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Chapter 2

Introduction en français

Ce mémoire décrit l’essentiel de mon travail scientifique depuis la fin de ma thèse. Mes travaux
sont centrés sur l’optimisation numérique dite “bôıte-noire” à l’exception d’un article effectué
durant mon séjour post-doctoral à l’ETH Zurich qui introduit un nouvel algorithme d’optimisation
stochastique pour simuler des systèmes en chimie ou bio-chimie [23].

Les algorithmes d’optimisation au coeur de mon travail sont des algorithmes adaptatifs sans-
dérivées et stochastiques. Ils sont particulièrement adaptés à l’optimisation de problèmes dif-
ficiles dans des contextes où la fonction n’est accessible qu’à travers une “bôıte-noire” retour-
nant l’information d’ordre zero, c’est-à-dire que la seule information disponible et utilisable par
l’algorithme sont les couples (points de l’espace de recherche, valeur de fonction objectif associée).
Ce contexte est très courant dans l’industrie où les problèmes d’optimisation rencontrés font appel
à des codes de simulations numériques pour lesquels, souvent, simplement un executable du code
est disponible. L’aspect “sans-dérivées” est aussi très commun car le calcul d’un gradient (qui
présuppose la fonction sous-jacente dérivable) sur des codes de simulations numériques, par ex-
emple en utilisant une méthode d’adjoint ou de differentiation automatique peut être couteux en
temps de développement. Il est par ailleurs usuel que la formulation d’un problème d’optimisation
change au fur et à mesure de sa résolution, adapter le code de calcul de gradient peut alors s’avérer
très lourd et peut motiver l’utilisation d’une méthode d’optimisation bôıte-noire.

Ce contexte d’optimisation bôıte-noire s’appelle également optimisation sans dérivées dans la
communauté “mathematical programming” et l’acronyme anglais associé est DFO pour “deriva-
tive free optimization”. Les méthodes qualifiées de DFO sont généralement deterministes. Les
méthodes DFO les plus connues à l’heure actuelle sont l’algorithme du simplexe ou de Nelder-
Mead [79, 77], les algorithmes de “pattern search” [54, 90, 6] et l’algorithme NEWUOA (NEW
Unconstraint Optimization Algorithm) développé par Powell [82, 81]. Ce dernier algorithme est à
l’heure actuelle considéré comme l’algorithme DFO déterministe état de l’art.

Mon travail porte ainsi sur des méthodes DFO au sens littéral du terme. En revanche, les
méthodes auxquelles je me suis intéressées ont une large composante stochastique et ont été
développées dans la communauté des algorithmes bio-inspirés qui se compose essentiellement
d’ingénieurs et d’informaticiens. Les premiers algorithmes ont été introduits dans les années
70. Un parallèle entre la théorie de Darwin de l’évolution des espèces et l’optimisation a servi
à l’origine de source d’inspiration pour leur développement. A l’heure actuelle, ce domaine des
méthodes bio-inspirées est également appelé “Evolutionary Computation”. Un terme générique
pour les algorithmes est algorithme évolutionnaire (EA). Pour beaucoup de chercheurs (dont je fais
partie) dans ce domaine, l’aspect bio-inspiré n’est plus présent et le développement des algorithmes
est seulement motivé par des considérations mathématiques et numériques.

Parmi les algorithmes évolutionnaires, les algorithmes génétiques (GA) sont probablement
encore les plus célèbres en dehors de la communauté EC. En revanche, les GAs ne sont pas
des algorithmes compétitifs pour l’optimisation numérique–ce fait est reconnu depuis plus d’une
dizaine d’années. Les strategies d’évolutions (ES), introduites à la fin des années 70 [83], se sont
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8 Chapter 2. Introduction en français

