness of up-to Bhv for unary predicates: the monotone
predicate liftings used in coalgebraic modal logic [17] are fibration maps [27], so they satisfy the hypothesis
of Theorem 15.
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6.2 Compatibility of Equivalence Closure
We propose a general approach for deriving the compatibility of the reflexive, symmetric and transitive
closure. Composing these functors yields compatibility of the equivalence closure, as outlined in Section
3.

For the transitive closure, it suffices to prove that relational composition is compatible. Composition
of relations can be expressed in a fibrational setting, by considering the category Rel ×Set Rel obtained
as a pullback of the fibration Rel→ Set along itself:

Rel×Set Rel

��

// Rel

��

Rel // Set

The objects of Rel ×Set Rel are pairs of relations R,S ⊆ X × X on a common carrier X. An arrow
from R,S ⊆ X × X to R′, S′ ⊆ Y × Y is a pair of morphisms in Rel above a common f : X → Y ;
thus, it is a map f : X → Y such that f(R) ⊆ R′ and f(S) ⊆ S′. Relational composition is a functor
⊗ : Rel×Set Rel→ Rel mapping R,S ⊆ X ×X to their composition R⊗ S.

The pullback Rel×Set Rel above is, in fact, a product in the category Fib(Set) of fibrations over Set.
Indeed, Rel×Set Rel→ Set is again a fibration. In order to treat not only relational composition but also,
e.g., symmetric and reflexive closure, we move to a more general setting of n-fold products. Consider for
an arbitrary fibration E → B its n-fold product in Fib(B) (see [26, Lemma 1.7.4]), denoted by E×nB → B
and defined by pullback in Cat. This product is computed fibrewise, that is,

(E×
n
B)X = (EX)n and E0 = B .

Concretely, the objects in E×nB are n-tuples of objects in E belonging to the same fibre, and an arrow from
(R1, . . . , Rn) above X to (S1, . . . , Sn) above Y consists of a tuple of arrows (f1 : R1 → S1, . . . , fn : Rn →
Sn) that sit above a common f : X → Y .

It turns out that we can capture composition, relation converse and the functor mapping a set to the
diagonal relation as functors of the form G : E×nB → E that have the additional property to be liftings of
the identity functor on B. Given such a functor G, for each X in B we have a functor GX : (EX)n → EX .

Proposition 17. Let F : E → E be a lifting of a B-functor F and G : E×Bn → E be a lifting of the
identity, and suppose that for each X in B there is a natural transformation

γ : GFX ◦ (FX)n ⇒ FX ◦GX : (EX)n → EFX .

Then for any coalgebra ξ : X → FX, the functor GX is F ξ-compatible.

We list several applications of the proposition for the fibration Rel → Set. In this case, a natural
transformation GFX ◦ (FX)n ⇒ FX ◦GX exists precisely if for all relations R1, . . . , Rn on the carrier X:

G(F (R1), . . . , F (Rn)) ⊆ FG(R1, . . . , Rn) .

Instantiating this, we obtain as a corollary of Proposition 17 concrete compatibility results for functors
Rel×

n
Set → Rel, including relational composition.

Lemma 18. The following hold:

(n=0) Let Dia : Set → Rel be the functor mapping each set X to ∆X , the diagonal relation on X.
DiaX : 1→ RelX is F ξ-compatible if

∆FX ⊆ F (∆X). (∗)

(n=1) Let Inv : Rel → Rel be the functor mapping each relation R ⊆ X2 to its converse R−1 ⊆ X2.
InvX : RelX → RelX is F ξ-compatible if for all relations R ⊆ X2

(FR)−1 ⊆ F (R−1). (∗∗)
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(n=2) Let ⊗ : Rel×Set Rel→ Rel be the relational composition functor. Then ⊗X : RelX ×RelX → RelX is
F ξ-compatible if for all R,S ⊆ X2

(FR)⊗ (FS) ⊆ F (R⊗ S) (∗∗∗)

If moreover T1, T2 : RelX → RelX are two F ξ-compatible functors, their pointwise composition
T1 ⊗ T2 = ⊗X ◦ 〈T1, T2〉 is F ξ-compatible by Proposition 3 (i,ii).

Consider the reflexive closure functor RflX , defined by:

RflX = ( RelX
∼= // RelX × 1

Id×DiaX // RelX × RelX

∐
// RelX ).

If (*) holds in the above Lemma, then DiaX is compatible, hence RflX is compatible by Proposition 3.
Similarly, the symmetric closure functor SymX : RelX → RelX is the coproduct of Id and InvX , i.e.,

SymX =
∐
◦〈Id, InvX〉 .

Hence by Proposition 3, SymX is F ξ-compatible whenever (∗∗) holds.

Corollary 19. Given a Set-functor F and a relation lifting F such that (∗∗∗) holds, then the transitive
closure functor TrnX is F ξ-compatible.

Proof. The transitive closure functor TrnX is obtained from ⊗ in a modular way:

TrnX =
∐
i≥0

(−)i : RelX → RelX

where (−)0 = Id and (−)i+1 = Id⊗ (−)i. Using item (vi) of Proposition 3, it suffices to show that each
(−)i is F ξ-compatible. This in turn can be proved by induction using item (iv) of Proposition 3 and the
third part of Lemma 18.

By Proposition 3, given the compatibility of RflX , SymX and ⊗X (and hence of TrnX), one obtains
compatibility of the equivalence closure functor EqvX , defined by

EqvX = TrnX ◦ SymX ◦ RflX .

From the above considerations we get the following result for the canonical relation lifting of a Set
functor.

Corollary 20. If F is a Set-functor then the reflexive and symmetric closure functors RflX and SymX

are Rel(F )ξ-compatible. Moreover, if F preserves weak pullbacks, then the transitive closure functor
TrnX and the equivalence closure functor EqvX are both Rel(F )ξ-compatible.

Proof. By Lemma 11, the conditions (∗) and (∗∗) from Lemma 18 always hold for the canonical lifting
F = Rel(F ), and (∗∗∗) holds when F preserves weak pullbacks. As a consequence of Lemma 18 and
Corollary 19, the functors RflX , SymX and TrnX are Rel(F )ξ-compatible. Compatibility of EqvX follows
since it is a composition of compatible functors, as explained above.

In particular, the fact that EqvX is B-compatible, for the endofunctor B defined in Section 2.1,
follows from Corollary 20 and the characterisation of B given in Example 12.

When F ξ has a final coalgebra Ω, one can define a “self closure” EX -endofunctor Slf = Ω̃ ⊗ Id ⊗ Ω̃,
where Ω̃ : EX → EX is the constant to Ω functor. Thanks to Proposition 3, the functor Slf is F ξ-
compatible whenever (∗∗∗) holds. For instance, one can prove compatibility of Slf for the endofuctor B′
of Section 2.3 by checking that (∗∗∗) holds for F defined as in Example 13.

If F is instantiated to the canonical lifting Rel(F ), then Ω is the bisimilarity relation. In this case, if
F preserves weak pullbacks, then Ω coincides with behavioural equivalence, so then Slf = Bhv .

If instead we consider the lifting that yields weak bisimilarity (to be defined in Section 9), Slf
corresponds to a technique called “weak bisimulation up to weak bisimilarity”, while Bhv corresponds to
“weak bisimulation up to (strong) bisimilarity”.
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EX EFX EX

ETX EFTX ETFX ETX

EFTX

EX EFX EX

⇓
(d)

⇓
(b)

⇓
(a)

⇓
(e)

⇓
(c)

F

F

F

T T T

ξ∗

ξ∗

ρ∗X (Tξ)∗

∐
α ∐

Fα

∐
ρX ∐

α

Figure 1: Compatibility of contextual closure in a fibration

6.3 Compatibility of Contextual Closure
Up-to context is a technique of pivotal importance for coinductive proofs of systems specified by some
syntax, such as process calculi or regular expressions. In these cases, we are in the presence of a coalgebra
ξ : X → FX equipped with an algebraic structure α : TX → X, for some functors F, T : Set→ Set. The
contextual closure Ctx : RelX → RelX is defined for all relations R ⊆ X2 as

Ctx (R) = (α× α)(Rel(T )(R)).

When T is the free monad generated by some signature S (i.e., the term monad mapping each set X to
the set of S-terms with variables in X) and the algebra is the initial T -algebra µ0 : TT0→ T0, Ctx (R)
is simply the relation defined by the rules

s R t

s Ctx (R) t

s1 Ctx (R) t1 . . . sn Ctx (R) tn

f(s0, . . . , sn) Ctx (R) f(t0, . . . , tn)

where f is an arbitrary operator of S of arity n and s, si, t, ti are terms in T0. It is easy to see that this
definition generalises the contextual closure introduced for regular expressions in Section 2.2.

The notion of contextual closure can be further generalised for an arbitrary bifibration p : E → B, a
lifting T of the functor T : B → B and an algebra α : TX → X as follows:

EX
T // ETX

∐
α // EX . (6)

To prove compatibility of this technique, it is essential to require that the algebraic structure α “behaves
well” with respect to the coalgebra ξ. For this reason, we assume that (X,α, ξ) is a ρ-bialgebra for a
distributive law1 ρ : TF ⇒ FT , which means that the following diagram commutes:

TX X FX

TFX FTX

Tξ

α ξ

ρX

Fα (7)

Our compatibility theorem requires that ρ lifts to the total category E .

Theorem 21. Let T , F : E → E be liftings of T and F . If ρ : T F ⇒ F T is a natural transformation
sitting above ρ, then

∐
α ◦T is F ξ-compatible.

1between functors, i.e., a plain natural transformation
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Proof sketch. We exhibit a natural transformation

(
∐
α ◦ T ) ◦ (ξ∗ ◦ F )⇒ (ξ∗ ◦ F ) ◦ (

∐
α ◦ T ) .

This is achieved in Figure 1 by pasting five natural transformations, obtained as follows:

(a) is the counit of the adjunction
∐
ρX
a ρ∗X .

(b) comes from ρ being a lifting of ρ, see Lemma 62.

(c) comes from the bialgebra condition, and the units and counits of the adjunctions
∐
α a α∗,

∐
Fα a

(Fα)∗, and
∐
ρX
a ρ∗X , see Lemma 63.

(d) arises since T is a lifting of T , using the universal property of the Cartesian lifting (Tξ)∗, see
Lemma 59.

(e) comes from F being a lifting of F , combined with the unit and counit of the adjunction
∐
α a α∗,

see Lemma 60.

(As for Theorem 15, this proof decomposes into a proof that T is (F ξ, (Tξ)
∗ ◦ ρ∗X ◦ F )-compatible, and

a proof that
∐
α is ((Tξ)∗ ◦ ρ∗X ◦ F , F ξ)-compatible.)

When F and T are the canonical liftings Rel(F ) respectively Rel(T ) in the relation fibration, we get
as a corollary the following result, equivalent to Theorem 4 in [43].

Corollary 22. If F, T are Set-functors and (X,α, ξ) is a bialgebra for ρ : TF ⇒ FT , then the contextual
closure functor Ctx is Rel(F )ξ-compatible.

Proof. By [27, Exercise 4.4.6], the canonical relation lifting preserves natural transformations, i.e., there
is a natural transformation ρ : Rel(TF )⇒ Rel(FT ) above ρ. By Lemma 58, using that every Set functor
preserves epis, we obtain the desired ρ : Rel(T )Rel(F )⇒ Rel(F )Rel(T ).

Our interest in Theorem 21 is not restricted to proving compatibility of up to Ctx : taking different
liftings T yields different types of contextual closure, similar to the fact that taking different liftings F
yields different coinductive predicates. Indeed, in Section 8 we consider the left contextual closure for
reasoning about divergence, and the monotone contextual closure for weighted automata; both these
variants of the contextual closure (instances of (6)) substantially differ from Ctx .

In order to apply Theorem 21 in situations where either T or F is not the canonical relation lifting,
one has to exhibit a ρ sitting above ρ. In Rel, such a ρ exists if and only if for all relations R ⊆ X2, the
restriction of ρX × ρX to T FR corestricts to F TR, i.e., (ρX × ρX)(T F (R)) ⊆ F T (R), or equivalently,∐
ρX

(T FR) ⊆ F TR. A similar condition has to be checked in the fibration Pred→ Set.

6.4 Summary
We present a short summary of the compatibility results of this section. We assume a bifibration
p : E → B, a B-endofunctor F with a lifting F , and a coalgebra ξ : X → FX. The definition of Bhv relies
on the existence of a final F -coalgebra, where [[−]] is the unique morphism to the final coalgebra. For
contextual closure we assume a B-endofunctor T with a lifting T , an algebra α : TX → X and a natural
transformation ρ : TF ⇒ FT .

Notation Definition Condition F ξ-compatibility
Bhv [[−]]∗ ◦

∐
[[−]] (F , F ) is a fibration map

−
∐
α ◦ T

(X,α, ξ) is a ρ-bialgebra, and there is a distributive
law of T over F above ρ
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If p is the relation bifibration Rel → Set, we have the following additional results. For the definition of
Slf below, we assume that F ξ has a final coalgebra with carrier Ω.

Notation Definition Condition F ξ-compatibility
RflX reflexive closure ∆FX ⊆ F (∆X)

SymX symmetric closure (FR)−1 ⊆ F (R−1) for all R ⊆ X2

⊗X rel. composition F (R)⊗ F (S) ⊆ F (R⊗ S) for all R,S ⊆ X2

Slf R 7→ Ω⊗R⊗ Ω ⊗X is F ξ-compatible
TrnX transitive closure ⊗X is F ξ-compatible
EqvX equivalence closure RflX , SymX and ⊗X are F ξ-compatible
Ctx

∐
α ◦ Rel(T ) (X,α, ξ) is a ρ-bialgebra

7 Abstract GSOS
We now consider up-to-context techniques to reason about models of abstract GSOS, which provides
specification formats for defining operations on coalgebras, and allows us to study operational semantics
in a general fashion. An abstract GSOS specification is a natural transformation of the form λ : S(F ×
Id) ⇒ FT , where T is the free monad for S, assumed to exist. The name abstract GSOS is motivated
by the fact that, as shown in [54, 29], it generalizes the the standard GSOS specification format [6].

A model of a specification λ is a triple (X,α, ξ), where ξ : X → FX is a coalgebra and α : SX → X
an algebra such that the following diagram commutes:

SX
α //

S〈ξ,id〉
��

X
ξ
// FX

S(FX ×X)
λX

// FTX

Fα]

OO

(8)

where α] : TX → X is the algebra for the free monad T defined as the inductive extension of α.

Example 23. The concrete GSOS rule format [6] can be retrieved by taking F to be the functor
FX = (PωX)L for labeled transition systems and S to be a polynomial functor representing an alge-
braic signature. In this case, TX is the set of terms over this signature with variables in X. The notion
of model as given in (8) corresponds to the usual notion of model of a GSOS specification. Informally, it
means that all and only the transitions of ξ can be derived by instantiating the rules in the specification.

