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MATRIX WIENER-HOPF-HILBERT FACTORISATION* 

A. D. RAWLINSt 

Abstract. A method is described for effecting the explicit Wiener-Hopf factorisation of a class of 
(2 x 2)-matrices. The class is determined such that the factorisation problem can be reduced to a matrix 
Hilbert problem which involves an upper or lower triangular matrix. Then the matrix Hilbert problem can 
be further reduced to three scalar Hilbert problems on a half-line, which are solvable in the standard manner. 

Key words. Wiener-Hopf-Hilbert method, diffraction, matrix factorisation 

AMS(MOS) subject classifications. 30A88, 78, 15A21 

1. Introduction. In a recent paper by Rawlins and Williams [1] (see also Rawlins 
[2]), it was shown how a class of (2 x 2)-matrices could be explicitly factorised. In this 
paper a different class of matrices is constructively factorised. By using the idea of 
Rawlins [3] and evaluating the matrix to be factorised on both sides of an assumed 
branch cut that commonly arises in diffraction problems, the problem of factorisation 
reduces to a matrix Hilbert problem along the branch cut. In the work of Rawlins and 
Williams [1], and Rawlins [2], the form of the original matrix was chosen so that the 
matrix Hilbert problem was reducible to two uncoupled scalar Hilbert problems. These 
could be solved without difficulty by the well-known methods given in Muskhelishvili's 
book on singular integral equations [4]. The reduction to these two scalar Hilbert 
problems required that the two diagonal element of the matrix involved in the Hilbert 
problem were zero. However, it is known, see Gohberg and Krein [5], that upper and 
lower triangular matrix Hilbert problems can also be solved explicitly. Thus we need 
only require one off-diagonal element of the matrix Hilbert problem to vanish, in order 
to effect a Wiener-Hopf factorisation of the original matrix. It is conjectured that the 
technique of matrix factorisation of the present class of (2 x 2)-matrices may go some 
way towards an eventual solution of some hitherto intractable diffraction problems. 
The truth of this conjecture hinges on the growth at infinity of the factor matrices. The 
consideration of such behaviour is more appropriate in the actual application of the 
method to diffraction problem and is therefore, omitted here. 

We mention that the type of matrix factorised in this paper does not fall into 
the class considered by Daniele [6], Rawlins [7]. Jones [8] has devised a method 
for the Wiener-Hopf factorisation of a special type of (2 x 2)-matrix, that ensures 
that the Wiener-Hopf factors commute. In addition, the factors of various matrices 
whose Wiener-Hopf factors do not commute were also determined by Jones [8]. It is 
possible that by appropriate pre- and post-multiplying a matrix (which is susceptible 
to Jones' method) by appropriate analytic matrices the Wiener-Hopf factorisation can 
be carried out for the matrices considered here by his approach. However, the result 
obtained here seems to be different from that of Jones [8], and it is not clear to me 
how one could prove the equivalence of the two results. The difference is apparent in 
the scalar factorisation problem. In Jones [8] the classical approach by Cauchy's 
theorem leads to a solution for the factors expressed in terms of Cauchy integrals 
along a line parallel to the real axis in the strip of analyticity. On the other hand, the 
approach used here through the Hilbert problem leads to a solution involving Cauchy 
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integrals along a branch cut, i.e. along a half line. The strip of analyticity is not strictly 
necessary in the present approach. This would indicate that the present method would 
be suitable for problems without dissipation. Pioneering and important work on 
Wiener-Hopf-Hilbert factorisation of matrices has been carried out by Hurd [9] and 
his coworkers. Jones [10] has extended the class of (2x2)-matrices whose factors 
commute to a class of (n x n)-matrices whose factors commute. 

In ? 2 of the paper a general matrix will be considered, and its general form is 
appropriately specified in order that the Wiener-Hopf factorisation problem reduces 
to a triangular matrix Hilbert problem. In ? 3 this class of matrices will be constructively 
factorised by solving appropriate Hilbert problems. In ? 4 some remarks are made 
vis-a-vis direct Wiener-Hopf factorisation of the present class of matrices. 

2. Determination of the class of matrices whose Wiener-Hopf factorisation reduces 
to a triangular matrix Hilbert problem on a half-line. Considerthe general (2 x 2)-matrix. 