imposées comme les algorithmes évolutionnaires pour l’optimisation numérique. A l’heure actuelle,
l’algorithme ES le plus abouti est l’algorithme Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [50]. L’algorithme adapte un vecteur Gaussien (paramétré par vecteur moyenne et
matrice de covariance) qui encode la métrique sous-jacente. Cette métrique apprend sur des
fonctions convexes quadratiques l’information d’ordre 2, c’est à dire que la matrice de covariance
devient proportionnelle à l’inverse de la matrice Hessienne. Ainsi, CMA-ES peut être vu comme le
pendant stochastique d’une méthode de quasi-Newton. Une particularité essentielle de CMA-ES
et des ES en général est dû au fait qu’ils n’utilisent que des comparaisons pour les différentes
mises à jour. Plus précisément, nous avons vu que les ESs sont des algorithmes d’optimisation
sans dérivées, ils n’utilisent cependant qu’une information “dégradée” de ce que la bôıte-noire leur
fournit, à savoir simplement le résultat de la comparaison des solutions candidates, i.e. étant donné
deux solutions x1 et x2, est ce que f(x1) est plus grand ou plus petit que f(x2). En conséquence
ils optimisent de la même façon une fonction f : Rn → R ou n’importe quelle fonction g ◦ f où
g : f(Rn) → R est une fonction strictement croissante: ils sont invariants à la composition à
gauche par une fonction monotone strictement croissante.

L’algorithme CMA-ES est reconnu comme la méthode état de l’art pour l’optimisation stochas-
tique numérique. Il est utilisé dans de nombreuses applications dans l’industrie ou dans le monde
académique.

Pour des raisons historiques, les algorithmes ESs ont été développés dans la communauté EC
où la mise au point d’un algorithme est la plupart du temps découplée du soucis de prouver
un théorème de convergence sur la méthode et repose essentiellement sur l’utilisation de modèles
mathématiques approximatifs simplifiés et de simulations numériques sur des fonctions tests. Bien
que ce découplage entre mise au point pratique et théorie puisse être vu comme un inconvenient,
il présente l’avantage que le développement d’une méthode n’est pas restreinte (ou bridée) par
une contrainte technique liée à une preuve mathématique. Cela a permis à un algorithme comme
CMA-ES de voir le jour bien avant que l’on comprenne certains de ses fondements théoriques et
bien avant que l’on puisse établir une preuve de convergence. En revanche, cela implique aussi
que les études théoriques de convergence par exemple s’avèrent relativement compliquées.

Ma recherche se situe dans ce contexte général: je suis particulièrement intéressée par l’étude
mathématique d’algorithmes adaptatifs stochastiques comme les algorithmes ESs (en particulier
CMA-ES) et par l’établissement de preuves de convergence. Ces algorithmes ont une particu-
larité attractive: bien qu’introduits dans un contexte où les performances pratiques sont plus
importantes que les preuves théoriques, ils s’avèrent avoir des fondements mathématiques pro-
fonds liés en particulier aux notions d’invariance et de géométrie de l’information. Par ailleurs, ils
s’inscrivent dans le cadre plus général d’algorithmes d’approximation stochastique et ils sont forte-
ment connectés aux méthodes Monte-Carlo par châınes de Markov (MCMC). Ces deux derniers
points fournissent des outils mathématiques puissants pour établir des preuves de convergence
(linéaire). La comprehension de ces fondements et connexions est reliée en partie à mon travail
comme cela sera illustré dans ce mémoire.

J’ai abordé plusieurs facettes de l’optimisation numérique. Bien que l’essentiel de mes travaux
porte sur l’optimisation mono-objectif, i.e. minimizer f : X ⊂ Rn → R, j’ai également tra-
vaillé en optimisation multi-objectif, i.e. où l’on s’intéresse à minimiser une fonction vectorielle
f : X ⊂ Rn → Rk. Dans ce cas là, la notion d’optimum est remplacée par celle d’ensemble
de points de Pareto composé des meilleurs compromis possibles. Mes contributions portent sur
l’étude d’algorithmes à base d’hypervolume qui quantifient la qualité d’un ensemble de solutions
en calculant le volume compris entre les solutions et un point de reference. Les algorithmes util-
isant l’hypervolume sont à l’heure actuelle les algorithmes état de l’art. Nous avons pu établir
des caractérisations théoriques de l’ensemble des solutions optimales au sens de l’hypervolume.
En optimisation mono-objectif, j’ai travaillé sur l’optimisation bruitée où étant donné un point de
l’espace de recherche, on observe une distribution de valeurs de fonction objectif, sur l’optimisation
à grande échelle où l’on s’intéresse à l’optimisation de problèmes avec de l’ordre de 104 à 106 vari-
ables et sur l’optimisation sous contrainte.