In order to have a concrete grasp, consider the parallel operator of CCS [34], whose semantics is
defined by the following GSOS rules:

p
µ→ p′

p|q µ→ p′|q
q
µ→ q′

p|q µ→ p|q′
p

a→ p′ q
a→ q′

p|q τ→ p′|q′

where µ ranges over arbitrary actions, namely inputs a, b, . . . outputs a, b, . . . or the internal action
τ . Take SX = X × X (for the binary parallel operator) and F = (Pω−)L where L is the set of all
actions. For every set X, the corresponding distributive law λX : S(FX×X)→ FTX maps (f, x, g, y) ∈
(PωX)L ×X × (PωX)L ×X to the function

µ 7→


{(x′, y) | x′ ∈ f(µ)} ∪ {(x, y′) | y′ ∈ g(µ)} µ 6= τ

{(x′, y) | x′ ∈ f(τ)} ∪ {(x, y′) | y′ ∈ g(τ)}
∪ {(x′, y′) | ∃a. x′ ∈ f(a), y′ ∈ g(a)}

µ = τ
(9)

Now take X to be the set of all CCS processes, ξ : X → (PωX)L the LTS generated by the standard
semantics of CCS [34] and α : X ×X → X to be the algebra mapping a pair of processes (p, q) to their
parallel composition p|q. It is easy to see that diagram (8) commutes, i.e., (X,α, ξ) is a model for λ.
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Example 24. In Section 2.2 we recalled how to turn the set RE of regular expressions into an automaton
based on inference rules for each of the operators. These rules induce an abstract GSOS specification
where FX = 2 × XA and SX = (X × X) + (X × X) + X + A + 1 + 1 modeling two binary operators
+ and ·, a unary operator ∗, constants a for each a ∈ A and constants 0 and 1. The abstract GSOS
specification λ : S((2 × IdA) × Id) ⇒ 2 × (T (Id))A is then defined by cases according to the rules; for
instance, the two rules for ∗

−
e∗ ↓

e
a→ e′

e∗
a→ e′ · e∗

define, for each set X, the component λ(∗)X : 2×XA ×X → 2× (TX)A of λ given by

λ
(∗)
X (p, ϕ, x) = (1, a 7→ ϕ(a) · x∗)

for all p ∈ 2, ϕ ∈ XA and x ∈ X. The two rules for ·

e↓ f↓
(e · f)↓

e
a→ e′ f

a→ f ′

e · f a→ e′ · f + o(e) · f ′

define the function λ(·)X : (2×XA ×X)× (2×XA ×X)→ 2× (TX)A as

λ
(·)
X ((p, ϕ, x), (q, ψ, y)) = (p ∧ q, a 7→ ϕ(a) · y + p · ψ(a))

for all p, q ∈ 2, ϕ,ψ ∈ XA and x, y ∈ X. Observe that the set of regular expressions RE is just T0 for T
the free monad over S. By taking α : S(RE)→ RE to be the initial S-algebra and ξ : RE → F (RE) to be
the automaton 〈o, t〉 defined by the Brzozowki derivatives in Section 2.2, it is easy to see that (RE,α, ξ)
is a model for λ.

An abstract GSOS specification λ and a model (X,α, ξ) for it uniquely correspond to, respectively,
a distributive law ρλ : T (F × Id)⇒ (F × Id)T of the monad T over the copointed functor F × Id and a
bialgebra (X,α], 〈ξ, id〉) for ρλ. For details, see Appendix C or [54, 29]. Hereafter, to make the notation
lighter we will often refer to ρλ as to ρ. This construction entails compatibility of the contextual closure.

Corollary 25. Let λ : S(F × Id)⇒ FT be an abstract GSOS specification and let (X,α, ξ) a model for
it. Then

∐
α] ◦ Rel(T ) is (Rel(F )× Id)〈ξ,id〉-compatible.

Proof. From Corollary 22 we immediately obtain Rel(F×Id)〈ξ,id〉-compatibility. To conclude, it is enough
to observe that Rel(F × Id) ∼= Rel(F )× Id by Lemma 11.

In the case of non-canonical liftings, to prove compatibility of contextual closure for bialgebras of a
distributive law ρλ generated from an abstract GSOS specification, one should exhibit a natural transfor-
mation ρλ above ρλ and then apply Theorem 21. We next show how to simplify such a task by proving
that, under mild additional conditions, it suffices to show that there exists λ : S(F × Id) ⇒ F T above
λ. Here T is the free monad of S which, by Lemma 64 in Appendix C, is a lifting of T .

Theorem 26. Let (X,α, ξ) and (X,α], 〈ξ, id〉) be a model and a bialgebra for, respectively, an abstract
GSOS specification λ : S(F×Id)⇒ FT and the corresponding distributive law ρλ : T (F×Id)⇒ (F×Id)T .
Let S, F be liftings of S, F and assume that S has a free monad T .

If there is a natural transformation λ : S(F × Id)⇒ FT sitting above λ, then

1. there exists ρλ : T (F × Id)⇒ (F × Id)T sitting above ρλ;

2.
∐
α] ◦ T is (F × Id)〈ξ,id〉-compatible.

It is easy to see that 2 is a direct consequence of 1 and Theorem 21. The idea of the proof for 1
is that the distributive law ρλ is constructed from λ in the same way as ρλ is constructed from λ (see
Appendix C for details). By relating free algebras in E to free algebras in B, one then shows that ρλ sits
above ρλ.

Observe that both Corollary 25 and Theorem 26 state compatibility with respect to a functor which
is not exactly F ξ, the functor of our interest. A similar issue was encountered in Section 3.1, where we
dealt with B-respectful functors, i.e., functors that are B × Id-compatible. The following lemma allows
to link GSOS specifications and respectful functors.
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Lemma 27. There is a natural isomorphism (F × Id)〈ξ,id〉 ∼= F ξ × Id where the latter product is taken
in the fibre EX .

Proof. Consider an object R in EX . The product FR×R in E is above FX ×X, whose projections we
denote by π1 : FX ×X → FX and π2 : FX ×X → X. By [26, Proposition 9.2.1], we have FR × R ∼=
π∗1(FR)× π∗2(R) where the latter product is taken in EFX×X . Thus:

(F × Id)〈ξ,id〉(R) = 〈ξ, id〉∗(FR×R)

∼= 〈ξ, id〉∗(π∗1(FR)× π∗2(R))

∼= (〈ξ, id〉∗π∗1(FR))× (〈ξ, id〉∗π∗2(R))

∼= ξ∗FR×R = (F ξ × Id)(R) .

The third step holds since reindexing functors preserve products by assumption.

Example 28. In Example 24, we have seen that regular expressions carries a model (RE,α, ξ) for
the GSOS specification corresponding to the Brzozowski derivatives. From Corollary 25, we have that∐
α] ◦ Rel(T ) is (Rel(F ) × Id)〈ξ,id〉-compatible. As explained in Section 6.3,

∐
α] ◦ Rel(T ) is just Ctx

as defined in Section 2.2. Moreover, by Lemma 27, Ctx is Rel(F )ξ × Id-compatible. The technique
Bhv used in Section 2.2 is B-compatible and thus, by Proposition 4(i), it is B × Id-compatible. By
Proposition 3(i), Bhv ◦ Ctx is B × Id-compatible. B-soundness follows from Proposition 4(iii). We
conclude that the composite technique Bhv ◦Ctx used in Section 2.2 is Rel(F )ξ-sound, and thus B-sound
(see Example 12).

Now we could use a similar strategy to prove the compatibility of Slf ◦ Ctx with respect to the
functor B′ for simulation introduced in Section 2.3. Since, as shown in Example 13, this arises from a
non-canonical lifting, we should use Theorem 26 rather than Corollary 25. However, at the end of this
paper (Example 57), we will provide a simpler proof which avoids to exhibit the natural transformation
λ.

We conclude this section with a technical observation. Theorem 26, and similarly Corollary 25,
provides compatibility for a contextual closure induced by the free monad T rather than the lifted
functor S itself, which may be the one presented in concrete cases. However, as shown by the next
lemma, the contextual closure defined by S is, in each fibre, below the one defined by T , so if the latter
is sound, the former is sound as well.

Lemma 29. Let S, S, T and T be as in Theorem 26. Given an algebra α : SX → X with induced algebra
α] : TX → X for the free monad T , there exists a natural transformation of the form

∐
α ◦S ⇒

∐
α] ◦T .

8 Examples

8.1 Inclusion of weighted automata
To illustrate the theory in Section 6, we consider weighted automata over a given semiring S. In [43], a
certain notion of up-to context is shown to be compatible with respect to language equivalence of weighted
automata. The theory in Section 6 allows us to extend this result to language inclusion: contextual closure
is compatible wrt language inclusion whenever the underlying semiring satisfies certain conditions (listed
in (a) and (b) below). This suggests a novel technique, called monotone contextual closure, which is
compatible even when the semiring does not meet these requirements.

We start by recalling from [9] the coalgebraic treatment of weighted automata. To simplify the
presentation we assume the semiring (S,+, ·, 0, 1) to be commutative, but the presented results easily
extend to the non-commutative case. For a set X, we denote by SXω the set of functions f : X → S with
finite support, that is, such that f(x) 6= 0 for finitely many x. These functions can be presented by the
following operators

• 0: 1→ SXω mapping every x ∈ X to 0,

• ẋ : 1→ SXω (for every x ∈ X) mapping x to 1 and the rest to 0,
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• r· : SXω → SXω (for every r ∈ S) mapping f to r · f defined for all x ∈ X as r · f(x),

• +: SXω × SXω → SXω mapping f, g to f + g defined for all x ∈ X as f(x) + g(x),

subject to the obvious axioms induced by the semiring (e.g., distributivity of r· over +). To see that
these operations are enough to present all the functions f ∈ SXω just observe that any f can be expressed
as the linear combination

∑
x∈X f(x) · ẋ: the sum is finitary since f has finite support. The functor

S−ω : Set→ Set extends to a monad with unit ηX : X → SXω mapping every x ∈ X to ẋ and multiplication
µ : SSXω

ω → SXω mapping every h ∈ SSXω
ω to the function ĥ defined for all x ∈ X as ĥ(x) =

∑
f∈SXω

h(f)·f(x).
The Eilenberg-Moore S−ω -algebra (SXω , µX) is known as the free semi-module generated by X.

A weighted automaton over a semiring S with alphabet A is a pair (X, 〈o, t〉), where X is a set of
states, o : X → S is an output function associating to each state its output weight and t : X → (SXω )A is a
weighted transition relation. Denoting by F the functor S×(−)A, weighted automata are thus coalgebras
for the composite functor FS−ω . For a concrete example we take the semiring R+ of positive real numbers.
A weighted automaton is depicted on the left below: arrows x a,r→ y mean that t(x)(a)(y) = r and arrows
x

r⇒ mean that o(x) = r.

x
0
��

a,1
** y

1
��

a,1

��

a,1

jj

ẋ
0
KS

a // ẏ
1
KS

a // ẋ+ẏ
1
KS

a // · · ·

ẏ
1 ��

a
// ẋ+ẏ
1 ��

a
// ẋ+2ẏ

2 ��
a
// · · ·

(10)

Following [47], every weighted automaton (X, 〈o, t〉) induces a bialgebra (SXω , µ, 〈o], t]〉) for the dis-
tributive law ρ : S−ωF ⇒ FS−ω defined for all sets X by

ρX

(∑
ri(si, ϕi)

)
=
(∑

risi, a 7→
∑

riϕi(a)
)
.

The map 〈o], t]〉 : SXω → S × (SXω )A is the linear extension of 〈o, t〉, defined as (Fµ) ◦ ρ ◦ (S〈o,t〉ω ). By
unfolding the definition, this means that for all f ∈ SXω and a ∈ A

o](f) =


0

o(x)

r · o](f1)

o](f1) + o](f2)

t](f)(a) =


0 if f = 0

t(x)(a) if f = ẋ

r · t](f1)(a) if f = r · f1
t](f1)(a) + t](f2)(a) if f = f1 + f2

For instance, (part of) the bialgebra corresponding to the weighted automaton in (10) is depicted on its
right: states are elements of (R+)Xω , arrows f a→ g mean that t](f)(a) = g and arrows f r⇒ mean that
o](f) = r.

The F -coalgebra 〈o], t]〉 can be exploited to conveniently express the behaviour of functions f ∈ SXω .
The carrier of the final F -coalgebra is SA

∗
, that is, the set of all functions φ : A∗ → S, also known as

weighted languages or formal power series. The unique map [[−]] : SXω → SA
∗
assigns to each f ∈ SXω the

language [[f ]] : A∗ → S defined for all words w ∈ A∗ as [[f ]](ε) = o](f) and [[f ]](aw′) = [[t](f)(a)]](w′). In
(10), the language [[ẋ]] accepted by ẋ maps the word an to the nth Fibonacci number.

Now, suppose that S carries a partial order ≤. Such an order can be pointwise extended to an order -
on SA

∗
, and thus induces a preorder on the states f, g of any F -coalgebra defined by f - g iff [[f ]] - [[g]].

We call this predicate inclusion: it coincides with language inclusion when S is the Boolean semiring.
Inclusion can be captured as a coinductive predicate, by taking the following lifting F : Rel→ Rel of

F defined for R ⊆ X2 by:

{((p, ϕ), (q, ψ)) | p ≤ q ∧ ∀a.ϕ(a) R ψ(a)} ⊆ (S×XA)2.

Then the functor F 〈o],t]〉 = 〈o], t]〉∗ ◦ F : RelX → RelX maps a relation R ⊆ X2 to

{(x, y) | o](x) ≤ o](y) ∧ ∀a.t](x)(a) R t](y)(a)} .
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The carrier of the final F 〈o],t]〉-coalgebra coincides with - as defined above.
For any two f, g ∈ SXω , one can prove that f - g by exhibiting a F 〈o],t]〉-invariant relating them.

These invariants are usually infinite, since there may be infinitely many reachable states in a bialgebra
SXω , even for finite X. For instance, this is the case when trying to check ẋ - ẏ in (10): we should relate
infinitely many reachable states.

In order to obtain finite proofs, we exploit the algebraic structure of the bialgebra obtained as the
linear extension of a given weighted automaton, and employ an up to context technique. To this end,
we use the canonical lifting of the monad S−ω , defined for all R ⊆ X2 as

Rel(S−ω )(R) =
{(∑

rixi,
∑

riyi

)
| xi R yi

}
Then the endofunctor Ctx =

∐
µ ◦Rel(S−ω ) is characterised inductively by the following rules.

f R g

f Ctx (R) g

−
0 Ctx (R) 0

f Ctx (R) g r ∈ S

r · f Ctx (R) r · g
f1 Ctx (R) g1 f2 Ctx (R) g2

f1 + f2 Ctx (R) g1 + g2

(11)

For example, in (10), the relation R = {(ẋ, ẏ), (ẏ, ẋ+ẏ)} is a F 〈o],t]〉-invariant up to Ctx (to check this,
just observe that (ẋ+ẏ, ẋ+2ẏ) ∈ Ctx (R)). Below we prove the compatibility of Ctx , from which it follows
that the finite relation R proves ẋ - ẏ.

To prove that Ctx is F 〈o],t]〉-compatible using Theorem 21, we need to check that for any relation R
on X, the restriction of ρX×ρX to Rel(S−ω )F (R) corestricts to FRel(S−ω )(R). This is the case when for
all n1,m1, n2,m2 ∈ S such that n1 ≤ m1 and n2 ≤ m2, we have:

(a) n1 + n2 ≤ m1 +m2, and

(b) n1 · n2 ≤ m1 ·m2.

(see Appendix D.1 for details). These two conditions are satisfied, e.g., in the Boolean semiring or in R+

and thus, in these cases, we can prove inclusion of automata using F 〈o],t]〉-invariants up to Ctx .

Unfortunately, condition (b) fails for the semiring R of (all) real numbers. Nevertheless, our framework
allows us to define another up-to technique, which we call “up to monotone contextual closure”. It is
obtained by composing

∐
µ and the following non-canonical lifting of R−ω :

R−ω (R) =

{(∑
rixi,

∑
riyi

)
| ri ≥ 0⇒ xi R yi
ri < 0⇒ yi R xi

}
(12)

Then the monotone contextual closure
∐
µ ◦ R−ω can be presented concretely by replacing the third rule

(for scalar multiplication) in (11) by the following two rules:

f Ctx (R) g r ∈ S r ≥ 0

r · f Ctx (R) r · g
f Ctx (R) g r ∈ S r < 0

r · g Ctx (R) r · f

The restriction of ρX × ρX to R−ωF (R) corestricts to FR−ω (R) (see Appendix D.1). Therefore, by Theo-
rem 21, the monotone contextual closure is F 〈o],t]〉-compatible.

