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Abstract

Submerged membrane bioreactors (sMBR’s) are a promising technology for

nitrogen removal in recirculating aquaculture systems (RAS’s). However, there

are still relatively few reports on the experimental application of this strategy. In

this study, a laboratory-scale system, mimicking a RAS fitted with a sMBR, was

designed and automated, and a simple dynamic sMBR model including biolog-

ical and physical phenomena was validated. The system was analyzed based on

measurements collected by a data logging structure involving a programmable

logic controller (PLC), an industrial network protocol and a LabView appli-

cation software. This study confirms the suitability of sMBR systems within

aquaculture applications. The dynamic model has good predictive capabilities

and could be used for the design of advanced control structures, such as model

predictive control.
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1. Introduction

The growth of the world population and the scarcity of water, land and

other natural resources motivate the use of recirculating aquaculture systems

and their optimization [1]. For most agro-food processes, profits are computed

based on the quantity of consumed resources, production yield by process foot-

print, and environmental impact. Especially in aquaculture systems, the ratio

between fresh incoming water and recirculated water is a determining economic

and ecological factor, usually set to a maximum of 10% of the total volume

replaced per day [2]. However, if the recirculated water is not properly treated,

harmful compounds could accumulate, such as ammonia and nitrate. In order

to prevent this accumulation, the use of rotating disk contactors, trickling fil-

ters, bead filters or fluidized sand biofilters [3] is a common solution. On the

other hand, submerged membrane bioreactors (sMBR’s) have been increasingly

used in water treatment. They accomplish the combined functions of an aerobic

activated sludge system, a secondary clarifier, and a tertiary filter [4], reducing

the process footprint and producing high-quality effluent [5, 6, 7, 8]. Despite

these decisive advantages, only a limited number of applications have been re-

ported in recirculating systems [9]. One of the reasons is the fouling of the

membrane, which decreases membrane permeability, such that the membrane

requires periodic cleaning [10].

The use of submerged membrane bioreactors (sMBR’s) in recirculating aqua-

culture systems (RAS’s) is therefore relatively new. The RAS differs from con-

ventional domestic and industrial wastewater treatment in the composition of

the inflow and specially in the low total suspended solids (TSS) concentration

[11]. These aspects contribute to different rates of fouling and internal recircu-

lation flows, which affect the operating and cleaning cycles of sMBR’s as well

as the membrane cleaning procedures. Also, [12, 13] evidenced a remarkable

reduction in wastewater and residue load in RAS treatment when compared to
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conventional water treatment in aquaculture systems.

As experimental data from aquaculture systems with sMBR is scarce, it is

of interest to develop additional laboratory-scale studies, and the objective of

this work is threefold: The first objective is to set-up a laboratory-scale RAS

and collect informative experimental data. Indeed, industrial processes should

not be disturbed so as to avoid any harmful effect on the fish population, and a

laboratory-scale platform with synthetic wastewater is ideal for developing ex-

perimental analysis and model validation, with data covering a range of operat-

ing conditions. This paper gives a full description of a suitable laboratory-scale

process; The second objective is to validate experimentally a dynamic model

that was recently proposed and analyzed by the authors in [14]. The model is

four-dimensional and possesses ten parameters to be identified. In view of its

modest size, this model is a good basis to implement model-based optimization

and control; The third objective is to propose a dedicated parameter identifica-

tion procedure that exploits the characteristics of the dynamic model and the

existence of three different time-scales. This procedure allows the identification

of the model parameters from data collected at laboratory scale, with satisfac-

tory accuracy and precision, and could be used in practice for setting-up models

of full-scale plants.

This paper is organized as follows. Section 2 describes the laboratory-scale

process, including sensors and actuators, as well as the data acquisition system.

Section 3 briefly presents a simple mathematical model proposed in [14, 15],

together with a parameter identification strategy. The main experimental re-

sults are then presented in Section 4 and discussed in Section 5. Finally, some

conclusions are drawn in Section 6.

2. Materials and Methods

2.1. Process Description

Recirculating aquaculture systems are sustainable fish production facilities

in terms of water usage. Water reuse is possible only if efficient nitrification,
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denitrification and removal of organic matter are achieved. A sMBR can be

incorporated into the system in view of its high effluent quality. In this study,

we undertake a case study involving the production of tilapia and trout, which

are susceptible to high concentrations of ammonia resulting from fish feces and

excretion, but are tolerant to nitrate [16]. Future studies could be carried out

with other species, where the nitrate concentration plays a critical role in the

process.

