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Diffusion MRI Anisotropy:
Modeling, Analysis and Interpretation

Rutger H.J. Fick, Marco Pizzolato, Demian Wassermann and Rachid Deriche

Abstract The micro-architecture of brain tissue obstructs the movement of diffus-
ing water molecules, causing tissue-dependent, often anisotropic diffusion profiles.
In diffusion MRI (dMRI), the relation between brain tissue structure and diffu-
sion anisotropy is studied using oriented diffusion gradients, resulting in tissue-
and orientation-dependent diffusion-weighted images (DWIs). Over time, various
methods have been proposed that summarize these DWIs, that can be measured
at different orientations, gradient strengths and diffusion times into one “diffusion
anisotropy” measure. This book chapter is dedicated to understanding the similari-
ties and differences between the diffusion anisotropy metrics that different methods
estimate. We first discuss the physical interpretation of diffusion anisotropy in terms
of the diffusion properties around nervous tissue. We then explain how DWIs are
influenced by diffusion anisotropy and the parameters of the dMRI acquisition it-
self. We then go through the state-of-the-art of signal-based and multi-compartment-
based dMRI methods that estimate diffusion anisotropy-related methods, focusing
on their limitations and applications. We finally discuss confounding factors in the
estimation of diffusion anisotropy and current challenges.
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1 Introduction

In brain imaging, diffusion anisotropy is a manifestation of tissues obstructing the
otherwise free diffusion of water molecules. Brain tissues with different structural
make-ups, e.g. healthy or diseased, influence the diffusion differently [Moseley
et al., 1990, Beaulieu, 2002]. Relating the observed diffusion with the underlying
tissue structure has been one of diffusion MRI’s (dMRI’s) main challenges. This
challenge can be seen as a variant of the work Can One Hear The Shape of a Drum
by Kac [1966]. Basser et al. [1994] were the first to determine the voxel-wise orien-
tational dependence of diffusion in biological tissue by fitting a tensor to the signals
of non-collinearly oriented diffusion gradients [Tanner and Stejskal, 1968]. For the
first time, this representation made it possible to describe both the tissue orientation
and the “coherence” of the underlying tissue by means of rotationally-invariant in-
dices such as the Fractional Anisotropy (FA) [Basser, 1995]. Since then, a plethora
of dMRI models have been proposed to more accurately relate tissue properties to
the measured signal by using less or different assumptions on the tissue configura-
tion or increasing the requirements of the signal acquisition [see e.g. Behrens et al.,
2003, Tuch, 2004, Wedeen et al., 2005, Assaf et al., 2008, 2004, Alexander et al.,
2010, Özarslan et al., 2013, Kaden et al., 2015, 2016].

This chapter is meant as a review of current methods that either directly estimate
diffusion anisotropy measures or anisotropy-related tissue properties. We restrict
ourselves to diffusion anisotropy a property of the overall diffusion signal (such as
FA); anisotropy as a property of the dispersion of diffusion micro-environments;
and anisotropy as a property of the micro-environment itself. In the latter two cases,
we view a micro-environment as the diffusion profile of a single axon and its im-
mediate surroundings. Using this definition, the signal measured from a bundle of
axons can be seen as an ensemble of micro-environments, each having their own
orientation and signal contribution to the overall signal. As an example of a method
that estimates this micro-environment dispersion, we include the Neurite Orienta-
tion Dispersion and Density Imaging (NODDI) [Zhang et al., 2012]. Describing
anisotropy as a property of one micro-environment, we include the Spherical Mean
Technique [Kaden et al., 2015]. Finally, as diffusion anisotropy is a consequence
of diffusion restriction and hindrance, we will put special emphasis on the influ-
ence and modeling of diffusion time. This angle of approach is timely, as STim-
ulated Echo Acquisition Mode (STEAM) pulse sequences have recently allowed
the in-vivo exploration of long diffusion times [De Santis et al., 2016, Fieremans
et al., 2016], verifying the existence of time-dependent diffusion even at low b-
values [Fieremans et al., 2016].

The structure of this chapter is as follows: In Section 2, we first provide a physical
interpretation on what diffusion anisotropy is. In Section 3 we clarify the mechanics
of a standard Pulsed Gradient Spin Echo (PGSE) sequence and how the measured
signal is influenced by the tissue. In Section 4, we then describe the most relevant
techniques that have been proposed to estimate and interpret diffusion anisotropy.
We describe the differences between different signal-based anisotropy measures and
relate them to axon dispersion-related metrics. We then discuss the time-dependence
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of anisotropy measures in Section 5. In this last section we also go into the diffusion-
time-dependence of diffusion restriction in the extra-axonal space [Novikov et al.,
2014, Burcaw et al., 2015]. Finally, we discuss challenges and confounding issues
that these methods face in Section 6.

2 Diffusion Anisotropy: The Phenomenon

The characteristics of diffusion anisotropy in the brain depend on how the diffu-
sion process is restricted or hindered by the boundaries of the nervous tissue. To get
an idea of this relationship, we first discuss the general concept of individual spin
movement and the Ensemble Average Propagator (EAP) in the presence of restrict-
ing boundaries in Section 2.1. We then discuss to a greater extent the variety and
complexity of the nervous tissue in Section 2.2.

2.1 Diffusion and the Ensemble Average Propagator

In a fluid, water particles follow random paths according to Brownian motion [Ein-
stein, 1956]. When we consider an ensemble of these particles in a volume, we can
describe their average probability density P(r;τ) that a particle will undergo a dis-
placement r ∈ R3 during diffusion time τ ∈ R+. This quantity is often referred to
as the diffusion propagator or the ensemble average propagator (EAP) [Kärger and
Heink, 1983]. In a free solution, the EAP can be described by a Gaussian distribution
as

P(r;τ) =
1√

4πDτ
e−
‖r‖2
4Dτ (1)

where D is the diffusion coefficient. Eq. (1) shows that the likelihood that particles
travel further increases when either D or τ increases. While keeping D constant,
this concept can be made clear using isocontours such that P(r;τ) = c with c >
0. Figure 1 shows the same isocontour for diffusion times τ1 < τ2 < τ3 in four
schematic representations of different tissue types. As can be seen by the growth of
the isocontours, using longer τ increases the likelihood that particles travel further.
The shape of the isocontour depends on the structure of the surrounding tissue.
From left to right, in free water, where Eq. (1) is a good approximation, particles
are unrestricted and travel furthest with isotropic, Gaussian probability. Next, at a
course diffusion scale, gray matter tissue can often be seen as generally unorganized
and hinders diffusion equally in all directions. For this reason, these tissues also
produce isotropic contours, but smaller than those in free water. In axon bundles,
here illustrated as gray lines, axons are mostly aligned with the bundle axis. Particle
movement is restricted perpendicular to this direction and is relatively free along it,
causing anisotropic isocontours [Le Bihan and Breton, 1985, Taylor and Bushell,
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Free Water Gray Matter Coherent Bundle Crossing Bundles

