
HAL Id: hal-01396291
https://hal.inria.fr/hal-01396291

Submitted on 2 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symbolic Models for Isolated Execution Environments
Charlie Jacomme, Steve Kremer, Guillaume Scerri

To cite this version:
Charlie Jacomme, Steve Kremer, Guillaume Scerri. Symbolic Models for Isolated Execution Envi-
ronments. 2nd IEEE European Symposium on Security and Privacy (EuroS&P’17), Apr 2017, Paris,
France. �10.1109/EuroSP.2017.16�. �hal-01396291�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/80432311?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01396291
https://hal.archives-ouvertes.fr

Symbolic Models for Isolated Execution Environments

Charlie Jacomme
ENS Cachan, Université Paris-Saclay

Steve Kremer
LORIA, Inria Nancy-Grand Est

& CNRS & Université de Lorraine

Guillaume Scerri
DAVID Lab, Université Versailles Saint-Quentin

& Université Paris Saclay & INRIA Saclay

Abstract—Isolated Execution Environments (IEEs), such as
ARM TrustZone and Intel SGX, offer the possibility to execute
sensitive code in isolation from other malicious programs,
running on the same machine, or a potentially corrupted OS.
A key feature of IEEs is the ability to produce reports binding
cryptographically a message to the program that produced
it, typically ensuring that this message is the result of the
given program running on an IEE. We present a symbolic
model for specifying and verifying applications that make
use of such features. For this we introduce the S`APIC
process calculus, that allows to reason about reports issued
at given locations. We also provide tool support, extending the
SAPIC/TAMARIN toolchain and demonstrate the applicability
of our framework on several examples implementing secure
outsourced computation (SOC), a secure licensing protocol and
a one-time password protocol that all rely on such IEEs.

1. Introduction

Isolated Execution Environments (IEE) like the ones
offered by Intel’s Software Guard Extensions (SGX) [1] and
ARM Trustzone [2] are designed to allow the execution of a
program P on an untrusted machine in an isolated manner.
In particular it ensures isolation of a sensitive program from
a corrupted OS or other malicious programs running on the
same machine. One key component of IEEs is the ability
to produce reports binding cryptographically a message to
the program that produced it. This capability is intended to
provide guarantees on the results produced by a program
running on a remote untrusted machine.

An IEE can be viewed as a RAM machine that runs
a program P and exposes only a limited interface which
allows to provide inputs to and retrieve outputs from P .
The isolation guarantee provided by the IEE ensures that
the behaviour of the process running in the IEE is only
determined by the inputs/outputs communicated through its
interfaces (and the semantics of P). This ensures a strict
isolation both between different IEEs and between IEEs
and the untrusted environment. Additionally IEEs provide
(to the program running inside) system calls to a security
module executing cryptographic operations. The result of
such calls may depend on the content of the calling IEE.

Work was carried while Scerri was a research associate at Bristol Univer-
sity.

A key feature of this security module is a call that when
queried with input m returns a report report(m,P) on both
the code of the program P and the message m. This report
can then be checked by agents who wish to ascertain that
m was indeed produced by an IEE running P . Such reports
are typically implemented as digital signatures with a key
belonging to the platform providing the IEE and certified by
the manufacturer1. We will not concentrate on the specific
details of the implementation but assume the existence of
such a reporting function and look at how applications can
make use of it to provide security properties.

As a concrete use case of an IEE based application
consider a simplification of the attested computation scheme
(and associated security property) proposed by Barbosa et
al. [3]. This example will serve as our running example
throughout the paper. Intuitively, the scheme provides a
means for a user to execute a program remotely and to
ensure that the local view of the trace corresponds to a valid
execution of the program in a remote IEE even when the
adversary controls the network and the remote machine. In
the framework proposed in [3], when an agent wants to
run P remotely, he compiles P in an instrumented program
P ∗ = Compile P . We describe a simplified version of
the protocol from [3] in Figure 1. P ∗ is executed in the
remote IEE. When queried an input i, P ∗ computes the
corresponding output o by applying P to i. P ∗ also keeps
track of a list lio of inputs/outputs it has seen so far in its
internal state st, and appends the input and the output to
lio. Finally, it returns the output together with a report on
lio. Locally, the user executes a local verification algorithm
Verify to check that the returned results correspond to the
correct computation on the provided inputs. For this the user
stores the list of queried inputs and received outputs in its
local state stl and checks that the report r provided by the
remote IEE was computed on the same list to ensure that the
remote and local state are consistent. The expected security
goal is to ensure that an adversary cannot have the user
accept a sequence of inputs/outputs that were not produced
in an IEE running program P ∗.

1. This is a slight simplification of what SGX provides. Instead of letting
IEEs create signatures as reports, SGX exposes to IEEs a call that allows
them to produce a MAC tag (under a symmetric platform key) on the output
and the content of the IEE. In order to let users provide reports for external
agents, it also initializes a specific IEE dedicated to converting such tags
into digital signatures with an asymmetric platform key certified by Intel.

P ∗(i):
o← P (i)
st.lio← st.lio : i : o
Return (o, report(lio))

Verify(i, o∗):
(o, r)← o∗

If check(r, P ∗) = stl.lio : i : o
stl.lio← stl.lio : i : o
Return o

Else Return ⊥

Figure 1. Pseudo code for IEE backed attestation [3]

The release of Intel SGX is likely to significantly in-
crease the number of applications that will rely on IEEs.
The complexity of these applications is however also likely
to introduce security flaws in the design of these application.
Symbolic models, following the seminal ideas of Dolev
and Yao [4], abstract away many details of cryptographic
implementations and are well suited for reasoning about
complex protocols and their security properties. Indeed in
such highly concurrent protocol executions, flaws in the
underlying protocol logic can often be exploited to break
the expected security properties. Symbolic models have been
used successfully to find attacks, e.g., on authentication stan-
dards [5] and commercial PKCS#11 tokens [6] to name only
a few. Applying such verification techniques to IEE based
security sensitive applications would provide a valuable tool
to evaluate their security. However, existing techniques do
not offer direct support for verifying protocols that exploit
report functionalities offered by modern IEEs. One possible
approach would be to provide a detailed model of the
cryptographic protocols underlying the report functionality
for a particular IEE. While it is certainly interesting to study
these mechanisms, the verification of the resulting models,
when composed with complex applications that make use
of these mechanisms, is unlikely to scale up. Moreover
such models are very specific to a particular IEE. Finally,
a direct modelling of the fact that programs are passed
as arguments to some system calls offered by the IEEs,
requires a modelling languages with support for higher-order
value passing, which, to the best of our knowledge, is not
supported by any security protocol verification tool.

1.1. Our contributions

A symbolic model for reasoning about IEEs. In this paper
we present a symbolic model for reasoning about protocols
relying on IEEs. Our aim is to provide a model that directly
supports reporting and allows us to reason about applications
that make use of this functionality, rather than giving a
precise model of its realisation.

In order to model the report capability of IEEs we
introduce the S`APIC process calculus, that extends SAPIC
(Stateful Applied Pi Calculus) [7] with locations and a
report instruction. We introduce locations as an abstraction
of programs: rather than letting a report bind a value to a
process itself, we bind it to a location attached to the given
process. This avoids the need for a higher-order calculus
and also provides a large amount of flexibility. For instance,
if each process is modelled with a distinct location (where

locations are terms that may also depend on previously input
arguments) binding the result to the process or the location is
virtually equivalent. Another important aspect of our model
is that, in addition to a full control of the network, the adver-
sary also controls IEE enabled machines. In particular, we
model that the adversary can initialise IEEs running arbitrary
programs and, through these programs, perform calls to the
security module. This is achieved by granting the adversary
the ability to directly forge some reports: while reports on
trusted locations, i.e., honestly generated programs, may
only be produced by the protocol, the adversary may forge
reports for any other locations. Technically, we define a
predicate H which holds on what we consider to be a trusted
location (i.e. code whose properties our security properties
rely on) and let the adversary produce any report(m,Q) with
¬H(Q). This requires the introduction of guarded function
symbols, i.e., function symbols that an adversary may only
apply given that some predicate holds on the function inputs,
which we believe to be of independent interest. This over-
approximation allows the adversary to directly simulate code
running in an IEE.

Tool support and case studies. We also provide
tool support for the S`APIC calculus by extending the
SAPIC/TAMARIN toolchain. In [7] a verification tool for
SAPIC is presented which uses the TAMARIN prover [8] as
a backend. At the heart of this tool is a highly optimised
translation of the SAPIC calculus into multiset rewrite rules,
the input format for TAMARIN. We extend this translation
to S`APIC and prove its correctness. As we will see,
the correct encoding of guarded function symbols is not
straightforward and requires a slight restriction of the logic
for expressing security protocols (the restriction is however
minor and does not prevent expressing any relevant security
properties).