8.2 Divergence of processes
In the previous example we have exploited the theory of Section 6 and the fibration Rel→ Set. Now, we
move to the theory in Section 7 and the fibration Pred→ Set from Example 10. The use of GSOS speci-
fications also makes it necessary to exploit several results about respectful functors (Section 3.1). Rather
than weighted automata, we consider labeled transition systems which, as explained in Example 23, are
coalgebras for the functor FX = (PωX)L with τ ∈ L.
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A process, namely a state of a LTS, is said to diverge if it can perform infinitely many internal (i.e.,
τ) transitions. More formally, the divergence predicate can be expressed by mean of modal logic by the
formula νu.〈τ〉u. We model this predicate by lifting F to F

〈τ〉
: Pred→ Pred, defined for all X as

F
〈τ〉
X (P ⊆ X) = {f ∈ (PωX)A | ∃x ∈ f(τ), x ∈ P}.

Given an LTS ξ : X → FX, a F
〈τ〉
ξ -invariant (coalgebra) is a predicate P ⊆ X such that for all x ∈ P

there is a transition x τ−→ x′ with x′ ∈ P . The final F 〈τ〉ξ -coalgebra is the largest such predicate, consisting
of all the states in X satisfying νu.〈τ〉u. Hence, to prove that a process p diverges, it suffices to exhibit
an F

〈τ〉
ξ -invariant containing p.

When the LTS is specified by some process algebra, such invariants might be infinite. Suppose, for
instance, that we have a parallel operator |, defined by the GSOS rules given in Example 23. Consider
the processes p a→ p|p and q a→ q. To prove that p|q diverges, any invariant should include all the states
that are on the infinite path

p|q τ→ (p|p)|q τ→ ((p|p)|p)|q τ→ . . .

Instead, an intuitive proof would go as follows: assuming that p|q diverges one has to prove that the
τ -successor (p|p)|q also diverges. Rather than looking further for the τ -successors of (p|p)|q, observe that

(a) since p|q diverges by hypothesis, then also (p|q)|p diverges, and

(b) since (p|q)|p is bisimilar (i.e., behavioural equivalent) to (p|p)|q, then also (p|p)|q diverges.

Formally, (b) corresponds to using the functor Bhv from Section 6.1. For (a) we define the left contextual
closure functor as

Ctx `(P ⊆ X) = {(x|y) | x ∈ P, y ∈ X} .

Indeed, it is easy to see that P = {p|q} is an F 〈τ〉ξ -invariant up to Bhv ◦Ctx `, i.e, P ⊆ F 〈τ〉ξ ◦Bhv ◦Ctx `(P )

(just observe that (p|q)|p ∈ Ctx `(P ) and (p|p)|q ∈ Bhv ◦ Ctx `(P )).

In order to prove soundness of this “up to behavioural equivalence and left contextual closure”, it
is essential to recall that the rules for parallel composition in Example 23 form a GSOS specification
λ : S(F × Id) ⇒ FT , where S is the functor for the binary parallel operator SX = X × X. Now we
assume that X is some set of terms that includes p and q and that is closed under parallel composition,
i.e., there exists an algebra α : SX → X. We take (X,α, ξ) to be a model for λ.

Observe that Ctx ` =
∐
α ◦ S, where S is the lifting of S defined as

S(P ⊆ X) = P ×X .

Since the functor S is finitary and has a free monad T , we can prove compatibility of Ctx ` using
Theorem 26. We have to exhibit a natural transformation λ : S(F

〈τ〉 × Id) ⇒ F
〈τ〉
T sitting above λ,

namely, we have to show that for all predicates P ⊆ X, the restriction of λX to S(F
〈τ〉× Id)P corestricts

to F
〈τ〉
TP or, more concretely, that whenever (f, x), (g, y) ∈ S(F

〈τ〉 × Id)P , then λX((f, x), (g, y)) ∈
F
〈τ〉
TP .
Assume that (f, x), (g, y) ∈ S(F

〈τ〉 × Id)P . Then, by definition of S we have f ∈ F
〈τ〉
P , so by

definition of F
〈τ〉

there exists x′ ∈ f(τ) such that x′ ∈ P . By the definition of λX in (9), (x′, y) ∈
λX((f, x), (g, y))(τ) and, since x′ ∈ P , we have (x′, y) ∈ SP . By definition of F

〈τ〉
, λX((f, x), (g, y)) ∈

F
〈τ〉
SP . Since T is the free monad of S, we have a natural transformation S ⇒ T and thus λX((f, x), (g, y)) ∈

F
〈τ〉
TP .
This proves that

∐
α] ◦ T is (F

〈τ〉 × Id)〈ξ,id〉-compatible. By Lemma 27, it is F
〈τ〉
ξ × Id-compatible.

For Bhv , we note that F
〈τ〉

is defined exactly as in coalgebraic modal logic [17, 22] and thus (F
〈τ〉
, F )

is a fibration map: Theorem 15 applies. By using Proposition 4(i), Bhv is F
〈τ〉
ξ × Id-compatible. By

Proposition 3(i), Bhv ◦
∐
α] ◦ T is F

〈τ〉
ξ × Id-compatible and thus F

〈τ〉
ξ -sound by Proposition 4(iii).

Note that this technique is not yet Bhv ◦ Ctx `. However, by Lemma 29, Ctx ` ⇒
∐
α] ◦ T and thus

Bhv ◦ Ctx ` ⇒ Bhv ◦
∐
α] ◦ T . Thus Bhv ◦ Ctx ` is F

〈τ〉
ξ -sound.
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8.3 Equivalence of nominal automata
All the examples that we have considered so far concern systems that are modeled as coalgebras in the
category Set. With the next example, we exploit the full generality of the theory in Section 6 to obtain
up-to techniques for nominal automata, modeled as coalgebras in the category Nom of nominal sets. By
doing so, we are able to extend bisimulation up to congruence from non-deterministic automata [12] to
non-deterministic nominal automata.

Nominal automata and variants [7] have been considered as a means of studying languages over infinite
alphabets, but also for the operational semantics of process calculi [35]. Nominal sets are sets equipped
with actions of the group of permutations on a countable set A of names, satisfying an additional finite
support condition. We refer the reader to [39] for details. Full details for the fibration and functors
involved in this example are provided in Appendix D.2.

Consider the nominal automaton below. The part reachable from state ∗ corresponds to [8, Exam-
ple I.1].

∗

a

�� a // a

b

�� a // >

a

		

?

a
::

b // a′ b
xx

a
OO

It is important to specify how to read this drawing: the represented nominal automaton has as state
space the orbit-finite nominal set {∗} + {?} + A + A′ + {>}, where A′ is a copy of A. It suffices in this
case to give only one representative of each of the five orbits: we span all the transitions and states of
the automaton by applying all possible finite permutations to those explicitly written. For example, the
transition a

c→ a is obtained from a
b→ a by applying the transposition (b c) to the latter. The only

accepting state is >.
With this semantics in mind, one can see that the state ∗ accepts the language of words in the

alphabet A where some letter appears twice: it reads a word in A, then it nondeterministically guesses
that the next letter will appear a second time and verifies that this is indeed the case. The state ?
accepts the same language, in a different way: it reads a first letter, then guesses if this letter will be
read again, or, if a distinct letter—nondeterministically chosen—will appear twice.

Formally, nominal automata are FPω-coalgebras 〈o, t〉 where F : Nom → Nom is given by FX =
2×XA and the monad Pω is the finitary version of the power object functor in the category of nominal
sets (mapping a nominal set to its finitely-supported orbit-finite subsets). In our example, for a ∈ A,
o(a) = 0 and t(a) is the following map:

t(a) =

{
b 7→ {a} b 6= a
a 7→ {>}

By the generalised powerset construction [47], 〈o, t〉 induces a deterministic nominal automaton, which
is a bialgebra on Pω(X) with the algebraic structure given by union. To prove that ∗ and ? accept the
same language, we should play the bisimulation game in the determinisation of the automaton. However,
the latter has infinitely many orbits and a rather complicated structure. A bisimulation constructed like
this will thus have infinitely many orbits. Instead, we can show that the orbit-finite relation spanned by
the four pairs

({∗}, {?}), ({a}, {a, a′}), ({>}, {a,>}), ({∗},A′)

is a bisimulation up to congruence (w.r.t. union).
The soundness of this technique is established in Appendix D.2 using the fibration Rel(Nom) →

Nom of equivariant relations. We derive the compatibility of contextual closure using Theorem 21, and
compatibility of the transitive, symmetric, and reflexive closures using Proposition 17. Compatibility of
congruence closure follows from Proposition 3(i).

9 The Problem with Weak Bisimulation
Weak bisimilarity is a behavioural equivalence which is coarser than (strong) bisimilarity, and which is
quite important in practice. This notion of equivalence allows one to abstract over internal transitions,
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labeled with the special action τ . When the player proposes a transition a→, the opponent must answer
with a saturated transition a⇒, which is roughly a transition a→ possibly combined with internal actions
τ→.

Formally, a weak bisimulation is a relation R ⊆ X2 such that for every pair (x, y) ∈ R: (1) if x a−→ x′

then y a⇒ y′ for some y′ with (x′, y′) ∈ R and (2) if y a−→ y′ then x a⇒ x′ for some x′ with (x′, y′) ∈ R.
Here ⇒ is defined by the following rules.

x
a→ y

x
a⇒ y x

τ⇒ x

x
τ⇒ y y

a⇒ z

x
a⇒ z

x
a⇒ y y

τ⇒ z

x
a⇒ z

(13)

Hereafter, we will model labeled transition systems as colagebras for the countable powerset functor
F = (Pc−)L, since the saturation of a finitely branching system may be countably branching. To use
the framework developed so far, the first step consists in providing a functor on RelX whose coalgebras
are the weak bisimulations. To this end, we use the functor F × F ξ : RelX → RelX , where ξ = 〈→,⇒
〉 : X → FX×FX is the pairing of the strong transition system→ and its saturation⇒, and the functor
F × F is the lifting of F × F to Rel given for a relation R by

(f, g) F × F (R) (f ′, g′) iff ∀a ∈ L.∀x ∈ f(a). ∃y ∈ g′(a).x R y
∀a ∈ L.∀x ∈ f ′(a). ∃y ∈ g(a).x R y

(14)

In Appendix E, we show that (F × F , F ) is a fibration map (Lemma 65), so that by Theorem 15 we
obtain the following.

Corollary 30. Bhv is F × F ξ-compatible.

For ξ = 〈→,⇒〉, behavioural equivalence is simply strong bisimilarity. Consequently, Corollary 30
actually gives the compatibility of weak bisimulation up to strong bisimilarity [41]. One could wish to
use up to Slf or up to Trn for weak bisimulations. However, the condition (∗∗∗) from Section 6.2 fails,
and indeed, weak bisimulations up to weak bisimilarity or up to transitivity are not sound [41].

The case of up-to context is much more delicate: up-to parallel composition is compatible with respect
to weak bisimulation [41] but this cannot be proved inside the theory developed so far. Indeed, already
for the simple case of parallel composition in CCS, the saturated transition system ⇒ is not a model for
the GSOS specification.

Example 31. Recall from Example 23, the parallel operator of CCS and the corresponding abstract
GSOS specification λ : S(F × Id) ⇒ FT for S = Id × Id and F = (Pc−)L. For every set X, λX maps
(f, x, g, y) ∈ (PcX)L ×X × (PcX)L ×X to the function

µ 7→


{(x′, y) | x′ ∈ f(µ)} ∪ {(x, y′) | y′ ∈ g(µ)} µ 6= τ

{(x′, y) | x′ ∈ f(τ)} ∪ {(x, y′) | y′ ∈ g(τ)}
∪ {(x′, y′) | ∃a. x′ ∈ f(a), y′ ∈ g(a)}

µ = τ

As we already discussed in Example 23, the following diagram commutes

SX
α //

S〈ψ,id〉
��

X
ψ
// FX

S(FX ×X)
λX

// FTX

Fα]

OO

when X is the set of CCS processes, ψ : X → (PcX)L the LTS generated by the standard semantics of
CCS, and α : X ×X → X the parallel composition operator.

On the contrary, if we take ψ to be the saturation of the standard CCS semantics, the above diagram
does not commute anymore: take the pairs of CCS processes (a.b.0, a.b.0) ∈ SX. Following the topmost
line, one first maps it to a.b.0|a.b.0 and then to the set of saturated transitions of the latter process
which, for instance, contains τ⇒ 0|0. Following the other path in the diagram one obtains first the tuple
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(((a 7→ {b.0}), a.b.0), ((a 7→ {b.0}), a.b.0)) where µ 7→ S denotes the function assigning to the action µ
the set S and to all the others actions the empty set. This tuple is mapped by λX to the function

a 7→ {(b.0, a.b.0)} a 7→ {(a.b.0, b.0)} τ 7→ {(b.0, b.0)}

and then by Fα] to
a 7→ {b.0|a.b.0} a 7→ {a.b.0|b.0} τ 7→ {b.0|b.0}

Observe that with τ , one cannot reach the state 0|0.

Intuitively, a bialgebra requires that all and only the transitions of a composite system can be derived
by transitions of its components. Instead a composite system may perform more weak transitions than
those derived from the transitions of its components (e.g., in the example above, a.b|a.b τ⇒ 0|0 while such
a transition cannot be derived using the GSOS specification of parallel composition).

The converse implication holds, however, and these systems give rise to so-called lax bialgebras. This
is the key observation that leads to the theory we propose in the following sections:

(a) we explain how to move to lax bialgebras in an ordered setting and we adapt accordingly the proof
of compatibility of the contextual closure (Section 10);

(b) we prove that up-to context is compatible for lax models of positive [1] GSOS specifications (Sec-
tion 11); and,

(c) as an application, we obtain soundness of up-to context for weak bisimulations of systems specified
by the cool rule format from [55] (Section 12).

For the sake of simplicity, we only generalise the results from Section 6.3 for the specific case of the
relation fibration. We leave for future work a full (2-categorical) generalisation.

10 Ordered Setting
In the first part of this paper, we have seen how to prove soundness of up-to techniques of different sorts
of binary predicates by lifting functors and distributive laws along p : Rel → Set. Now we extend those
results to an ordered setting. The first step (Section 10.1) consists in replacing the base category Set with
Pre, the category of preorders. (An object in Pre is a set equipped with a preorder, that is, a reflexive
and transitive relation; morphisms are monotone maps.) Accordingly, we move from the category Rel
of relations to its subcategory Rel↑ of up-closed relations (Section 10.2). We finally obtain the ordered
counterpart to Theorem 21, using the notion of lax bialgebra (Section 10.3, Theorem 45).

10.1 Lifting functors from sets to preorders
We first explain how to lift functors and distributive laws from Set to Pre. Extensions of Set-functors
to preorders or posets have been studied via relators as in [25, 53] and using presentations of functors
and (enriched) Kan extensions [2, 3]. We are interested in extending not only functors, but also natural
transformations to an ordered setting. In order to do so, we exploit the notion of lax relation lifting
from [25] which is closely related to the canonical relation lifting introduced in the first part of this paper.

For a weak pullback preserving Set-endofunctor T we can consider its canonical relation lifting
Rel(T ) : Rel → Rel. Then, using the following well-known result, we obtain an extension of T to Pre,
hereafter called the canonical Pre-lifting of T and denoted by Pre(T ).

Lemma 32. If T preserves weak pullbacks, then Rel(T ) restricts to a functor Pre(T ) on Pre.

However, sometimes we are interested in liftings of functors to Pre that are not restrictions of the
canonical relation lifting. One such example is the lifting of the LTS functor (Pc−)L to Pre that maps
a preordered set (X,≤) to ((PcX)L,v), where v is given by

f v g iff ∀a ∈ L : if x ∈ f(a) then there is y ∈ g(a) such that x ≤ y . (15)
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This lifting is also a restriction to Pre of a relation lifting for (Pc−)L, albeit not the canonical one,
but the lax relation lifting, as defined in [25]. To describe it, recall from [25] that a Set-functor F is
called ordered when it factors through a functor F⊆ : Set→ Pre.

