
HAL Id: hal-01445483
https://hal.inria.fr/hal-01445483

Submitted on 24 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast reconstruction of image deformation field using
radial basis function
Lukáš Ručka, Igor Peterlík

To cite this version:
Lukáš Ručka, Igor Peterlík. Fast reconstruction of image deformation field using radial basis function.
ISBI2017 - International Symposium on Biomedical Imaging, Apr 2017, Melbourne, Australia. �hal-
01445483�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/80438566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01445483
https://hal.archives-ouvertes.fr


FAST RECONSTRUCTION OF IMAGE DEFORMATION FIELD
USING RADIAL BASIS FUNCTION
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ABSTRACT
Fast and accurate registration of image data is a key compo-
nent of computer-aided medical image analysis. Instead of
performing the registration directly on the input images, many
algorithms compute the transformation using a sparse repre-
sentation extracted from the original data. However, in order to
apply the resulting transformation onto the original images, a
dense deformation field has to be reconstructed using a suitable
inter-/extra-polation technique.

In this paper, we employ the radial basis function (RBF)
to reconstruct the dense deformation field from a sparse trans-
formation computed by a model-based registration. Various
kernels are tested using different scenario. The dense defor-
mation field is used to warp the source image and compare it
quantitatively to the target image using two different metrics.
Moreover, the influence of the number and distribution of the
control points required by the RBF is studied via two different
scenarios. Beside the accuracy, the performance of the method
accelerated using a GPU is reported.

Index Terms— image warping, image interpolation, med-
ical imaging, non-rigid registration

1. INTRODUCTION

Image registration is the process of overlaying multiple images
of the same scene, acquired by different modalities, from
various viewpoints and/or at different times [1].

The goal of registration is thus to find the optimal trans-
formation W , mapping coordinates from source image S onto
target image T [2]. From mathematical perspective, image
registration an is optimization of objective function given as

M(W (S), T ) +RM (W ) (1)

which consists of similarity measure M , typically comple-
mented with a regularization term RM , which introduces a
priori knowledge into the optimization process. It is often
used to limit the set of possible transformations to those which
are physically feasible [3].

Instead of using the dense representation typically repre-
sented by the images T and S, the registration process can be

designed as optimization of objective function evaluated on a
sparse representations t and s, typically geometric primitives
such as points or convexes, extracted from the original data.
In this case, a sparse transformation w is computed and the
metric M is usually replaced by a different criterion m such
as Euclidean or Hausdorff distance. The sparse registration is
then summarized as follows:

SR1 Sparse representation s and t such as set of features or
a mesh is extracted from the source and target images.

SR2 Sparse transformation w is computed by optimization
of the criteria m applied to t and w(s). The process can
be again regularized by a priori information introduced
via a suitable term.

SR3 Dense transformation W is constructed from w via suit-
able interpolation or approximation technique [4].

SR4 Similarity measure M is evaluated over target image T
and transformed source image W (S).

The approach described above has been employed in a large
number of algorithms. A finite element model (FE model)
is core component of ITK filters for physics-based non-rigid
registration presented in [5, 6]. They use the data from image
block matching as input for a finite element modeling of the
underlying tissue, which yields sparse transformation. The
deformation field W is then obtained as a result of hybrid iter-
ative approximation-interpolation algorithm with outlier block
rejection step. Non-linear finite element modeling has been
also deployed for brain registration [7], interpolating the sparse
transformation with algorithm proposed in [8]. The interpola-
tion is based on B-spline deformation of Gaussian curvature.
A compound dense transformation is used in [9], consisting
of free-form deformation with homogeneous coarse grid and
B-spline convolution kernel for interpolation inbetween the
latices. This approach has been adapted in [4], improving
the results with a cross-cumulative residual entropy metric.
The dense deformation field, obtained by the CLI-TPS algo-
rithm [10] is subjected to constraint-based smoothing in lung
CT registration [11]. The constraints presented ensure that the
dense field preserves the topological properties of the original
structure.