A(a) (all(a) a12(a)\ 
a2l(a) a22(a) 

where the elements aij (a), i,j = 1, 2 are functions of the complex variable a. These 
functions will be assumed to have only branch point singularities; specifically we shall 
assume that the branch points arise through the function y = ,a2 - k2, where k has 
positive real and imaginary parts, and the branch cuts C and C' lie along the half-lines 
C: a = -k-8, C': a = k+ 8? 0 ' O. The elements aij(a) are also assumed to be analytic 
functions in the cut a-plane; and det A(a) $ 0 within the strip -ki < Im (a) < ki where 
ki denotes the imaginary part of k. The occurrence of a complex k with Im (k) > 0 is 
traditional in Wiener-Hopf-type problems and is needed to have a common strip of 
analyticity; in the final solution the complex k is removed by taking the limit as Im k 4 0. 

The Wiener-Hopf factorisation problem requires the determination of (2x2)- 
matrices U(a) and L(a), whose elements are analytic for Im (a) > -Iki and Im (a) < ki 
respectively, such that 

(1) A(a) = U(a)L-l(a) 

U(a) and L(a) are also required to be nonsingular in their respective regions of 
analyticity. Obviously any matrix A'(a) which can be expressed in the form 

(2) A'(a) = Cu(a)A(a)BL(a), 

where BL(a) and Cu(a) are matrices whose elements are analytic functions of a for 
Im (a) < ki and Im (a)> -ki respectively, can also be factorised if A(a) can be 
factorised. In order to effect the factorisation, it will be assumed that U(a) is analytic 
except along the branch cut C through a = -k, whilst L(a) is analytic except along 
the branch cut C' through a = k. Evaluation of equation (1) on both sides of the cut 
C(C: a = -k -8 80- O) through a = -k gives, on using the suffices + to denote values 
evaluated on the upper and lower sides of C, 

(3) A+(a) = U+(a)L71(a), 

(4) A_(a) = U_(a)L-1(a), 

(L(a) is analytic except along the branch cut C' through a = k and therefore takes 
the same values on both sides of C). Eliminating L(a) between (3) and (4) gives the 
matrix Hilbert problem: 

(5) U+(a) = G(a)U_(a), a E C, 
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where 

G(a) = A+(a)A11(a). 

More explicitly 

( 
g1I(a) g12(a)\ _ (a+a-2- a -a a + ah -a+ aT2\ 
g21(a) g22(a) det A_(a) a2+1a22- a22a21 a22a+ - a21a 2 

The problem (5) reduces to an upper or lower traingular matrix Hilbert problem along 
C, if the condition gl2(a)-0 or g21(a)= 0 is satisfied. That is 

at(a)a-(a) = a+(a)a-(a), i = 1,j = 2 or i = 2,j = 1, a E C; 

or ignoring the trivial case of a (a) 0, and assuming aij(a) $ 0 on C, 

(6) aii(a) aii 
(a)> 0a aEC 

We shall assume that aij(a) can have isolated zeros in the cut a-plane, (but not on 
C), and consequently ajj(a)/aij(a) can have isolated poles in the cut a-plane. Then 
provided ajj(a)/ajj(a)=O(jk+a1j-Z), 0 c ,u <1 as a-*e-k, a solution of (6) follows 
immediately (see Muskhelishvili [4, ? 15]) as 

(7) aii(a) = ajj(a)F1(a). 

Here the function Fi(a) is analytic except along the branch cut C' through a = k,' 
and except for poles at the zeros of aij(a); the multiplicity of these poles is not greater 
than the multiplicity of the corresponding zeros. Thus since we can express Fi(a) = 

r1(a)/sj(a) where ri(a) and si(a) are analytic except possibly along the branch cut 
C' then G(a) will be of upper or lower triangular form if: 

(8) (i) A(a) = a21(a)s2(a) a21(a)r2(a)) 

or 

a12(a)r1a) a2(a)sl(a)\ (9) (ii) A(a) =(a12(a)rl(a) a22(a) 
a2l (a ) a22(a ) 

and det A(a) $ 0 in the cut a-plane. 
We shall now carry out the explicit Wiener-Hopt factorisation of the matrix given 

in case (i) above. The procedure for factorising the matrix given in case (ii) will be 
completely analogous. 