Pre

��

Set
F
//

F⊆
<<

Set

(16)

We denote by ⊆FX the order on FX given by F⊆(X). The lax relation lifting of F is the functor
Rel⊆(F ) : Rel→ Rel defined on a relation R ∈ RelX by

Rel⊆(F )(R) = ⊆FX ⊗ Rel(F )(R)⊗⊆FX , (17)

where ⊗ denotes composition of relations. In [25, Lemma 5.5] it is shown that Rel⊆(F ) restricts to a
functor Pre⊆(F ) on Pre, if the order ⊆FX is stable, namely if (Rel⊆(F ), F ) is a fibration map [25]. This
property is duly satisfied by all the ordered functors considered in this paper. We call the restriction of
Rel⊆(F ) to Pre the lax Pre-lifting of F and denote it by Pre⊆(F ).

Example 33. The LTS functor (Pc−)L has a stable order ⊆(PcX)L given by pointwise inclusion. The
lax Pre-lifting of (Pc−)L with respect to this order coincides with the lifting described above in (15).
(See [25] for more details.)

Example 34. For weighted automata on a semiring S equipped with a partial order ≤, the functor
FX = S ×XA is ordered with ⊆FX defined as (p, φ) ⊆FX (q, ψ) iff p ≤ q and φ = ψ. It is immediate
to see that Rel⊆(F ) coincides with the lifting F defined in Section 8.1. Moreover, when S is the boolean
semiring 2 and ≤ is the trivial ordering 0 ≤ 1, the functor Rel⊆(F ) is the lifting F defined in Example 13
modeling simulations on deterministic automata.

We now show how to lift a natural transformation ρ : F ⇒ G between Set-functors to a natural
transformation % : F ⇒ G between Pre-functors. If F and G preserve weak pullbacks and F and G
are the canonical Pre-liftings Pre(F ) and Pre(G), then % is obtained via the restriction of the natural
transformation Rel(ρ) between the corresponding canonical relation liftings (Rel(−) is functorial, see [27]).
The situation is slightly more complex for non-canonical liftings, such as the lax lifting of the LTS functor.
In this case we can use Lemma 36 below whenever ρ enjoys the following monotonicity property.

Definition 35. Let F,G : Set→ Set be ordered functors that respectively factor through F⊆, G⊆ : Set→
Pre. We say that a natural transformation ρ : F ⇒ G is monotone if it lifts to a natural transformation
% : F⊆ ⇒ G⊆ defined by %X = ρX .

Spelling out Definition 35 we obtain that ρ is monotone iff for every t, u ∈ FX:

t ⊆FX u implies ρ(t) ⊆GX ρ(u)

where ⊆FX and ⊆GX denote the orders on FX and GX given by F⊆ and G⊆ respectively.

Lemma 36. Let F,G : Set → Set be ordered functors with orders respectively given by F⊆, G⊆ : Set →
Pre, and assume ρ : F ⇒ G is a monotone natural transformation. Then ρ lifts to a natural transfor-
mation ρ : Rel⊆(F ) ⇒ Rel⊆(G). Furthermore, if the lax relation liftings of F and G restrict to Pre-
endofunctors Pre⊆(F ) and Pre⊆(G) then ρ lifts to a natural transformation % : Pre⊆(F )⇒ Pre⊆(G).

Proof. Notice that Rel⊆(F ) can be decomposed using relation liftings of F :

Rel⊆(F ) = ⊆F ⊗ Rel(F )⊗⊆F (18)

⊗ is relational composition, Rel(F ) is the canonical lifting and ⊆F is the constant relation lifting of F
that maps any relation R on a set X to the constant relation ⊆FX on the set FX. The analogue of (18)
holds for the lax relation lifting Rel⊆(G) of G.
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The monotonicity condition in Definition 35 boils down to the fact that ρ can be lifted to a natural
transformation ρ1 : ⊆F ⇒ ⊆G, given for any R ∈ RelX by ρ1R := ρX . This is indeed well defined, since
the relation ⊆FX on FX is contained in (ρX × ρX)−1(⊆GX).

We also have a canonical lifting Rel(ρ) : Rel(F ) ⇒ Rel(G). We combine ρ1 and Rel(ρ) to obtain the
desired ρ = ρ1 ⊗ Rel(ρ)⊗ ρ1.

For the second part of the lemma, since Pre⊆(F ) and Pre⊆(G) are the restrictions to Pre of Rel⊆(F )
and Rel⊆(G) respectively, we obtain % as the restriction of ρ above.

Lemma 37. Suppose F : Set → Set has a stable order given by a factorisation through F⊆ : Set → Pre
and let G : Set→ Set be a weak pullback preserving functor. Then the Set-functors F × Id, GF and FG
have stable orders given by:

Pre

��

Set
F×Id

//

F⊆×D
??

Set

Pre

��

Pre

Pre(G) 77

Set
GF

//

F⊆ 77

Set

Pre

��

Set

F⊆ 77

Set
FG

//

G 88

Set

(19)

where D : Set → Pre is the functor assigning to a set the discrete order (Remark 39) and Pre(G) is the
canonical Pre-lifting of G. Moreover, the lax relation and Pre-liftings of these ordered functors satisfy:

Rel⊆(F × Id) = Rel⊆(F )× Id Pre⊆(F × Id) = Pre⊆(F )× Id
Rel⊆(GF ) = Rel(G)Rel⊆(F ) Pre⊆(GF ) = Pre(G)Pre⊆(F )
Rel⊆(FG) = Rel⊆(F )Rel(G) Pre⊆(FG) = Pre⊆(F )Pre(G)

(20)

10.2 Relation liftings for Pre-endofunctors
In the previous section we have seen how to extend Set functors, such as those involved in GSOS
specifications, to preorders. To reason about relation liftings in this setting we ought to consider a
category of relations with a forgetful functor to Pre. On a preorder (X,≤) we consider relations that are
up-closed with respect to ≤, as defined next.

Definition 38. Given a preorder (X,≤) we define an up-closed relation on X as a relation R ⊆ X2 such
that for every x′, x, y, y′ ∈ X with x ≤ x′, y ≤ y′ and x R y we have that x′ R y′. A morphism between
up-closed relations R and S on (X,≤), respectively (Y,≤), is a monotone map f : (X,≤)→ (Y,≤) such
that R ⊆ (f × f)−1(S).

We denote by Rel↑ the category of up-closed relations. We have an obvious forgetful functor þ : Rel↑ →
Pre mapping every up-closed relation to its underlying preorder. For each preorder (X,≤) we denote
by Rel↑X the subcategory of Rel↑ whose objects are mapped by þ to (X,≤) and morphisms are mapped
by þ to the identity on (X,≤). Notice that Rel↑X is a category, with morphisms given by inclusions of
relations, hence, a preorder.

For a monotone map f : (X,≤) → (Y,≤) in Pre, we have the following situation in Rel↑, similar to
the situation described for Rel in Section 4:

Rel↑ Rel↑X Rel↑Y

Pre (X,≤) (Y,≤)

þ

∐
f

⊥

f∗

f

Here, the reindexing functor f∗ is given by inverse image, i.e., f∗(S) = (f × f)−1(S) for all S ∈ Rel↑Y
while the direct image functor

∐
f is defined on a up-closed relation R ∈ Rel↑X as the least up-closed

relation containing the image of R along f ×f . Just as in the case of Rel, the functor
∐
f is a left adjoint

of f∗, and þ : Rel↑ → Pre is a bifibration. Observe that if the preorder on Y is discrete, then
∐
f is given

simply by direct image.
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Remark 39. For every discrete preorder (X,∆X), any relation on X is automatically up-closed. We
can reformulate this in a conceptual way, using that the forgetful functor U : Pre→ Set has a left adjoint
D : Set→ Pre mapping a set X to the discrete preorder (X,∆X). Then the adjunction D a U lifts to an
adjunction D a U : Rel↑ → Rel.

The category Pre has an enriched structure, in the sense that the homsets are equipped with a
preorder themselves. Given morphisms f, g : (X,≤) → (Y,≤) we say that f ≤ g iff f(x) ≤Y g(x) for
every x ∈ X. This preorder is preserved by the reindexing functors:

Lemma 40. For any Pre-morphisms f, g : (X,≤) → (Y,≤) such that f ≤ g, there exists a (unique)
natural transformation f∗ ⇒ g∗.

We now show how to port liftings of functors from Rel and Pre to Rel↑.

Lemma 41. For any weak pullback preserving Set-functor T , the canonical Pre-lifting Pre(T ) has a
lifting Pre(T ) to Rel↑ acting on a relation as the canonical relation lifting Rel(T ).

Some of the liftings used in Section 12 to describe weak bisimulations are neither canonical, nor lax
relation liftings. In Equation (14) we saw how to obtain the weak bisimulation game via a relation lifting
F × F of the functor F ×F with FX = (PcX)L. The next example gives a lifting of F ×F to Pre, such
that the relation lifting (14) restricts to up-closed relations, thus yielding a functor on Rel↑ for the weak
bisimulation game.

Example 42. For F = (Pc−)L we consider the Pre-endofunctor Pre(F ) × Pre⊆(F ), where Pre(F ) is
the canonical Pre-lifting of F and Pre⊆(F ) is the lax Pre-lifting of Example 33. In Appendix F, we show
that for any preorder (X,≤) and R ∈ Rel↑(X,≤) we have that F × F (R) as defined in (14) is an up-closed
relation on Pre(F )(X,≤)× Pre⊆(F )(X,≤).

Thus we obtain a lifting Pre(F )× Pre⊆(F ) of Pre(F )×Pre⊆(F ) to Rel↑ such that U Pre(F )× Pre⊆(F ) =
(F × F ) U .

Now let us consider a labeled transition system ξ1 : X → FX and its saturation ξ2 : X → FX, seen as
F -coalgebras. The coalgebras ξ1 and ξ2 can be lifted to coalgebras ξ̃1 : DX → Pre(F )(DX), respectively
ξ̃2 : DX → Pre⊆(F )(DX). The maps ξ̃1 and ξ̃2 are defined just as ξ1, respectively ξ2, and are clearly
monotone since they are carried by the discrete preorder DX. 2 We show next that coalgebras for
Pre(F )× Pre⊆(F )〈ξ̃1,ξ̃2〉 correspond to weak bisimulations. We have the next commuting diagram

Rel↑DX
Pre(F )×Pre⊆(F )

//

U

��

∼=
��

Rel↑Pre(F )×Pre⊆(F )(DX)

U

��

〈ξ̃1,ξ̃2〉∗
// Rel↑DX

U

��

∼=
��

RelX
F×F

// RelFX×FX
〈ξ1,ξ2〉∗

// RelX

Indeed, up-closed relations on the discrete preorder DX are just relations on X, and the functors
Pre(F )× Pre⊆(F ) and 〈ξ̃1, ξ̃2〉∗ are concretely defined just as F × F , respectively 〈ξ1, ξ2〉∗. Hence, for a
relation R on a set X we have that

Pre(F )× Pre⊆(F )〈ξ̃1,ξ̃2〉(R) = F × F 〈ξ1,ξ2〉(R).

In Section 9 we have seen that invariants for F × F 〈ξ1,ξ2〉 are exactly weak bisimulations. By abuse of
notation, hereafter we will denote the coalgebras ξ̃1 and ξ̃2 simply by ξ1 and ξ2.

In Theorem 51 we will need liftings of natural transformations to Rel↑. We show next how to obtain
them leveraging existing liftings to Rel and Pre introduced in Sections 4 and 10.1.

2Notice that the functor D : Set → Pre can be lifted to functors Coalg(F ) → Coalg(Pre(F )), respectively Coalg(F ) →
Coalg(Pre⊆(F )). The colagebras ξ̃1 and ξ̃2 are formally obtained by applying these lifted functors to ξ1, respectively ξ2.
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Lemma 43. Consider Set-functors F, T with respective liftings F , T on Rel; F , T on Pre. Assume that
F and T lift to F and T on Rel↑, such that UT = TU and UF = FU , as in the diagram

Rel↑

��

U //F,T 88 Rel

��

F,Tff

Pre
U
//F,T

88 Set F,T
ff

Assume further that we have a natural transformation ρ : TF ⇒ FT that lifts to both % : T F ⇒
FT and ρ : TF ⇒ FT . Then % also lifts to a natural transformation % : T F ⇒ FT .

In the sequel, we use notations for liftings as in the above lemma: for a functor F , we denote
by calligraphic F a lifting along Pre → Set and by F a lifting of F along Rel↑ → Pre; for natural
transformations, we use % for a lifting of ρ to Pre and % for a lifting of % to Rel↑.

10.3 Lax bialgebras and compatibility of contextual closure
As explained in Section 9, we moved to an order enriched setting because we want to reason about
systems for which the saturated transition system forms a lax bialgebra.

Definition 44. Given T ,F : Pre → Pre such that there is a distributive law % : T F ⇒ FT , a lax
bialgebra for % consists of a preorder X, an algebra α : T X → X and a coalgebra ξ : X → FX such that
we have the next lax diagram, with ≤ denoting the preorder on FT X.

T X α //

T ξ
��

X
ξ
//

≥

FX

T FX
%X

// FT X

Fα

OO

In this setting, the contextual closure of an up-closed relation is defined by the functor

Ctx ,
∐
α ◦ Pre(T )X : Rel↑X → Rel↑X

where Pre(T ) is the lifting of Pre(T ) to Rel↑ that, by Lemma 41, exists whenever T preserves weak-
pullbacks. For any Pre-functor F and lifting F , we can prove Fξ-compatibility of up-to Ctx using the
following result which extends Theorem 21 to a lax setting.

Theorem 45. Let T ,F be Pre-endofunctors with liftings T ,F to Rel↑. Assume that % : T F ⇒ FT is a
natural transformation such that there exists a lifting % : T F ⇒ FT of %. If (X,α, ξ) is a lax %-bialgebra,
then the functor

∐
α ◦ T is Fξ-compatible.

Proof. A careful analysis of the proof of Theorem 21 shows that we only used the bialgebra hypothesis
in proving the existence of a natural transformation (c) in Figure 2. Once we show the existence of such
a natural transformation (c), the rest of the proof is essentially the same as that of Theorem 21. It turns
out that having a lax bialgebra rather than a bialgebra suffices.

To obtain the natural transformation (c), we first exhibit a natural transformation

(T ξ)∗ ◦ %∗X ◦ (Fα)∗ ⇒ α∗ ◦ ξ∗ (21)

This is obtained using the lax bialgebra condition and Lemma 40. We obtain (c) by composing (21) with
the units and counits of the adjunctions of the form

∐
− a (−)∗:∐

α(T ξ)∗ ⇒
∐
α(T ξ)∗%∗X

∐
%X
⇒
∐
α(T ξ)∗%∗X(Fα)∗

∐
Fα
∐
%X
⇒

⇒
∐
αα
∗ ◦ ξ∗

∐
Fα
∐
%X
⇒ ξ∗

∐
Fα
∐
%X
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Rel↑X Rel↑FX Rel↑X

Rel↑TX Rel↑FTX Rel↑T FX Rel↑TX

Rel↑FTX

Rel↑X Rel↑FX Rel↑X

⇓
(d)

⇓
(b)

⇓
(a)

⇓
(e)

⇓
(c)

F

F

F

T T T

ξ∗

ξ∗

%∗X (T ξ)∗

∐
α ∐

Fα

∐
%X ∐

α

Figure 2: Compatibility of contextual closure for lax bialgebras

11 Monotone GSOS
In this section we describe how to obtain a distributive law in Pre and a lax bialgebra from an abstract
GSOS specification in Set and a lax model for it. The key property is monotonicity (Definition 35) of
the abstract GSOS specification.

Let λ : S(F × Id)⇒ FT be an abstract GSOS specification. Suppose F has a stable order given by a
factorisation through F⊆ : Set→ Pre and let ⊆FX denote the induced order on FX. By Lemma 37, the
functors F × Id, S(F × Id) and FT have stable orders given by:

Pre

��

Set
F×Id

//

F⊆×D
??