The sparse transformation obtained by the registration pro-
cess often provides values in positions which are not organized
in a regular structure. Therefore, an interpolation from scatter
data such as radial basis functions (RBF) interpolation is used
to compute the dense transformation [12]. A series of criteria
for sparse deformation field interpolation via RBF was given
in [13]. Furthermore, computational efficiency of RBF inter-
polation has been addressed in [14] and later evaluated [15].
Remarkably, in this work, the uncertainty at input was greater
than the error introduced by approximation of RBF solution.

In this paper, we focus mainly on steps SR3 and SR4 as
given in the list above. Both SR1 and SR2 are performed
by an external registration process. We have chosen a mesh-
based registration presented in [16]. The method presented
therein is regularized with co-rotational formulation of linear
elasticity, therefore the resulting sparse elastic transformation
is physically admissible and capable of handling very large
displacements. We apply the RBF to convert the sparse trans-
formation and study the influence of the RBF method for both
the domain covered by the FE mesh (interpolating mode), as
well as in the areas outside of the mesh (RBF in extrapolating
mode). Method is assessed using two different image metrics
and visual inspection for different RBF splines, resolutions
of the image data and different inputs provided by the sparse
registration.

2. METHOD

In this section, we first shortly describe the RBF interpolation
method. Then, we couple this technique with a sparse FE-
based registration in order to obtain dense transformation that
can be used to warp 3D images.

2.1. Radial Basis Function Interpolation

In general, the RBF interpolation in point x is given as a
weighted sum of radial base function ϕ(r), centered in control
points Xi:

f(x) = A · x+
∑
i

wi · ϕ(‖Xi − x‖) (2)

where A is an affine transformation term. The interpolation
is computed in two steps. First, given known values of the
function f in m control points Xj , j = 1 . . .m, the vector
w of weights is found by substituting f(Xj) for f(x) on the
left-hand side, and Xj for x on the right-hand side of the Eq. 2
and solving the resulting system of linear equations. Second,
for any new position x, the value f(x) is computed directly
by Eq. 2. By its nature, RBF interpolation is unidimensional;
interpolation of multidimensional values is considered as com-
bination of independent unidimensional transformations. As
for the choice of the base function, in this paper, we consider
following options:

ϕ(r) = r2 · log(r) Thin plate splines (TPS) – solution of
bending energy functional, minimizing second order
bending energy potential in 2D [15].

ϕ(r) = r2 (biharmonic RBF spline) – solution of bending
energy functional, minimizing second order bending
energy potential in 3D [15].

ϕ(r) = r3 (triharmonic RBF spline) – solution of bending en-
ergy functional, minimizing third order bending energy
potential in 3D [15].

ϕ(r) = r3 · log(r), ϕ(r) = r2 · log(log(r)), ϕ(r) = r · log
(log(r)) – test base functions, illustrating different as-
pects of dense transformations they yield1. In the fol-
lowing, these base functions are referred to as excited
triharmonic (ETRI), damped thin-plate spline (DTPS)
and excited linear with damping (EDL) respectively.

2.2. From Sparse Registration to Dense Transformation

In the scenario considered in this paper, we employ the surface-
matching registration presented in [16] which performs a mesh-
to-mesh registration based on constrained biomechanical sim-
ulation. Indeed, the method does not work directly with the
images, but it is necessary to extract the sparse representation
given by the FE meshes of the object of interest in source and
target configurations,Ms andMt, respectively. During the
registration process regularized by the co-rotational formula-
tion of the linear elasticity, the Ms is deformed due to the
application of sliding constraints which are used to match the
shape ofMs to the shape ofMt. The procedure results in the
registered mesh M̃s: although being deformed, this mesh has
the same topological structure asMs. The vectors of nodal po-
sitions of the two meshes constitute the sparse transformation
computed by the mesh-to-mesh registration.

Now, to obtain the dense transformation, RBF is employed
as follows. Using the nomenclature introduced in the previous
section, the nodes of the deformed mesh M̃s are used as
control points and f(ñs) = ns − ñs is the 3D function which
is used to compute three weight vectors wx, wy, wz and
affine transformation A. Then, the value of transformation is
interpolated over the original image, i.e., the Eq. 2 is evaluated
in each voxel of the image.