Finally, we demonstrate the usefulness of the calculus
and the effectiveness of the tool by analysing several pro-
tocols. We start with a model and analysis of the simplified
attested computation protocol [3]. Next, we consider an
attested key exchange and show that using this key exchange
protocol we can also realize secure outsourced computa-
tion (SOC) [3]. In addition to attestation, SOC provides
confidentiality of the computed values and unicity of the
computation. Finally we provide models and an automated
analysis of a recent licensing protocol [9] and a one time
password protocol [10].

1.2. Related work

A few works [11], [3] provide security proofs of various
IEE based protocols in the computational model. These
works consider an abstract model of IEEs: intuitively, the
IEE is modelled as a RAM machine with access to some
specific cryptographic calls. Our modeling draws from this
line of work, casting it in a more abstract symbolic model.
While these works provide the inherently stronger security
guarantees that come from working in the computational
model, they do not appear to be amenable to automation as
is.

Various works consider properties of assembly code
running in IEEs. Notably in [12] Sinha et al. provide a tool
and design methodology ensuring confidentiality of private
values and code contained in IEEs. In [13] Patrignani and
Clarke give an abstraction of isolation mechanisms at the
source code level. These lines of research target a much
lower level than ours, and properties of the code running in
IEE rather than complex protocols built on top of those.

It has been noted [14] that SGX and other IEEs do not
provide protection against side channel, in particular timing,
attacks. While modelling this aspect of IEEs is an interesting
line of work, it is outside of the scope of Dolev-Yao models
and should be dealt with at a lower level.

Symbolic verification techniques provide nowadays
good tool support for automated verification of security
protocols, see e.g., [15], [16], [17], [8]. However, most tools
such as ProVerif [15], Scyther [16] and Maude-NPA [17]
do not provide support for global mutable state, i.e., state
information that may be accessed and modified by parallel
threads. As we will see in Section 4 our case studies
however do need such stateful information. StatVerif [18] is
an extension of ProVerif that provides such global states in
the form of memory cells. However, it only provides support
for a fixed number of cells, while we require them to be
generated dynamically (under a replication). We therefore
chose to base our model on the SAPIC/TAMARIN toolchain.

In [19], [20], Delaune et al. analyse parts of the Trusted
Platform Module (TPM) [21] instruction set using ProVerif.
In [22], Shao et al. model the enhanced authorization mech-
anism introduced in the TPM 2.0 specification and analyse
it using SAPIC. These approaches are however different
in the sense that they model some instructions offered by
the TPM, while we directly add a report mechanism to the
language.

2. Protocol model
In this section we present our formal model for speci-

fying messages, protocols and security properties. This for-
malism is similar to [8], [7], but introduces guarded function
symbols and extends the process calculus with locations and
a report instruction.

2.1. Modelling messages as terms

The messages exchanged during protocol executions are
modelled as terms in an order-sorted term algebra. In our

sort system we consider messages of sort msg and two in-
comparable subsorts pub and fresh . We suppose that each of
these subsorts comes with a countably infinite set of names,
FN for fresh names and PN for public names. While names
in PN model publicly known values, the names in FN
model secret (typically randomly drawn) values, such as
secret keys and nonces. For each sort s we assume an infinite
set of variables, denoted Vs. The set of all variables V is
the union of Vs for all sorts s. Cryptographic operations
are modelled using function symbols. The set Σ of function
symbols, coming each with its arity, is called the signature
and we denote by f/n that f is of arity n.

Given Σ,PN ,FN and V we define the set of terms
T to be the smallest set that contains PN ,FN ,V and is
closed under application of function symbols. We denote
by names(t), respectively vars(t), the function that given
a term t returns the set of names, respectively variables,
occurring in t. Moreover, we define the set of messages
M = {t|t ∈ T and vars(t) = ∅}, i.e., M is the set of
ground terms, that is terms without variables.
Example 1. We consider a small signature capturing the
report and check functions :

Σ = {report/2, check/2}

Then, a term attested by the IEE could be of the form :

report(msg, trusted_location)

Next, we equip the term algebra with an equational the-
ory. The equational theory E is defined by a set of equations
among terms t1 = t2, such that names(t1) = names(t2) =
∅ and the set induces an equivalence relation =E . We define
=E to be the smallest equivalence relation which contains
all equations in E and is closed under application of function
symbols and substitutions of variables by terms.
Example 2. We can equip the previous signature with the
following equation :

check(report(msg, location), location) = msg

Then, given a report and a location, we can verify if the
report corresponds to this location.

Facts. We will use facts to annotate protocols, using events.
Facts will also serve to define multiset rewrite rules (cf Sec-
tion 3.1). To define facts we assume an unsorted signature
Σfact , disjoint from Σ. Given Σfact , we define the set of
facts as

F := {F (t1, . . . , tk) | F/k ∈ Σfact , ti ∈ TΣ}

We distinguish linear and persistent fact symbols: while
linear facts may be consumed, persistent facts always remain
available. By convention, persistent facts will be denoted by
identifiers that start with ‘!’. When S is a sequence or set
of facts we write lfacts(S) for the multiset of all linear
facts in S and pfacts(S) for the set of all persistent facts
in S. We assume that Σfact always contains a persistent,
unary symbol !K and a linear, unary symbol Fr. G denotes
the set of ground facts, i.e., the set of facts that does not

contain variables. For a fact f we denote by ginsts(f) the
set of ground instances of f . This notation is also lifted to
sequences and sets of facts as expected.

Predicates. We assume an unsorted signature Σpred of
predicate symbols that is disjoint from Σ and Σfact . The
set of predicate formulas is defined as

P := {pr(t1, . . . , tk) | pr/k ∈ Σpred , ti ∈ TΣ}.

The semantics of a predicate is defined via a first-order
formula over atoms of the form t1 ≈ t2, i.e. the grammar
for such formulae is

〈φ〉 ::= t1 ≈ t2 | ¬φ | φ1 ∧ φ2 | ∃x.φ

where t1, t2 are terms and x ∈ V . For an n-ary predicate
symbol pr , pr(x1, ..., xn) is defined by a formula φpr
such that fv(φpr) ⊆ x1, ..., xn, where fv denotes the free
variables in a formula, i. e., variables v ∈ V not bound by
∃v. The semantics of the first-order formulae is as usual
where we interpret ≈ as =E .
Example 3. Suppose isReport ∈ Σpred is a binary predicate
symbol. We can define it as follows, so that it allows to
check whether a term x1 is a report created at location x2:

φisReport(x1, x2) := ∃m.report(m,x2) ≈ x1

Substitutions. As usual we define a substitution σ to be a
partial function from variables to terms. All substitutions are
assumed to be well-typed, i.e., they only map variables of
sort s to terms of sort s, or of a subsort of s. A substitution
that maps xi to ti for 1 ≤ i ≤ n will be denoted by
σ = {t1/x1

, . . . ,tn /xn
} and the domain of σ is defined

as D(σ) = {x1, . . . , xn}. We also allow σ to be applied to
terms (rather than only variables) by extending substitutions
homomorphically and, as usual, write tσ rather than σ(t) for
the application of σ on term t. A substitution σ is said to
be grounding for a term t if tσ is ground.

Sets, sequences and multisets. Given a set S we assume
the following notations for sets and multisets.
• Nn denotes the set {1, . . . , n};
• S∗ denotes the set of finite sequences of elements from
S;

• S# denotes the set of finite multisets of elements from
S;

• ∪# denotes multiset union, and similarly we use the
superscript # on other set operations to denote the
corresponding multiset operation;

• ∈E denotes set membership modulo E defined as e ∈E
S iff ∃e′ ∈ S. e′ =E e; ⊂E , ∪E , \E and =E are also
defined for sets in a similar way.

Finally, given a multiset S we denote by set(S) the set of
elements in S. We also assume the following notations for
sequences.
• [] denotes the empty sequence;
• [e1, . . . , en] denotes the sequence of elements
e1, . . . , en;

• |S| denotes the length of sequence S, i.e., the number
of elements of the sequence.

Application of substitutions are lifted to sets, sequences and
multisets as expected. By abuse of notation we sometimes
interpret sequences as sets or multisets; the applied operators
should make the implicit cast clear.

Functions. We interpret functions between terms modulo E.
When f is a function from terms to terms we require that
if x =E y then f(x) =E f(y). Moreover, we let f(x) = ⊥
when x 6∈E D(f) and say that g is undefined for x. Given
a function g we define the function f := g[a 7→ b] such that
D(f) = D(g) ∪E { a } and f(x) := b when x =E a and
f(x) := g(x) otherwise, i.e., f is defined as g except that
it maps a to b.