2.2. Experimental Setup

The laboratory-scale RAS-sMBR is designed to remove nitrogen and solid

matter (see Figure 1). The influent is composed of a synthetic wastewater that

mimics fish excrement with ammonia mass flow of around 19.8 mg/h. This

value is based on the ammonia excretion values reported by [17] and [18], for a

total fish basin volume of 0.05 m3 and a fish density of 24 kg/m3.

The bioreactors have a total volume of 0.22 m3 divided into an anaerobic

compartment (41% of the total volume), an aerobic compartment (41%), and

a compartment with submerged microfiltration membranes (18%). The recir-

culation between the sMBR and the nitrification tank is 0.7 m3/d while the

recirculation between the nitrification and denitrification tanks is 0.7 m3/d.

The total area of the membrane is 0.35 m2 (Microdyn-Nadir Gmbh), working

at tpermeate = 0.0035 d (i.e., 5 min) filtration and trelax = 6.94 × 10−4 d (i.e.,

1 min) relaxation. The permeate production is around 18.7 L/m2/h, and mem-

brane aeration is around 20 m3/d. The suspended solids concentration in the

membrane compartment ranges from 0.05 to 0.6 g/L. Online data, including

temperature, flows and trans-membrane pressure (TMP ), are measured every

second. Offline measurements of suspended solids concentration, pH, air-flow

rates and ammonium concentration are carried out daily. The measurement of

ammonia concentration is carried out using HACH kits LCK − 304. The con-

fidence interval at 95 % is ± 0.012 mg/L. Note that ammonia can be presented

in water in two forms, which depends on the pH of the water. When pH is

less then 7 the ammonia is mainly presented as its ionized form (NH+
4 ), as pH
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increases above 7 its un-ionized (NH3) form is also present.

The system includes five pumps of three different types. The intermediate

circulation pumps (MP1, MP2, MP3) are magnetic couple AC pumps (IWAKI

model MD-6-230GS01), which allow flows up to 8 L/min. The global recir-

culation and backwash pump is a diaphragm 24 Vdc pump (SHURflo model

8000-991-236) with a maximum flow rate of 2 L/min. The last pump is the

dosing pump (ISMATEC model Reglo Digital MS-2/6-160), whose flow is ad-

justed to emulate the effect of fish excretion by injecting a solution containing

ammonia into the system.

The AC pump sources are phase-angle dimmers (NS−80 from FG ELEK-

TRONIK) that allow the PLC to control the pumps through its analog outputs.

The diaphragm pump is a DC pump powered by a DC driver, which allows the

PLC to change the flow using pulse width modulation (PWM).

To control the pump flow rates, the levels of the tanks and the differential

pressure across the membrane, the following sensors are used: level sensors,

which consist of a simple float switch that prevents the tank from overflowing;

flow-meters, ranging from 0.05 to 10 L/min, which allow a large range of oper-

ating conditions, and a pressure sensor that is used for the TMP measurement

and ranges from -1 to 1.6 bar, producing an output current of 4 to 20 mA.

Two motorized 3-way valves (V1 and V2) are used to reverse the flow from

permeate to backwash on the sMBR module and V3 controls the waste flow.

The system uses reinforced flexible tubing of 13 mm in diameter.

For the aeration of the nitrification tank, a Roeflex disc diffuser from Passa-

vant − Geiger Gmbh is used, which permits good diffusion of air at the bottom

of the tank. The air source for the nitrification tank is separate from the sMBR

air source. For the nitrification tank, an air pump with variable air flow is used

while constant flow is applied to the sMBR. Airflow sensors and manual control

allow manipulation of the airflow rate in a range from 0 to 300 NL/h (NL are

normal liters, referring to 0 � and 1 atm).

The membrane used is a BIO-CEL Lab from Microdyn-Nadir Gmbh. It

has a membrane surface area of 0.35 m2 and is installed in a PVC frame with
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integrated cross-flow aeration via a membrane diffuser. Connections for per-

meate drainage and air supply are already provided. The Nadir membrane

(type UP150) has 150 MWCO (Molecular weight cut-off) [kDa], and is made

of Polyethersulfone (PES). The material is hydrophilic with a high chemical

resistance (pH from 0 to 14 and max temperature 95 �). The membrane has

been designed for environmental protection, metal processing, textiles, paper,

food/dairy, pharma/biotech and chemical processes. The membrane is identical

to that of the full-scale BIO-CEL module, making the laboratory-scale device

representative of a real-life process [19].

For data acquisition and control, a PLC S7-1200 from Siemens is used, which

has all the inputs and outputs needed for the process monitoring and control.