3. RESULTS

3.1. Data and Sparse Registration

The evaluation was performed used a set of CT scans of a
female pig liver (target organ) and kidneys (auxiliary organs).
Two abdominal CT scans were acquired in flank and supine po-
sitions with SOMATOM R© Definition AS 128 device. A bound-
ing box containing the liver was extracted from the original

1 As noted in [12], certain base functions can yield good results even
though they are not mathematically justified.



Interpolation
Liver only Liver + kidneys Cross-scenario improvement

Dice MMI Dice MMI Dice MMI
LR HR LR HR LR HR LR HR LR HR LR HR

No interpolation 0.5123 0.5148 -0.1032 -0.098 0.5123 0.5148 -0.1032 -0.098 – – – –
EDL 0.9333 0.9495 -0.2395? -0.2237 0.9333 0.9496 -0.2586 -0.2457 0 0.0001 -0.0191 -0.0219
Biharmonic 0.9341 0.9519 -0.2306 -0.2301? 0.9339 0.9519 -0.2635? -0.2607? -0.0002 0 -0.0329† -0.0306†

DTPS 0.9358 0.9526 -0.239† -0.2247† 0.9357† 0.9526? -0.2608† -0.2543† -0.0001 0 -0.0218 -0.0296
Thinplate 0.9363† 0.9528† -0.2236 -0.2187 0.936? 0.9526† -0.2533 -0.2435 -0.0003 -0.0002 -0.0297 -0.0247
Triharmonic 0.9371? 0.9531? -0.179 -0.171 0.8531 0.8621 -0.2495 -0.2335 -0.084 -0.091 -0.0705? -0.0625?

ETRI 0.9286 0.9446 -0.1703 -0.1622 0.1453 0.1528 -0.0547 -0.0377 -0.7833 -0.7918 0.1156 0.1245

Table 1: Evaluation of target organ driven warping with respect to Dice and Mattes MI metrics. Blue? and green† colors denote
the best and the second best result achieved for given metric (maximum for Dice and minimum for Mattes MI).

scans in two versions: first, the original resolution was pre-
served resulting in high-resolution images (HR) composed of
480 × 452 × 388 voxels with spacing 0.5 × 0.5 × 0.5mm3.
The same volume was resampled to lower resolution (LR):
240× 226× 194 voxels, spacing 1× 1× 1mm3.

The FE meshes extracted from the original images were
composed of 843 nodes (liver) and 165 and 207 nodes for
kidneys. The sparse registration was performed using the
method presented in [16]: the supine configurations of the
liver and kidney meshes were registered to the correspond-
ing flank configurations; the registration of each organ was
performed separately resulting in three complementary sparse
transformations. While the kidneys displayed important trans-
lation and rotation, the liver underwent large deformations
resulting in large displacements of lateral lobes (up to 6 cm).

3.2. Testing Scenarios

The dense transformation was constructed for each base func-
tion from section 2.1. Further, two different scenarios were
considered. Since we are interested in registration of liver and
its surroundings, the dense transformation was first constructed
using only the control points provided by the liver mesh. In the
second scenario, the control points obtained by the registration
of kidneys as auxiliary organs were also added to the liver
mesh nodes to augment the set of control nodes. Since the
three organs perform relatively independent movements, the
goal was to test the capabilities of the RBF method.

All the scenarios were evaluated for both the low- and high-
resolution images using two metrics: the interpolation mode
was evaluated by the Dice metric [17] computed using the
binary maps of the liver. Further, Mattes mutual information
(MMI) [18] was computed using the target image and the
source image warped by the dense transformation. Hence, the
Dice metric was used to assess the interpolating mode locally,
while MMI was employed as a global metric quantifying the
quality of warping that was obtained by combining the physics-
based approach (the sparse registration) and geometric RBF
method.

3.3. Evaluation Using Warped Images

Dense transformations were constructed using the RBF method
using a PC equipped with Intel R© Core

TM
i7-3770 CPU running

3.40 GHz, 32 GB RAM and NVIDIA GeForce GTX 560. The
second phase of the method, where the RBF is evaluated for
each voxel, was accelerated using the GPU. The computing
times are reported in Tab. 2.