Mes travaux s’articulent autour de trois grands axes: théorie / nouveaux algorithmes / appli-
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cations (voir Figure 3.1). Ces trois axes sont complémentaires et couplés: par exemple, la mise
au point de nouveaux algorithmes repose sur l’établissement de bornes théoriques de convergence
et est ensuite complémentée par des simulations numériques. Ceci est illustré au Chapitre 6. Par
ailleurs le développement d’algorithmes pour l’optimisation en grande dimension repose sur la
connexion entre CMA-ES et la géométrie de l’information (voir Chapitre 4). Un autre exemple
de complémentarité est le suivant: les applications abordées notamment pour l’optimisation du
placement de puits de pétrole ont motivé l’introduction de nouvelles variantes de CMA-ES (voir
Chapitre 9).

Par ailleurs, une partie non négligeable de mes travaux porte sur le test (benchmarking)
d’algorithmes. La motivation principale est d’améliorer les méthodologies pour tester et comparer
les algorithmes d’optimisation numériques. Ces travaux ont été accompagnés du développement
d’une plateforme, Comparing COntinuous Optimizers (COCO) et ont un impact maintenant sur
la mise au point de nouveaux algorithmes mais également sur le test d’hypothèses théoriques.

2.1 Organisation

Ce mémoire est organisé autour de six chapitres principaux (en plus des chapitres d’introduction)
qui présentent l’essentiel de mes travaux de recherches depuis la fin de ma thèse. L’accent est mis
sur les aspects les plus théoriques portants sur les algorithmes stochastiques continus à base de
comparaison. Je présente par ailleurs une introduction générale avancée à l’optimisation numérique
bôıte-noire. Cette introduction est certainement biaisée et refléte les méthodes et concepts que je
trouve les plus importants. Elle utilise le materiel de certains papiers dont je suis (co)-auteur.

De manière plus précise, le chapitre 4 est une introduction à l’optimisation numérique bôıte-
noire sans-dérivées présentant en particulier l’algorithme CMA-ES et les connexions entre algo-
rithmes adaptatifs d’optimisation stochastiques et la géométrie de l’information. Les définitions
introduites dans ce chapitre sont utilisées dans les autres chapitres du mémoire. Le chapitre 5
porte sur la notion d’invariance en optimisation et plus particulièrement sur les invariants as-
sociés aux méthodes d’optimisation à base de comparaison. C’est également un chapitre général
complétant le chapitre précédent. Le chapitre présente également une preuve de l’invariance par
transformation affine de l’espace de recherche de l’algorithmes CMA-ES. Le chapitre 6 présente
des bornes de convergence pour certains algorithmes ES. Nous illustrons ensuite comment ces
bornes servent pour la mise au point de nouveaux algorithmes. Au chapitre 7 nous présentons
une méthodologie générale pour prouver la convergence linéaire d’algorithmes adaptatifs à base
de comparaison, restreinte au cas de l’adaptation d’un point de l’espace de recherche et d’un pas.
Cette méthodologie exploite certains invariants des algorithmes, à savoir invariant par changement
d’échelle et invariance par translation, et exhibe une châıne de Markov sous-jacente candidate à
être stable. L’étude de la stabilité de cette châıne de Markov (irreductibilité, récurrence au
sens de Harris et positivité) permet ensuite de conclure à la convergence linéaire de l’algorithme
d’optimisation sous-jacent. Cette méthodologie est appliquée pour prouver la convergence linéaire
d’un des plus vieux algorithmes d’optimisation stochastique. Ce chapitre présente également la
connexion entre algorithmes adaptatifs à base de comparaison pour l’optimisation bôıte-noire et
algorithmes MCMC. Au chapitre 8, nous présentons d’autres résultats qui exploitent également
la théorie des châınes de Markov à temps discret et sur un espace d’état continu pour analyser
certains algorithmes ESs dans un contexte bruité où d’optimisation sous contrainte. Au chapitre 9,
nous présentons des contributions moins théoriques ou non reliées à l’optimisation mono-objectif
portant sur l’optimisation multi-objectif, le test d’algorithme et l’optimisation du placement de
puits de pétroles.

Note: Les références des papiers dont je suis co-auteur apparaissent en cyan, par exemple [22]
réfère à un papier dont je suis auteur alors que [79] réfère à un papier dont je ne suis pas auteur.
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2.2 Travaux reliés aux thèses encadrées

La plupart des travaux présentés dans ce mémoire ont été effectués en collaboration. Plusieurs
résultats sont reliés à des thèses ou travaux de postdoctorats que j’ai co-encadrés (voir Figure 3.1).
Je décris brièvement ci-dessous le contenu des thèses co-encadrées et l’endroit où ces travaux sont
décrits dans ce mémoire.