Frames and deduction. A frame νñ.σ consists of a set
of names ñ of sort fresh and a substitution σ. We will
use frames to record the messages output by a protocol
during an execution. ñ is the set of restricted names, that
are a priori unknown to the adversary. The adversary might
however be able to deduce some of these names. Using
deduction rules, the adversary may indeed be able to learn
new messages from the messages previously observed. We
introduce a slight generalization of the usual deduction
definitions. To each function symbol f/n ∈ Σ we associate
an n-ary predicate φf . An adversary may only apply a
function symbol f when φf holds. Standard public and
private function symbols are defined by defining φf to be
true, respectively false.

Definition 4 (Deduction). We define the deduction relation
νñ.σ ` t as the smallest relation between frames and terms
defined by the deduction rules in Figure 2.

Example 5. Coming back to IEEs and the report function,
we want the attacker to be able to use report for any
untrusted location. Therefore, if for example our trusted
location is called "home", we would simply define the
predicate corresponding to report as :

φreport(x1, x2) := x2 6= “home”

In a more complex fashion, one may want to trust all the
locations that are created from a given seed. For example,
we could trust all the locations that have "trusted" as a prefix
with the following predicate :

φreport(x1, x2) := ¬(∃z, x2 = “trusted” + z)

2.2. A first-order logic for security properties

In the TAMARIN tool, traces are sequences of events.
Implicitly the n-th event of a trace occurs at time n. For
technical reasons that will be made clear in Section 3.3, we
slightly extend this notion of trace, allowing for specifying
non-integer timepoints for events in the trace. In a trace tr =
[(E1, i1), . . . , (En, in)] where i1, . . . , in ∈ Q (we always
assume i1 < · · · < in) and E1, . . . , En are multisets of

a ∈ FN ∪ PN a /∈ ñ
νñ.σ ` a DNAME

νñ.σ ` t t =E t′

νñ.σ ` t′
DEQ

x ∈ D(σ)

νñ.σ ` xσ DFRAME
νñ.σ ` t1 · · · νñ.σ ` tn φf (t1, . . . , tn) f ∈ Σk

νñ.σ ` f(t1, . . . , tn)
DAPPL

Figure 2. Deduction rules.

facts, we define idx (tr) = {i1, . . . , in} and tr ik = Ek. We
write [E1, . . . , En] as a shortcut for [(E1, 1), . . . , (En, n)].
Note that for traces whose indices are not specified, all the
notions defined here coincide with the ones from TAMARIN.

In the TAMARIN tool [8] security properties are de-
scribed in an expressive two-sorted first-order logic. The
sort temp is used for time points, Vtemp are the temporal
variables.

Definition 6 (Trace formulas). A trace atom is either false
⊥, a term equality t1 ≈ t2, a timepoint ordering i l j, a
timepoint equality i .= j, or an action F@i for a fact F ∈ F
and a timepoint i. A trace formula is a first-order formula
over trace atoms.

As we will see in our case studies this logic is expressive
enough to analyse a variety of security properties, including
complex injective correspondence properties.

To define the semantics, let each sort s have a domain
D(s). D(temp) = Q, D(msg) =M, D(fresh) = FN , and
D(pub) = PN . A function θ : V → M∪ Q is a valuation
if it respects sorts, i. e., θ(Vs) ⊂ D(s) for all sorts s. If t is
a term, tθ is the application of the homomorphic extension
of θ to t.

Definition 7 (Satisfaction relation). The satisfaction relation
(tr , θ) � ϕ between a trace tr , a valuation θ and a trace
formula ϕ is defined as follows:

(tr , θ) � ⊥ never
(tr , θ) � F@i iff θ(i) ∈ idx (tr) and

Fθ ∈E trθ(i)
(tr , θ) � il j iff θ(i) < θ(j)
(tr , θ) � i

.
= j iff θ(i) = θ(j)

(tr , θ) � t1 ≈ t2 iff t1θ =E t2θ
(tr , θ) � ¬ϕ iff not (tr , θ) � ϕ
(tr , θ) � ϕ1 ∧ ϕ2 iff (tr , θ) � ϕ1 and

(tr , θ) � ϕ2

(tr , θ) � ∃x : s.ϕ iff there is u ∈ D(s)such
that (tr , θ[x 7→ u]) � ϕ

For readability, we define t1 m t2 as ¬(t1 l t2∨ t1
.
= t2)

and (·≤, 6 .=, ·≥) as expected. We also use classical notational
shortcuts such as t1 l t2 l t3 for t1 l t2 ∧ t2 l t3 and
∀i ≤ j. ϕ for ∀i. i ≤ j → ϕ. Moreover, we sometimes use
unique existential quantification ∃! as syntactic sugar where
∃!x. ϕ(x) stands for ∃x. (ϕ(x) ∧ ∀y. (ϕ(y)⇒ x = y)).

When ϕ is a ground formula we sometimes simply
write tr � ϕ as the satisfaction of ϕ is independent of the
valuation.

Definition 8 (Validity, satisfiability). Let Tr ⊆ (P(G),Q)∗

be a set of traces. A trace formula ϕ is said to be valid
for Tr , written Tr �∀ ϕ, if for any trace tr ∈ Tr and any
valuation θ we have that (tr , θ) � ϕ.

A trace formula ϕ is said to be satisfiable for Tr , written
Tr �∃ ϕ, if there exist a trace tr ∈ Tr and a valuation θ
such that (tr , θ) � ϕ.

Note that Tr �∀ ϕ iff Tr 6�∃ ¬ϕ. Given a multiset
rewriting system R we say that ϕ is valid, written R �∀ ϕ,
if tracesmsr (R) �∀ ϕ. We say that ϕ is satisfied in R,
written R �∃ ϕ, if tracesmsr (R) �∃ ϕ. Similarly, given a
ground process P we say that ϕ is valid, written P �∀ ϕ,
if tracespi(P) �∀ ϕ, and that ϕ is satisfied in P , written
P �∃ ϕ, if tracespi(P) �∃ ϕ.

2.3. A process calculus with support for IEE

Syntax. The S`APIC calculus expands the variant of the
applied pi calculus from [7]. The complete syntax is pro-
vided in Figure 3. Informally, the semantics can be explained
as follows. The null process (0) is the terminal process
which does nothing. The parallel operator P |Q denotes that
processes P and Q are executed in parallel, while the repli-
cation !P defines the execution of an unbounded number
of parallel copies of P . The calculus provides constructs
for communication among parallel processes. out(M,N)
denotes the output of message N on channel M . Similarly,
in(M,N) denotes the input on channel M of a message that
matches N . Variables in N are bound by the input. If the
term M is deducible by the adversary, then he may intercept
the output, respectively provide the input. The conditional
behaves as expected and branches according to the predicate
pr(M1, . . .Mn). Events are merely used as annotations and
referred to when specifying security properties. They do
not influence the control flow. Name restriction νn allows
to declare new names that are unknown to the attacker.
Intuitively, restriction models random number generation
and is used for generating fresh keys and nonces. The
calculus also contains constructions for manipulating global
states. States may be used to model a shared memory, or a
simple database accessed by processes, potentially executed
in parallel. The command insert M,N associates the value
N to M . M may be thought of as a memory cell or
the key of a database entry. The delete command allows
to undefine M and lookup allows to retrieve the latest
value associated to M ; if the lookup fails, i.e., no value is
associated to M , the else branch is taken. Finally, the lock
and unlock commands allow implementation of mutually
exclusive access to memory cells, which is essential to avoid

race conditions and write correct processes. We highlight the
two constructs that differ from the original SAPIC calculus.

We first introduce locations for processes. P running at
location ` is denoted by (P)@` where ` is a term. In the
context of IEEs, this construction is intended to represent an
IEE running some particular program represented by `. We
do not enforce a one to one mapping between locations and
processes running at said location, and let the user ensure
this. In an actual IEE, the behaviour of a call to the security
module would depend on the code of P instead of a user
defined location, however by allowing more freedom in the
allocation of locations, we avoid having to deal with a higher
order calculus.

The other construct we introduce here is the call to the
report function, denoted by let x = report(M) in P. It is
intended to model the call to the security module that returns
a certificate that program has produced output M .
Example 9. We give here a simplified example of the remote
process presented in Section 1. This process simply takes an
input, applies the free function prog and returns a certificate
that the output has been produced at location l. Location l is
assumed to be an honest location only used for this process.(

in(c, i); let x = report(prog(i)) in out(c, 〈prog(i), x)
)
@l

Operational semantics. We are now ready to define the op-
erational semantics of our calculus. The semantics is defined
by a labelled transition relation between process configura-
tions. A process configuration is a 5-tuple (E ,S,P, σ,L)
where
• E ⊆ FN is the set of fresh names generated by the

processes;
• S :M→M is a partial function modelling the store;
• P is a multiset of ground processes with their location

representing the processes executed in parallel; implic-
itly, if no location is specified, we give the process the
default location ⊥;

• σ is a ground substitution modelling the messages
output to the environment;

• L ⊆M is the set of currently acquired locks.
The transition relation is defined by the rules described

in Figure 4. Transitions are labelled by sets of ground facts.
For readability we omit empty sets and brackets around
singletons, i.e., we write → for ∅−→ and

f−→ for
{ f }−→. We

write →∗ for the reflexive, transitive closure of → (the
transitions that are labelled by the empty sets) and write
f⇒ for →∗ f→→∗.

