
HAL Id: hal-01446775
https://hal.inria.fr/hal-01446775

Submitted on 26 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flow Aware Traffic Management
Alberto Blanc, Konstantin Avrachenkov, Sara Alouf, Georg Post

To cite this version:
Alberto Blanc, Konstantin Avrachenkov, Sara Alouf, Georg Post. Flow Aware Traffic Management.
5th International Workshop on Traffic Management and Traffic Engineering for the Future Internet
(EuroNFTraf ’09), Dec 2009, Paris, France. �hal-01446775�

https://hal.inria.fr/hal-01446775
https://hal.archives-ouvertes.fr


Flow Aware Traffic Management
Alberto Blanc∗, Konstantin Avrachenkov∗, Sara Alouf∗, Georg Post†
∗INRIA Sophia Antipolis Méditerranée †Alcatel-Lucent Bell Labs, Nozay

Email: first.last@sophia.inria.fr Email: first.last@alcatel-lucent.com

I. BACKGROUND AND MOTIVATIONS

When the TCP and IP protocols were first proposed the
emphasis was on a simple best-effort service. Later on TCP
was modified in order to address the issue of congestion
control, that is to make sure that the senders would not
overwhelm the network by sending data too fast. Over the
years these protocols have shown an excellent scalability and
have allowed the Internet to grow from a network connecting a
few research centers to one that connects a very large number
of computers all over the world. In its simplest form, which
is still by far the most widely used, TCP congestion control
works by using drop tail queues that simply drop packets
whenever there is no more space in the router’s buffers. TCP
senders react to these losses by reducing their sending window
and, hence, their rate.

This mechanism, while simple and scalable, has several
well known limitations: 1) often different flows experience
synchronized losses, leading to lower link utilization [5], 2)
when flows with different Round Trip Times (RTT) share
the same bottleneck link, the flows with a smaller RTT will
receive a larger share of the capacity [1]. Not only this
allocation of capacity is non-optimal in general, but it cannot
be modified as long as only drop tail queues and TCP are
used. Over the years several solutions have been proposed
to address these limitations, especially the first one. Random
Early Detection (RED) [5] was the first, and by far the most
widely known and implemented; Active Queue Management
(AQM) algorithm aims at improving link utilization by de-
synchronizing packet losses for different flows, albeit without
addressing the fairness issue. Furthermore, while RED can
indeed improve performances in some cases, this is not always
true [9] and tuning its parameters is non-trivial, hampering
its widespread use. Many other AQM algorithms have been
proposed (like REM [8], Blue [4], Stochastic fair blue [3],
just to name a few), but, to the best of our knowledge, none
of them is capable of addressing both issues while being easy
to configure and supporting different fairness criteria.

Another advantage of using AQM algorithms is that routers
can use Explicit Congestion Notification, in order to inform a
sender that it needs to reduce its sending rate (that is to cut its
sending window). This reduces the number of dropped packets
and can improve performances as the sender does not need to
rely on timeouts and/or duplicate acknowledgments in order
to infer congestion.

We propose a new flow-aware traffic management mech-
anism that aims at addressing the two aforementioned lim-

itations of TCP, while being self-configuring and supporting
different fairness criteria. Clearly the fairness criteria has to be
explicitly selected (configured) by the user; this corresponds
to selecting a specific objective, leaving the optimal tuning of
parameters to the system. This mechanism is part of Alcatel-
Lucent’s “Semantic Networking” paradigm [12]. Given that
several studies indicate that 20% of the flows are responsible
for 80% of the traffic, and that the overwhelming majority of
these are TCP flows, we propose to concentrate on controlling
these long-lived TCP flows, often called “elephants.” In so
doing it is possible to improve the Quality of Service/Quality
of Experience offered to short-lived and streaming flows. By
controlling each elephant individually it is also possible to
better control the service received by each one and prevent
flows from harming each other.

II. FLOW-AWARE TRAFFIC MANAGEMENT: OUR SOLUTION
AND A SIMPLIFIED IMPLEMENTATION

In order to offer great flexibility in terms of fairness criteria
and service offering we propose to control each long-lived
flow individually, decoupling it from all the others. The core
idea of the proposed mechanism can be described as a two
step process:

1) decide a target rate (λ̂i) for each flow;
2) control each TCP flow in order to minimize the oscilla-

tions around the chosen target rate.
The second point can be formally expressed as:

min.
1
T

ˆ T

0

(λi(t)− λ̂i)2dt, (1)

where λi(t) is the instantaneous rate of flow i. Our conjecture
is that, in order to minimize (1), and based on a TCP Reno
model, it suffices to send a congestion signal (i.e., mark/drop a
packet) whenever the instantaneous rate reaches a peak value

ki ,
3λ̂i(1 + β)

2(1 + β + β2)
,

where β is the coefficient used by the sender to cut its window
for each congestion event, that is, if w is the window size, w =
βw. This forces the sending rate to oscillate deterministically
between βki and ki, as shown in Figure 1.

As the TCP window grows linearly (it is incremented by one
each RTT) it suffices to mark (drop) packets periodically in
order to obtain the behavior depicted in Figure 1. This can be
easily implemented using packet counters. In order to compute
the number of packets in each period one needs to know the
RTT of the flow in question, but this can be estimated using the



t

λi(t)

λ̂i

3λ̄i(1+β)

2(1+β+β2)

3βλ̄i(1+β)

2(1+β+β2)

Figure 1. Periodic oscillations of the instantaneous sending rate.