τ1
τ2

τ3

Fig. 1: Schematic representations of different tissue types with their corresponding
P(r,τ) isocontours for different diffusion times τ1 < τ2 < τ3. In the “Free Water”
image the blue curves just indicate the presence of water, while the grey lines in the
right three images represent tissue boundaries. Longer τ lets particles travel further,
indicated by the smaller blue isocontour for τ1 to the largest red isocontour for τ3.
The shape of the isocontour depends on the structure of the surrounding tissue.
Image inspired by Alexander [2006].

1985, Merboldt et al., 1985]. Finally, in areas where two bundles cross there is a
mix between the isocontours of each bundle.

Note that we intentionally drew the isocontours for τ1 more isotropic than those
of τ3 in the right two white matter tissues. For shorter τ , particles have not had
much time to interact with surrounding tissue, resulting in a similar probability that
a particle travels in any direction. The isocontours for very short τ will therefore
always be isotropic. For longer τ , particles have had more time to interact with the
tissue, either traveling far along a relatively unrestricted direction, or staying close to
its origin along a restricted direction, resulting in more anisotropic profiles [Tanner,
1978]. When the tissue can be seen as axially symmetric (i.e. in a single bundle), this
means that the perpendicular diffusivity D⊥ becomes τ-dependent and decreases as
τ increases [Cohen and Assaf, 2002]. Different tissue types will induce different
τ-dependence of the EAP [Özarslan et al., 2006, 2012].

2.2 Microstructure of the Brain: The Complicated Reality

Images such as those in Fig. 1 are useful to illustrate general properties of different
brain tissues. However, it is important to realize that these are extreme simplifica-
tions. Strictly speaking, the terms gray and white matter are only valid in the context
of gross anatomy. Gray matter is only distinguished from white matter, in that gray
matter contains numerous cell bodies and relatively few myelinated axons, while
white matter is composed chiefly of long-range myelinated axon tracts and contains
relatively very few cell bodies. The brain also contains glial cells of various kinds
who support the functioning of neurons.

In white matter bundles, while axons are often near-tubular, their diameter,
amount of myelination and the space between them varies significantly. Water par-
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ticles diffusing in different parts of this tissue, e.g. the intra- or extra-axonal space,
are restricted in ways that are characteristic of that tissue type. However, the diffu-
sion process can only be probed over large ensembles of tissues. This is illustrated
by the fact that axon diameters in humans range between 0.2µm and 2µm [Aboitiz
et al., 1992, Liewald et al., 2014], while the imaging resolution of diffusion MRI
is around a millimeter. Appropriately dealing with the heterogeneity of the tissue
and its complex influence on water diffusion is one of the big challenges of the field
of diffusion MRI. In the next section, we will go into more detail on how diffusion
MRI can be used to measure a signal that is related to the EAP.

3 Measurements of Diffusion with Diffusion-Weighted MRI

The estimation of diffusion anisotropy can be thought, in first approximation, as
the assessment of the amount of preference that the diffusion process has for a spe-
cific spatial direction, compared to the others, in terms of diffusivity. Therefore, this
assessment requires sensing the diffusion signal along multiple spatial directions,
regardless of the representation adopted to describe the signal itself. In MRI, this is
typically done by acquiring a collection of images of the target object, e.g. the brain.
Each image is acquired when the experimental conditions within the magnet’s bore
determine a specific diffusion-weighting along the selected spatial direction: this is a
Diffusion-Weighted Image (DWI). The diffusion-weighting is globally encoded by
the b-value [Le Bihan and Breton, 1985], measured in s/mm2, a quantity that is the
reciprocal of the diffusivity, D (mm2/s). The intensity of the diffusion-weighting,
i.e. the b-value, is determined by the acquisition setup.

The most common type of acquisition is the Pulsed Gradient Spin-Echo sequence
(PGSE) [Stejskal and Tanner, 1965], where a DWI is obtained by applying two
diffusion gradients with intensity G = ‖G‖ (T/m) and pulse length δ (s) to the
tissue, separated by the separation time ∆ (s). We illustrate this sequence in Figure 2.
The resulting signal is ‘weighted’, along the applied gradient direction, with b-value
[Stejskal and Tanner, 1965]

b = γ
2G2

δ
2
(

∆ − δ

3

)
(2)

where γ is, when measuring water diffusion, the nuclear gyromagnetic ratio of the
water proton 1H. The measurement of the diffusion signal is directly related to the
concept of attenuation. Indeed, in the presence of diffusion, the signal intensities
S(b) of the voxels of a DWI are lower than the corresponding intensities when the
image is acquired without diffusion-weighting S0 = S(0). Along the selected gradi-
ent direction, the quantity E(b) = S(b)/S0 expresses, for each voxel, the attenuation
of the diffusion-weighted signal. In the absence of restrictions to the diffusion pro-
cess, the attenuation is [Stejskal and Tanner, 1965]
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Fig. 2: Schematic illustration of the pulsed gradient spin echo sequence. The se-
quence is represented as the time evolution, i.e. occurrence and duration, of radio-
frequency pulses (RF) in the first line, diffusion gradient pulses in the second line,
and measured signal in the third line. The illustration reports the 90◦ and 180◦ RF
pulses separated by half the echo-time TE, two diffusion gradient pulses of strength
G and duration δ separated by a time ∆ , and the free induction decay (FID) and
echo of the measured signal.