Most rules are identical to the SAPIC semantics if we
ignore locations. Our first extension is the rule for setting
locations: P ∪# {(P@loc2, loc1)} −→ P ∪# {(P, loc2)}
(only showing the change in the multiset of processes).
Intuitively this rule ensures that the apparent location of
a process is the innermost one specified in its syntax. This
is in contrast to notions of location attached to the network
[23], [24] which tend to see locations as trees designating
the path to a process. However, this modelling fits the

propagation of identities for IEEs: if an IEE initializes
another IEE, the identity of the second IEE only depends
on the code passed explicitly at the initialization step and
does not retain information on the initializing IEE. In other
words the identity of an IEE only depends on its content
and not on how it was created. Our second addition is
the report rule which, when restricted to the multiset of
processes, is P ∪# {(let x = report(M) in P, loc)} −→
P∪# {P{report(M,loc)/x}}. This rule simulates a call to the
security module, fetches the identity of the calling process,
and produces a certificate report(M, loc) that message M
was reported on by a process with identity loc. We also
sometimes use syntactic sugar for assignment and write
let x = t in P for P{t/x}.

We can now define the set of traces, i.e., possible exe-
cutions that a process admits.

Definition 10 (Traces of P). Given a ground process P we
define the set of traces of P as

tracespi(P) = {[F1, . . . , Fn] | (∅, ∅, {P}, ∅, ∅, ∅)
F1=⇒ (E1,S1,P1, σ1,L1)
F2=⇒ . . .

Fn=⇒ (En,Sn,Pn, σn,Ln)
}

3. S`APIC in SAPIC

In this section we show how we can extend the SAPIC
tool to verify S`APIC processes. We begin by shortly
recalling the multiset rewrite rule (msr) framework (used
by the TAMARIN prover) and SAPIC. Next we show how
to encode reports and locations, as well as the treatment of
guarded function symbols.

3.1. TAMARIN and SAPIC

SAPIC [7] is a verification tool for verifying protocols
written in a stateful extension of the applied pi calculus
(the calculus presented in Section 2.3 without support for
locations and reports). At the heart of SAPIC is an encoding
of this calculus in multiset rewrite rules (msr) that can then
be analysed by the TAMARIN prover [8] which is used as a
verification backend.

MSR rules. We now give a short overview of the msr
rule framework. Detailed definitions are given in the long
version [25] . An MSR rule is a triple (l, a, r), generally
written l −[a]→ r, where l, a, r are multisets of facts. The
idea is that given a set of facts, we can consume some of
the facts to create others according to the rules. We can then
consider all the possible reduction from a set for a specific
set of rules and have a semantic.

Formally, given a set R of msr rules we define a tran-
sition relation among multisets of facts: S a−→R S

′ if there
is an msr rule l −[a]→ r which is a ground instance of a
rule in R such that
• l ⊆# S, and
• S′ is defined as (S \# lfacts(l)) ∪# r

〈P,Q〉 ::=

0 null process
| P |Q parallel composition
| !P replication
| out(M,N); P output of N on channel M
| in(M,N); P input
| if pr(M1, . . .Mn) then P else Q conditionnal
| event F ; P event
| νn; P binding of a fresh name
| insert M,N ; P set value of state M to N
| delete M ; P delete state M
| lookup M as v in P else Q read the state
| lock M ; P lock a state
| unlock M ; P unlock a state
| (P)@M localised process
| let x = report(M) in P reporting according to location

Figure 3. Syntax of our process calculus

Modelling freshness of names requires some care. We
suppose no rule may create a name of sort fresh, except the
distinguished rule

FRESH : [] −[]→ [Fr(x : fresh)]

which we suppose to always be part of the set of msr rules
we consider. Then an execution of R is a sequence ∅ A1−→R

. . .
An−→R Sn where for a given name a of sort fresh the fact

Fr(a) is introduced at most once, i.e. for all i 6= j, we have
that (Si+1 \# Si) = {Fr(a)} implies that (Sj+1 \# Sj) 6=
{Fr(a)}.

Given a set of msr rules R we define the set of traces
tracesmsr (R) to contain all sequences [A1, . . . , An] such
that ∅ ∅−→ ∗

R
A1−→ R

∅−→ ∗
R . . .

∅−→ ∗
R

An−→ R
∅−→ ∗

RSn ∈
execmsr (R) is an execution of R.

The TAMARIN prover also defines a set of msr rules
MD that model message deduction by the adversary. The
rules are displayed in Figure 5. The facts Out(t) and In(t)
model that a protocol outputs, respectively inputs the term
t. An output adds knowledge to the adversary (MDOUT),
modelled by the fact symbol !K while an input requires the
message to be known (MDIN). An adversary may know
public names (MDPUB), generate fresh names (MDFRESH)
and apply function symbols to known terms (MDAPPL).

SAPIC. In [7], Kremer and Künnemann define a translation
from a SAPIC process to a set of msr rules. Given a process
P , the corresponding set of msr rules is denoted JP K. For
example, the translation of an output action in SAPIC
correspond directly to adding something to the knowledge
of the attacker.

One important point of the translation is how condition-
als, lookups and locks are handled. A conditional

if pr(M1, . . . ,Mn) then P else Q

is simply translated to two possible transitions with
labels Predpr (M1, . . . ,Mn) for the then branch and

Pred_notpr (M1, . . . ,Mn) for the else branch. The check
whether pr(M1, . . . ,Mn) holds or not is then encoded in
the formula by adding an axioms of the form:

∀x1, . . . , xk, i. Predpr (x1, . . . , xk)@i =⇒ φpr

and

∀x1, . . . , xk, i. Pred_notpr (x1, . . . , xk)@i =⇒ ¬(φpr)

The conjunction of all these axioms is denoted α and is
used to filter out any invalid traces. It is shown in [7] that
the proposed translation is sound and complete for well-
formed processes and formulas. (A process and a formula
are basically well-formed if they do not use any reserved
facts, used for the translation.)

Theorem 1 ([7]). Given a well-formed ground process P
and a well-formed trace formula ϕ we have that

tracespi(P) �? ϕ iff tracesmsr (JP K) �? JϕK?
where ? is either ∀ or ∃, JϕK∀ = α =⇒ ϕ and JϕK∃ =
α =⇒ ϕ.

3.2. Encoding locations and reports

The syntax of S`APIC allows two additional constructs:
(P)@M and let x = report(M) in P . However, these two
constructs can be seen as syntactic sugar and a S`APIC pro-
cess can be easily rewritten into a SAPIC process by replac-
ing let x = report(M) in P with {P = {report(M,`)/x}}
when P is in the scope of the location `.

Definition 11. We define the function rw0 as

rw0((P)@`′, `) = rw0(P, `′)
rw0(let x = report(y) in P, `) = rw0(P{report(y,`)/x}, `)

and the function rw to be the homomorphic extension of
rw0 to all processes.

The following proposition directly follows from the op-
erational semantics.