To complete the monitoring part, a PC is used as an industrial network using

OPC-server ensuring communication between the PLC and LabView. In this

configuration, the PLC and the LabView application are the OPC-clients. A

LabView interface was also designed for human-machine interface. Moreover,

LabView allows the interaction between the PLC and Matlab & Simulink soft-

ware for simulation tests.

Figure 2 shows the automation structure of the process. This includes the

human-machine interface at the top (LabView), the control part (PLC), sensors,

drivers and the actuators at the bottom. With this layout, it is possible to

measure and collect data from the system and manipulate the various actuators.

A command board was designed and assembled to keep the equipment safe,

to protect the laboratory power network and for possible separate interruption

of the reactors.

2.3. Data Logging

The data logging has two structures: (i) OPC connection between the Lab-

View application and the PLC that records the data from the process every

second; (ii) data logging that records data every 5 mins. The data files can be

downloaded by accessing the PLC memory via a web-browser using the PLC

address in the network (The PLC has 15 days of autonomy).
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Before any data acquisition and process operation, instrument calibration

was executed. An optical densitometer was used to measure the total suspended

solids (TSS) concentration. It was calibrated by taking samples from the pipe

between the denitrification and nitrification tanks, from the nitrification tank

and a dilution of 1:2 from the latter. The samples were dried in an oven set

to 105 � and then the dry solid particles were weighed. The relation between

measurements was computed by a linear regression method and is described

using the following equation: X[g/L] = 1.6245·[CU ]-0.009 with R2 = 0.9996,

where CU is the measurement provided by the optical densitometer.

A PT-100 sensor was added into the sMBR to measure the bulk temperature.

The conversion of the PLC values to temperature is Tb[�] = 0.008·TPT100-12.31

with R2 = 0.9993, where TPT100 represents values measured by the PLC.

PI controllers are used in the basic automation layer, in order to control the

pump flow rates using the signals from the flow-meters.

3. Parameter Identification of a Simple Dynamic Model

The development of dynamic models linking the biological degradation and

the filtration mechanism is extremely important to understand and optimize

sMBR processes [20]. In recent years, many models with different complexities

have been developed with the objective of understanding and monitoring the

process dynamics [21, 22, 23, 24]. In a RAS, the recirculation increases the

complexity of the process dynamics, making the system surprisingly difficult to

operate and to maintain in the desired operating zone.

To alleviate this difficulty, model-based control is an appealing solution, and

a simple dynamic model has been proposed in [14]. For the sake of conciseness,

the model derivation is not repeated here, but attention is focused on the result-

ing set of ordinary differential equations and their interpretation. This model,

which involves 4 state variables and 10 parameters, is given as follows:
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The notations are summarized in Table 1 and Figure 3 shows a simplified

representation of the aerobic zone in a RAS process.

The first two equations describe membrane fouling, whereas the last two

represent biological degradation. More specifically, the reversible layer dynamic

in Eq. (1b) is described by two terms. The first term represents the attachment

of suspended particles on the membrane surface, which is proportional to the

effluent flow rate Qout and suspended solid bulk concentration X . The second

term represents the layer detachment, which is proportional to air cross-flow

Jair, and

µair(M) = β
M

Kair +M
(2)

where M is the layer mass and Kair [g] is a half-saturation coefficient. The

time-varying parameter β is a key factor of the model and represents the ca-

pacity of detaching the reversible cake layer from the membrane by air scour-

ing (air cross-flow Jair). Considering a process with constant permeate flow

(Qout ≈ constant), the capacity of the air cross-flow Jair to detach the re-

versible layer decreases with time due to the drag force on the solid particles.

This is modeled as a decay of β, and a negative parameter γ [d−1] in Eq. (1a)

(with a small absolute value as the time evolution is quite slow as evidenced in

experimental studies).

The biological activity is described as in the classical chemostat model [25],

involving one hypothetical microbial biomass growing on a limiting substrate.

Equation (1c) represents the consumption of the substrate by the free biomass,
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according to a Monod law

µ(S) = µS,max

S

KS + S
, (3)

and a biomass yield coefficient Y [−], where µS,max [d−1] is the the maximum

specific growth rate of the free biomass, KS [g/m3] is the half-saturation coef-

ficient. Equation (1c) also includes transportation of inflowing and outflowing

substrate through the tank.

In Equation (1d), material transportation involves waste flow, inflow and

outflow, as well as the “conversion” of attached biomass into suspended solids

due to the air cross-flow Jair/V µair(M)M .