E(b) =
S(b)
S0

= e−bD, (3)

which expresses an exponential attenuation profile, as is illustrated in Figure 3a.
In the case of the PGSE sequence, this attenuation phenomenon can be inter-

preted as the result of a differential mechanism. The sequence, shown in Figure 2,
starts with a 90◦ radio-frequency pulse after which it is possible to measure a sig-
nal, namely Free Induction Decay (FID), that is related to the macroscopic spins’
net magnetization. After a time TE/2, with TE the echo-time, a second 180◦ radio-
frequency pulse has the effect of generating an echo of the signal whose peak is at
time TE, corresponding to the end of the sequence [Hahn, 1950]. The first diffusion
gradient pulse is applied between the two radio-frequency pulses. Here, we assume
the narrow gradient pulse condition δ � ∆ , which implies that spins are static dur-
ing the application of the gradient pulses [Tanner and Stejskal, 1968]. Under this
assumption, after the first gradient pulse, a spin located at position r1 is subject to a
phase accumulation φ1 = γδG ·r1. After a time ∆ from the start of the first gradient
pulse, and after the 180◦ radio-frequency pulse, a second gradient pulse of equal
magnitude and duration to the first is applied. If the spin has moved to a position
r2 the phase accumulation during the second pulse is φ2 = γδG · r2. However, the
180◦ radio-frequency pulse has the effect of changing the sign of the second gradi-
ent pulse. Therefore, at the end of the sequence, i.e. at the echo-time TE, the spin
has acquired a net phase shift
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φ = φ2−φ1 = γδG · (r2− r1) = γδG · r (4)

which is null in the case the spin remained static, i.e. r = r2− r1 = 0.
The signal attenuation takes into account an ensemble of spins and can be related

to the ensemble average propagator (EAP), P(r,τ), via a Fourier relationship under
the q-space formalism [Tanner and Stejskal, 1968, Callaghan, 1991]

E(q,τ) =
∫
R3

P(r,τ)e j2πq·rdr (5)

where q is the wave vector and τ is diffusion time, which for the PGSE sequence
are expressed as

q =
γδG
2π

and τ = ∆ −δ/3. (6)

These quantities influence differently the diffusion-weighting, i.e. the b-value. In-
deed, the wave frequency q = ‖q‖ is expressed in mm−1 and is the reciprocal of the
spin distance r = ‖r‖ expressed in mm. As such, by increasing the measured spa-
tial frequency q, we can obtain a higher resolution of its inverse Fourier transform,
the diffusion propagator P(r,τ) described by r. In addition, the diffusion time τ ex-
presses the time interval during which spins are allowed to diffuse before measure-
ment. A longer diffusion time allows the spins to move a longer distance causing,
in the absence of restrictions to the diffusion process, a larger net phase shift, i.e.
a stronger attenuation of the signal. Therefore, expressing the diffusion-weighting
in terms of q and τ can provide useful insights on the signal nature. In the absence
of restrictions to the diffusion process, eq. (5) has a closed form. This is obtained
by substituting q and τ of eq. (6) into the formulation of the b-value expressed in
eq. (2), such that b = 4π2q2τ and eq. (3) becomes

E(q,τ) = e−4π2q2τD (7)

which expresses a Gaussian attenuation profile as function of q. However, eqs. (3)
and (7) are valid when the diffusion process can be considered unrestricted, e.g.
when the movement of spins is not obstructed by the presence of a barrier. In the case
of restricted diffusion, for instance when the signal is measured along a direction
perpendicular to a barrier, these equations are no longer valid.

Unrestricted and restricted scenarios are depicted by the schematic representa-
tion in the left side of Figure 3, where the diffusion process occurs between two
parallel barriers, i.e. the restriction, and where two arrows represent the measure-
ment directions parallel and perpendicular to the restriction. The figure also illus-
trates the signal attenuation in the case of parallel, unrestricted diffusion (a,b), and
in the case of perpendicular, restricted diffusion (c,d). The unrestricted attenuations
are obtained with eqs. (3) and (7), whereas the restricted ones are simulated as the
diffusion signal attenuation generated within an ensemble of cylinders along the di-
rection perpendicular to the cylinders’ axes [Callaghan, 1995]. Moreover, the curves
in a and c are reported as function of the b-value with diffusion time τ2, whereas
the curves in b and d are functions of the q-value and are reported for increasing
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Parallel
unrestricted

Perpendicular
restricted

a

c d

b

Fig. 3: The effect of b-value, q-value and diffusion time on the signal attenuation
when diffusion is unrestricted or restricted by the presence of a barrier (a cylinder).
The graphs report the signal attenuations along a direction parallel to the restriction
(a,b) – represented by two black barriers in the schematic image – and along the
perpendicular direction (c,d), where the diffusion process is restricted. The attenua-
tions are reported as function of the b-value (a,c) with diffusion time τ2, and q-value
(b,d) for increasing diffusion times τ1 < τ2 < τ3. Dots indicate the attenuation mea-
sured at b = 1000 s/mm2. Note that if we were to plot the single cylinder signal
attenuation in d in log-scale we would find diffraction patterns [Callaghan, 1995],
but in practice these are never visible because nervous tissues contain distributions
of axon diameters, whose diffraction patterns average out to a smooth line.

diffusion times τ1 < τ2 < τ3. In the graphs, points of each curve corresponding to
b = 1000 s/mm2 are highlighted with a dot.

Along the unrestricted direction (a,b) the attenuation values, indicated by dots,
are lower than the corresponding ones along the restricted direction (c,d). Indeed,
when diffusion is restricted by the presence of the barrier, the spins are subject to a
smaller net displacement and the signal attenuates less.

The choice of q and τ to obtain a certain diffusion-weighting, i.e. a specific
b-value, assumes different relevance in terms of signal attenuation depending on
whether diffusion is restricted or not. In the absence of restrictions (a,b), an increase
of q-value or diffusion time always attenuates the signal, and points with different q
and τ , but with same b-value, render the same amount of attenuation (b). However,
when diffusion is restricted (c,d), an increase of the diffusion time τ implies letting
the spins diffuse a longer distance with the consequence of experiencing more re-
striction. In this case, the Gaussian attenuation expressed by eq. (7) is not longer
valid. Indeed, different combinations of q and τ render different non-Gaussian pro-
files of signal attenuation, and points with same b-value – the dots of Figure 3d –
correspond to different attenuations.