Thèse de Mohamed Jebalia (2004 – 2008) encadrée à partir de Octobre 2006, “Optimization
using Evolution Strategies : Convergence and convergence rates for noisy functions - Resolution
of an Identification Problems”. Les études théoriques dans cette thèse portent sur des algorithmes
ES et supposent un modèle adaptatif de pas optimal, proportionnel à la distance à l’optimum.
Dans l’article [61], nous avons prouvé que des bornes de convergence pour les ES sont reliées à cet
algorithme à pas optimal. Ces résultats sont présentés au chapitre 6. La convergence linéaire de
l’algorithme à pas optimal a été ensuite étudiée dans le cas d’une fonction sphérique avec bruit
multiplicatif [60]. Ces résultats sont présentés au chapitre 8.

Thèse de Zyed Bouzarkouna (Dec. 2008 – Avril 2012), “Well placement optimization”: thèse
en collaboration avec l’institut Français du Pétrole (IFP) portant sur l’optimisation du placement
de puits de pétrole. Dans ce contexte plusieurs algorithmes couplant CMA-ES et meta-modèles
ont été proposés [32, 29, 30, 31]. Ces travaux sont présentés rapidement au chapitre 9.

Thèse d’Alexandre Chotard (2011-2015): thèse qui porte sur l’étude théorique d’algorithmes
ES et en particulier sur plusieurs analyses de convergence à l’aide de la théorie des châınes de
Markov. Les contributions suivantes [37, 35, 36] réalisées dans le cadre de cette thèse sont détaillées
au chapitre 8.

Thèse de Ouassim Ait El Hara (2012 - ) portant sur l’optimisation en grande dimension. Dans
ce contexte, une règle de mise à jour du step-size alternative à la mise à jour de CMA-ES pour
l’optimisation en grande dimension a été mise au point. L’approche générale suivie utilisant bornes
de convergence théoriques et simulations numériques est décrite au chapitre 6. L’article [1] n’est
pas décrit en détail mais simplement cité comme illustration de la technique.

Thèse de Asma Atamna (2013 - ) qui porte sur l’optimisation sous contrainte et l’amélioration
des méthodes d’évaluation d’algorithmes adaptatifs stochastiques. Un article non détaillé dans ce
mémoire a été publié [51].



Chapter 3

Introduction in english

This manuscript presents a large part of my research since the end of my PhD. Most of my
work is related to numerical (also referred to as continuous) optimization, at the exception of one
contribution done during my postdoc in Zurich introducing a new stochastic algorithm to simulate
chemical or biochemical systems [23].

The optimization algorithms at the core of my work are adaptive derivative-free stochastic (or
randomized) optimization methods. The algorithms are tailored to tackle difficult numerical opti-
mization problems in a so-called black-box context where the objective function to be optimized is
seen as a black-box. For a given input solution, the black-box returns solely the objective function
value but no gradient or higher order derivatives are assumed. The optimization algorithm can
use the information returned by the black-box, i.e. the history of function values associated to
the queried search points, but no other knowledge that could be within the black-box (parame-
ters describing the class of functions the function belongs to, ...). This black-box context is very
natural in industrial settings where the function to be optimized can be given by an executable
file for which the source code is not provided. It is also natural in situations where the function
is given by a large simulation code from which it is hard to extract any useful information for the
optimization.

This context is also called derivative-free optimization (DFO) in the mathematical optimization
community. Well-known DFO methods are the Nelder-Mead algorithm [79, 77], pattern search
methods [54, 90, 6] or more recently the NEW Unconstraint Optimization Algorithm (NEWUOA)
developed by Powell [82, 81].