Usually, the reversible layer mass cannot be measured due to the lack of

reliable sensors [26]. Thus, the trans-membrane pressure is used to control the

sludge cake mass build-up indirectly, according to the following equation:

TMP =
Qout

A
ηRtotal (4)

where Rtotal = Rm+Rirr+Rrev [m−1] is the total fouling resistance, Qout is the

permeate pump flow selected by the operator (or the controller) and η [mbar d]

is the apparent bulk viscosity, which can be modeled by [27]:

η(Tb) = A1e
A2

Tb , (5)

where Tb is the bulk temperature and A1 and A2 are apparent viscosity param-

eters.

The total resistance includes the reversible resistance Rrev due to the sludge

cake described by

Rrev = ρrev
M +M0

A
, (6)

where ρrev [m/g] is the specific reversible resistance, M0 [g] is the initial fouling

mass, M [g] is the reversible fouling mass and A [m2] is the membrane area.
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The model derived in [14] was initially validated by comparison with a

more complex biological and filtration model for wastewater treatment as im-

plemented in the environment GPS-X [28]. In this work, experimental data will

now be used for the model identification and validation.

3.1. Model Parameter Identification

The objective of parameter identification is to infer a set of parameters from

experimental data, such that the proposed dynamic model can mimic the process

behavior with satisfactory accuracy. The procedure is based on the minimization

of a cost function that measures the deviation between experimental data and

model outputs. In this study, the following weighted least-squares cost function

J(θ) =

nt
∑

i=1

((ξsim(i)− ξpilot(i)))
T Ξ−1 ((ξsim(i)− ξpilot(i))) (7)

is minimized, where ξpilot = [Spilot Xpilot TMPpilot]
T is the vector of measured

variables and ξsim(θ) = [Ssim(θ) Xsim(θ) TMPsim(θ)]T is the vector of simu-

lated variables depending on the parameter set θ = [β0, Kair, ρrev, M0, Y, µS ,

Kair, γ, A1, A2, ρirr], nt is the number of measurements and Ξ is defined as

a scaling matrix that is selected as a diagonal matrix of the square of the maxi-

mum values corresponding to each state. The superscript T denotes the matrix

transpose. The optimization is performed in this study using the Nelder-Mead

algorithm as implemented by the fminsearch function in Matlab.

A lower bound of the covariance matrix P̂ of the estimated parameters is

obtained by the inverse of the Fisher Information Matrix (FIM):

P̂ = F−1(θ̂,Ω) (8)

The FIM is computed by:

F (θ̂) =

nt
∑

i=1

[

∂Ym

∂θ

]T

(ti,θ̂)

Ω−1

[

∂Ym

∂θ

]

(9)
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where Ym is the vector of the process outputs, Ω is the estimated covariance

matrix

Ω =
J(θ̂)

(nt − p)
Ξ (10)

and p is the number of parameters to be estimated.

The square root σj of the jth diagonal element of P̂ is an estimate of the

standard deviation of θ̂j , which can be used to compute parameter confidence

intervals. For instance, an interval of ± 1.96σ corresponds to a probability of

95%.

As the model analysis presented, [14] reveals, the sMBR process has three

time-scales: the ultra-fast, fast and slow time-scales. This time-scale separation

is exploited in the present study to simplify the identification procedure, which is

organized in three steps, with each of the steps corresponding to one of the time-

scales. A global identification of all the parameters simultaneously is, indeed,

not a simple task and would lead to the occurrence of several local minima

for the weighted least-square criterion that has been considered. A “divide-

and-conquer” approach is therefore preferred, then one subset of parameters

is estimated first, while another subset of parameters is estimated, with the

first subset fixed. The procedure can be iterated, getting parameter values

closer and closer to the sought optimum. If needed, a global identification can

conclude this iterative procedure (in the global identification, all the parameters

are freed, and the identification is initiated from the best values obtained in the

“divide-and-conquer” procedure), the application of this procedure is presented

in Section 4.3.

4. Results

The RAS-sMBR was operated over one year continuously with an input am-

monia mass flow of 19.8 mg/h. Fresh water was only necessary to maintain the

total volume of the process constant, in order to compensate for evaporation or

technical problems. As a result, the total ammonia concentration in the process
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was 0.177 ± 0.098 mg/L (considering 95% confidence intervals), which guaran-

tees favorable environmental conditions for fish growth. Figure 4a compares a

water sample from the sMBR tank with a water sample from the permeate flow.

The efficiency of the membrane in terms of retention of solid matter is obvious.