The estimation of diffusion anisotropy, based on the diffusion signal attenua-
tion along different gradient directions, depends on the chosen experimental pa-
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Fig. 4: Schematic for different types of acquisition schemes. DTI schemes are typi-
cally acquired at a low gradient strength, typically b < 1000s/mm2, for a minimum
of 6 gradient directions. HARDI typically uses higher gradient strengths, typically
b > 2000s/mm2 with over 40 gradient directions. Multi-shell uses DTI and HARDI
shells for a given diffusion time, and finally qτ-acquisitions are basically multi-shell
acquisitions for a range of diffusion times.

rameters, especially q and τ . Indeed, different sets of parameters lead to different
signal attenuations – depending on the underlying diffusion process – and conse-
quently to different measurements of anisotropy. Ideally, a complete characteriza-
tion of anisotropy would require the measurement of the diffusion signal attenuation
for many gradient directions, q-values, and diffusion times τ . However the optimal
sampling is still under debate. In practice, with reference to diffusion anisotropy,
the choice of how to sample the diffusion signal depends on the application and
on the chosen signal representation. For instance, in DTI it is common practice to
measure only one sample, i.e. one b-value, per gradient direction [Le Bihan et al.,
2001] as illustrated in Figure 4. However, with High Angular Resolution Diffusion
Imaging (HARDI) the number of directions – typically above 40 – and the b-value
is considerably increased to obtain a signal representation with a higher angular res-
olution [Tuch et al., 2002]. Other signal representations require signal acquisition
at different diffusion-weightings. A common choice, namely multi-shell, consists in
acquiring different q-shells while fixing the diffusion time. Each shell represents a
collection of samples in the three-dimensional space with the same q-value. These
samples can be imagined as lying on a sphere, as shown in Figure 4, and it is con-
venient to distribute them uniformly on the spherical surface to obtain an optimal
spatial coverage. This concept can be expanded among shells such that all of the ac-
quired samples lie on different non-collinear directions [Caruyer et al., 2013]. The
multi-shell concept can be extended to τ-shells, called a qτ-acquisition [Fick et al.,
2016b], since nowadays there exist signal representations that exploit different value
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for both q and τ . In this case, a complete q-shell scheme – with samples distributed
along different gradient directions and with different diffusion-weightings – is ac-
quired for each desired diffusion time.

4 The Inter-Model Variability of Diffusion Anisotropy

We now return to the metric that is most commonly used as a marker for changes in
tissue microstructure: diffusion anisotropy. Simply meaning “deviation from diffu-
sion isotropy”, different interpretations of diffusion anisotropy have been proposed
using different acquisition requirements and mathematical underpinnings [Basser,
1995, Tuch, 2004, Özarslan et al., 2013, Kaden et al., 2015]. Out of these, the
clinical applications of Fractional Anisotropy (FA) [Basser, 1995] of the Diffu-
sion Tensor Imaging (DTI) model [Basser et al., 1994] has been most widely ex-
plored. Changes in FA have been related to brain diseases such as ischemia, multi-
ple sclerosis, trauma, brain tumors and many more [see e.g. reviews by Assaf and
Pasternak, 2008, Soares et al., 2013]. For this reason, FA is seen as a “potential
biomarker” for these disease patterns, where biomarker is a portmanteau of “bio-
logical marker” [Strimbu and Tavel, 2010]. However, the fact that FA is sensitive to
all these processes also means that it is specific to none of them.

Diffusion anisotropy measures, as a rule of thumb, always have the following
three properties:

• They are rotationally invariant, i.e., insensitive to rotations.
• They are normalized, with zero being the lowest measure for diffusion anisotropy

and one being the highest.
• They somehow describe “deviation from diffusion isotropy”.

The last point is intentionally left open to interpretation, which is exactly the
point we are making in this section. To illustrate this, we discuss seven different
anisotropy measures; Fraction Anisotropy (FA) [Basser, 1995], Relative Anisotropy
(RA), Kurtosis Fractional Anisotropy (KFA), Generalized Fraction Anisotropy (GFA) [Tuch,
2004]; Propagator Anisotropy (PA) [Özarslan et al., 2013]; Orientation Disper-
sion Index (ODI) [Zhang et al., 2012]; and microscopic Fractional Anisotropy
(µFA) [Kaden et al., 2015]. All of these except ODI and µFA are signal-based
metrics for diffusion anisotropy. We added these two to illustrate that the concept of
diffusion anisotropy transcends signal-based metrics.

We start this section by first detailing the data of the Human Connectome
Project [Setsompop et al., 2013] that we use to illustrate different diffusion anisotropy
measures in Section 4.1. We then describe the inter-model variability of the mathe-
matical definition and estimation of signal-based diffusion anisotropy in Section 4.2.
We then detail anisotropy as a property of axon dispersion of micro-environments
(ODI) in Section 4.3, and as a property of one micro-environment (µFA) in Sec-
tion 4.4. The anisotropy measures of all presented techniques are qualitatively and
quantitative compared in Fig. 5, 6 and 7.
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GFAQ-ball GFAMAPMRI 1-ODINODDI

FADTI PADTI PAMAPMRI μFASMT

Fig. 5: Visualization of various normalized measures describing diffusion
anisotropy, where the corresponding model is given in the subscript. In the top row,
we show Fractional Anisotropy (FA) and Propagator Anisotropy (PA) of Diffusion
Tensor Imaging (DTI), PA by Mean Apparent Propagator (MAP)-MRI and micro-
FA by Spherical Mean Technique (SMT). In the bottom row, we show Generalized
Fractional Anisotropy (GFA) by Q-ball Imaging and by MAP-MRI and finally one
minus the Orientation Dispersion Index (ODI) by Neurite Orientation Dispersion
and Density Imaging (NODDI). The complement of ODI is shown for overall co-
herence, since high ODI normally indicates low anisotropy.

4.1 Data Set Description and Adopted Notation

We use the MGH Adult Diffusion Data of the Human Connectome Project to il-
lustrate different measures of diffusion anisotorpy [Greve and Fischl, 2009, Ander-
sson et al., 2012, Keil et al., 2013, Setsompop et al., 2013]. This data set was ac-
quired at particularly high b-values {0, 1000, 3000, 5000, 10000}s/mm2 with {40,
64, 64, 128, 256} directions, respectively. The diffusion time and pulse separation
time in this data are δ/∆ = 12.9/21.8ms with 1.5× 1.5× 1.5mm resolution and
T E/T R = 57/8800ms.

4.2 Diffusion Anisotropy as a Signal Property

In this section, we discuss five different anisotropy measures known as Frac-
tion Anisotropy (FA) [Basser, 1995], Relative Anisotropy (RA), Kurtosis Frac-
tional Anisotropy (KFA) [Jensen et al., 2005], Generalized Fraction Anisotropy
(GFA) [Tuch, 2004] and Propagator Anisotropy (PA) [Özarslan et al., 2013].