Standard operations:

(E ,S,P ∪# {(0, loc)}, σ,L) −→ (E ,S,P, σ,L)
(E ,S,P ∪# {(P |Q, loc)}, σ,L) −→ (E ,S,P ∪# {(P, loc), (Q, loc)}, σ,L)
(E ,S,P ∪# {(!P, loc)}, σ,L) −→ (E ,S,P ∪# {(!P, loc), (P, loc)}, σ,L)

(E ,S,P ∪# {(νa;P, loc)}, σ,L) −→ (E ∪ {a′},S,P ∪# {(P{a′/a}, loc)}, σ,L)
if a′ is fresh

(E ,S,P, σ,L) K(M)−−−−→ (E ,S,P, σ,L) if νE .σ `M

(E ,S,P ∪# {(out(M,N);P, loc)}, σ,L) K(M)−−−−→ (E ,S,P ∪# {(P, loc)}, σ ∪ {N/x},L)
if x is fresh and νE .σ `M

(E ,S,P ∪# {(in(M,N);P, loc)}, σ,L) K(〈M,Nτ〉)−−−−−−−→ (E ,S,P ∪# {(Pτ, loc)}, σ,L)
if νE .σ `M,νE .σ ` Nτ and τ is grounding for N

(E ,S,P ∪# {(out(M,N);P, loc1), (in(M
′, N ′);Q, loc2)}, σ,L) −→ (E ,S,P ∪ {(P, loc1), (Qτ, loc2)}, σ,L)

if M =E M ′ and N =E N ′τ and τ grounding for N ′

(E ,S,P ∪ {(if pr(M1, . . . ,Mn) then P else Q,loc)}, σ,L) −→ (E ,S,P ∪ {(P, loc)}, σ,L)
if φpr{M1/x1 , . . . ,

Mn /xn} is satisfied
(E ,S,P ∪ {(if pr(M1, . . . ,Mn) then P else Q, loc)}, σ,L) −→ (E ,S,P ∪ {(Q, loc)}, σ,L)

if φpr{M1/x1 , . . . ,
Mn /xn} is not satisfied

(E ,S,P ∪ {(event(F); P , loc)}, σ,L) F−→ (E ,S,P ∪ {(P, loc)}, σ,L)

Operations on global state:

(E ,S,P ∪# {(insert M,N ; P , loc)}, σ,L) −→ (E ,S[M 7→ N],P ∪# {(P, loc)}, σ,L)
(E ,S,P ∪# {(delete M ; P , loc)}, σ,L) −→ (E ,S[M 7→ ⊥],P ∪# {(P, loc)}, σ,L)

(E ,S,P ∪# {(lookup M as x in P else Q ,loc)}, σ,L) −→ (E ,S,P ∪# {(P{V/x}, loc)}, σ,L)if S(M) =E V

(E ,S,P ∪# {(lookup M as x in P else Q,loc) }, σ,L) −→ (E ,S,P ∪# {(Q, loc)}, σ,L)if S(M) is undefined

(E ,S,P ∪# {(lock M ; P , loc)}, σ,L) −→ (E ,S,P ∪# {(P, loc)}, σ,L ∪ {M }) if M 6∈EL
(E ,S,P ∪# {(unlock M ; P , loc)}, σ,L) −→ (E ,S,P ∪# {(P, loc)}, σ,L \E {M })

Operations for locations and reporting:

(E ,S,P ∪# {(P@loc2, loc1)}, σ,L) −→ (E ,S,P ∪# {(P, loc2)}, σ,L)
(E ,S,P ∪# {(let x = report(M) in P, loc)}, σ,L) −→ (E ,S,P ∪# {P{report(M,loc)/x}}, σ,L)

Figure 4. Operational semantics

Out(x) −[]→ !K(x) (MDOUT)
!K(x) −[K(x)]→ In(x) (MDIN)

−[]→ !K(x : pub) (MDPUB)
Fr(x : fresh) −[]→ !K(x : fresh) (MDFRESH)

!K(x1), . . . , !K(xk) −[]→ !K(f(x1, . . . , xk)) for f ∈ Σk (MDAPPL)

Figure 5. The set of rules MD.

Proposition 12. Let p be a ground process. We have that
tracespi(P) = tracespi(rw(P,⊥)).

An example of rewriting a process is given in figure 6.
In the following we suppose that we always apply the rw
function as a first step and simply write JP K for Jrw(P,⊥)K.

3.3. Extending SAPIC with guarded functions

In our model we consider a more general type of func-
tion symbols than usual: function symbols may be guarded
by a predicate that is evaluated to check whether the attacker
is allowed to apply the function on the given arguments.

SAPIC and TAMARIN directly support public and private
symbols, but not the more general guarded functions intro-
duced here.

Guarded function symbols can be added to SAPIC and
TAMARIN in a rather elegant way: we simply modify the
set of message deduction rules MD (Figure 5) by annotating
the MDAPPL rule as follows:

!K(x1), . . . , !K(xk) −[Predφf
(x1, . . . , xk)]→!K(f(x1, . . . , xk))

for f ∈ Σk (MDAPPLI)

in(i);
let x = report(prog(i)) in
out(x)@lp

in(i);
out(report(prog(i), lp))

Figure 6. Original and rewritten process

We denote by MDI the set of rules obtained by replacing
(MDAPPL) in MD with MDI and by J KI the translation
where MD has been replaced by MDI . Adding an axiom

αf = ∀x1, . . . , xk, i. Predφf
(x1, . . . , xk)@i⇒ φf (x1, . . . , xk)

guarantees that all traces where the attacker applies a func-
tion symbol that is not allowed are then discarded. The
adaptation of the SAPIC translation is easily shown to be
correct.

Proposition 13. Given a well-formed ground process P and
a well-formed trace formula ϕ we have that

tracespi(P) �? ϕ iff tracesmsr (JP KI) �? JϕK?

where ? is either ∀ or ∃, JϕK∀ = (α∧
∧
f∈Σ αf) =⇒ ϕ and

JϕK∃ = (α ∧
∧
f∈Σ αf) =⇒ ϕ.

The proof requires the generalization of a Lemma in [7]
that shows that the intruder deduction in SAPIC and in
TAMARIN coincide (see the long version [25]). Unfortu-
nately, even though the J KI translation is correct, TAMARIN
does not allow to write msr rules which directly manipulate
!K facts as these are reserved for internal use. As this part of
the prover is highly optimized and very sensitive we instead
have to declare guarded function symbols as private and
encode the rule MDAPPLI by the following one

In(x1), . . . , In(xk) −[Predφf
(x1, . . . , xk)]→

Out(f(x1, . . . , xk))

for f ∈ Σk (MDAPPLR)

We denote the resulting set of message deduction rules
by MDR and denote by J KR the translation replacing
MD with MDR. Any application of the rule MDAPPLI
S −[φf (t1, . . . , tk)]→ S′ can of course be simulated
by k successive applications of MDIN, an application of
MDAPPLR and an application ofMDOUT:

S −[K(t1)]→ . . . −[K(tk)]→ S ∪ {In(t1), . . . In(tk)}

−[Predφf
(t1, . . . , tk)]→ −[]→ S′

This results into an execution among the same multisets
S and S′, but generates k extra trace facts K(ti). Hence
these two translations will not satisfy the same formulas.
Consider for instance the following msr rule r

In(f(x)) −[ev(x)]→

which simply raises the event ev(x) when a term of the
form f(x) is received. Such a rule is not directly generated

by the translation but illustrates the underlying difference
between J KI and J KR. We easily see that

MDAPPLR∪#{r}# |=∀ ∀x, i. ∃j < i. ev(x)@i =⇒ K(t)@j

and

MDAPPLI∪#{r}# 6|=∀ ∀x, i. ∃j < i. ev(x)@i =⇒ K(t)@j

We therefore restrict the class of formulae we consider
to a class for which the additional K(t) facts preserve
satisfaction. When verifying validity claims we consider
the class of formulae in which, when in negation normal
form, the knowledge atoms always appear under a negation.
By duality, when checking satisfiability, we require that no
knowledge atom appears under a negation when in negation
normal form.

Definition 14. We denote by L the set of traces formulas
where all terms of sort temp belong to Vtemp . We denote by
L+ (resp. L−) the subsets of L where all the occurrences of
the fact K are positive (resp. negative), defined inductively
as follows:
• If ψ is atomic then ψ ∈ L+

• If ψ is atomic and ψ 6= K(t)@i then ψ ∈ L−
• If ψ1, ψ2 ∈ L+ (resp. ψ1, ψ2 ∈ L−), then ψ1 ∧ψ2 and
ψ1 ∨ ψ2 belong to L+ (resp. L−)

• If ψ ∈ L+ (resp. ψ ∈ L−), then ∃x.ψ,∀x.ψ ∈ L+

(resp. ∃x.ψ,∀x.ψ ∈ L−)
• If ψ ∈ L+ (resp. ψ ∈ L−), then ¬ψ ∈ L− (resp.
¬ψ ∈ L+)

This class is general enough to tackle most trace prop-
erties, as demonstrated by our examples. Indeed, it seems
natural that when checking a validity claim (a security
property) we wish to ensure that on all traces the attacker
does not know a certain term, while for satisfiability (an
attack trace) we wish to check whether on some trace the
attacker does know a term.

We can now show that for the translation J_KR is correct
for this restricted set of formulae.

Theorem 2. Given a well-formed ground process P and a
well-formed trace formula ϕ we have that

∀ψ ∈ L+. tracespi(P) |=∃ ψ ⇔ tracesmsr (JP KR) |=∃ JψK∃

∀ψ ∈ L−. tracespi(P) |=∀ ψ ⇔ tracesmsr (JP KR) |=∀ JψK∀
where JϕK∀ = (α ∧

∧
f∈Σ αf) =⇒ ϕ and JϕK∃ = (α ∧∧

f∈Σ αf) =⇒ ϕ.