In this context, I have been focusing on DFO methods in the literal sense. However the methods
my research is centered on have a large stochastic component and originate from the community of
bio-inspired algorithms mainly composed of computer scientists and engineers. The methods were
introduced at the end of the 70’s. A parallel with Darwin’s theory of the evolution of species based
on blind variation and natural selection was recognized and served as source of inspiration for those
methods. Nowadays this field of bio-inspired methods is referred to as evolutionary computation
(EC) and a generic term for the methods is evolutionary algorithms. The probably most famous
examples of bio-inspired methods are genetic algorithms (GAs). However today GAs are known to
be not competitive for numerical optimization. Evolution Strategies (ES) introduced in the end
of the 70’s [83] have emerged as the main sub-branch of EC devoted to continuous optimization.
One important feature of ES is that they are comparison-based algorithms. The present most
advanced ES algorithm, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [50]
is a variable metric method recognized as the state-of-the-art method for stochastic numerical
optimization. It is used in many applications in industry and academy.

Because of historical reasons, the developments and work on Evolution Strategies are mainly
carried out in the EC field where practice and effectiveness is definitely as (or more) important
as having a theorem proven about an algorithm. However ES algorithms are simply adaptive
stochastic iterative methods and they need to be studied from a mathematical perspective as

11
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well as any other iterative method in optimization or other domain in order to understand the
methods better and convince a broader class of people about their soundness. Questions like their
convergence and speed of convergence central in optimization need to be addressed.

My research is encompassed within this general context: I am particularly interested by the
mathematical aspects of adaptive stochastic methods like ES (and of course CMA-ES) or more
generally adaptive stochastic optimization algorithms. Evolution strategies have this attractive
facet that while introduced in the bio-inspired and engineering context, they turn out to be
methods with deep theoretical foundations related to invariance, information geometry, stochastic
approximation and strongly connected to Markov chain Monte Carlo (MCMC) algorithms. Those
foundations and connections are relatively new and to a small (for some topics) or large (for
others) extent partly related to some of my contributions. They will be explained within the
manuscript. I particularly care that the theory I am working on relates to practical algorithms or
has an impact on (new) algorithm designs. I attempt to illustrate this within the manuscript.

While optimization is the central theme of my research, I have been tackling various aspect of
optimization. Although most of my work is devoted to single-objective optimization, I have also
been working on multi-objective optimization where the goal is to optimize simultaneously several
conflicting objectives and where instead of a single solution, a set of solutions, the so-called Pareto
set composed of the best compromises is searched.

In the field of single-objective optimization, I have been tackling diverse contexts like noisy
optimization where for a given point in a search space we do not observe one deterministic value
but a distribution of possible function values, large-scale optimization where one is interested in
tackling problems of the order of 104 (medium large-scale) to 106 variables (large-scale) and to a
smaller extent constrained optimization.

In addition to investigating theoretical questions, I have been also working on designing new
algorithms that calls for theory complemented with numerical simulations. Last I have tackled
some applications mainly in the context of the PhD of Mohamed Jebalia with an application in
chromatography and of the PhD of Zyed Bouzarkouna (PhD financed by the French Institute for
petrol) on the placement of oil wells.

Furthermore, a non neglect-able part of my research those past years has been devoted to
benchmarking of algorithms. Benchmarking complements theory as it is difficult to assess the-
oretically the performance of algorithms on all typical functions one is interested. The main
motivation has then been to improve the standards on how benchmarking is done. Those contri-
butions were done along with the development of the Comparing COntinuous Optimizers platform
(COCO).

My work is articulated around three main complementary axis, namely theory / algorithm
design and applications. An overview of the contributions presented within this habilitation
organized along those axes is given in Figure 3.1.

3.1 Manuscript organization

This manuscript presents mostly some theoretical aspects of comparison-based stochastic con-
tinuous black-box optimization related to my own contributions and discusses how the theory
presented relates to practice and is useful for (new) algorithm designs. I however also tried to
give a general (advanced) introduction to black-box continuous optimization with a (natural) bias
towards the methods and concepts I find the most relevant. More specifically:

Chapter 4 is a general introduction to continuous black-box optimization with zero-order meth-
ods that presents in particular the state-of-the art CMA-ES algorithm and the connexion between
information geometry and black-box optimization. Some definitions introduced within this chap-
ter are useful in the whole manuscript. Chapter 5 is dedicated to invariance in optimization and
specifically invariance of comparison-based adaptive methods. It also presents a proof of the affine
invariance of CMA-ES. It can also be seen as an introductory chapter. Chapter 6 presents some
bounds for specific algorithm frameworks, namely different types of ES algorithms. The relative
tightness of the bounds as well as how those bounds are useful for algorithm design is illustrated.
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Theory