The high quality of the effluent is one of the most significant advantages of

sMBR processes in a RAS. This high quality is not only linked to low turbidity,

but also to the capacity of preventing fish diseases as a result of the retention

of the disease agents in the extremely small pores of the membrane.

During the year of operation, different tests were executed and experimental

data were analyzed in order to understand the process behavior. One of the

experimental data sets was selected with the objective of identifying the param-

eters of the model presented in Section 3. Figure 5 shows experimental data

recorded during one month. The trans-membrane pressure (TMP ), which is

linked to the fouling build-up, is visible in the first plot, and the constant efflu-

ent flow (Qout), bulk temperature (Tb), total suspended solids (TSS), pH and

air cross-flow (Jair) can be observed in the other plots. In the plot of NH+
4 , the

ammonia values fluctuate as a result of the operating conditions used to obtain

informative data for the dynamic response of the biological process, which are

detailed in Section 4.3.

In order to understand specific properties of the RAS-sMBR, experiments

focusing on the filtration characteristics of the plant were carried out. The

process had a low concentration of TSS (around 0.2 g/L) compared to con-

ventional activated sludge processes for wastewater treatment. Consequently,

not much fouling occurred,as shown by the fact that, after five months in use,

TMP reached 200 mbar (considered in this work the maximum pressure value

for the membrane). This observation is explained by the low concentration of

ammonia (and no carbon sources) in the synthetic water added into the fish

tank. It is important to highlight that fouling in a RAS is associated with the

fish diet, which is an important point for future research. The surface of the

membrane was inspected visually. Figure 4b shows the material attached to the

membrane. After the membrane was mechanically cleaned with brushes, TMP
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dropped from around 200 to 45 mbar.

4.1. Critical Flux

To study the filtration characteristics, the “critical flux” was determined.

This involves varying the permeate flow in order to observe the TMP behavior.

The critical flux is reached when the relation between the flux and the TMP is

no longer linear. The step method proposed in [29] was implemented.

Using the PI controller, the permeate flow was changed stepwise, with am-

plitude of 8.14 L/m2/h over five-minute periods Fig. 6. The test shows that, in

the considered operating conditions, the critical flux was not reached. This oc-

curred probably due to the low concentration of suspended solids (0.130 g/L).

The reversible layer on the membrane surface was extremely thin, while the

TMP increased because of irreversible sludge deposition. This shows that the

scouring produced by the air cross-flow is sufficient to control reversible sludge

cake deposition, and the irreversible fouling is the main process in the TMP

build-up.

Note that when the permeate flow is decreased, the TMP does not follow

the same profile as Qout. This can be explained by the air trapped inside the

membrane structure, which affects the TMP profile. Relaxation with air purge

cycles must be done to prevent accumulation of air in the membrane.

4.2. Air Cross-Flow Study

Over approximately 15 days, two experiments were set up for the study of

fouling evolution. Air cross-flows with Jair = 22.85 m3/m2/d and Jair = 53.85

m3/m2/d were selected, respectively. For evaluating the fouling evolution slope,

a second order low pass Butterworth-filter, Eq. (11), with a cut-off frequency of

ωc = 0.0209 rad/s was designed, considering the permeate and relaxation cycles

(5:1 min):

|B(jω)|2 =
1

1 + (jω/jωc)2N
(11)
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Figure 7 shows the evolution of the TMP profiles in both experiments, which

are quite similar. These tests show that reversible fouling was not present:

changing the inlet air flow does not affect the profile slope in the long-term

evolution. Thus, the TMP escalates due to the effect of the irreversible fouling

layer on the membrane surface. This kind of observation could be used to

reduce the air-cross flow to the minimum necessary (i.e., if two different air-

cross flows result in the same TMP profiles, then the lower air flow is sufficient,

and might even be further reduced upon further tests). This would contribute

to a more profitable process, since the air blowers represent 80% of the total

energy consumption of the sMBR process [9].

4.3. Model Identification and Cross-validation

The analysis of the process dynamics reveals that the process has three main

time-scales: an ultra-fast, a fast and a slow time-scale [14]. This time-scale sep-

aration is used to segment the identification procedure into several smaller and

easier to handle subproblems. The iterative procedure is represented in Figure

8. The data are therefore observed in time windows of different sizes, accord-

ing to the time-scale separation, and according to their information content. It

is important to note that data sets with enough information content must be

selected to ensure parameter identifiability. At each step, the iterative proce-

dure uses the previous best estimates. Also, a final global identification can be

achieved, where all the parameters are estimated at once.