Signal-based models directly estimate the EAP P(r|τ) from the measured signal
attenuation E(q,τ), using the Fourier relationship in Eq. (5). Notice that P(r|τ) is a
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Fig. 6: Box-plots of anisotropy measures in estimated in different regions of inter-
est, indicated as the different colors in the coronal brain slice in the right corner. We
illustrate anisotropy in free water (CSF), a single bundle (Corpus Callosum) and a
crossing area (Centrum Semiovale). It can be seen that the same metric for different
techniques, or different metrics for the same technique can result in different esti-
mates of anisotropy. Note that the estimates of µFA (the most-right metric per group
in pink) in the crossing and single bundles are so consistent that the boxplots appear
almost flat.

conditional probability density for diffusion time τ , as the Fourier transform is only
over the q,r space. We will interchangeably use real displacement vector r = ru
with its distance and direction r ∈ R+,u ∈ S2 and q-space vector q = qg with its
q-space distance and gradient orientation q ∈ R+,g ∈ S2. The following anisotropy
measures are then defined as some difference or ratio between the isotropic and
anisotropic parts of P(r|τ).

Relative and Fractional Anisotropy Starting with one of the oldest mea-
sures for diffusion anisotropy, Relative Anisotropy (RA) and Fractional Anisotropy
(FA) [Basser, 1995] are specific for the DTI model [Basser et al., 1994]. DTI solves
the Fourier transform by generalizing the Stejskal-Tanner equation for unbounded
media [Tanner and Stejskal, 1968] to three dimensions:

E(b) = exp(−bgTDg) or E(q,τ) = exp(−4π
2q2

τgTDg) (8)

with D a 3× 3 symmetric positive-definite diffusion tensor. Notice that Eq. (8) is
Gaussian over q and exponential over τ , which will be important in studying time-
dependence in Section 5. FA describes fraction of the “magnitude” of D that we can
ascribe to anisotropic diffusion in terms of its eigenvalues {λ1,λ2,λ3}, wheres RA
divides the magnitude of the anisotropic part by that of the isotropic part as
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FA =
std(λ )
rms(λ )

=

√
1
2

√
(λ1−λ2)2 +(λ2−λ3)2 +(λ3−λ1)2√

λ 2
1 +λ 2

2 +λ 2
3

(9)

RA =
std(λ )

mean(λ )
=

3
√
(λ1−λ2)2 +(λ2−λ3)2 +(λ3−λ1)2

λ1 +λ2 +λ3
. (10)

Both measures are zero when the medium is isotropic, but only FA is normalized
between zero and one, which likely led to the prevalence of FA over RA in the
community. The interpretation of FA has known limitations as DTI cannot represent
crossing tissue configurations, but finds some average, Gaussian approximation that
best fits the overall signal [Basser et al., 1994]. We illustrate this by estimating DTI’s
Orientation Distribution Function ODF(u|τ), representing the probability density
that a diffusing particle will travel along direction u by marginalizing r as

ODF(u|τ) =
∫

∞

0
P(ru|τ)r2dr (11)

where r2 is the Jacobian of the radial integration to ensure that the integral of the
ODF is unity [Tristán-Vega et al., 2009, Aganj et al., 2010]. Notice that Eq. (11) is
general, and can be used for any method that estimates P(ru|τ). For instance, Eq.
(11) can be given analytically for DTI as

ODFDTI(u) =
1

4π|D| 12 (uTD−1u)
3
2
. (12)

We show DTI’s ODFs in a crossing area in Fig. 7, where it can be seen that round
profiles with low FA are found where other methods detect crossings.

Kurtosis Fractional Anisotropy In Diffusion Kurtosis Imaging (DKI) [Jensen
et al., 2005] the non-Gaussian aspects of the signal attenuation are represented using
the Taylor expansion. Using a summation instead a matrix product like in Eq. (8),
DKI describes the signal attenuation as

E(b) = exp(−b
3

∑
i, j

gig jDi j +
b2

6
D2

3

∑
i, j,k,l

gig jgkglWi jkl +O(b3)) (13)

where D is the mean diffusivity with Diffusion Tensor D and non-Gaussian Kurtosis
Tensor W. In complete analogy to FA, the Kurtosis Fractional anisotropy is defined
as

KFA =
std(W)

rms(W)
. (14)

KFA therefore represents the anisotropy of the non-Gaussian aspects of the sig-
nal. DKI-based metrics have been shown to be more sensitive to pathology that
DTI-based ones [Cheung et al., 2009] and variations of its definition in terms of
directional variation have been explored [Hansen and Jespersen, 2016].
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DTI ODFs with FA Background

ODFs / FODs in Crossing Area for Different Methods
Q-ball ODFs with GFA Background

SMT FODs with μFA BackgroundMAPMRI ODFs with PA Background

Watson ODFs with 1-ODI Background

Fig. 7: Orientation Distribution Functions (ODFs) for DTI, Q-ball, MAPMRI, the
Watson distributions of NODDI and Fiber Orientation Distributions (FODs) of SMT
in an area where it is known there are crossing bundles. Each method has its corre-
sponding anisotropy measure as background texture. It can be seen that DTI finds an
average orientation, where Q-Ball, MAPMRI and SMT find crossing structures. The
FODs, being the result of a deconvolution, show sharper peaks, and more consistent
crossings than the ODF techniques. It is important to realize that while NODDI
separates the signal contributions of intra- and extra-axonal diffusion, its dispersion
index jointly describes the spread of both of these compartments, and produces very
similar ODFs as DTI.
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Generalized Fractional Anisotropy GFA [Tuch, 2004] was proposed for High
Angular Resolution Diffusion Imaging (HARDI) techniques [Tuch et al., 2002],
that use the Funk-Radon Transform (FRT) to estimate ODFs capable of describing
multiple axon directions [Tuch et al., 2003]. It is noteworthy that the only difference
between DTI and HARDI is that in HARDI more gradients g are measured at a
higher b-values to gain a better angular resolution of the ODF, see Fig. 4. This means
that still no radial information is known of P(ru|τ), and Gaussian decay over r is
assumed to estimate the ODF in Eq. (11). For any ODF, the GFA is given as

GFA =
std(ODF)

rms(ODF)
=

√
n∑

n
i=1(ODF(ui)−〈ODF(u)〉)2

(n−1)∑
n
i=1 ODF(ui)2 (15)

where ODF(u) is the value of the ODF in direction u, n is the number of evaluated
ODF directions and 〈ODF(u)〉 is the mean ODF intensity. We show Q-ball Imag-
ing ODFs [Tuch, 2004, Descoteaux et al., 2007, Aganj et al., 2010] in the top-right
of Fig. 7, where now crossing structures can be seen. Though, it must be said that
FRT has been applied to a variety of HARDI methodologies, a selection of which
is summarized in Tristan-Vega et al. [2010]. Moreover, notice that GFA intensities
in the crossing and single bundles areas are more similar than seen with DTI’s FA
in the top-left, but the overall intensities of GFA and FA are different. We illustrate
this by comparing estimated anisotropy intensities in different ROIs, for different
measures and techniques in Fig. 6. It can be seen that the same metric for differ-
ent techniques, or different metrics for the same technique can result in different
estimates of anisotropy.