New Algorithms Applications

Benchmarking - Empirical evaluation of algorithms

[80], Chapter 3
Information Geometric Optimization

Large-scale optimization
[4], Chapter 3
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[49], Chapter 3

Note: only contributions referred in the HDR 
manuscript are depicted

[19, 20], Chapter 3, comparison deterministic, stochastic DFO

[3], Chapters 3, 6

Convergence proofs and bounds

Invariance
[53], Chapter 4

[18,24], Chapter 6

Markov chain analysis  
for linear convergence

[53], Chapter 4, PSO shortcomings

[51], Chapter 4

[61, 62, 63], Chapter 5
[17], Chapter 5

[1], Chapter 5
[12, 13, 34], Chapter 5

Convergence bounds,  
asymptotic estimates

New CMA-ES algorithms variants

[35, 36], Chapter 7
[37], Chapter 7, Constrained optimization
[60], Chapter 7, Noisy optimization

Multi-objective optimization
[8, 9, 10, 22, 21], Chapter 8

COCO / BBOB
[46, 47, 48], Chapter 8

[15, 16], Chapter 8

[29, 30, 31], Chapter 8

[11, 33], Chapter 8

[32], Chapter 8

Well placement optimization

[14], Chapter 8
CMA-ES with meta-models

Green: contribution with PhD students supervised
Orange: contribution with postdocs supervised

Figure 3.1: Overview of the contributions presented within this habilitation manuscript. In green
the contributions with the PhD students supervised or co-supervised, namely Mohamed Jebalia,
Zyed Bouzarkouna, Alexandre Chotard, Ouassim AitElhara and Asma Atamna. In orange with
the post-doc supervised Dimo Brockhoff and Youhei Akimoto.

In Chapter 7, we present a general methodology that exploits invariance and Markov chain sta-
bility analysis for addressing the linear convergence of step-size adaptive algorithms. The chapter
makes the connexion between comparison-based adaptive black-box methods and Markov chain
Monte Carlo algorithms. In Chapter 8, we present other theoretical results also exploiting the
theory of Markov chains to analyze some ES algorithms for constrained and noisy optimization. In
Chapter 9, we present other contributions either less theoretical or not related to single-objective
optimization, namely on multi-objective optimization, benchmarking and applications.

Note: The references to the papers I am (co)-author appear in cyan, for instance [22] refers
to one of my papers while [79] refers to a paper I am not author.
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Chapter 4

Adaptive stochastic
comparison-based black-box
algorithms

Contents
3.1 Manuscript organization . . . . . . . . . . . . . . . . . . . . . . . . . . 12

This chapter is intended as a general introduction to black-box optimization with zero order
methods. It motivates black-box optimization and the need for stochastic methods in order to
approach black-box problems. It introduces the comparison-based feature of the methods inves-
tigated within this manuscript. It then gives a formal definition for comparison-based stochastic
black-box algorithms that encompasses the state-of-the art CMA-ES that is described in details.
This definition is used in the following chapters. We present then the recent finding about the
connexion between algorithms like CMA-ES and information geometry and how it opens the way
for new algorithm designs in particular in the context of large-scale optimization. We finish by
underlying the Markovian and stochastic approximation frameworks behind comparison-based
stochastic black-box algorithms. While this chapter is an introduction, the part on the connexion
with information geometry is related to [80], the section 4.1 uses results from [20, 19]. How IGO
can be used for designing new algorithms in the context of large scale-optimization is related to
[4].

4.1 Black-box and derivative-free optimization

Numerical black-box optimization is concerned with the optimization of a function f : X ⊂ Rn →
R defined on a search space X subset of Rn in a so-called black-box scenario. Specifically, the
optimization algorithm can query the function at any point x ∈ X of the search space and the
black-box function will return the value f(x) only (i.e. zero-order information). The algorithm
cannot use any other information about the objective function than the history of queried points
together with their function value. This context is very natural when dealing with industrial
applications. We will see some examples of applications in Chapter 9.

Methods tailored for black-box (zero-order) optimization are also called derivative-free opti-
mization (DFO) methods, a term introduced within the (mathematical) optimization community
that has been developing also methods with derivatives (Newton, quasi-Newton methods, ...).
DFO methods have seen a renewed interest in this community those past ten years and an in-
troductory textbook “Introduction to Derivative-free Optimization” has been relatively recently
published [38]. This textbook is however only centered on deterministic DFO like the Nelder-

15
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Mead algorithm [79, 77], pattern search methods [54, 90, 6] or trust-region methods based on
interpolating a quadratic model whose most prominent algorithm is the NEWUOA algorithm.
This algorithm is also referred to as Powell’s method [82, 81, 38] and it is considered as the
state-of-the-art deterministic DFO.