The attachment of the reversible layer is considered as an ultra-fast process

and its parameters θUF = [Kair, ρ,M0] are identified using a one-hour data set

of measurements. The biological degradation and growth are considered as fast

processes and their parameters θF = [Y, µS ,KS ] are identified using a three-

day data set. The slow dynamic depends on the long-term fouling evolution,

the irreversible resistance mechanism and the influence of the temperature on

the apparent viscosity. The set of parameters θS = [γ,A1, A2, ρirr] is identified

using a 16-day data set.

The procedure uses initial parameter values inspired by physical interpreta-
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tion, literature study and knowledge about the process dynamic behavior. For

example, the parameters ρ and M0 influence the TMP initial amplitude, Kair

influences the detachment by Jair, and γ and ρirr are linked to the TMP slope.

Before starting the identification procedure, the data set is analyzed and a data

window is selected such that it includes the required input and output signals,

namely Qout, Jair, X and Tb as inputs and TMP as output, with ideally no

data acquisition interruptions.

Ultra-fast Dynamics Identification:. The ultra-fast dynamics are linked to the

attachment and detachment of reversible sludge, which influence the TMP .

Over this time-scale, neither the biological degradation nor the long-term foul-

ing evolution are taken into account; they are considered constant due to their

slow dynamic behavior (see the first column of Figure 8). The parameter iden-

tification procedure is used with a one-hour data period to identify Kair, ρ and

M0. Figure 9 shows that the dynamic behavior of TMP measurements (in green

dashed line) is slower than the predictions of the proposed model (in dark blue

line). This discrepancy is linked to the fact that the model does not take the

air compression inside the tubes of the pilot plant into account. For the identi-

fication procedure, this drawback can be overcome using the average values of

the TMP amplitude from each cycle.

Table 2 presents the identified parameter values with their 95% confidence

intervals. The second column of this table shows the identified parameter values

found by minimizing the cost function Eq. (7) considering the ultra-fast param-

eters and the one-hour experimental data set. The small value found for M0

is in agreement with the small quantity of sludge observed in the real process.

The identification result has a coefficient of determination R2 = 0.8813. Note

that the initial condition of β, β0, could not be identified with this set of exper-

imental data, thus the parameter was fixed at 55000 m−1, as in [14]. A future

investigation to find an appropriate set of experimental data for identification

of this parameter should be carried out.
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Fast Dynamics Identification:. Ammonia degradation and biomass growth can

be considered as fast dynamics. As the process operates in a stationary regime,

with constant ammonia inflow, disturbances were added to the ammonia inflow

to extract information about the biological degradation dynamics (see the dis-

turbances in the ammonia plot in Figure 5 after day 27). The disturbances were

created by adding 0.1 L of a solution with 850 mg/L of ammonia.

The identification of the parameters linked to the fast time-scale is carried

out on the basis of the values estimated in the previous step regarding the

ultra-fast time-scale. The initial concentrations of ammonia and biomass are

measured S0 = 0.13 mg/L and X0 = 0.25 g/L and are not re-estimated at

this stage. It is important to note that initial conditions for the several state

variables can be considered as either known (measured with sufficient accuracy)

or unknown. In the latter case, they can be identified (as was the case for M0

in the previous step) or fixed when not enough information is contained in the

experimental data (as was the case for β0 in the previous step). The parameters

Y , µS,max and Kair were identified over approximately 3.5 days and their values

are presented in the third column of Table 2. Figure 10 shows the simulation

results, which have coefficients of determination of R2 = 0.9026 and R2 = 0.9745

for TSS and ammonia concentration, respectively.

Slow Dynamics Identification:. The slow dynamics are linked to the long-term

fouling evolution, which is expressed using the irreversible sludge layer, the

long-term sludge cake evolution and the apparent viscosity parameters, which

are the parameters ρirr, γ, A1 and A2, respectively. The long-term identification

procedure uses a large data set covering 16 days (see Figure 11). The average

value of the TMP over each cycle is computed and used in the identification

procedure. The estimated parameter values and confidence intervals are shown

in Table 2. The coefficient of determination of the model prediction is R2 =

0.8763. The identified small value of γ, which is linked to the reversible sludge

layer, shows that the main mechanism of fouling in RAS-sMBR is irreversible

fouling.
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The prediction of the long-term evolution is extremely important for the

RAS-sMBR to be profitable. This prediction will help in scheduling the pre-

ventive maintenance of the process, and avoiding unexpected interruption of

operation, which could severely damage fish production (through death due to

high ammonia concentrations) and process profitability, due to the increase of

the ratio between clean and reused water.