3. Wiener-Hopf factorisation of the matrix defined by (8). We assume the matrix 
A(a) has the form (8) and the same general properties as outlined in the first paragraph 
of ? 2. If we carry out the same evaluation on the branch cut C, as described in ? 2, 
the equation (5) reduces to the upper triangular matrix Hilbert problem 

(10) U+(a) = G(a)U_(a), aE C, 

1 If A(a) = A(-a) for a in the cut plane, then it is not difficult to show (see Rawlins [3]) that F, (a) 
must also be analytic along the branch cut C'. 
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where 

,(a) (ajj(a)r2(a) - a12(a)S2(a))' 
gll(1t) (all(a)r2(a) - a12(a)S2(a)) 

( a'2(a)all(a) - all(a)a12(a) 

a21(a)(all(a)r2(a) 
- a12(a)S2(a)) 

a'1( a) 
g2l(st=0 g22Ct)= - (a)' 

(12) g( , 

U()=(Uii(a) U12(a)) (u21(a) U22(a)j 

Evaluating the matrix expression (10) and equating corresponding elements of the 
matrices on both sides of the equality sign gives the following equations: 

( 13 ) ua(a)=gjj(a)u-(a)+g12(a)u2j(a),} a C, j = 1,2 

u+(a) = 922(a) u -(a),J 

The four equations (13) can clearly be solved if the coupled system 

(14) vt(a) = gll(a)vL(a)+g12(a)vj(a), 

(15) V+(a)= g22(a)v v(a), 

can be solved. The equation (15) is a standard Hilbert problem whose fundamental 
solution is given directly by the methods of Muskhelishvili [4, Chap. 10]. Similarly 
we can determine the fundamental solution of the standard auxiliary Hilbert problem 

(16) v+(a) = gj1(a)v-(a), a E C, 

for v(a). Then the equation (14) can be written as 

(17) u+(a) - u(a) = g12(a)v-(a)/v (a), a E C, 

where 
u(a) = vi(a)/v(a). 

In the equation (17) the right-hand side is a known quantity and therefore we have a 
standard Hilbert problem whose fundamental solution is given by using the techniques 
described in Muskhelishvili [4, Chap. 10]. Suppose therefore we have found funda- 
mental solutions v20)(a), v(?)(a) and u(?)(a) of the equations (15), (16) and (17), 
respectively. To determine the general solution, we set v2(a) = v(?)(a)v*(a), v(a) = 

v(O)(a)v*(a), and u(a) = u(O)(a) + u*(a); then we are led to the Hilbert problems 

[v2*(a)] = [v*(a)]f, [v*(a)]? = [v*(a)]p, 

and 

[U-(a)] [u*(a)] =2(a)[v2 2 

which have a solution [Muskhelishvili [4, ? 15]) 

(18) V*(a) = P2(a), v*(a) = P2(a), u*(a) = PI(a), 

where P1(a), P2(a) are entire functions of a. Thus a suitably general solution of (14) 
and (15) is given by 

v2(a) = P2(a)v(Y)(a) and vi(a) = u(a)v(a) = (u(O)(a)+Pl(a))P2(a)v(0)(a). 
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A suitably general solution of the equation (13) and consequently of (10) is therefore 
given by 

(( ((0(a) + P 1(a)) P21(a)v ( (a) (u ( (a)+ P12(a))P22(a)v(a)(a) 
(19) U(a)- P2,(a)v(?0)(a) P22(a)v(0)(a) I 

where det U(a) = P21(a) P22(a)v(0)(a)v(0)(a)(PII(a)- P12(a)), and Pij(a), ij = 1, 2 
are entire functions. The choice of the entire functions P1%(a) is further restricted by 
the condition that U(a) is nonsingular; and the requirement that the corresponding 
matrix L(a) = A-(a)U(a) is nonsingular, and its elements should be analytic except 
along the branch cut C' through a = k. In particular, the elements of L(a) should not 
have poles at a= - k. For the applications we have in mind it is sufficient to let 
P21 = P22 = PI1 = -P12 = 1, giving 

( (U ()(a)+ 1)v(?)(a) (u (O) (a)- 1)v()(a)) 

(20) ~ UO(a ()a ()a 
(20) det U'?)(a) = 2v(?)(a)v 2)(a). 