Scenario
GPU L [s] GPU L+K [s] CPU L [s]

LR HR LR HR LR HR

EDL 2.64 21.13 4.76 37.88 338.9 2 695
Biharmonic 1.70 13.45 3.23 25.64 132.2 1 052
DTPS 2.59 20.57 4.69 38.17 333.8 2 645
Thinplate 2.19 17.39 4.10 32.61 231.1 1 833
Triharmonic 1.72 13.62 3.24 25.79 133.6 1 067
ETRI 2.17 17.20 4.06 34.22 253.2 2 012

Table 2: Processing times of individual scenarios – liver (L),
liver + kidneys (L+K) – retrieved via code instrumentation.
CPU times for liver registration (CPU L) are provided for
illustration.

The quantitative results showing the MMI and Dice metrics
are reported in Tab. 1. Beside the values of metrics, the relative
differences are shown on the right-hand side. The best results
are displayed in colors. Moreover, an illustration of results is
shown in Fig. 1. We have deliberately chosen an axial slice
located below the liver, which represents the area covered with
the control points, in order to illustrate the behavior of the
extrapolated dense deformation field for different choices of
RBF spline.

Both TPS and triharmonic splines perform well in terms of
Dice metric. Nonetheless, although the liver keeps its shape,
the near vicinity suffers from vast drifts. While triharmonic
spline renders the segmented liver smoother, TPS creates ar-
tificial concavities. Furthermore, the results of EDL, bihar-
monic and DTPS splines display visual similarity, without any
noticeable issues. However, none of the splines allows for
approaching the deformation of the flank image outside of the
liver region.
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Fig. 1: Comparison of the warped images obtained via differ-
ent RBF splines.
(a): source image, (b): target image
On the left, scenarios using control points only from liver
mesh. On the right, scenarios using control points from liver
and kidney meshes. Types of the RBF spline:
(c),(d): biharmonic,
(e),(f): DTPS,
(g): EDL, (h): triharmonic.

In the scenario using also the registered kidneys as auxil-
iary sources of control points, the Dice metric performs best
with both Thin plate splines and DTPS. However, TPS achieves
inferior score in terms of Mattes MI metric. On the other hand,
the performance of other spline is acceptable for Mattes mu-
tual information (MMI) metric as well. The best results for
MMI are achieved using the biharmonic spline. Upon visual
inspection of the segmented liver, all three results look natu-
rally. Nevertheless, the TPS seems to emphasize bulges on
liver surface. Furthermore, visual inspection shows slight im-
age deterioration along the borders, clearly visible for TPS
warp. In addition, the DTPS exhibits stable results throughout
distinct scenarios.

Out of all RBF splines tested, the ETRI performs the worst
in terms of both Dice and MMI metrics. Upon visual inspec-
tion, the surface of the liver seems to suffer from material drift.
Inspection of the deformation field reveals large displacements
in image parts uncovered by RBF control points, rendering the
intensity image completely useless. Correspondingly, adding
displacement contribution from kidneys lead to complete de-
formation field breakdown, thus degenerating segmented liver
to point cloud.

4. DISCUSSION AND CONCLUSIONS

While including auxiliary organs slightly corrupts the Dice
metric, it improves the MMI metric in all cases where single
organ warping does not already exhibit deterioration. The im-
provement is, however, only decimal order higher than metric
sensitivity, computed as the difference of MMI values for non-
interpolated warps. Thus, as the changes in Dice metric are
negligible (< 0.0003), including auxiliary organs improves
the overall MMI result. However, neither the improvement
alone, nor MMI score guarantee that the result is acceptable.
For example, the triharmonic spline achieves reasonably-high
score in MMI, yet the image is severely degenerated. The only
significant deterioration of Dice result in combination with
improvement in MMI suggest degenerated image.

It is equally important to understand the nature of all the
splines considered in this paper: the further the inter-/extra-
polated voxel from a control point, the stronger the effect of
given control point. The data used also displays strong rota-
tional changes for kidneys, as pig lacks ligaments which are
present in human body. This observations combined probably
explain the poor performance of the triharmonic and higher
splines. As noted in [13], the distance property can introduce
significant artifacts.

Beside testing other intensity-based metrics, we plan to
compare this warping technique to other global interpolation
methods such as natural neighbor interpolation. However,
exploring different interpolation frameworks or base functions
with better locality properties (e.g. Gaussian) is beyond the
scope of this paper and will be subject of the future work.
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