Propagator Anisotropy PA was proposed for the multi-shell, Mean Apparent
Propagator (MAP)-MRI technique [Özarslan et al., 2013]. MAP-MRI can be seen as
a generalization of DTI, and allows for the estimation of three-dimensional P(ru|τ),
where now both restricted (non-Gaussian) diffusion over r and crossing axons can
be represented. MAP-MRI is not unique in this respect, as a plethora of multi-shell
techniques have been proposed for this purpose [See e.g. Assemlal et al., 2009, De-
scoteaux et al., 2011, Hosseinbor et al., 2013, Rathi et al., 2014], but MAP-MRI’s
formulation allows for easy estimation of a large variety of q-space properties us-
ing efficient regularization [Fick et al., 2016c]. PA is defined as a measure of dis-
similarity between the reconstructed P(r|τ) and its closest isotropic approximation
Piso(r|τ). First, the inner product between two EAPs is defined as

〈P(r|τ)Piso(r|τ)〉=
∫
R3

P(r|τ)Piso(r|τ)dr. (16)

The similarity between two propagators is measured as an angular measure of co-
variance in analogy with the vector product [Avram et al., 2015]:

cosθPA =

√
〈P(r|τ)Piso(r|τ)〉

〈P(r|τ)P(r|τ)〉〈Piso(r|τ)Piso(r|τ)〉
. (17)
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PA is then defined using the angular dissimilarity measure sinθPA =
√

1− cosθ 2
PA

and scaling function σ(t,ε) as

PA = σ(sinθPA,0.4) with σ(t,ε) =
t3ε

1−3tε +3t2ε
. (18)

where we note that scaling parameter ε = 0.4 was chosen by Özarslan et al. [2013]
to yield “the desired level of contrast in real images”. PA can be estimated for any
method that reconstructs P(r|τ). For instance, for DTI it is given as

cosθ
2
PA-DTI =

8u3
0uxuyuz

(u2
x +u2

0)(u
2
y +u2

0)(u
2
z +u2

0)
(19)

where the displacement is given as a function of DTI’s eigenvalues as{ux,uy,uz}=√
2τ{λ1,λ2,λ3} [Basser, 2002], and u0 is DTI’s nearest isotropic propagator [Özarslan

et al., 2013]. We show PAMAPMRI and PADTI in Fig. 5 and 6, where this measure in-
deed seems to show good contrast between isotropic, crossing and single bundle
tissues.

4.3 Anisotropy as Orientation Dispersion of Micro-Environments

As the only multi-compartment model that we consider in this chapter, the neurite
orientation dispersion and density imaging (NODDI) model [Zhang et al., 2012] pa-
rameterizes diffusion anisotropy as the dispersion of the diffusion signal of individ-
ual axon segments around a central bundle axis. In NODDI, axons as are represented
as sticks – cylinders with zero radius and parallel diffusivity λ‖ – and are dispersed
according to a Watson distribution W (κ,µµµ), where κ is the concentration parame-
ter that is inversely related to axon dispersion, and µµµ ∈ S2 is the bundle direction.
NODDI also separates the signal contribution of the Cerebrospinal Fluid (CSF) as
an isotropic Gaussian with diffusivity Diso (i.e. a Ball) and the hindered hindered
extra-axonal compartment – the diffusion directly around the axons – as an axially
symmetric Tensor (i.e. a Zeppelin) with parallel and perpendicular diffusivity λ ext

‖
and λ ext

⊥ . The overall signal representation is then

ENODDI
Watson = fCSF

Ball︷ ︸︸ ︷
Eiso(DCSF)︸ ︷︷ ︸

CSF

+

Watson︷ ︸︸ ︷
W (κ,µµµ) ∗S2

 fh

Zeppelin︷ ︸︸ ︷
Eh(λ

ext
⊥ ,λ ext

‖ )︸ ︷︷ ︸
Hindered Extra-Axonal

+ fr

Stick︷ ︸︸ ︷
Er(λ‖)︸ ︷︷ ︸

Intra-Axonal

 (20)

where the volume fractions of the CSF, hindered and intra-axonal compartment
sum up to unity as fCSF + fh + fr = 1, and ∗S2 represents the spherical convolu-
tion that distributes the per-axon diffusion signal (both the stick and the hindered
compartment) according to the Watson distribution [Kaden et al., 2007]. In prac-
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tice, NODDI fixes all diffusivities of the different model components and focuses
on the estimation of κ,µµµ and the volume fractions, leading to biases when the pre-
set diffusivities don’t reflect the true diffusivities. On the other hand, not fixing any
diffusivities and simultaneously fitting all parameters leads to multi-modallity in the
parameters space – different tissue representations can produce the same diffusion
signal [Jelescu et al., 2016].

NODDI reparameterizes the concentration parameter κ into the normalized Ori-
entation Dispersion Index (ODI)

ODI =
2
π

arctan(1/κ) (21)

where ODI = 0 now means no dispersion, i.e. parallel axons and therefore high
diffusion anisotropy, and ODI = 1 represents completely dispersed (isotropic) dif-
fusion. We fitted the NODDI model using the NODDI toolbox1 and illustrate the
complement of ODI in Figs. 5 and 6. It can be seen that the contrast of previously
discussed signal-based anisotropy measures and ODI is quite similar. Fig. 7 also
shows the ODFs of the estimated Watson distributed, which resemble the DTI ODFs
in many cases.

4.4 Anisotropy as a Property of Micro-Environments

Similarly as NODDI, the Spherical Mean Technique (SMT) [Kaden et al., 2015]
also represents the diffusion signal as a distribution of individual axon segments
with a spherical Fiber Orientation Distribution FOD(n). However, unlike NODDI,
SMT does not do any separately model the hindered and CSF compartments, nor
does it assume any parameterization of the FOD, and only assumes that the FOD is
a probability density such that

∫
S2 FOD(n) = 1 and the individual axon segment is

represented by an axially symmetric tensor with perpendicular and parallel diffusiv-
ity λ⊥ and λ‖. It then follows that, for a given b-value, the spherical integral ε of the
overall diffusion signal Eb(n) and that of the individual axon segment Kb(n) must
be equal such that

εE(b) =
∫
S2

Eb(n)dn =
∫
S2
(FOD ∗S2 Kb)(n)dn =

∫
S2

Kb(n)dn = εK(b,λ⊥,λ‖).