Note that the three time-scale identification procedure (Section 3.1) can be

completed by a global identification, where all the parameters are estimated

simultaneously, starting from the best values found in the separate steps. These

procedures were implemented and no significant variation in the parameters,

nor in the cost function value were observed, validating the three time-scale

identification procedure.

Cross-validation:. Cross-validation was performed using experimental data that

were not used in the identification procedure. The cross-validation of the ultra-

fast dynamics is presented in Figure 12. The model with the identified param-

eters still can predict the attachment and detachment of sludge cake. Note

that, over time, an undesirable amount of air inside the membrane structure

accumulates, damping more and more the dynamic evolution of the TMP .

Figure 13 shows the cross-validation results linked to the biological degrada-

tion (fast-dynamics). In the cross-validation procedure different concentrations

of ammonia and suspended solids are considered in order to test the domain of

the validity of the identified parameters of the model. Note that the model still

provides good prediction, which shows the large domain of validity of the model

parameters.

The cross-validations of the slow dynamics are presented in Figure 14; the

figures at the bottom show the simulation in more detail. A fair coefficient

of determination is achieved (R2 = 0.8493), showing the possibility to use the

model as a predictor in long-term experiments.
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5. Discussion

The main result of the previous section is to show that a simple dynamic

model, with only 4 state variables, is able to capture the main dynamics of the

wastewater treatment process. The identified parameter values are comparable

to values reported in previous studies, such as: µS,max = 0.8 d−1, KS = 1.0

g/m3, Y = 0.24 in the study of a general model for wastewater treatment by

[30]; µS,max = [0.7 - 0.8] d−1, KS = [0.2 - 0.4] g/m3 and Y = [0.084 - 0.142]

in the study of biofilters used for nitrification reported by [31], and µS,max =

[0.74 - 1.47] d−1 when [32] analyzed the pH dependence of the maximum specific

nitrification rate.

The model is grey-box in nature, since it neglects many phenomena, so as

to keep a simple structure and a modest size (which would make it black box),

while keeping the essential physical/biological structural elements, so as to fit

the observed data with a small set of parameters. This is in contrast with true

black-box models, which involve more parameters and usually require larger sets

of data for their calibration. An associated advantage of this approach is that

the model is interpretable, and could be accepted by practitioners if used within

a model-based control strategy.

Another important observation of this study is that the biological dynamics

of the RAS fitted with a sMBR are comparable to those of an ordinary nitrifi-

cation process, and a relatively limited number of measurements is required to

achieve a satisfactory identification based on the proposed ‘divide-and-conquer’

strategy, which therefore appears feasible in practice. Moreover, the procedure

also requires less computational effort as compared to the identification of all

the parameters simultaneously, as it uses a smaller time window. This aspect

is important as identification is a time-consuming task, which might prevent

practitioners from developing models of their plants.

Finally, the cross-validation tests (carried out with independent data sets)

show that the model structure and the identified parameters capture the main

process dynamics, over a range of operating conditions. The resulting simulator
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could be used for prediction and monitoring.

6. Conclusions

In order to investigate recirculating aquaculture systems complemented with

membrane bioreactors, a laboratory-scale system was designed and automated.

This system allows experiments to be carried out over a large range of situations

and the collected data can be used for the development of dynamic models. In

particular, a simple dynamic model with 4 state variables and 10 parameters

was identified and cross-validated with the data at hand. To this end, a ded-

icated identification procedure is proposed, which proceeds in three steps. It

is to be stressed that this identification decomposition relies on the choice of

three distinct time windows to operate the three identification steps in sequence.

These windows are chosen based on an analysis of the three-scale model, and

slow-fast approximations. Moreover, a cross-validation demonstrates the model

adequacy, even outside the operating range used in the identification proce-

dure. The resulting model could be used as a predictor in various model-based

monitoring or advanced control strategies.
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FIGURE CAPTIONS

Fig. 1. Pilot Description: DP1 is the ammonia dosing pump, M1

and M2 are the mixers, NH4 is the point of ammonia measurement,

N0, N1, N2 and N3 are the tank level sensors, MP1, MP2 and MP3

are the magnetic pumps, F1, F2, F3 and F4 are the liquid flow-meter

sensors, T1 is the denitrification tank, T2 is the nitrification tank,

DF1 is the air diffuser, A1 and A2 are the air flow-meters, O1 is

the measuring point for oxygen, P1 and P2 are the pressure sensors,

V1,V2 and V3 are the direction valves and SP1 is the suction pump.