4.1.1 Stochastic (comparison-based) black-box algorithms

In this context, the optimization algorithms at the core of this manuscript are stochastic (or ran-
domized) black-box or DFO algorithms. While a formal definition will be given in Section 4.2, we
give a simplified description of the method for the time being that does not include all algorithms
covered within this manuscript but still encompasses many stochastic DFO and ES algorithms.
First of all, a parametrized family of probability distributions {Pθ, θ ∈ Θ} defined on Rn is given.
The distribution Pθ encodes approximately, at a given iteration, the belief about where optimal
solutions may lie. The first step of one iteration is to

(i) sample candidate solutions x1, . . . ,xλ i.i.d. according to Pθ,

then in a second step

(ii) the candidate solutions are evaluated on f , i.e. f(x1), . . . , f(xλ) are computed

and (iii) the parameter θ is updated using an update function θ ← F (θ,x1, . . . ,xλ, f(x1), . . . , f(xλ)).
If the so-defined algorithm works properly, the distribution Pθ will concentrate on local optima of
the function f .

An additional feature of many stochastic DFO and of all ES is that the update step (iii)
is not using the f -values but the ranking information only, i.e. after the evaluation step (ii), a
permutation S containing the ordered solutions is extracted, i.e. S is such that

f(xS(1)) ≤ f(xS(2)) ≤ . . . ≤ f(xS(λ))

and the last step consists in

(iii) updating θ according to θ ← G
(
θ,xS(1), . . . ,xS(λ)

)
.

The described framework is natural for many ES algorithms but also for so-called estimation of
distribution algorithms (EDA) [71]. The ranked-based property is also named comparison-based
property. We can also talk about function-value-free optimization.

On the family of probability distribution {Pθ, θ ∈ Θ} A very common choice for the family
of probability distributions {Pθ, θ ∈ Θ} are Gaussian vectors also referred to as multivariate normal
distributions in this manuscript. Most Evolution Strategy algorithms use Gaussian distributions12

[27] [45].
A Gaussian distribution is parameterized by a mean vector and a covariance matrix N (m,C)

where the mean vector m is generally the favorite or incumbent solution proposed by the algorithm
and the matrix C encodes the geometric shape3. However, usually an additional scaling parameter
σ is added such that candidate solutions are sampled according to N (m, σ2C) or equivalently
according to

m + σC1/2N (0, Id) .

1Gaussian distributions are convenient for designing algorithms, in particular due to the stability property that
the sum of independent normally distributed normal distributions is still a normal distribution. Also, given a fixed
mean and standard deviation, a normal distribution has the maximum entropy.

2Besides Gaussian distributions, Cauchy mutations have also been used [64, 85, 91], however the main effect
observed when using Cauchy distribution is the exploitation of the separability as the sample outcome of coordinate-
wise independent Cauchy concentrates along axis [49].

3Lines of equal density of a Gaussian vector are hyper-ellipsoids whose equations are of the form {x ∈ Rn|(x−
m)TC−1(x−m) = cst} such that the eigenvectors of C represent the axes of the hyper-ellipsoid and the associated
eigenvalues encode the elongation along those axis.
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In the previous equation we understand that the parameter σ controls the overall scale or the step-
size of the steps sampled around the mean m. Given that the covariance matrix has a quadratic
number of parameters to adapt, the overall scale is adapted by an independent mechanism that can
have a much larger learning rate (i.e. the adaptation can be much faster). In effect, the adaptation
of the step-size controls the asymptotic convergence rate of the algorithm or the convergence once
the adaptation of the matrix has taken place.

Algorithms adapting the step-size solely are referred to as step-size adaptive algorithms (or
step-size adaptive evolution strategies or comparison-based step-size adaptive randomized search).

Note that while for multivariate normal distributions, Pθ is entirely characterized by the mean
vector and covariance matrix σ2C, often we use θ as a place-holder for the state variables that
directly or indirectly relate to the distribution. For instance in CMA-ES the state variables are
θ = (X, σ,C,p,pσ) (see Section 4.2.1) where only X, σ and C directly encode the Gaussian dis-
tribution used for sampling solutions.