Set

Pre

��

Pre

Pre(S) 77

Set
S(F×Id)

//

F⊆×D 77

Set

Pre

��

Set

F⊆ 77

Set
FT

//

T 77

Set

(22)

where D : Set→ Pre is the functor assigning to a set the discrete order (Remark 39). As a consequence of
the second part of Lemma 37, the lax Pre-liftings of the functors F × Id, S(F × Id) and FT with respect
to the orders in (22) are respectively given by Pre⊆(F )× Id, Pre(S)(Pre⊆(F )× Id), and Pre⊆(F )Pre(T ).

If the GSOS specification λ is monotone with respect to the orders in (22) (recall Definition 35) then,
by Lemma 36, λ lifts to λ̇ : Pre(S)(Pre⊆(F )× Id)⇒ Pre⊆(F )Pre(T ).

If S is a polynomial functor representing a signature, then λ is monotone if and only if for any
operator σ (of arity n) we have

b1 ⊆FX c1 . . . bn ⊆FX cn
λX(σ(b,x)) ⊆FTX λX(σ(c,x))

(23)

where b,x = (b1, x1), . . . , (bn, xn) with xi ∈ X and similarly for c,x. When F = (Pc−)L with the
pointwise inclusion order ⊆(PcX)L from Example 33, then condition (23) corresponds to the positive
GSOS format [20] which, as expected, is GSOS without negative premises.

Example 46. In Example 24, we have shown that Brzozowski derivatives (defined in Section 2.2) form
an abstract GSOS specification λ. This is not monotone with respect to the order defined in Example 34:
(p, ϕ) ⊆FX (q, ψ) iff p ≤ q and ϕ = ψ for all p, q ∈ 2 and ϕ,ψ ∈ XA. Indeed, one can easily check that
(23) fails by taking (0, ϕ) ⊆FX (1, ϕ), (p, ψ) ⊆FX (p, ψ) and observing that

λ
(·)
X ((0, ϕ, x), (p, ψ, y)) 6⊆FTX λ

(·)
X ((1, ϕ, x), (p, ψ, y))

since λ(·)X ((0, ϕ, x), (p, ψ, y)) = (0, a 7→ ϕ(a) · y + 0 · ψ(a)) and λ(·)X ((1, ϕ, x), (p, ψ, y)) = (p, a 7→ ϕ(a) · y +
1 ·ψ(a)), and ϕ(a) ·y+ 0 ·ψ(a) is in general different from ϕ(a) ·y+ 1 ·ψ(a) (for instance when X = RE,
these are two syntactically different regular expressions).
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We can however turn the Brzozowski specification into a monotone one, by extending the syntax of
regular expressions. We add an extra unary operator õ with the rules

e↓
õ(e)↓

−
õ(e)

a→ 0

and we replace the rule for · with the following one.

e
a→ e′ f

a→ f ′

e · f a→ e′ · f + õ(e) · f ′

One can easily check that this construction leads to a novel abstract GSOS specification - call it λ′ - which
is monotone. In particular, the previous counterexample is neutralised since λ′(·)X ((0, ϕ, x), (p, ψ, y)) =

(0, a 7→ ϕ(a) · y + õ(x) · ψ(a)) and λ′(·)X ((1, ϕ, x), (p, ψ, y)) = (p, a 7→ ϕ(a) · y + õ(x) · ψ(a)).
It is easy to see that this tiny modification does not change the semantics of regular expressions: for

instance, in the simulation up-to shown in Section 2.3 one has simply to replace o(e) with õ(e) to obtain
valid proofs. In Example 57, we will prove that, for regular expressions, simulation up to Ctx is sound,
by relying on the monotonicity of λ′. To this end, it is essential to observe that the set of extended regular
expressions RE′ carries a model (RE′, α′, ξ′) for λ′.

Lemma 47. A monotone GSOS specification induces a distributive law ρ : T (F × Id)⇒ (F × Id)T that
lifts to a distributive law % : Rel(T )(Rel⊆(F ) × Id) ⇒ (Rel⊆(F ) × Id)Rel(T ), which in turn restricts to a
distributive law % : Pre(T )(Pre⊆(F )× Id)⇒ (Pre⊆(F )× Id)Pre(T ).

Proof. A GSOS specification λ induces a distributive law ρ : T (F × Id)⇒ (F × Id)T . Using Lemmas 36
and 37 we obtain that if λ is monotone wrt the orders of (22) then it extends to a natural transformation

λ̇ : Rel(S)(Rel⊆(F )× Id)⇒ Rel⊆(F )Rel(T )

Hence λ̇ generates a distributive law

% : Rel(T )(Rel⊆(F )× Id)⇒ (Rel⊆(F )× Id)Rel(T )

in the usual way, using the fact that Rel(T ) = Rel(S)∗, see Lemma 67. Again by Lemma 67, if the functor
Rel(S) restricts to preorders, so does Rel(T ) and we obtain a lifting of ρ

% : Pre(T )(Pre⊆(F )× Id)⇒ (Pre⊆(F )× Id)Pre(T )

The following notion is the key to prove compatibility of Ctx with respect to weak bisimulation.

Definition 48. Let λ : S(F × Id)⇒ FT be a monotone abstract GSOS specification. A lax model for λ
is a triple (X,α, ξ) such that the next diagram is lax w.r.t. the order ⊆FX .

SX
α //

S〈ξ,id〉
��

X
ξ
//

≥

FX

S(FX ×X)
λX

// FTX

Fα]

OO

(24)

Example 49. Consider the GSOS specification λ given in Example 23. Since in the corresponding rules
there are no negative premises, it conforms to condition (23), namely it is a positive GSOS specification.
Lemma 47 ensures that we have a distributive law % : Pre(T )(Pre⊆(F )× Id)⇒ (Pre⊆(F )× Id)Pre(T ).

Recall that ξ2 is the saturation of the standard semantics of CCS and that (X,α, ξ2) is not a model
for λ, since not all the weak transitions of a composite process p|q can be deduced by the ones of the
components p and q. However, (X,α, ξ2) is a lax model. Intuitively, the fact that the inequality (24)
holds means that only the weak transitions of p|q can be deduced by those of p and q, i.e., p|q contains
all the weak transitions that can be deduced from those of p and q and the rules for parallel composition.
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By unfolding the definitions of α and ⊆(PcX)L , (24) is equivalent to:

Fα] ◦ λX(ξ2(p), p, ξ2(q), q)(µ) ⊆ ξ2(p|q)(µ)

for all CCS processes p, q and actions µ ∈ L. When µ = τ (the others cases are simpler) this is equivalent
to:

{p′|q | p τ⇒ p′} ∪ {p|q′ | q τ⇒ q′} ∪ {p′|q′ | p a⇒ p′, q
a⇒ q′} ⊆ {r | p|q τ⇒ r} (25)

which holds by simple calculations. Notice that (25) means exactly that the weak transition system should
be closed w.r.t. the rules of the GSOS specification: whenever ⇒ satisfies the premises of a rule, then it
should also satisfy its consequences.

For a non-example, consider the GSOS rules for the non-deterministic choice of CCS.

p
µ→ p′

p+ q
µ→ p′

q
µ→ q′

p+ q
µ→ q′

This specification is also positive, but the saturated transition system ξ2 is not a lax model. Intuitively,
not only the weak transitions of p + q can be deduced by the weak transitions of p and q: indeed from
p
τ⇒ p one can infer that p+ q

τ⇒ p which is not a transition of p+ q.

The inclusion (25) in the previous example suggests a more concrete characterisation for the validity
of (24): every transition that can be derived by instantiating a GSOS rule to the transitions in ξ should
be already present in ξ, namely, the transition structure is closed under the application of GSOS rules.
In contrast to (strict) models (see (8)), in a lax model the converse does not hold: not all the transitions
are derivable from the GSOS rules.

Lax models for a monotone GSOS specification λ induce lax bialgebras for the distributive law %
obtained as in Lemma 47.

Lemma 50. Let (X,α, ξ) be a lax model for a monotone specification λ : S(F × Id) ⇒ FT . Then we
have a lax bialgebra in Pre for the induced distributive law % carried by (X,∆X), i.e., the set X with
the discrete order, with the algebra map given by α] : Pre(T )X → X and the coalgebra map given by
〈ξ, id〉 : X → Pre⊆(F )X ×X.

12 Weak Bisimulation Done Right
We put together the results of Sections 10 and 11 to an abstract account of up-to context for weak
bisimulation: if the saturation of a model of a positive GSOS specification is a lax model, then up-to
context is compatible for weak bisimulation.

Theorem 51. Let λ : S(F × Id) ⇒ FT be a positive GSOS specification. Let ξ2 be the saturation of
an LTS ξ1. If (X,α, ξ1) and (X,α, ξ2) are, respectively, a model and a lax model for λ, then Ctx is
(Pre(F )× Pre⊆(F )× Id)〈ξ1,ξ2,id〉-compatible.

Proof. We apply Theorem 45. To this end we have to provide the following ingredients:

(a) a distributive law % between Pre-endofunctors;

(b) a lax bialgebra for %;

(c) a lifting % of % between Rel↑-liftings of the aforementioned functors.

We will explain each step in turn.

1. From a monotone λ : S(F × Id) ⇒ FT we first obtain a natural transformation λ̃ : S(F × F ×
Id) ⇒ (F × F )T by pairing the natural transformations λ ◦ S〈π1, π3〉 : S(F × F × Id) ⇒ FT and
λ◦S〈π2, π3〉 : S(F×F×Id)⇒ FT . Let G : Set→ Set denote the functor F×F×Id. From the GSOS
specification λ̃ we obtain a distributive law ρ : TG ⇒ GT in Set. Since λ is monotone w.r.t. the
order given by F⊆, we have that λ̃ can be seen as a monotone abstract GSOS specification for the
functor F ×F with the order ∆FX× ⊆FX on FX×FX given by the product of the discrete order
and the one obtained from F⊆. We consider the Pre-lifting G of G defined as G = Pre⊆(F ×F )× Id
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where Pre⊆(F × F ) is the lax Pre-lifting of F × F w.r.t. the order given above.3 By Lemma 47 we
get a lifting % : Pre(T )G → GPre(T ) of ρ, with Pre(T ) the canonical Pre-lifting of T .

2. Since (X,α, ξ1) and (X,α, ξ2) are, respectively, a model and a lax model for λ, we have

SX
α //

S〈ξ1,id〉
��

X
ξ1 // FX

S(FX ×X)
λX

// FTX

Fα]

OO SX
α //

S〈ξ2,id〉
��

X
ξ2 //

≥

FX

S(FX ×X)
λX

// FTX

Fα]

OO

Notice that the left model is strict, yet we can also see it as a lax model for the discrete order on
F . Hence we can pair the two coalgebra structures to obtain a lax model

SX
α //

S〈ξ1,ξ2,id〉
��

X
〈ξ1,ξ2〉

//

≥

FX × FX

S(FX × FX ×X)
λ̃X

// (F × F )TX

Fα]×Fα]
OO

(26)

for the monotone GSOS specification λ̃ considered above. We apply Lemma 50 for the lax model
in (26) to obtain a lax bialgebra as in the next diagram with the carrier (X,∆X).

Pre(T )X
α] //

Pre(T )〈ξ1,ξ2,id〉
��

X
〈ξ1,ξ2,id〉

//

≥

GX

Pre(T )GX
%X

// GPre(T )X

Gα]
OO

3. We consider the Rel↑ lifting Pre(T ) of Pre(T ) obtained using Lemma 41 and the Rel↑ lifting G of
G obtained from Example 42. Using Proposition 68 in Appendix H we know that the distributive
law ρ lifts to a distributive law ρ : TG ⇒ GT in Rel. To obtain the lifting of % to Rel↑ we apply
Lemma 43 for the liftings T , G, Pre(T ) and G and the liftings ρ and % of ρ to Rel, respectively
Pre.

By Remark 39, since the order on X is discrete, we have that Rel↑X ∼= RelX . Hence the functor Ctx

is indeed the usual predicate transformer for contextual closure and coalgebras for (Pre(F )× Pre⊆(F )×
Id)〈ξ1,ξ2,id〉 correspond to the usual weak bisimulations.

Example 52. Recall from Example 49 that → and ⇒ are, respectively, a model and a lax model for the
positive GSOS specification of Example 23. By Theorem 51, it follows that up-to context (for the parallel
composition of CCS) is compatible for weak bisimulation.

We can apply Theorem 51 to prove analogous results for the other operators of CCS with the exception
of + which is not part of a lax model, see Example 49. More generally, for any process algebra specified
by a positive GSOS, one simply needs to check that the saturated transistion systems is a lax model.
As explained in Section 11, this means that whenever ⇒ satisfies the premises of a rule, it also satisfies
its consequence. By [55, Lemma WB], this holds for all calculi that conform to the so-called simply WB
cool format [5], amongst which it is worth mentioning the fragment of CSP consisting of action prefixing,
internal and external choice, parallel composition, abstraction and the 0 process ([55, Example 1]).

Corollary 53. For a simply WB cool GSOS language, up-to context is a compatible technique for weak
bisimulation.

3Notice that G = Pre(F )× Pre⊆(F )× Id where Pre(F ) and Pre⊆(F ) are the canonical, respectively the lax Pre-liftings
of F w.r.t. the order given by F⊆.
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13 Simulation Up-to
In this section we recall simulations for coalgebras as introduced in [25] and we restrict our attention to
ordered functors as defined in Section 10.1. The lax relation lifting Rel⊆(F ) : Rel → Rel defined in (17)
is used in [25] to give a coalgebraic characterisation of simulations. For a coalgebra ξ : X → FX, the
coalgebras for the endofunctor ξ∗ ◦ Rel⊆(F )X—which we denote by Rel⊆(F )ξ—are called simulations.
The final Rel⊆(F )ξ-coalgebra, when it exists, is called similarity.

For instance, Rel⊆(F )ξ-coalgebras with respect to the order defined in Example 34 are simulations of
deterministic automata and weighted automata, while the final Rel⊆(F )ξ-coalgebra is language inclusion.
Taking instead the order in Example 33 one obtains the standard notions of simulations and similarity
for LTSs. Since these orders are stable, the following result applies.

Proposition 54. If F preserves weak pullbacks and has a stable order, then Bhv , Slf , and Trn are
Rel⊆(F )ξ-compatible.

Proof. Compatibility of Bhv follows from Theorem 15. Compatibility of Trn follows from Corollary 19.
We can apply the latter since for stable ordered functors the lax relation lifting preserves relational
composition by [25, Lemma 5.3], so (∗∗∗) holds for Rel⊆(F ). Similarly, the proof for the compatibility
of Slf relies on Lemma 18.

Proposition 55. If F, T are Set-functors with F stable ordered and (X,α, ξ) is a bialgebra for a mono-
tone ρ : TF ⇒ FT , where the orders on TF and FT are given as in Lemma 37, then the contextual
closure functor Ctx is Rel⊆(F )ξ-compatible.

Proof. By Lemma 36, we obtain a natural transformation ρ : Rel⊆(TF ) ⇒ Rel⊆(FT ) above ρ. Using
Lemma 37 twice, we have that Rel⊆(TF ) = Rel(T )Rel⊆(F ) and Rel⊆(FT ) = Rel⊆(F )Rel(T ), so we
can see ρ as a natural transformation of type ρ : Rel(T )Rel⊆(F ) ⇒ Rel⊆(F )Rel(T ) sitting above ρ. By
Theorem 21, it follows that Ctx =

∐
α ◦ Rel(T ) is Rel⊆(F )ξ-compatible.

A similar result can be obtained when starting with models of monotone abstract GSOS specifications
as defined in Section 11.

Proposition 56. Let λ : S(F × Id) ⇒ FT be a monotone abstract GSOS specification and (X,α, ξ) be
a model for λ. Then Ctx is (Rel⊆(F )× Id)〈ξ,id〉-compatible.