In a completely analogous way it can be shown that a Wiener-Hopf factorisation of 
the matrix defined by (9) is given by 

A(a) = U(a)L-l(a) 

where 

I PII(a)v(0)(a) P12(a)v(0)(a) 
(21) U(a) = I(O (O 

( 
) ( ) ( 

PI I ( a:) v (?)(a) )(u U(?)(a,) + P2, (a )) P12( a )V(?) (a)( U (0)(a) + P22(a ))) 

and Pij1(a), i, j = 1, 2 are entire functions, 

det U(a) = Pll(a)Pl2(a)v(?)(a)v(?)(a)(P22(a) - P21(a)); and v(?)(a), v(?)(a), 

and u(?)(a) are fundamental solutions of the standard Hilbert problems 

V (a) = 
gII(a)vj (a), 

v+(a) = g22(a)v (a), aEC. 

U+(a) - u(a) = 92I(a)v (a)1v(a), 

gij(a) are the elements of the lower triangular matrix G(a) = A+(a)A-I'(a). Imposition 
of the further restriction that U(a) and L(a) are nonsingular, and analytic everywhere 
except along the branch cuts C and C' respectively, dictates the choice PI 1 = P12 = P22 = 

-P21 = 1, giving 

(22) U 
( 

(a) = 
)(a)(u (0a -1) v ( 0a)(au() +a)) 

The elements of U(a) have been constructed by assuming that the matrix L(a) in 
equation (2) is continuous across C and therefore L(a) defined by 

L(a) = A1(a)U(a), 

with the elements defined by one of the equations (19) to (22), should from the method 
of construction, be continuous across C. Equation (5) and the equation above gives 

L+(a) = A-l1(a)U?(a) = A+l(a)A+(a)A-1(a)U-(a) = L-(a), 

thus verifying explicitly that L(a) is indeed continuous across C. 
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4. It was remarked in the introduction that the class of matrices (8) and (9) could 
possibly be factorised directly using Jones' technique [8] by expressing (8) or (9) in 
a suitable product form. One of the referees has indicated that this is possible by 
expressing them as the product of triangular matrices. Thus, for example, the matrix 
(8) can be written in the form 

A(a) _( a12(a)-al,(a)s(a)/r(a) all(a)/r(ca))( 0 1() 
0 a2l(a) r(a) sa 

This product of matrices is now in the form of (2) where 

Cu(a) = 1 BL(a)- ? 1) 

The triangular matrix 

A'(a) = (a12(a)-ajj(a)s(a)1r(a) all(a)lr(a)) 

can be explicitly factorised since 

(a(a) b(a)) (a?(a) a+(a)[b(a)/(c_(a)a+(a))]R) 
0 c(a)l 0 Oc+(a)J 

*a_(aa) c_(a)[b(a)/(c_(a)a+(a))]L) 

0 OC_(a) 

(a_a) a_(a)[b(a)/(c+(a)a_(a))]L 
0 c_(a )J 

(a+(a) c+(a)[b(a)/(c+(a)a(a))]R) 

\ ?c+(a) J 

using the notation of Jones [8]. However the above factorisation is prima facie different 
from that obtained in the main text of this paper. The above results involves scalar 
factorisation along infinite lines in a strip of regularity, whereas the method used in 
this paper involves scalar factorisation along semi-infinite lines. It is also worth 
mentioning that the Wiener-Hopf type factorisation problem, using a strip of regularity, 
is subsumed in the more general Hilbert factorisation problem along a line segment, 
see Noble [12]. 

Conclusions. We have presented a method for factorising matrices which arise in 
diffraction problems. This could offer scope for deriving closed-form solutions to 
hitherto unsolved diffraction problems, see Rawlins [11]. The applicability of the 
present method to a given matrix A'(a) (whose elements, besides having the branch 
point singularities at a=?k, also have poles; and whose determinant vanishes or 
becomes infinite in the cut a plane) can be easily determined. If Al(a)[A'l(a)]-1 is 
triangular, then the present method can be used to factorise the matrix A'(a). One 
merely has to determine the Cu(a) and BL(a) of the expression (2) which ensures 
that the elements of A(a) have no poles and that det A(a) ?0. This can be effected 
without too much difficulty by inspection. 

Finally we mention that the (n x n) triangular matrix Hilbert problem can also 
be solved explicitly. Thus provided we can find the class of (n x n)-matrices that reduce 
to the (n x n) triangular matrix Hilbert problem on analytic evaluation about the branch 
cut C, we will have effected a Wiener-Hopf factorisation of this class of (n x n) - 
matrices. 
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