Let us define, for any multiset rewrite rules sys-
tem R, TI(R) = tracesmsr (R ∪MDI) and TR(R) =
tracesmsr (R ∪MDR). The core of the proof of Theorem 2

is the fact that a formula ψ in L+ is satisfied on TR(R) if
and only if it is satisfied on TI(R). We will now sketch the
main steps of the proof. Details are postponed to the long
version [25] .

We first show that the traces of (R ∪MDR) subsume
the traces of (R ∪MDI).

Lemma 15. Let R be a set of multiset rewrite rules. We
have that TR(R) ⊂ TI(R).

Intuitively, every time we apply MDR in a trace we
could also apply MDI , because when we have In(tk) we
also have !K(tk). This means that every trace of TR(R)
is also in TI(R). The Lemma yields that if ψ is satisfied
on TR(R), i.e., there exists a trace in TR(R) that satisfies
ψ, it is also satisfied on TI(R). With Propositions 13, we
then have the first part of the Theorem.

To prove the converse, given a trace t ∈ TI(R) that
witnesses the satisfaction of ψ, we build a witness trace
t′ ∈ TR(R) which also satisfy ψ. We construct t′ by adding
the relevant knowledge facts (corresponding to MDIN ap-
plications) to allow for the application of the MDAPPLR
rule instead of the MDAPPLI rule. The idea is that because
we are in the L+ fragment of the logic, adding K facts to
the trace t will not invalidate the formula ψ. Then, as we
can construct a valid trace of TR(R) which satisfies ψ, we
conclude with Propositions 13.

4. Implementation and Case studies

We validate our approach experimentally by checking
IEE based protocols existing in the literature, starting from
the relatively straightforward attested computation protocol
from [3], and following with attested key exchange and
secure outsourced computation from the same paper. We
also verify the licensing protocol from [9] and a one time
password protocol proposed in [10].

We have extended the SAPIC tool to handle all addi-
tional constructs of S`APIC: the protocol specification lan-
guage and the underlying translation now support locations,
reports and guarded function symbols. All our case studies
are proven automatically by the S`APIC tool, sometimes
with the help of a few additional lemmas. Except for one
example (the OTP protocol), the lemmas are merely used to
speed up the proof as lemmas can be reused several times
avoiding repeated re-computation of parts of the proof. The
lemmas are generally a direct translation of the properties we
expect for the protocol. For instance, most of the lemmas
state that shared secret keys are indeed secret and match;
others verify the matching of sessions, and in some specific
protocol (OTP and licensing), we need to check the unique
usage of a token. The implementation and models are part
of the tamarin-prover repository2.

2. https://github.com/tamarin-prover/tamarin-prover

4.1. Attested computation

4.1.1. Definition. Abstracting from [3], we now formally
define what is an attested computation (AC) protocol and its
desired property. Intuitively an AC protocol consists of two
parts. The first part is a compilation mechanism (denoted
later as A), that takes as input a program P and returns an
instrumented program P ∗ which is to be run in an IEE. The
second part is a verification program, denoted later by B,
that checks whether outputs were indeed produced by the
compiled program, running in an IEE.

Given a program P , that we see here as a ternary func-
tion symbol (with arguments current state, input, random-
ness), we model the instrumented version P ∗ as a sequen-
tial process (without parallel composition nor replications)
A(P, i, lio, r, st), where
• i is the next input to be processed,
• lio is the current list of inputs/outputs,
• r is the next randomness to passed to P and
• st the current state of the program.

P ∗ is expected to return the output o = P (st, i, r) and also
sends the attested output on a public channel.

We model the verifier as a sequential process
B(i, o∗, st). We assume that B assigns variables b and o.
Given an input i and an attested output o∗, b is a Boolean
value representing whether the verifier accepts the attested
output and o is the corresponding (decoded) output.

Informally, the AC security definition from [3] aims at
ensuring the following property.

“If a trace t is accepted by the verifier, then t
is indeed a valid trace of program P executed
on inputs passed to the instrumented version P ∗

running in an IEE.”
In order to model this security property we define two

contexts R and V for bookkeeping messages passed to the
remote process and to the local verifier. A context is simply
a process with a hole, denoted by _. Given a context C[_]
and a process P we write C[P] for the process obtained by
syntactically replacing _ by P .

R(P, l)[_] =
!(ν st; insert st, init;
!(lock st; lookup st as lio;
in(i); ν r;
_ ;
insert st,<i,o,lio>;
unlock(st);
)
)@l

V (l)[_] =
!(ν st; insert st, init;
!(in(i,o∗); lock st;

lookup st as lio in
_ ;
if b then

event Local(<i,o,lio>,l);

https://github.com/tamarin-prover/tamarin-prover

insert st,<i,o,lio>;
unlock(st)

)

The context R starts by creating a new store st (ini-
tialized to the constant init) which saves the list of input-
s/outputs processed so far. For each invocation, it retrieves
the list of inputs/outputs in the state st, receives an input i,
draws a new random value r for this invocation. Finally it
executes its argument (the hole _), which is expected to be
filled in by A. We suppose that A logs the current expected
trace (i.e., the updated sequence of inputs/outputs) of this
remote instance using the event Remote(<i, o, lio>,l).
The context V does a similar bookkeeping for the veri-
fier process. The main difference is that it executes the
verifier process and checks the verification outcome (the
Boolean b) before it logs the extended trace through the
event Local(<i, o, lio>,l).

We let
• A(P, i, lio, r, st) be a sequential process that models

the instrumented version of P and assigns the output
computed by P to the variable o, and

• B(i, o∗, st) be a sequential verifier process which as-
signs values to variables b and o, P be a function
symbol of arity 3 and l a location.

The tuple (A,B, l, P) guarantees attested computation if
and only if :

!V (l)[B(i, o∗, st)] | !R(P, l)[A(P, i, lio, r, st)] |=∀

∀i,m. Local(m, l)@i⇒ ∃j < i. Remote(m, l)@j

Intuitively, R runs the program P on a new input and
uses A to attest the output. Then, V receives both the input
and a value corresponding to the attestation, and asks B
to check if the attestation is valid. If B sets b to true,
it means that all checks succeeded, and V may raise the
corresponding event. The protocol is indeed an attestation
protocol if the list of inputs and outputs of the verifier is
a prefix of the one of the providers. Therefore, as Local
and Remote contain the corresponding list of inputs and
outputs, every Local event must be preceded by a matching
Remote event.

4.1.2. Modeling. We use S`APIC to model the AC protocol
from [3]. The main idea of this protocol is that every output
produced by P will be reported upon, together with the list
of inputs/outputs received so far. The verifier then checks
consistency of the list of inputs/outputs.

The S`APIC processes for A and B are described in
Figure 7. The complete system wraps these processes into
the bookkeeping contexts R and V and composes them in
parallel. Note that the only honest location here is lP (mod-
elled by the predicate φreport). Indeed, in this modelling,
we ensure that only the compiled program runs at lP . The
adversary controls all other locations. Checking in S`APIC
that the resulting protocol guarantees attested computation,
we prove security of this AC protocol in 5 seconds.

4.1.3. Attacks on weak versions. We studied two weaker
versions of the AC protocol where the AC property is
not satisfied. The two attacks we present here are found
automatically using S`APIC.

The first attack occurs when instead of sending out a
report on the previous list of inputs/outputs together with
the result, the process A sends out a session identifier only.
More precisely, on first activation, A starts by deriving a
fresh session identifier s, and then proceeds as presented as
in Figure 7 but sets x to be report(s, i, o). Protocol B of
Figure 7 is modified accordingly to check for the session
identifier. This version is refered to as sid-AC. In this weak
version, the adversary is able to force the verifier to accept
the second input/output of a trace of length 2 without having
previously submitted the first one. This attack is found
automatically when trying to prove the AC property in 1
minute and 30 seconds.

The second attack occurs when A reports on a sequence
number only, instead of the whole list of inputs/outputs. This
weak version of AC is refered to as counter-AC. In this case
the adversary is able to force the verifier to accept (i1, o1)
followed by (i′2, o

′
2) where (i′2, o

′
2) belongs to a remote trace

(i′1, o
′
1), (i′2, o

′
2) with (i′1, o

′
1) 6= (i1, o1). This attack is found

automatically using S`APIC when trying to prove the AC
property for traces of length 2 in 45 seconds.

4.2. Attested key exchange

In [3], the main tool for building stronger guarantees
on top of attestation is an attested key exchange. Intuitively
this key exchange uses the attestation guarantees to establish
a shared key between a user and the IEE running the
remote part of the key-exchange. The attested key exchange
presented in [3] is depicted in Figure 8.