Proof. As explained in Section 7, the model (X,α, ξ) yields the bialgebra (X,α], 〈ξ, id〉) for the induced
distributive law ρ. By Lemma 47 there exists a natural transformation % : Rel(T )(Rel⊆(F ) × Id) ⇒
(Rel⊆(F )× Id)Rel(T ), sitting above ρ. By Theorem 21, it follows that Ctx =

∐
α] ◦Rel(T ) is (Rel⊆(F )×

Id)〈ξ,id〉-compatible.

Example 57. In Section 2.2 we used simulation up to Slf ◦ Ctx to prove Arden’s rule. We can finally
prove the soundness of Slf ◦ Ctx by exploiting the results in this section. To do so, we have to use the
model (RE′, α′, ξ′) of extended regular expressions seen in Example 46, rather than the standard one seen
in Example 24, since the abstract GSOS specification for the former is monotone while the one for the
latter is not.

The proof proceeds as follows. By Proposition 56, Ctx is (Rel⊆(F ) × Id)〈ξ′,id〉-compatible and, by
Lemma 27, it is also (Rel⊆(F )ξ′ × Id)-compatible. By Proposition 54, Slf is Rel⊆(F )ξ′-compatible and,
by Proposition 4(i), it is also (Rel⊆(F )ξ′ × Id)-compatible. Therefore Slf ◦ Ctx is (Rel⊆(F )ξ′ × Id)-
compatible by Proposition 3 and Rel⊆(F )ξ′-sound by Proposition 4(iii).

14 Directions for Future Work
Our nominal automata example leads us to expect that the framework introduced in this paper will lend
itself to obtaining a clean theory of up-to techniques for name-passing process calculi. For instance, we
would like to understand whether the congruence rule format proposed by Fiore and Staton [19] can
fit in our setting: this would provide general conditions under which up-to techniques related to name
substitution are sound in such calculi.
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Another interesting research direction is suggested by the divergence predicate we studied in Sec-
tion 8.2. Other formulas of (coalgebraic) modal logic [17] can be expressed by taking different predicate
liftings, and yield different families of compatible functors. This suggests a connection with the proof
systems in [18, 48]: we can regard proofs in those systems as invariants up to some compatible functors.
By using our framework and the logical distributive laws of [28], we hope to obtain a systematic way to
derive or enhance such proof systems, starting from a given abstract GSOS specification.

We have shown that up-to context is compatible (and thus sound) for weak bisimulation whenever the
strong and the weak transition systems are a model and a lax model for a positive GSOS specification,
as it is the case for calculi adhering to the cool GSOS format [5, 55].

Using our tools, a similar result also holds for dynamic bisimilarity [36]. Indeed one can use the lifting
in (14) with a different saturated transition system that is obtained as in (13) but without the axiom
x

τ⇒ x. Then for all the rules of CCS (including +), whenever this system satisfies the premises, it also
satisfies its consequence, so it is a lax model; hence up-to context is compatible for dynamic bisimulation.

We leave branching bisimilarity [56] and coupled simulation [37] for future work.
Our treatment of up-to techniques for weak bisimulations only covers models based on labelled tran-

sition systems. We leave as future work to integrate in our framework the coalgebraic treatment of weak
bisimilarity, developed for example in [13, 14, 21] for systems modelled as colagebras in an order-enriched
setting. Thus, we expect to extend our results to encompass fully probabilistic and Segala models [49, 50].
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A Proofs for Section 4
Lemma 58. For any functors F,G : Set→ Set, we have Rel(FG) = Rel(F )Rel(G)

Proof. Recall that the canonical relation lifting Rel(G)(R) of a relation i : R ↪→ X ×X is obtained via
the (epi,mono)-factorisation in (27). We assume further that all the monos in the diagrams below are
inclusions.

G(X ×X)

〈Gπ1,Gπ2〉

''

GR
e
// //

Gi

::

Rel(G)(R) �
�

m
// GX ×GX

(27)

Applying F yields the left triangle in the following diagram:

FG(X ×X)

F 〈Gπ1,Gπ2〉

))

〈FGπ1,FGπ2〉

��

FGR
Fe
// //

FGi

88

F (Rel(G)(R))
Fm

//

)) ))

F (GX ×GX)
〈Fπ1,Fπ2〉

// FGX × FGX

Rel(F )(Rel(G)(R))
( �

55

Note that Fe is an epi since Set-functors preserve epimorphisms; this property relies on the axiom of
choice. The lower right triangle is given by definition of Rel(F )(Rel(G)(R)). The upper right triangle
commutes by an easy argument. By definition, Rel(FG)(R) is obtained by an (epi,mono)-factorisation
of 〈FGπ1, FGπ2〉 ◦ FGi. Since the diagram commutes and epis are closed under composition, the lower
path from left to right is such an (epi,mono)-factorisation, hence Rel(FG)(R) = Rel(F )(Rel(G)(R)).

B Proofs for Section 6
The next simple Lemma about liftings in fibrations will be used throughout this appendix, e.g., to prove
Proposition 17, but also Theorem 21.

Lemma 59. Let p : E → B and p′ : E ′ → B be two fibrations and assume T : E → E ′ is the lifting of a
functor T : B → B. Consider a B-morphism f : X → Y . Then there exists a natural transformation:

θ : T ◦ f∗ ⇒ (Tf)∗ ◦ T : EY → E ′TX .

Proof. In order to define θR for some R in EY , we use the universal property of the Cartesian lifting
T̃ fT (R). In a diagram:

T (f∗(R))

(Tf)∗(TR) TR

TX TY

T (f̃R)

T̃ fTR

θR

Tf

(28)

Lemma 60. Let p : E → B be a bifibration and assume F : E → E is the lifting of a functor F : B → B.
Consider a B-morphism f : X → Y . Then there exists a natural transformation:

ρ :
∐
Ff ◦ F ⇒ F ◦

∐
f : EX → EFY .
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Proof. The proof uses the universal property of the opcartesian liftings. Equivalently, from Lemma 59
we have a natural transformation θ : F ◦ f∗ ⇒ (Ff)∗ ◦ F . Then the desired natural transformation is
obtained as the so-called mate of θ:

∐
Ff ◦ F ⇒

∐
Ff ◦ F ◦ f∗ ◦

∐
f

∐
Ffθ

∐
f+3 ∐

Ff ◦ (Ff)∗ ◦ F ◦
∐
f ⇒ F ◦

∐
f

where the left-most and right-most natural transformation are given by, respectively, the unit of
∐
f a f∗

and the counit of
∐
Ff a (Ff)∗.

B.1 Proofs for Section 6.2
In this section we prove Proposition 17.

Lemma 61. Let p : E → B and assume G : E×Bn → E is a lifting of the identity on B. If f : X → Y is
a B-morphism, there is a canonical natural transformation

θ : G(f∗)n ⇒ f∗G : EY → EGX .

Proof. This is an instance of Lemma 59 for T = Id and T = G. We use that the reindexing along a
B-morphism f in E×Bn is (f∗)n, where f∗ is the Cartesian lifting in E . (To see this, one can use the
characterisation of Cartesian morphisms in fibrations obtained by change-of-base and composition, which
are the basic operations used to construct the fibration E×nB → B [26, Lemma 1.7.4].)

Proposition 17. Let F : E → E be a lifting of a B-functor F and G : E×Bn → E be a lifting of the
identity, and suppose that for each X in B there is a natural transformation

γ : GFX ◦ (FX)n ⇒ FX ◦GX : (EX)n → EFX .

Then for any coalgebra ξ : X → FX, the functor GX is F ξ-compatible.

Proof. We construct a natural transformation as follows:

GX ◦ (ξ∗ ◦ FX)n = GX ◦ (ξ∗)n ◦ (FX)n
θ(FX)n+3 ξ∗ ◦GFX ◦ (FX)n

ξ∗γ +3 ξ∗ ◦ FX ◦GX

The first equality follows from the definition of (−)n as the mediating arrow into the product (EX)n.
The natural transformation θ comes from Lemma 61.

B.2 Proofs for Section 6.3
Lemma 62. Consider a fibration p : E → B, two B-endofunctors F,G with corresponding liftings F ,G.
Assume λ : F ⇒ G is a natural transformation and λ : F ⇒ G sits above λ. Then there exist natural
transformations F ⇒ λ∗XG and

∐
λX

F ⇒ G.

Proof. For R ∈ EFX the R-component of the required natural transformation is the dashed line in (29)
and is obtained using the universal property of the Cartesian lifting of λX .

FR

λ∗(GR) GR

FX GX

λR

λ̃GR

λX

(29)

The naturality in R can be easily checked and is a consequence of the uniqueness of the factorisation.
The natural transformation

∐
λX

FR⇒ GR is obtained as the mate of F ⇒ λ∗XG, that is, given by the
composite ∐

λX
F +3 ∐

λX
λ∗XG

εG +3 G

where ε is the counit of the adjunction (
∐
λ a λ∗).
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Lemma 63. Given (X,α, ξ) an ρ-bialgebra as in (7) and p : E → B a fibration, there exists a 2-cell

ETFX ETX EX

EFTX EFX EX

(Tξ)∗

∐
ρX

∐
α

∐
Fα

ξ∗

id⇓ (30)

Proof. We obtain the required natural transformation as the composite of the natural transformations
of (31) below. Except for the third one, these 2-cells are obtained from the units or counits of the
adjunctions recalled on the right column. The third natural transformation is actually an isomorphism
and arises from (X,α, ξ) being a bialgebra.∐

α ◦(Tξ)∗

⇓ (
∐
ρ a ρ∗)∐

α ◦(Tξ)∗ ◦ ρ∗ ◦
∐
ρ

⇓ (
∐
Fα a (Fα)∗)∐

α ◦(Tξ)∗ ◦ ρ∗ ◦ (Fα)∗ ◦
∐
Fα ◦

∐
ρ

⇓ (bialg)∐
α ◦α∗ ◦ ξ∗ ◦

∐
Fα ◦

∐
ρ

⇓ (
∐
α a α∗)

ξ∗ ◦
∐
Fα ◦

∐
ρ

(31)

C Proofs for Section 7
In this section we will prove Theorem 26. First we recall some basic facts on the free monad T over an
endofunctor S on some category C.

Assuming S has free algebras over any X in C one can show that the free monad T over S exists. We
can define TX as the free S-algebra on X, or equivalently, as the initial algebra for the functor X+S(−).
Thus for each X in C one has an isomorphism

[ηX , κX ] : X + STX → TX.

The η above gives the unit of the monad T . The monad multiplication µ : TTX → TX is defined as the
unique morphism obtained by equipping TX with the algebra structure [id, κX ] : TX + STX → TX.

Recall from [54] that there exists a bijective correspondence between natural transformations

λ : S(F × Id)⇒ FT

and distributive laws
ρλ : T (F × Id)⇒ (F × Id)T.

The natural transformation ρλ is defined on a component X in B as the unique (F ×Id)X+S(−)-algebra
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morphism:

ST (F × Id)X
S(ρλX)

//

κ(F×Id)X

��

S(F × Id)TX

〈λTX ,Sπ2〉
��

FTTX × STX

FµX×κX
��

T (F × Id)X
ρλX // (F × Id)TX

(F × Id)X

η(F×Id)X

OO

(F×Id)ηX

66

(32)

The following technical lemma is needed to establish that whenever the lifting of S of a functor S
has free algebras, the free monad over S is a lifting of the free monad over S.

Lemma 64. Consider a lifting S of a B-endofunctor S and assume S has free algebras.

1. The functor p : E → B has a right adjoint 1 : B → E inducing an adjunction4

Alg(S) ⊥ Alg(S)

Alg(p)

Alg(1)

2. The functor Alg(p) preserves initial algebras.

3. When P ∈ EX for some X in B, the free S-algebra over P sits above the free S-algebras over X.

4. The free monad T over S exists and is a lifting of the free monad T over S.

Proof. 1. Since the fibration considered here is assumed to have fibred finite products, one can define
1(X) as the terminal object in EX , and 1(f : X → Y ) as the Cartesian lifting f̂1Y : (1Y )∗ → 1Y ,
which is well-defined since reindexing functors preserve terminal objects by assumption. Then the
statement of this item is an immediate consequence of [23, Theorem 2.14].

2. follows because Alg(p) is a left adjoint.

3. follows from item 2) applied for the lifting P + S of X + S.

4. is an immediate consequence of item 3).

Theorem 26. Let (X,α, ξ) and (X,α], 〈ξ, id〉) be a model and a bialgebra for, respectively, an abstract
GSOS specification λ : S(F×Id)⇒ FT and the corresponding distributive law ρλ : T (F×Id)⇒ (F×Id)T .
Let S, F be liftings of S, F and assume that S has a free monad T .

If there is a natural transformation λ : S(F × Id)⇒ FT sitting above λ, then

1. there exists ρλ : T (F × Id)⇒ (F × Id)T sitting above ρλ;

2.
∐
α] ◦ T is (F × Id)〈ξ,id〉-compatible.

Proof. We know that TX is the free S-algebra on X. Let

[ηX , κX ] : X + STX → TX

denote the initial X + S(−)-algebra. Similarly, given P in EX , let

[ηP , κP ] : P + S TP → TP

4The functor Alg stems from the 2-categorical notion of inserter, see [52] or [23, Theorem 2.14, Appendix A.5] for a
concise exposition.
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denote the initial P + S(−)-algebra. By Lemma 64 we know that [ηP , κP ] is a lifting of [ηX , κX ].
For P ∈ EX the map ρλP is defined as in (32), as the unique map in the following diagram:

S T (F × Id)P
S(ρλP )

//

κ(F×Id)P

��

S(F × Id)TP

〈λTP ,Tπ2〉
��

F T TP × S TP

FµP×κP
��

T (F × Id)P
ρλP // (F × Id)TP

(F × Id)P

η(F×Id)P

OO

(F×Id)ηP

66

(33)

By Lemma 64 we have that the (F × Id)P +S(−)-algebras T (F × Id)P and (F × Id)TP of diagram (33)
sit above the (F × Id)X + S(−)-algebras T (F × Id)X, respectively (F × Id)TX of diagram (32). By
uniqueness of ρλX it follows that ρλP sits above ρλX .

Lemma 29. Let S, S, T and T be as in Theorem 26. Given an algebra α : SX → X with induced algebra
α] : TX → X for the free monad T , there exists a natural transformation of the form

∐
α ◦S ⇒

∐
α] ◦T .

Proof. Let η : Id⇒ T and κ : ST ⇒ T be the canonical natural transformations defined by initiality (see
Appendix C); composing them yields a natural transformation ι : S ⇒ T . Similarly, we can construct a
natural transformation ι : S ⇒ T above ι.

The desired natural transformation consists of two pieces:

EX
S //

⇓(a)

ESX

∐
α //∐

ιX

��

EX

⇓(b)

EX
T

// ETX ∐
α]

// EX

(a) Since ι sits above ι, the desired natural transformation exists by Lemma 62.

(b) We have α = α] ◦ ιX , so
∐
α =

∐
α]◦ιX

∼=
∐
α] ◦

∐
ιX
.