(22)
It is possible to solve this equation for λ⊥ and λ‖ using constrained least squares
such that 0 < λ⊥ < λ‖ < λfree with λfree the free water diffusivity. Once λ‖,λ⊥
are known, the per-axon fractional anisotropy (µFA) is calculated as in Eq. (9),
with λ1 = λ‖ and λ2 = λ3 = λ⊥. As we show in Figs. 5 and 6, the estimation of
µFA in the SMT framework is now independent of axon dispersion or crossing
tissue configurations, that are very noticeable in for instance FA and ODI. However,
SMT cannot distinguish between axon bundles, meaning that when two bundles

1 http://www.nitrc.org/projects/noddi_toolbox

http://www.nitrc.org/projects/noddi_toolbox
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Camino Cylinder Distributions

Fig. 8: left: Cross-sections of Camino cylinder substrates with gamma-distributed
radii. Distribution 1 has smaller radii and less extra-cellular space than distribution
2. right: Diffusion time dependence of anisotropy measures from the two left distri-
butions. The estimated anisotropy increases as longer diffusion times are used, until
a plateau is reached.

with different diffusivities exist within one voxel the method can only estimate the
average of the two. Lastly, the per-voxel FOD can now be obtained using standard
techniques such as Constrained Spherical Deconvolution [Tournier et al., 2007],
allowing for the recovery of very sharp orientation profiles as shown in Fig. 7.

5 Sensitivity to Diffusion Time

Recent work has put focus on the diffusion time dependence of the diffusion coeffi-
cient [Fieremans et al., 2016]. When this effect has an orientational dependence, it
also directly affects the estimation of diffusion anisotropy. To illustrate this, we use
Camino [Cook et al., 2006] to simulate the diffusion signal in two substrates con-
sisting of parallel axons – modelled as cylinders – with gamma distributed radii. We
show cross-sections of these substrates in Fig. 8. We simulate a multi-shell acqui-
sition with two shells using b-values {1000,3000}s/mm2 with 30 and 60 gradient
directions, respectively, and one b0 image without diffusion weighting. We set pulse
length δ = 1ms and vary pulse separation ∆ from 1ms to 40ms, while scaling the
gradient strength to keep the b-values constant. While here we set δ constant to
simplify the example, varying δ also influences the diffusion signal and its impact
should not be ignored in practice [Åslund and Topgaard, 2009].

We show the progress of FA, GFA and PA on the right of Fig. 8 for both distribu-
tions. It can be seen that all metrics describe the signal becoming more anisotropic
as diffusion time increases, even though different metrics report different levels of
anisotropy. In all cases, distribution 1, having more densely packed, smaller axons,
produces a more anisotropic signal.

Fitting just DTI to the b = 1000s/mm2 data, we show the progress of the dif-
fusivities parallel (D‖) and perpendicular (D⊥) to the cylinder axis on the left side
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Fig. 9: The perpendicular and parallel diffusion coefficients over diffusion time for
the distributions in Fig. 8.

of Fig. 9. It can be seen that time-dependence of diffusion anisotropy is caused by
the time-dependence of D⊥; lowering as diffusion time increases, indicating that
diffusion is becoming more restricted. D‖ remains constant and is equal for the two
distributions, indicating free parallel diffusion in this simple substrate. It should be
noted that Fieremans et al. [2016] actually found D‖ to be more time-dependent than
D⊥ in-vivo, indicating that parallel diffusion is not completely free in real tissues.

5.1 Anisotropy due to Axon Packing

It is known that in myelinated axons, nerve conduction velocity is directly propor-
tional to axon diameter [Waxman, 1980]. Furthermore, histology studies how that
realistic axon diameters are distributed between [0.2−2]µm [Aboitiz et al., 1992]. In
this section, we continue to underline the importance of diffusion time dependence
by discussing how it can be used to infer information on the axon diameter distribu-
tion and axon packing. The first model to exploit diffusion time dependence in this
way was the composite hindered and restricted model of diffusion (CHARMED)
model [Assaf et al., 2004]. CHARMED models axons as impermeable, parallel
cylinders with fixed diameter distribution, meaning only the intra-axonal volume
fraction was estimated, but not the axon diameter distribution itself. CHARMED
was later extended as AxCaliber [Assaf et al., 2008] to actually estimate the gamma
distribution of axon diameters. To do this, AxCaliber requires measurements exactly
perpendicular to the axon direction, for different gradient strengths and diffusion
times, and fits an intra-axonal and an extra-axonal tissue compartment

E(q⊥,τ) = νrEr(q⊥,τ|α,β )+(1−νr)Eh(q⊥,τ) (23)

where νr is the restricted water volume fraction, Er(q⊥,τ|α,β ) is the perpendicular
diffusion signal of cylinders [Callaghan, 1995] with Gamma distribution parameters
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Fig. 10: The perpendicular intra-axonal and extra-axonal signal attenuation for dis-
tribution 1 of Fig. 8 for different diffusion times. It can be seen that the intra-axonal
signal only shows sensitivity to diffusion time between 1ms and 5ms, which is
barely possible to achieve in practice. On the other hand, the extra-axonal signal
shows a lot of contrast over this dimension.

α,β and Eh(q⊥,τ|Dh) is a Gaussian with diffusivity Dh as in Eq. (7). However, there
are two reasons why this model has significant limitations:

• When modeling the time-dependence of the intra-axonal signal for physically
feasible ranges, the signal is basically already restricted for the shortest diffusion
times, see Fig. 10.

• The non-neglible axon dispersion present in any bundle prevents the assumption
that only the perpendicular direction is measured [Leergaard et al., 2010, Ronen
et al., 2014].