This key exchange is extremely simple: Alice provides
her public key to the IEE running the remote part of the key
exchange, and expects as an answer a fresh symmetric key,
encrypted with her public key. Obviously, such a naive key
exchange protocol is not secure against active adversaries.
However, as it is shown in [3], if the remote part is executed
under AC, and Alice verifies every message she receives as
prescribed by the AC protocol, then this key exchange is
secure. Intuitively, this is entailed by the fact that Alice
gets, from the AC security definition, the assurance that
the encrypted message she receives originates from an IEE
honestly executing the remote part of the key exchange for
her public key.

To match the definition of [3] where the public key is
hardcoded in the code running remotely, instead of defining
one trusted location, we define a set of trusted locations:
locations of the form 〈l, x〉 correspond to IEEs running
the remote part of the key exchange using x as the public
key of the intended receiving party. In order to model this
protocol, we let the adversary execute any number of IEEs
for any public key of his choice. The precise S`APIC
model is provided in Figure 9. We have verified an injective
agreement property (between remote and local sessions) and

φreport(x, y)⇔ y 6= lP

let A(P, i, lio, r, st)=
let o = P(st,i,r) in
event Remote(<i,o,lio>,l);
let x = report(lio, i, o) in
out(o, x);

let B(i, o∗, st) =
let o, r = o∗ in
let b = ((st, i, o) = check(l, r)) in

!R(P, l)[A(P, i, o, lio, r, st)] | (!V (l) [B(i, o∗, st)])

Figure 7. Attested computation implementation

ALICE

pk, sk
IEE

pk

ν k

aenc(k, pk)

Figure 8. Basic key exchange

secrecy of the derived key using S`APIC. The verification
of this property took about 1 second.

4.3. Secure outsourced computation

As defined in [3], a secure outsourced computation
(SOC) protocol is an attested computation protocol in which,
additionally, we have the secrecy of the input/output trace
between the agent running the protocol and the IEE. In [3],
the authors build such a protocol on top of an attested key
exchange. Intuitively, this protocol first establishes a key
between the agent and the remote machine, then uses this
key to establish a secure channel.

With the same notations as in Section 4.1, we formally
define a secure SOC protocol.

Definition 16. The tuple (A,B, l, P) guarantees secure
outsourced computation if and only if

Proc |=∀

∀i,m, l. Local(m, l)@i⇒ ∃!j < i.Remote(m, l)@j

∧ ∀i,m, l, lio, t1. Local(〈i, P (m), lio〉, l)@t1
⇒ ¬(∃t2,K(P (m))@t2)

where

Proc =!V (l)[B(i, o, st)]|!R(P, l)[A(P, i, o, lio, r, st)]

Using S`APIC, we prove that the SOC protocol given
in [3] is indeed a secure outsourced computation protocol
according to this definition.

4.4. Licensing

Licensing is a concept used by program developers to
guarantee that their code is only used by legitimate users.
The idea is that a vendor would like to authorize the use of
a software only for users who have bought the software
and therefore possess a valid license. In [9] Costea and
Warinschi present a licensing scheme based on IEEs. We
describe this protocol in Figure 10. Intuitively, the vendor
and the user share a token which was established when the
user bought the software. The vendor and an enclave run
an attested key exchange to create a secure channel. Then,
the vendor provides the program to the enclave through the
secure channel. Now, the user chooses an input on which
he would like to run the program and gives it through
its direct access to the enclave along with the token. The
enclave asks the vendor if the token is valid and if so,
returns the outcome of the desired computation to the user.
For simplicity we present here the version where one token
corresponds to one execution of the program, but there also
exists versions where a token corresponds to a fixed number
n or an unlimited number of computations.

As defined in [9], the desired property of secure li-
censing is an injective mapping between the computations
obtained by the user and the tokens produced by the vendor,
i.e., any computation corresponds to a distinct token issued
by the vendor. We modelled the above protocol in S`APIC
and were able to verify the security property.

4.5. One time password

In essence, classical password based protocols allow an
adversary to completely impersonate the user if he was able
to intercept or break the password, e.g. using an offline
dictionary attack. When using a one time password (OTP)
protocol a different password is generated for every authenti-
cation request and this password is valid only once. As these
passwords may not be reused a second time intercepting
or breaking a password is basically useless. We consider

φreport(x, y)⇔ ∀z.y 6= 〈l, z〉

let R =
in(x); // set the public key
!(// initiate any number of IEE for this key
ν k; //generate the fresh key
event SessionP(x, k);
let r = report(aenc(k, x)) in
out(〈aenc(k, x), r〉);

)@〈l, x〉

let L =
ν skV ;
event HonestP(pk(skV));
out(pk(skV)); // send out public key
in(〈aenc(xk, pk(skV)), xr〉); //receive encrypted key
if aenc(xk, pk(skV)) = check(〈l, pk(skV)〉, xr) then
event SessionV(pk(skV), xk); //session established

((!R) | (!L))

Figure 9. Attested key exchange

VENDOR

pk, sk, token, prog
ENCLAVE USER

token

pk

ν shared_key

report(〈shared_key〉pk)

〈prog〉shared_key

ν input

token, input

〈token〉shared_key

〈is_ok(token)〉shared_key

prog(input)

Figure 10. Licensing Protocol

SERVER

pk, sk, pwd
ENCLAVE USER

pwd

pk

ν shared_key

report(〈shared_key〉pk)

ν token

token

token
〈token〉shared_key

ν challenge

〈challenge〉shared_key pw

〈(challenge, pw)〉shared_key

Accept (challenge, pw)

Figure 11. One time password protocol

here the one time password scheme presented in [10] and
described in Figure 11.

We assume that the user has previously registered on a
server and shares a long-time password pwd with the server.
To authenticate to the server, the user launches an enclave
which performs a key-exchange with the server. Next, the
server sends a token to the user through an out-of-band
channel (e.g, phone call, sms, . . .). This token will ensure
that the enclave belongs to the user. Next, the user forwards
this token to the enclave which in turns gives it back to the
server. Finally, when the user wants to authenticate to the
server, he gives its password to the enclave and the enclave
receives from the server a unique challenge. The enclave
then creates the one time password, a combination of the
challenge and the password, and sends it to the server over
the secure channel. If the challenge and the password match
the server accepts the authentication.

The desired security property is an injective mapping
between authentication requests accepted on the server and
the requests issued by the enclave. We implemented the
protocol in S`APIC and were able to prove this property
with the tool.

4.6. Summary

We summarise the verification results for our case stud-
ies in Table 1. The table indicates for each case study the
execution time, the number of proof steps computed by
TAMARIN and the number of helping lemmas. The lemmas

Protocol Lemmas Time Number of steps Result
AC 0 5s 184 steps proof

sid-AC 0 82s 32 steps attack
counter-AC 0 32m 30 steps attack

AKE 0 1s 7 steps proof
SOC 4 9s 195 steps proof

Licensing 2 6s 112 steps proof
OTP 7 30s 440 steps proof

Table 1. SUMMARY OF VERIFICATION RESULTS ON CASE STUDIES

are used to guide TAMARIN and proven before the main
one, so they can be reused in the final proof. The lemmas
were actually not always necessary to achieve termination
but greatly improve the performances. For instance, without
the additional lemmas the proof of the licensing protocol
requires 30 minutes and 414 steps, and the SOC protocol
around a day with 47297 steps. For the OTP protocol,
without additional lemmas, we could not witness termina-
tion after about two days of computation exhausting the
computer’s memory.

5. Conclusion and future work

In this paper we introduced the process calculus S`APIC
which allows us to reason about applications that make use
of report functionalities such as those offered by recent
IEEs. We extend the SAPIC/TAMARIN toolchain in order
to provide tool support and use S`APIC to analyse several

protocols that rely on such reports. The applications include
protocols for SOC, secure licensing and a OTP protocol.

As a next step we plan to design composition results for
our calculus, in the style of [26]. Such composition results
would allow us to analyse complex protocols in a modular
way and better scale to large applications: typically, we
would want to separately analyse the attested key exchange
and use it as a building block for a SOC protocol without
the need to analyse the whole system. Another direction
for future work would be to study the sealing mechanisms
offered by IEEs and integrate such a mechanism in the
calculus.

Acknowledgments. This work was supported by the Euro-
pean Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (grant agree-
ment No 645865-SPOOC) and the European Union’s 7th
Framework Program (FP7/2007-2013) under grant agree-
ment n. 609611 (PRACTICE). The authors also wish to
thank Bogdan Warinschi for the useful discussions in the
early stages of this work.

References

[1] Software Guard Extensions Programming Reference, Intel,
2014, https://software.intel.com/sites/default/files/managed/48/
88/329298-002.pdf.

[2] ARM Security Technology - Building a Secure System using
TrustZone R© Technology, ARM, 2009, http://infocenter.arm.com/help/
topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_
trustzone_security_whitepaper.pdf.