D Proofs for Section 8

D.1 Weighted language inclusion
Using the notations of Section 8.1, in this appendix we first prove that for a semiring S satisfying
conditions (a) and (b) on page 25 we have:

(ρX × ρX)(Rel(S−ω )(F (R))) ⊆ F (Rel(S−ω )(R)) (34)

for any relation R ⊆ X ×X and any X. First, we compute Rel(S−ω )(F (R)):{(∑
ri(pi, ϕi),

∑
ri(qi, ψi)

)
| ∀i. pi ≤ qi and ∀a. (ϕi(a), ψi(a)) ∈ R

}
Applying ρX × ρX yields a relation on FS−ωX:{((∑

ri · pi, λa.
∑

ri · ϕi(a)
)
,
(∑

ri · qi, λa.
∑

ri · ψi(a)
))

| ∀i. pi ≤ qi and ∀a. (ϕi(a), ψi(a)) ∈ R
}
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Now we compute F (Rel(S−ω )(R)):{((
p, a 7→

∑
ra,ixa,i

)
,
(
q, a 7→

∑
ra,iya,i

))
| p ≤ q and ∀a.∀i. (xa,i, ya,i) ∈ R

}
It follows that the inclusion (34) holds whenever

∑
ri · pi ≤

∑
ri · qi given that pi ≤ qi for all i. Hence,

it suffices that the operations + and · are monotone with respect to the order ≤ on the semiring.
Now we turn to the last example of Section 8.1, involving the semiring R, which does not satisfy

the condition (b) on page 25. For the monotone contextual closure, we prove the inclusion (ρX ×
ρX)(R−ω (F (R))) ⊆ F (R−ω (R)), for the lifting R−ω defined in Equation 12. First, we compute R−ω (F (R)):{(∑

ri(pi, ϕi),
∑

ri(qi, ψi)
)
| ∀i. ri ≥ 0 ⇒ pi ≤ qi and ∀a.ϕi(a) R ψi(a))

ri < 0 ⇒ qi ≤ pi and ∀a.ψi(a) R ϕi(a))

}
Then (ρX × ρX)(R−ω (F (R))) is:{((∑

ri · pi, a 7→
∑

ri · ϕi(a)
)
,
(∑

ri · qi, a 7→
∑

ri · ψi(a)
))

| ∀i. ri ≥ 0⇒ pi ≤ qi and ∀a.(ϕi(a), ψi(a)) ∈ R
ri < 0⇒ qi ≤ pi and ∀a.(ψi(a), ϕi(a)) ∈ R

}
Finally F (R−ω (R)) is{((

p, a 7→
∑

ra,ixa,i

)
,
(
q, a 7→

∑
ra,iya,i

))
| p ≤ q;∀a.∀i. ra,i ≥ 0⇒ (xa,i, ya,i) ∈ R

ra,i < 0⇒ (ya,i, xa,i) ∈ R

}
The desired inclusion holds, since ri ·pi ≤ ri · qi for all i. The reason is that pi ≤ qi when ri ≥ 0, whereas
qi ≤ pi if ri < 0.

D.2 Nominal Automata
In this section we assume the reader has some familiarity with nominal sets, see [39].

D.2.1 The base category

We denote by A a countable set of names. The category Nom of nominal sets has as objects sets X
equipped with an action · : Sym(A)×X → X of the group of finitely supported permutations on A (that
is, permutations generated by transpositions of the form (a b)) and such that each x ∈ X has a finite
support. Morphisms in Nom are equivariant functions, i.e., functions that preserve the group action.

D.2.2 The fibration at issue

It is well known that Nom can equivalently be described as a Grothendieck topos. Since Nom is a regular
category, by [26, Observation 4.4.1] we know that the subobject fibration on Nom is in fact a bifibration.
Furthermore, by a change-of-base situation described below we obtain the bifibration Rel(Nom)→ Nom,
see also [26, Example 9.2.5(ii)]

Rel(Nom) //

��

Sub(Nom)

��

Nom
I 7→I×I

// Nom

Objects of Rel(Nom) are equivariant relations. That is, if X is a nominal set, a nominal relation on X
is just a subset R ⊆ X2 such that xRy implies (π · x)R(π · y) for all permutations π. This bifibration is
also split and bicartesian.
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D.2.3 The functors and the distributive law

We will use the following Nom-endofunctors:

1. F : Nom→ Nom given by FX = 2×XA, where 2 = {0, 1} is equipped with the trivial action and
XA is given by the internal hom. Concretely, an element f ∈ XA is a function f : A→ X such that
there exists a finite subset S ⊆ A and f(π(a)) = π · f(a) for all names a ∈ A and permutations
π ∈ Sym(A) fixing the elements of S.

2. Pω : Nom → Nom that maps a nominal set X to its orbit-finite finitely supported subsets. In
particular one can check that Pω is a monad and let µ denote its multiplication, given by union.

The functors Pω and F are related by a distributive law

λ : PωF ⇒ FPω.

For a nominal set X, the map λX is given by the product of the morphisms acting on S ∈ PωF (X) by

S 7→ 1 ∈ 2 iff 1 ∈ (Pωτ1)(S)

and
S 7→ λa.{x ∈ X|∃f ∈ (Pωτ2)(S). f(a) = x} ∈ (PωX)A

where τ1, τ2 are the projections from FX to 2, respectively XA.

D.2.4 The liftings

The distributive law λ can be lifted to Rel(Nom), see [27, Exercise 4.4.6].

Rel(λ) : Rel(Pω)Rel(F )⇒ Rel(F )Rel(Pω).

using the fact that, in this case Rel(Pω)Rel(F ) = Rel(PωF ) and Rel(F )Rel(Pω) = Rel(FPω). Concretely,
for R ∈ Rel(Nom)X , the nominal relation Rel(F )(R) is given by (o, f) Rel(F )(R) (o′, f ′) iff o = o′ and
for all a ∈ A we have f(a)Rf ′(a).

On the other hand Rel(Pω) is given by S Rel(Pω)(R) S′ iff for all x ∈ S exists y ∈ S′ with xRy and
for all y ∈ S′ exists x ∈ S with xRy. As for Rel(λ)R, this is obtained as the restriction of λR × λR to
Rel(Pω)Rel(F )(R).

D.2.5 Soundness of bisimulation up to congruence

Nondeterministic nominal automata [7] can be modelled as FPω-coalgebras, while deterministic nom-
inal automata are represented as F -coalgebras. The classical notion of finiteness is replaced by orbit-
finiteness—from a categorical perspective this makes sense, since orbit-finite nominal sets are exactly the
finitely presentable objects in the lfp category Nom.

The generalised powerset construction [47] can be applied in this situation as well, that is, a nonde-
terministic nominal automata modelled as a coalgebra

〈o, t〉 : X → 2× Pω(X)A

yields an F -coalgebra structure
〈o], t]〉 : PωX → 2× (PωX)A,

on PωX, given by the composite F (µ)◦λ◦Pω(〈o, t〉). The reason why determinisation fails in a nominal
setting [7] is that the finitary power object functor Pω does not preserve orbit finiteness. This is the case
in the example of Section 8.3.

Notice that (PωX,µ, 〈o], t]〉) is a λ-bialgebra.
The fibrations Rel(Nom) → Nom and Sub(Nom) → Nom are well-founded in the sense of [22]. To

prove this we can apply [22, Lemma 3.4], which gives as a sufficient condition for well-foundedness: that
the fibre above each finitely presentable object be finite. Indeed, recall from [38] that finitely presentable
nominal sets are the orbit-finite ones. Then, it is easy to check that a nominal set with n orbits has 2n

equivariant nominal subsets.
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{∗}

a

��

R {?}

a

��

{∗, a}
Cgr(R)

{a} ∪ (A′ \ {a′})

{∗}

a

��

R A′

a

��

{∗, a}
Cgr(R)

{a} ∪ (A′ \ {a′})

{a}

a

��

R {a, a′}

a

��

{>}
Cgr(R)

{a,>}

{a}

b

��

R {a, a′}

b

��

{a}
Cgr(R)

{a, a′}

{>}

a

��

R {a,>}

a

��

{>}
Cgr(R)

{>}

{>}

b

��

R {a,>}

b

��

{>}
Cgr(R)

{a,>}

Figure 3: Proving R to be a bisimulation up to congruence

Hence, by [Theorem 3.7][22], the final Rel(F )〈o,t〉-coalgebra exists and can be computed as the limit
of an ωop-chain in the fibre Rel(Nom)X . We will use this coinductive predicate to prove that two states
of a nominal automata accept the same language.

We can apply Theorem 21 to prove that the contextual closure Ctx =
∐
µ ◦Rel(Pω) is Rel(F )〈o],t]〉-

compatible.
Thus bisimulation up to context is a valid proof technique for nominal automata.
Moreover, we can apply Proposition 17 to prove compatibility of the up to reflexive, symmetric and

transitive closure techniques, respectively.

(n=0) Let Dia : Nom → Rel(Nom) be the functor mapping each nominal set X to ∆X , the diagonal
relation on X. Then DiaX is Rel(F )〈o,t〉-compatible since ∆FX = Rel(F )∆X .

(n=1) Let Inv : Rel(Nom) → Rel(Nom) be the functor mapping each nominal relation R ⊆ X2 to its
converse R−1 ⊆ X2. InvX is F 〈o,t〉-compatible since F (R)−1 ⊆ F (R−1) for all relations R ⊆ X2.

(n=2) Let ⊗ : Rel(Nom)×NomRel(Nom)→ Rel(Nom) be the nominal relational composition functor. Com-
position of nominal relations is computed just as in Set and one can show that Rel(F ) preserves it.
Thus ⊗ is Rel(F )〈o,t〉-compatible.

Employing Proposition 3 and the fact that congruence closure is obtained as the composition of the
equivalence, context and reflexive closure functors we derive that bisimulation up to congruence is a
sound technique.

D.2.6 The concrete example

The nondeterministic nominal automaton of Section 8.3 (reported on the left below) is given formally
by an FPω-coalgebra 〈o, t〉 on the nominal set 1 + 1 + A + A + 1. For simplicity we denote the second
copy of A by A′. The map 〈o, t〉 is given below on the right.

∗

a

�� a // a

b

�� a // >

a

		

?

a
::

b // a′ b
xx

a
OO

∗ 7→ (0, a 7→ {∗, a})

a 7→

(
0,

{
b 7→ {a} b#a

a 7→ {>}

)
? 7→ (0, a 7→ {a} ∪ A′ \ {a′})

a′ 7→

(
0,

{
b 7→ {a′} b#a

a 7→ {a}

)
> 7→ (1, a 7→ {>})

49



The determinisation of this automaton has infinitely many orbits. For example, the determinisation
of the part reachable from ∗ is partially represented by

{∗} a // {∗, a}
b
��

a // {∗, a,>}
b��

abb

{∗, a, b}
a,b
//

c��

{∗, a, b,>}
c��

a,bbb

...
...

However, we can prove that ∗ and ? accept the same language, showing that the nominal relation R
spanned by

({∗}, {?}), ({a}, {a, a′}), ({>}, {a,>}), ({∗},A′)

is a bisimulation up to congruence, that is, R ⊆ Rel(F )〈o],t]〉Cgr(R).
This is shown in Figure 3: for each pair in R, we check that the successors are in Cgr(R). Note

that for the pairs ({a}, {a, a′}) and ({>}, {a,>}), in the second and third rows, one needs to check the
successors for a and for a fresh name b. Instead for the pairs ({∗}, {?}) and ({∗},A′) in the first row,
only successors for a should be checked (since a does not belong to the support of these states).

The only non-trivial computation is to check whether {∗, a}Cgr(R){a} ∪ (A′ \ {a′}). We proceed as
follows:

{∗, a} Cgr(R) {a} ∪ A′

Cgr(R) {a, a′} ∪ (A′ \ {a′})
Cgr(R) {a} ∪ (A′ \ {a′}).

E Proofs for Section 9
Lemma 65. (F × F , F ) is a fibration map.

Proof. Let f : X → Y be a function and R ⊆ X2 be a relation. Then

F × F ((f × f−1(R))

= {(S,U, V,W ) |
∀(a, x) ∈ S. ∃(a, y) ∈W. f(x)Rf(y),
∀(a, y) ∈ V. ∃(a, x) ∈ U. f(x)Rf(y)}

= {(S,U, V,W ) |
∀(a, x′) ∈ Ff [S]. ∃(a, y′) ∈ Ff [W ]. x′Ry′,
∀(a, y′) ∈ Ff [V ]. ∃(a, x′) ∈ Ff [U ]. x′Ry′}

= (Ff × Ff × Ff × Ff)−1(F × F (R))

F Proofs for Section 10
Proof of Lemma 40. Since Rel↑Y is a poset we have to show that for every up-closed relation S ⊆ Y 2 we
have f∗S ⊆ g∗S. Consider (x, y) ∈ f∗S. Then (f(x), f(y)) ∈ S. Since S is up-closed, f(x) ≤ g(x) and
f(y) ≤ g(y) we get that (g(x), g(y)) ∈ S, or equivalently, (x, y) ∈ g∗S.

Proof of Lemma 41. We have to prove that Rel(T ) restricts to up-closed relations. Indeed, consider an
up-closed relation R ∈ Rel↑(X,≤) on X. This means that ≤op ⊗R⊗ ≤⊆ R, where ≤op is the reverse
of the order ≤. Since Rel(T ) preserves relation composition for weak pullback preserving functors, we
derive that Rel(T )(≤op)⊗ Rel(T )(R)⊗ Rel(T )(≤) ⊆ Rel(T )(R). Using that Rel(T )(≤op) = Rel(T )(≤)op

and that the order on Pre(T )(X,≤) is precisely Rel(T )(≤) we conclude that Rel(T )(R) is an up-closed
relation on Pre(T )(X,≤).
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Details for Example 42. Assume we have the following situation

(h, k)

Rel(F )(≤)×Rel⊆(F )(≤)

F×F (R)
(h′, k′)

Rel(F )(≤)×Rel⊆(F )(≤)

(f, g)
F×F (R)

(f ′, g′)

This means that for all a ∈ L we have the following

∀x ∈ f(a). ∃y ∈ h(a).x ≤ y
(f, g) Rel(F )(≤)× Rel⊆(F )(≤) (h, k)⇔ ∀y ∈ h(a). ∃x ∈ f(a).x ≤ y

∀x ∈ g(a). ∃y ∈ k(a).x ≤ y

(f, g) F × F (R) (f ′, g′)⇔ ∀x ∈ f(a). ∃y ∈ g′(a).xRy

∀x ∈ f ′(a). ∃y ∈ g(a).xRy

∀x ∈ f ′(a). ∃y ∈ h′(a).x ≤ y
(f ′, g′) Rel(F )(≤)× Rel⊆(F )(≤) (h′, k′)⇔ ∀y ∈ h′(a). ∃x ∈ f ′(a).x ≤ y

∀x ∈ g′(a). ∃y ∈ k′(a).x ≤ y

(35)

and we need to show
∀x ∈ h(a). ∃y ∈ k′(a).xRy

∀x ∈ h′(a). ∃y ∈ k(a).xRy
(36)

Using the fact the R is up-closed we can prove this using (35).

Remark 66. Notice that some of the relations in (35) were not actually used in the proof. In order
for the lifting F × F (R) to restrict to up-closed relations, we need to carefully choose the Pre-liftings for
F ×F . Indeed, we could replace the lifting Pre(F ) with the lax relation lifting given by pointwise reverse
inclusion Pre⊇(F ). However the proof would break if we would consider instead the Pre-lifting of F × F
given by Pre⊆(F )× Pre⊆(F ), since the functor Pre⊆(F )× Pre⊆(F ) does not have a Rel↑ lifting that also
extends F × F .

Proof of Lemma 43. We have that % lifts to % : T F ⇒ FT if and only if for any R ∈ Rel↑X we have

T F(R) ⊆ %∗X(FT (R)). (37)

We will show that the following inclusions are equivalent:

T F(R) ⊆ %∗X(FT (R)) ⇔ UT F(R) ⊆ U%∗XFT (R)
⇔ UT F(R) ⊆ ρ∗XUFT (R)
⇔ TF (UR) ⊆ ρ∗XFT (UR)

(38)

The first equivalence is valid because an inclusion holds in Rel↑ iff it holds in Rel. The second equivalence
follows from the fact that U%∗X = ρ∗X . The last equivalence above holds because, by hypothesis, we have
UT = TU and UF = FU .

To conclude, notice that the last inclusion in (38) holds because ρ can be lifted to a distributive law
ρ between Rel-functors.
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G Proofs for Section 11
Lemma 37. Suppose F : Set → Set has a stable order given by a factorisation through F⊆ : Set → Pre
and let G : Set→ Set be a weak pullback preserving functor. Then the Set-functors F × Id, GF and FG
have stable orders given by:

Pre

��

Set
F×Id

//

F⊆×D
??