10 20 30 40 50

t/s

0

10

20

30

40

50

60

w
/
M

S
S

flow 1

flow 2

Figure 2. The evolution of the sending window with periodic marking.

algorithm presented in [2] that can estimate the RTT of a long-
lived TCP flow on-line and in real-time by observing only one-
way traffic. This algorithm can be efficiently implemented on a
network processor using only integer arithmetic. Furthermore
successive congestion signals are separated by several RTT,
so that control decisions are made at a timescale larger (or at
least equal) to the RTT.

Similarly to what has been previously suggested (e.g. [7])
we propose to concentrate on controlling only long-lived flows
as these carry the overwhelming majority of the traffic. It is
reasonable to assume that the number of concurrently active
long-lived flows is going to be in the order of hundreds which
is orders of magnitude smaller than the total number of active
flows. This reduces significantly the needed requirements, in
terms of memory and computing power. The only function
that still needs to be carried out at wire-speed is packet
classification, that is to establish, for each incoming packet,
if it belongs to a long-lived flow and if yes to which one. But
this is doable with modern hardware, for example by using
counting Bloom filters to determine if a packet belongs to the
set of long lived flows (counting filters have the advantage that
they can be updated so that, as flows terminate, they can be
removed from the set of long-lived flows).

So far we have illustrated how we plan to address the second
step of our control process. We already have a simplified
implementation of this step in ns-3: for the moment, instead
of taking the target rate as input, for each flow, the implemen-
tation takes the number of packets between two successive
marks. This has allowed us to verify that periodic marking
is indeed enough to force a periodic behavior in the TCP
sending window. It can also be used to analyze the effect
of non-linearity in the growth of the window when queueing
delays are non-negligible. As an example, Figure 2 shows
the evolution of the window for two flows when packets are
marked periodically.

In order for our solution to be complete we also need to find
a way to compute the target rate for each flow. We describe
some possible approaches in the next section.

III. FUTURE WORK

Selecting the target rate for each long-lived flow is not a
simple task and we can envisage several possible solutions.
Trying to achieve max-min fairness is possibly among the
simplest ones. This solution has the advantage that it can be
determined with local information only, as long as routers can
measure the rate of each flow, in order to determine which
flows never reach the allotted rate and then allocate the unused
bandwidth among the remaining flows. In other words routers
can implement the so-called “water-filling” algorithm.

One natural extension is to consider α-fairness [10] but
we conjecture that this cannot be done by using only local
information, requiring the use of distributed solutions. This
introduces the problem of signaling overhead. Nevertheless,
it could be worth exploring this solution as it would offer
great flexibility in terms of available fairness criteria. Another
possible solution is to consider a centralized server that, based
on the state of the network, computes the target rate for each
flow. Clearly this solution is not the most attractive one but it
does have the advantage of being easy to implement. Finally
solutions involving end-hosts are possible, similarly to what
is done in XCP [6] and RCP [11].

Acknowledgements: This work was done in the frame-
work of the INRIA and Alcatel-Lucent Bell Labs Joint Re-
search Lab on Self-Organized Networks.

REFERENCES

[1] P. Brown. Resource sharing of tcp connections with different round trip
times. In INFOCOM 2000, volume 3, pages 1734–1741, 26-30 March
2000.

[2] D. Carra, K. Avrachenkov, S. Alouf, P. Nain, and G. Post. Method for
estimating a round trip time of a packet flow, 2009. Patent No. 2416,
Filing No. 09305207.4.

[3] W.-C. Feng, D.D. Kandlur, D. Saha, and K.G. Shin. Stochastic fair blue:
a queue management algorithm for enforcing fairness. In INFOCOM
2001, volume 3, pages 1520–1529, 2001.

[4] W.-C. Feng, K.G. Shin, D.D. Kandlur, and D. Saha. The blue active
queue management algorithms. IEEE/ACM Trans. Netw., 10(4):513–528,
2002.

[5] S. Floyd and V. Jacobson. Random early detection gateways for
congestion avoidance. IEEE/ACM Trans. Netw., 1(4):397–413, 1993.

[6] D. Katabi, M. Handley, and C. Rohrs. Congestion control for high
bandwidth-delay product networks. In SIGCOMM ’02, pages 89–102,
New York, NY, USA, 2002. ACM.

[7] A. Kortebi, L. Muscariello, S. Oueslati, and J. Roberts. Minimizing
the overhead in implementing flow-aware networking. In ANCS ’05:
Proc. of the 2005 ACM symposium on Architecture for networking and
communications systems, New York, NY, USA, 2005. ACM.

[8] D. Lapsley and S. Low. Random early marking: An optimization
approach to internet congestion control. In ICON ’99: Proceedings
of the 7th IEEE International Conference on Networks, pages 67–74,
Washington, DC, USA, 1999. IEEE Computer Society.

[9] M. May, J. Bolot, C. Diot, and B. Lyles. Reasons not to deploy RED.
In IWQoS ’99: Proc. of the 7th International Workshop on Quality of
Service, pages 260–262, 1999.

[10] J. Mo and J. Walrand. Fair end-to-end window-based congestion control.
IEEE/ACM Trans. Netw., 8(5):556–567, 2000.

[11] D. Nandita. Rate Control Protocol (RCP): Congestion control to make
flows complete quickly. PhD thesis, Standford, 2007.

[12] L. Noirie, E. Dotaro, G. Carofiglio, A. Dupas, P. Pecci, D. Popa, and
G. Post. Self-* features for semantic networking. In FITraMEn ’08:
Proc. of International Workshop on Traffic Management and Traffic
Engineering for the Future Internet, December 2008.