This means that most signal variation over τ actually originates from restriction
in the extra-axonal space. This behavior has recently been characterized in terms
of structural disorder of the axon packing [Novikov et al., 2014, Burcaw et al.,
2015]. In fact, this diffusion time dependence of the extra-axonal space has recently
been implemented into the AxCaliber framework to improve axon diameter estima-
tion [De Santis et al., 2016]. In this work, Eh in Eq. (23) was replaced with

Eh(q,τ) = e−4π2τ‖q‖2gT Dhg (24)

where Dh is made axon-packing dependent as

Dh =

Dh,‖ 0 0
0 Dh,∞ +A ln(∆/δ )+3/2

τ
0

0 0 Dh,∞ +A ln(∆/δ )+3/2
τ

 (25)

where Dh,∞ is the bulk diffusion constant and A is a characteristic coefficient that
scales approximately as the square of the correlation length, which in turn is pro-
portional to the outer axonal diameter (which includes the myelin sheath) [Burcaw
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et al., 2015]. However, this augmentation does not correct for the dispersion, nor the
already restricted intra-axonal diffusion at short diffusion times.

Further evidence of structural disorder was recently found in-vivo by investigat-
ing stimulated echo diffusion tensor imaging for diffusion times up to 600ms [Fiere-
mans et al., 2016]. Remarkably, both parallel and perpendicular directions show
non-Gaussian diffusion for diffusion times between 45−600ms. This result comes
after a long time of disagreement on whether or not there was time-dependence
present in the nervous tissue. Hopefully, this finding will cast new insights on the
interpretation of DTI studies using clinical diffusion times τ > 20ms. With this in
mind, it is highly likely that new scalar indices will soon be proposed to describe
the amount of structural disorder as a new type of tissue biomarker.

6 Discussion

In this chapter, we made a specific effort to review a diffusion anisotropy related
measures, coming from either signal-based dMRI models that estimate the EAP
from the signal as a whole, or models that use a multi-compartment approach to
estimate axon packing or axon dispersion. We started by describing the relation be-
tween the tissue and the diffusion propagator in Section 2 and illustrated this relation
schematically in Fig. 1. We then explained the details of the PGSE protocol in Sec-
tion 3, where we provided the sequence explicitly in Fig. 2 and illustrated different
acquisition schemes (DTI, HARDI, multi-shell and qτ) in Fig. 4. We also clarified
the effect of diffusion restriction on the observed diffusion signal attenuation in the
case of cylinders in Fig. 3.

We then reviewed an extensive, but probably still not an exhaustive list of diffu-
sion anisotropy measures in Section 4. We first provided the mathematical descrip-
tion of signal-based anisotropy measures such as the DTI-based FA and RA [Basser,
1995]; DKI-based KFA [Jensen et al., 2005]; Q-ball-based GFA [Tuch, 2004] and
MAP-MRI-based PA [Özarslan et al., 2013]. We also described the NODDI-based
ODI [Zhang et al., 2012] in Section 4.3 and SMT-based µFA [Kaden et al., 2015]
in Section 4.4. We illustrated these metrics together qualitatively in Fig. 5; quantita-
tively in CSF, crossing and single bundle areas in Fig. 6; and illustrating the ODFs
of these methods in Fig. 7. These comparisons were meant to illustrate the similar-
ities in contrasts that different definitions of diffusion anisotropy provide, although
their mathematical underpinnings may be different.

On signal-based anisotropy: Within the group of signal-based models, many
studies have related changes in FA to a variety of pathologies, see e.g. the review by
Assaf and Pasternak [2008]. Also characterizing the non-Gaussian parts of the data,
DKI-based anisotropy measures have shown to be more sensitive than DTI-based
ones[Cheung et al., 2009]. However, the literature shows that the more complex the
estimation method and required acquisition scheme becomes, the fewer validation
studies there are. For example, only a few studies have shown the potential of us-
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ing GFA [Cohen-Adad et al., 2011] or PA [Fick et al., 2016a], while large-scale
comparisons like those for FA are missing.

Moreover, the typical criterium for being a biomarker is that the measure of inter-
est should provide a statistically significant difference between healthy and diseased
populations. However, care should be taken in prematurely calling a non-specific
marker such as diffusion anisotropy a biomarker. As an illustration, in the particular
case of Parkinson’s disease, after many studies had claimed that FA could be used as
a diagnostic biomarker, a systematic review of these studies actually showed that on
its own, it cannot [Hirata et al., 2016]. It is likely that the non-specificity of diffusion
anisotropy will continue to confound its interpretation as a biomarker for pathology.

On multi-compartment-based anisotropy: To overcome this lack of specificity,
multi-compartment approaches strive to separate the signal contributions of different
tissue compartments using biophysical models. However, it is important to realize
that these models still describe diffusion anisotropy in some reparameterized way.
For example, while NODDI is a multi-compartment model that separates the signal
contributions of CSD, intra- and extra-axonal compartments, it can only describe
one axon bundle using a Watson distribution with a single ODI, which is a function
of concentration parameter κ . Illustrating the Watson ODFs together with the signal-
based ODFs in Fig. 7, we indeed find its similarity to others, in particular DTI. Of
course, ODI has a different interpretation than FA, but it is important to see how
they are related. Furthermore, µFA describes the per-axon micro-environment and
is theoretically insensitive to crossing or dispersed axon configurations.

On diffusion time-dependence: Then, in Section 5 we analyze the time-dependence
of diffusion anisotropy and its origin. We illustrate in Fig. 8 that anisotropy (in
a simulated ensemble of cylinders) is a function of diffusion time – longer dif-
fusion time results in more perpendicular restriction, which translates to a higher
anisotropy. However, this experiment was still limited by its simplicity, as with
this setup we cannot replicate long-distance diffusion time dependence illustrated
in-vivo by Fieremans et al. [2016].

Then, in Section 5.1 we go into some detail on the origin of the time-dependence,
which is the extra-axonal space. We first show in Fig. 10 that the intra-axonal sig-
nal is already restricted before 5ms, whereas the typical minimum diffusion time
in PGSE experiments is around 10ms. This means that, as was initially shown by
Novikov et al. [2014], diffusing particles in the extra-axonal space, which were pre-
viously assumed to be Gaussian, are in fact still subject to some level of restriction
due to axon packing. The differences in diffusion anisotropy over time shown in
Fig. 8 must, therefore, be a result of the restriction in the extra-axonal space.

7 Conclusion

In this chapter, we have reviewed the inter-model variability of diffusion anisotropy
estimation, both signal- and multi-compartment-based, as well as illustrated its sen-
sitivity to especially short diffusion times. It is clear that there are many ways of
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defining diffusion anisotropy, depending on the chosen signal representation and
acquisition scheme. Depending on the complexity of the devised metric, contrast
differences can be observed both qualitative and quantitatively for different tissue
types. Nonetheless, also great similarities can be appreciated between the different
metrics.
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