Set

Pre

��

Pre

Pre(G) 77

Set
GF

//

F⊆ 77

Set

Pre

��

Set

F⊆ 77

Set
FG

//

G 88

Set

(19)

where D : Set → Pre is the functor assigning to a set the discrete order (Remark 39) and Pre(G) is the
canonical Pre-lifting of G. Moreover, the lax relation and Pre-liftings of these ordered functors satisfy:

Rel⊆(F × Id) = Rel⊆(F )× Id Pre⊆(F × Id) = Pre⊆(F )× Id
Rel⊆(GF ) = Rel(G)Rel⊆(F ) Pre⊆(GF ) = Pre(G)Pre⊆(F )
Rel⊆(FG) = Rel⊆(F )Rel(G) Pre⊆(FG) = Pre⊆(F )Pre(G)

(20)

Proof. The diagrams (19) clearly commute. Before proving that the orders are stable, we prove that the
lax relation liftings are computed in a compositional way, i.e., that the equations in the second part of
the statement are satisfied.

1. The order on F × Id given in the leftmost diagram of (19) yields a constant relation lifting ⊆×∆
of F × Id, defined on the fibre above X by ⊆X ×∆X , where ∆X is as before the diagonal on X.
Using certain properties of the canonical relation lifting (Lemma 11) and of relational composition
⊗ we obtain

Rel⊆(F × Id) = (⊆×∆)⊗ Rel(F × Id)⊗ (⊆×∆)

= (⊆×∆)⊗ (Rel(F )× Id)⊗ (⊆×∆)

= (⊆⊗ Rel(F )⊗⊆)× (∆⊗ Id⊗∆)

= Rel⊆(F )× Id

2. The order on GF induced by the second diagram of of (19) yields a constant relation lifting on
GF , defined on a fibre above X by Pre(G)(⊆FX) Recall that since G preserves weak pullbacks the
Pre-lifting Pre(G) was defined as the restriction of Rel(G) to preorders. So the constant relational
lifting of GF can be equivalently written as (Rel(G) ◦ ⊆). Using that Rel(G) preserves relational
composition (see Lemma 11) we get

Rel⊆(GF ) = (Rel(G) ◦ ⊆)⊗ Rel(GF )⊗ (Rel(G) ◦ ⊆)

= (Rel(G) ◦ ⊆)⊗ (Rel(G) ◦ Rel(F ))⊗ (Rel(G) ◦ ⊆)

= Rel(G) ◦ (⊆⊗ Rel(F )⊗⊆)

= Rel(G) ◦ Rel⊆(F )

3. The order on FG coming from the rightmost diagram in (19) is given on the fibre above X by the
constant ⊆GX . This relational lifting can be equivalently written as ⊆ ◦ Rel(G). We thus have

Rel⊆(FG) = (⊆ ◦ Rel(G))⊗ Rel(FG)⊗ (⊆ ◦ Rel(G)

= (⊆ ◦ Rel(G))⊗ (Rel(F ) ◦ Rel(G))⊗ (⊆ ◦ Rel(G)

= (⊆⊗ Rel(F )⊗⊆) ◦ Rel(G)

= Rel⊆(F ) ◦ Rel(G)

Since the order on F is stable it follows that Rel⊆(F ) is a fibred functor. Since G is weak pullback
preserving, so is Rel(G). Since fibred functors are closed under composition and multiplication with Id
it follows that the lax relation liftings Rel⊆(F × Id), Rel⊆(GF ) and Rel⊆(FG) are fibred functors. This
implies that the orders in (19) are stable. Hence these relation liftings restrict the lax Pre-liftings, and
the equalities in the second column of (20) immediately follow.
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Lemma 67. Let S be a Set-functor such that for every set X, the initial algebra µY.(X + SY ) exists.
Then it is well known that the free monad T over S exists and is given by TX = µY.(X + SY ). Then
the canonical relation lifting Rel(T ) of the free monad over T is the free monad over Rel(S). Moreover,
if Rel(S) restricts to Pre then so does Rel(T ).

Proof. For the first part we show that for every R ⊆ X2 in Rel the initial algebra of the functor
R+ Rel(S)(−) is given by Rel(T )(R). In order to give the algebra map

R+ Rel(S)Rel(T )(R)→ Rel(R) (39)

recall that Rel(S)Rel(T ) = Rel(ST ) and use the notations η and µ for the unit and multiplication of
T . We will also denote by ι : S ⇒ T the canonical natural transformation exhibiting T as the free
monad over S. Then the map (39) is given by the coproduct of the maps Rel(η)R : R → Rel(T )(R)
and Rel(µ ◦ ιT )R : Rel(ST )(R) → Rel(T )(R). Notice that the map (39) sits above the Set morphism
X + STX → TX which gives the initial algebra structure on TX.

Now assume U ⊆ V 2 is another relation carrying a R+Rel(S)(−)-algebra structure. This means that
we have a X + S(−)-algebra structure on V , say [f, g] : X + SV → V , such that [f, g] × [f, g] restricts
to a morphism

R+ Rel(S)(U)→ U

Since TX is the initial X+S(−)-algebra it suffices to show that the induced algebra morphism h : TX →
V gives rise to a morphism of R+Rel(S)(−)-algebras, that is, that h underlies a morphism Rel(T )(R)→
U , so that we get the following diagram

R+ Rel(S)Rel(T )(R) //

++

Rel(T )(R)

))

R+ Rel(S)U // U

X + STX //

X+Sh ++

TX
h

))
X + SV // V

(40)

The map g : SV → V has a unique extension to TV , that is, we have g : TV → V such that gιV = g.
Then the map h : TX → V is obtained as the composite of Tf : TX → TV and g : TV → V , i.e.,
h = g ◦ Tf . The map Tf underlines a morphism of relations Rel(T )(R)→ Rel(T )(U), simply because f
underlines a morphism of relations R→ U . So it suffices to show that the map g underlines a morphism
of relations Rel(T )(U) → U . Then it follows that h gives rise to a morphism Rel(T )(R) → U as in the
diagram above. Hence it just remains to prove that the next diagram holds

Rel(T )(U)

--

hh

Rel(S)(U) // U

TV
g

--

ii

ιV
SV

g
// V

This can be seen in the following diagram in Set:

SU

ιU

��

Sm //

&& &&

S(V 2)
〈Sπ1 ,Sπ1 〉// (SV )2

(ιV )2

��

��

Rel(S)(U)
22

22

��

��

TU
Tm //

&& &&

T (V 2)
〈Tπ1 ,Tπ2 〉// (TV )2

��

Rel(T )(U)
22

22

((
U //

m // V 2
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The map Rel(S)(U)→ U is a restriction of g×g : (SV )2 → V 2. Composing with the epi SU → Rel(S)(U)
we get a map SU → U that can be lifted uniquely to a map TU → U , which factors through Rel(T )(U).
The dotted arrow Rel(T )(U)→ U is the restriction of g × g to Rel(T )(U).

Now, once we know that the maps in the bottom square of (40) restrict to morphisms between
relations, it is immediate to prove that the algebra in (39) is initial.

Finally, we prove that if Rel(S) restricts to Pre then so does Rel(T ). In the first part, we proved that
Rel(T )(R) is the initial algebra of R+Rel(T )(−), which means that Rel(T )(R) is the colimit of the initial
sequence

0 −→ R+ Rel(S)(0) −→ R+ (Rel(S)(R+ Rel(S)(0))) −→ . . .

The empty relation 0 is transitive, and if R is a preorder, then the relation R + Rel(S)(0) is reflexive
since R is. It is easy to prove by (transfinite) induction that reflexivity and transitivity are preserved
along the initial sequence.

Proof Sketch of Lemma 50. We start with a disclaimer concerning a mild abuse of notation. The carrier
of the lax bialgebra we obtain in this lemma is the preorder (X,∆X), that is X with the discrete
order. To be completely formal, in the next diagrams we should have written D(X) instead of X, where
D : Set→ Pre is the functor of Remark 39. We also abuse the notation when we lift the maps α, ξ or α]
to preorders. Here we use heavily the fact that the domain of these maps have the discrete preorder.

First observe that from diagram (24) in Set we obtain the next lax diagram in Pre:

Pre(S)X
α //

Pre(S)〈ξ,id〉

��

≥

X

〈ξ,id〉

��

Pre(S)(Pre⊆(F )X ×X)
〈λX ,Pre(S)π2〉

// Pre⊆(F )Pre(T )X × Pre(S)X
Pre⊆(F )α]×α

// Pre⊆(F )X ×X

Since the order on X is discrete the maps α, and 〈ξ, id〉 are indeed monotone, so the diagram is well
defined in Pre. This diagram exhibits 〈ξ, id〉 as a lax morphism of Pre(S)-algebras. By Lemma 67, the
Pre(S)-algebras in the above diagram give rise in a canonical way to the Pre(T )-algebras in the next
diagram:

Pre(T )X
α] //

Pre(T )〈ξ,id〉

��

≥

X

〈ξ,id〉

��

Pre(T )(Pre⊆(F )X ×X)
%X

// Pre⊆(F )Pre(T )X × Pre(T )X
Pre⊆(F )α]×α]

// Pre⊆(F )X ×X

(41)

Notice that α] : Pre(T )X → X is well defined since Pre(T )X is just the set TX with the discrete order.
Moreover we can show that 〈ξ, id〉 is a lax morphism of Pre(T )-algebras, which equivalently means that
we have a lax bialgebra for %.

H Proofs for Section 12
Proposition 68. Let λ : S(F × Id) ⇒ FT be a positive GSOS specification and λ̃ : S(F × F × Id) ⇒
(F × F )T be defined as 〈λ ◦ S〈π1, π3〉, λ ◦ S〈π2, π3〉〉. Let ρ the distributive law corresponding to λ̃.

Then, there exists a distributive law ρ : Rel(T )(F × F × Id) ⇒ (F × F × Id)Rel(T ) sitting above ρ
where .F × F is defined as in (14).

Proof. We decompose the lifting F × F in (14) as

F × F = flp⊗ Rel[⊇⊆](F × F ) ,

where flp is the constant functor defined as flp(R ⊆ X2) = {((f, g), (g, f)) | f, g ∈ FX} and Rel[⊇⊆](F×
F ) is the lax relation lifting of F × F for the ordering (f1, g1)[⊇⊆](f2, g2) iff for all a ∈ L, f2(a) ⊆ f1(a)
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and g1(a) ⊆ g2(a). For an intuition, observe that

(g, f) Rel[⊇⊆](F × F ) (f ′, g′) iff ∀a ∈ L.∀x ∈ f ′(a). ∃y ∈ g(a).xRy
∀a ∈ L.∀x ∈ f(a). ∃y ∈ g′(a).xRy

and thus (f, g)flp⊗ Rel[⊇⊆](F × F )(f ′, g′) iff (14).
Our strategy is to proceed modularly and prove the existence of distributive laws for flp and

Rel[⊇⊆](F × F ).
Given λ : S(F × Id) ⇒ FT , we need to prove that there exists ρ : Rel(T )(F × F × Id) ⇒ (F × F ×

Id)Rel(T ) above ρ : T (F × F × Id)⇒ (F × F × Id)T , where ρ is the distributive law induced by λ̃.
If λ is monotone w.r.t. ⊆, then it is also monotone w.r.t. ⊇. Moreover λ̃ is monotone w.r.t. the

order [⊇⊆] on F × F . These facts are easy to see by using the characterisation of monotone GSOS
specifications when S is a signature, see (23). Now, since λ̃ is monotone, it follows from Lemma 47 that
there is a distributive law

ρ2 : Rel(T )(Rel[⊇⊆](F × F )× Id)⇒ (Rel[⊇⊆](F × F )× Id)Rel(T ) .

In Lemma 69 below, we show that there is a distributive law

ρ1 : Rel(T )(flp×∆)⇒ (flp×∆)Rel(T ) .

Using a basic property of how the canonical relation lifting interacts with relational composition
(Lemma 11) and that relational composition ⊗ distributes over ×, we get:

Rel(T )(flp⊗ Rel[⊇⊆](F × F )× Id)

Rel(T )(flp⊗ Rel[⊇⊆](F × F )× (∆⊗ Id))

= Rel(T )((flp×∆)⊗ (Rel[⊇⊆](F × F )× Id))

⇒ Rel(T )(flp×∆)⊗ Rel(T )(Rel[⊇⊆](F × F )× Id)

ρ1⊗ρ2⇒ (flp×∆)Rel(T )⊗ (Rel[⊇⊆](F × F )× Id)Rel(T )

= ((flp×∆)⊗ (Rel[⊇⊆](F × F )× Id))Rel(T )

= ((flp⊗ Rel[⊇⊆](F × F ))× Id)(Rel(T ))

which is the desired natural transformation above ρ.

Lemma 69. There exists a distributive law ρ1 : Rel(T )(flp×∆)⇒ (flp×∆)Rel(T ) sitting above ρ.

Proof. Consider the natural transformation ψ : F × F ⇒ F × F given by (u, v) 7→ (v, u). Let G denote
the functor F × F × Id and φ : G ⇒ G denote the natural transformation obtained as ψ × Id. Then on
the fibre RelX the functor flp×∆ is constant to the relation Gr(φX) ∈ RelGX given by the graph of φX .
To prove the existence of ρ1 above ρ, it suffices to show that

∐
ρX

Rel(T )(Gr(φX)) ⊆ Gr(φTX).
We first show that φT ◦ρ = ρ◦Tφ. To this end, notice that φ is of the form ψ×Id where ψ : F 2 ⇒ F 2.

By the construction of λ̃ from λ we can easily check that

(ψT ) ◦ λ̃ = λ̃ ◦ S(ψ × Id). (42)

The natural transformation ρ is obtained as in (32) by exhibiting GX×S(−)-algebra structures on GTX
and TGX. Using (42) we can check that φTX , respectively TφX are morphisms of GX ×S(−)-algebras.
We can easily conclude that φT ◦ ρ = ρ ◦ Tφ.

Using that φT ◦ ρ = ρ ◦ Tφ we can easily check that
∐
ρX

Gr(TφX) ⊆ Gr(φTX). By Lemma 11 we
have Rel(T )(Gr(φX)) ⊆ Gr(TφX). Combining these two inclusions and using the monotonicity of

∐
ρX

we obtain
∐
ρX

Rel(T )(Gr(φX)) ⊆ Gr(φTX).

55


	Introduction
	Coinduction up-to
	Fibrations and coinductive predicates
	Bialgebras and up to context
	Contributions and Applications

	Motivating Examples
	Hopcroft and Karp's algorithm
	Regular Expressions and Kleene Algebra
	Arden's rule

	Coalgebras and Compatible Functors
	Respectful functors

	Poset Fibrations
	Coinductive Predicates
	Up-to Techniques in a Fibration
	Compatibility of Behavioural Equivalence Closure
	Compatibility of Equivalence Closure
	Compatibility of Contextual Closure
	Summary

	Abstract GSOS
	Examples
	Inclusion of weighted automata
	Divergence of processes
	Equivalence of nominal automata

	The Problem with Weak Bisimulation
	Ordered Setting
	Lifting functors from sets to preorders
	Relation liftings for Pre-endofunctors
	Lax bialgebras and compatibility of contextual closure

	Monotone GSOS
	Weak Bisimulation Done Right
	Simulation Up-to
	Directions for Future Work
	Proofs for Section 4
	Proofs for Section 6
	Proofs for Section 6.2
	Proofs for Section 6.3

	Proofs for Section 7
	Proofs for Section 8
	Weighted language inclusion
	Nominal Automata
	The base category
	The fibration at issue
	The functors and the distributive law
	The liftings
	Soundness of bisimulation up to congruence
	The concrete example


	Proofs for Section 9
	Proofs for Section 10
	Proofs for Section 11
	Proofs for Section 12