[3] M. Barbosa, B. Portela, G. Scerri, and B. Warinschi, “Foundations
of hardware-based attested computation and application to SGX,”
in Proc. 1st IEEE European Symposium on Security and Privacy
(EuroS&P’16). IEEE Comp. Soc. Press, 2016, pp. 245–260.

[4] D. Dolev and A. Yao, “On the security of public key protocols,” in
Proc. 22nd Symp. on Foundations of Computer Science (FOCS’81).
IEEE Comp. Soc. Press, 1981, pp. 350–357.

[5] D. A. Basin, C. Cremers, and S. Meier, “Provably repairing the
ISO/IEC 9798 standard for entity authentication,” Journal of Com-
puter Security, vol. 21, no. 6, pp. 817–846, 2013.

[6] M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel, “Attacking
and fixing PKCS#11 security tokens,” in Proc. 17th ACM Conference
on Computer and Communications Security (CCS’10). ACM Press,
2010, pp. 260–269.

[7] S. Kremer and R. Künnemann, “Automated analysis of security
protocols with global state,” Journal of Computer Security, vol. 18,
no. 6, pp. 1211–1245, Nov. 2016.

[8] B. Schmidt, S. Meier, C. Cremers, and D. Basin, “Automated analy-
sis of Diffie-Hellman protocols and advanced security properties,”
in Proc. 25th IEEE Computer Security Foundations Symposium
(CSF’12). IEEE Comp. Soc. Press, 2012, pp. 78–94.

[9] S. Costea and B. Warinschi, “Secure software licensing: Models,
constructions, and proofs,” in Proc. 29th IEEE Computer Security
Foundations Symposium (CSF’16). IEEE Comp. Soc. Press, 2016,
pp. 78–94.

[10] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. del Cuvillo,
“Using innovative instructions to create trustworthy software solu-
tions,” in Proc. 2nd Workshop on Hardware and Architectural Support
for Security and Privacy (HASP’13). ACM Press, 2013, p. 11.

[11] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado,
G. Mainar-Ruiz, and M. Russinovich, “VC3: trustworthy data an-
alytics in the cloud using SGX,” in Proc. 36th IEEE Symposium on
Security and Privacy (S&P’15). IEEE Comp. Soc. Press, 2015, pp.
38–54.

[12] R. Sinha, M. Costa, A. Lal, N. P. Lopes, S. K. Rajamani, S. A.
Seshia, and K. Vaswani, “A design and verification methodology for
secure isolated regions,” in Proc. 37th ACM SIGPLAN conference
on Programming Language Design and Implementation (PLDI’16).
ACM Press, 2016, pp. 665–681.

[13] M. Patrignani and D. Clarke, “Fully abstract trace semantics for
low-level isolation mechanisms,” in Proc. 29th ACM Symposium on
Applied Computing (SAC’14). ACM Press, 2014, pp. 1562–1569.

[14] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deter-
ministic side channels for untrusted operating systems,” in Proc. 36th
IEEE Symposium on Security and Privacy (S&P’15). IEEE Comp.
Soc. Press, 2015, pp. 640–656.

[15] B. Blanchet, B. Smyth, and V. Cheval, ProVerif 1.88: Automatic
Cryptographic Protocol Verifier, User Manual and Tutorial, 2013.

[16] C. J. Cremers, “The Scyther Tool: Verification, falsification, and
analysis of security protocols,” in Proc. 20th International Conference
on Computer Aided Verification (CAV’08), ser. Lecture Notes in
Computer Science, vol. 5123. Springer, 2008, pp. 414–418.

[17] S. Escobar, C. Meadows, and J. Meseguer, “Maude-NPA: Crypto-
graphic protocol analysis modulo equational properties,” in Founda-
tions of Security Analysis and Design V (FOSAD’09), ser. Lecture
Notes in Computer Science, vol. 5705. Springer, 2009, pp. 1–50.

[18] M. Arapinis, E. Ritter, and M. Ryan, “Statverif: Verification of state-
ful processes.” in Proc. 24th IEEE Computer Security Foundations
Symposium (CSF’11). IEEE Press, 2011, pp. 33–47.

[19] S. Delaune, S. Kremer, M. D. Ryan, and G. Steel, “A formal anal-
ysis of authentication in the TPM,” in Revised Selected Papers of
the 7th International Workshop on Formal Aspects in Security and
Trust (FAST’10), ser. Lecture Notes in Computer Science, vol. 6561.
Springer, 2010, pp. 111–125.

[20] ——, “Formal analysis of protocols based on TPM state regis-
ters,” in Proc. 24th IEEE Computer Security Foundations Symposium
(CSF’11). IEEE Comp. Soc. Press, 2011, pp. 66–82.

[21] TPM Specification version 1.2. Parts 1–3, revision 103, Trusted
Computing Group, 2007, http://www.trustedcomputinggroup.org/
resources/tpm_main_specification.

[22] J. Shao, Y. Qin, D. Feng, and W. Wang, “Formal analysis of enhanced
authorization in the TPM 2.0,” in Proc. 10th ACM Symposium on
Information, Computer and Communications Security (ASIA CCS
’15). ACM Press, 2015, pp. 273–284.

[23] C. Bodei, P. Degano, R. Focardi, and C. Priami, “Primitives for
authentication in process algebras,” Theoretical Computer Science,
vol. 283, pp. 271–304, 2002.

[24] D. Hoshina, E. Sumii, and A. Yonezawa, “A typed process calculus
for fine-grained resource access control in distributed computation,”
in Proc. 4th International Symposium on Theoretical Aspects of Com-
puter Software (TACS’01), ser. Lecture Notes in Computer Science,
vol. 2215. Springer, 2001, pp. 64–81.

[25] C. Jacomme, S. Kremer, and G. Scerri, “Symbolic models for iso-
lated execution environments,” Cryptology ePrint Archive, Report
2017/070, 2017, http://eprint.iacr.org/2017/070.

[26] M. Arapinis, V. Cheval, and S. Delaune, “Composing security pro-
tocols: From confidentiality to privacy,” in Proc. 4th International
Conference on Principles of Security and Trust (POST’15), ser.
Lecture Notes in Computer Science, vol. 9036. Springer, 2015,
pp. 324–343.

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://eprint.iacr.org/2017/070

Appendix

We recall below the formal definitions of the syntax and
semantics of multiset rewrite rules which serve as the input
language of the TAMARIN prover [8].

Definition 17 (Multiset rewrite rule). A labelled multiset
rewrite rule ri is a triple (l, a, r), l, a, r ∈ F∗, written
l −[a]→ r. We call l = prems(ri) the premises,
a = actions(ri) the actions, and r = conclusions(ri) the
conclusions of the rule.

Definition 18 (Labelled multiset rewriting system). A la-
belled multiset rewriting system is a set of labelled multiset
rewrite rules R, such that each rule l −[a]→ r ∈ R satisfies
the following conditions:
• l, a, r do not contain fresh names and
• r does not contain Fr-facts.

A labelled multiset rewriting system is called well-formed,
if additionally
• for each l′ −[a′]→ r′ ∈E ginsts(l −[a]→ r) we have

that ∩r′′=Er′names(r′′) ∩ FN ⊆ ∩l′′=El′names(l′′) ∩
FN .

We define one distinguished rule FRESH which is the
only rule allowed to have Fr-facts on the right-hand side

FRESH : [] −[]→ [Fr(x : fresh)]

The semantics of the rules is defined by a labelled
transition relation.

Definition 19 (Labelled transition relation). Given a mul-
tiset rewriting system R we define the labelled transition
relation →R⊆ G# × P(G)× G# as

S
a−→R ((S \# lfacts(l)) ∪# r)

if and only if l −[a]→ r ∈E ginsts(R ∪ FRESH),
lfacts(l) ⊆# S and pfacts(l) ⊆ S.

Definition 20 (Executions). Given a multiset rewriting sys-
tem R we define its set of executions as

execmsr (R) =
{
∅ A1−→R . . .

An−→R Sn | ∀a, i, j : 0 ≤ i 6= j < n.

(Si+1 \# Si) = {Fr(a)} ⇒ (Sj+1 \# Sj) 6= {Fr(a)}
}

The set of executions consists of transition sequences
that respect freshness, i. e., for a given name a the fact Fr(a)
is only added once, or in other words the rule FRESH is at
most fired once for each name. We define the set of traces
in a similar way as for processes.

Definition 21 (Traces). The set of traces is defined as

tracesmsr (R) =
{

[A1, . . . , An] | ∀ 0 ≤ i ≤ n. Ai 6= ∅

and ∅ A1=⇒R . . .
An=⇒R Sn ∈ execmsr (R)

}
where A

=⇒R is defined as ∅−→∗R
A−→R

∅−→∗R.