Fig. 2. Layers of automation of the laboratory-scale process.

Fig. 3. Simplified representation of the submerged membrane

bioreactor (sMBR).

Fig. 4. Visual analysis of the effluent and cake deposition on the

membrane. (a) Left: permeate sample. Right: sMBR tank sample.

(b)Fouling deposit onto membrane surface.

Fig. 5. Measurements from one experiment.

Fig. 6. Critical Flux test with five-minute stepwise changes in the

effluent flow (amplitude of steps: 8.14 L/m2/h).

Fig. 7. Influence of different air cross-flow values on the TMP .

Dark blue: Jair = 53.85 m3/m2/d; green dashed line: Jair = 22.85

m3/m2/d.

Fig. 8. Three-step identification procedure. The columns repre-

sent the several steps according to a time-scale separation and the

lines the parameters to be estimated. θUF , θF and θS are the set of

parameters linked to the ultra-fast, fast and slow dynamics, respec-

tively.



Fig. 9. TMP short-term behavior and ultra-fast dynamics. Dark

blue line: model prediction; green dashed line: online measurements.

Fig. 10. Biological degradation identification (Fast Dynamics).

Dark blue line: model prediction; green dots: experimental data.

Fig. 11. Results of slow dynamic identification. Dark blue line:

model prediction; green dots: mean value of each cycle computed

from the real data. (a) Results for 16 days. (b) Zoom In on the

initial times. (c) Zoom In on the final times.

Fig. 12. Cross-validation of the ultra-fast dynamics. Red-dashed

line: experimental data; blue line: model prediction.

Fig. 13. Cross-validation of the fast dynamics. Red dots: experi-

mental data; blue line: model prediction.

Fig. 14. Cross-validation of the slow dynamics. (a) Results for

4 days. (b) Zoom In on the initial times. (c) Zoom In on the final

times. Red dots: the experimental data; blue line: model prediction.
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Table 1

Symbols and Notations.

Symbol Description

A1 apparent viscosity [-] (model parameter)

A2 apparent viscosity [-] (model parameter)

β resistance of detachable cake to air cross-flow [m−1](state variable)

η apparent viscosity [mbar d]

Jair air cross-flow [m3/m2/d]

Kair half saturation constant for airflow [g] (model parameter)

KS half saturation constant for substrate [g/m3] (model parameter)

M mass of reversible fouling [g] (state variable)

M0 initial mass of reversible fouling attached to the membrane [g] (model parameter)

µ specific growth rate [d−1]

µS,max maximum specific growth rate [d−1] (model parameter)

Qin inflow [m3/d]

Qout permeate flow [m3/d]

Qw waste flow [m3/d]

Rirr irreversible fouling resistance [m−1]

Rm intrinsic membrane resistance [m−1]

Rrev reversible fouling resistance [m−1]

Rtotal total fouling resistance [m−1]

ρirr specific pore fouling resistance [m2] (model parameter)

ρrev specific reversible resistance [m/g] (model parameter)

S substrate concentration [g/m3](state variable)

Sin input substrate concentration [g/m3]

Tb bulk temperature [�]

tpermeate duration of the permeate cycle [d]

trelax duration of the relaxation cycle [d]

TMP trans-membrane pressure [mbar]

V tank volume [m3]

Y biomass yield [-] (model parameter)

X solid matter concentration [g/L](state variable)

[-] denotes dimensionless.



Table 2

Identified parameters with 95% confidence limits.

Parameters Ultra-Fast Procedure Fast Procedure Slow Procedure

Kair [g] (48.6 ± 2.3) 48.6∗ 48.6∗

ρrev [m/g] (2.93 ± 0.17)× 1011 2.93 × 1011∗ 2.93 × 1011∗

M0 [g] (9.51 ± 0.13) × 10−1 9.51 × 10−1∗ 9.51 × 10−1∗

Y [-] 0.4∗ (0.23 ± 0.14) 0.23∗

µS,max [d−1] 0.9∗ (0.91 ± 0.69) 0.91∗

KS [g/m3] 0.1∗ (0.09 ± 0.10) 0.09∗

γ [d−1] -0.1∗ -0.1∗ -(1.63 × 10−13 ± 1.6 × 10−5)

A1 [-] 1.1∗ 1.1∗ (9.13 ± 0.02) × 10−1

A2 [-] 13.5∗ 13.5∗ (7.84 ± 0.02)

ρirrev [m−2] 8.0 × 107∗ 8.0 × 107∗ (8.33 ± 0.02) × 107

*Constant value in this identification procedure
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