Both the stochastic and the comparison-based features confer some robustness. Indeed ran-
domness is naturally a source of robustness as by essence a stochastic algorithm cannot heavily
rely on a specific sample outcome (which is by definition uncertain). Hence errors or outliers on
the computation of an f -value have only a limited impact on the algorithm performance. In the
same vein, if an algorithm uses the ranking of solutions instead of exact function values, outliers
or errors have an effect only if they change the ranking of the solutions. Also very small or very
large f -values will have a limited impact on the algorithm performance. One major advantage
of a comparison-based algorithm is its invariance to composing the objective function to the left
by a strictly increasing transformation. It implies that non-convex or non-smooth functions can
be as easily optimized as convex ones. This important invariance property will be discussed in
Chapter 5.

Stochastic optimization algorithms are sometimes systematically classified as global optimiza-
tion methods in contrast to local optimization methods (where typically gradient-based algorithms
are local optimization methods). This dichotomy global versus local is unfortunately associated
to several downsides:

• a strong emphasis is made on multi-modality (a function is multi-modal if it has several local
optima) as if multi-modality was the main source of difficulty a (stochastic) optimization
algorithm has to face. Other important sources of difficulties are ignored or neglected (see
below),

• a common belief is that stochastic optimization methods do not need to solve efficiently prob-
lems where local optimization methods are the method of choice or that it is not important
that they converge fast on functions that could be solved by gradient-based methods,

• theoretically, people tend to focus much of their attention on proving convergence to the
global optimum (on possibly multi-modal functions) without caring for the speed of con-
vergence. Remark that global convergence can be trivial to prove (i.e. the pure random
search converges globally). It is a sometimes used (questionable) technique to enforce global
convergence of an algorithm by adding an additional step consisting in sampling over the
whole search space such that the global optimum can be hit with positive probability (and
this probability does not vanish to zero).

Related to the items above, we want to stress that in a black-box scenario, the algorithm does
not know in advance the difficulties of the function that needs to be optimized. Often a function
combines several difficulties and it is thus important to be able to deal with all of them. We want
now to discuss typical difficulties in optimization, that hence a stochastic algorithm should be able
to cope with.
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4.1.2 What makes a search problem difficult?

Already mentioned, mutli-modality is a source of difficulty in optimization but more generally,
all type of “ruggedness” the function can have can be a source of difficulty. Ruggedness might
come from the fact that the function is not differentiable, not continuous or can be noisy (i.e.
two evaluations of the function give different outputs and a distribution of objective function
values is observed instead of a single value).

Another source of difficulty is related to dimensionality. Due to the curse of dimensionality,
a search procedure that can be valid in dimension one or two (like a grid search or a pure random
search) is useless or impossible in larger dimensions (i.e. n larger than 4 or 5).

Separability in optimization qualifies functions that satisfy the following property: an objective
function f(x1, . . . , xn) is separable if the optimal value for any variable xi can be obtained by opti-
mizing f(x̃1, . . . , x̃i−1, xi, x̃i+1, . . . , x̃n) for any fixed choice of the variables x̃1, . . . , x̃i−1, x̃i+1, . . . , x̃n.
Additively decomposable functions, i.e. functions that write f(x) =

∑n
i=1 fi(xi) are common

examples of separable functions. Separable functions can be optimized by n one-dimensional
optimization processes. However functions that need to be optimized in practice are usually non-
separable (otherwise the optimization problem is easy and there is no need for an advanced
optimization method).

A last source of difficulty is related to the conditioning of a function. For a convex-quadratic
function f(x) = 1

2 (x−x?)TH(x−x?) where H ∈ S(n,R), the conditioning of the function can be
defined as the condition number of the matrix H. A large condition number means geometrically
a large ratio between the largest and smallest axis length of the ellipsoidal level-set of f4. By
extension, an ill-conditioned function refers to a function with squeezed level sets. Problems are
typically considered as ill-conditioned if the conditioning is larger than 105. In practice condition
numbers up to 1010 are frequently encountered5.

A frequent diagnosis for explaining the failure of an optimization algorithm is “the algorithm is
stuck in a local optimum”. However often the problem is more related to a high condition number
coupled with non-separability of the function that many algorithms cannot solve properly (see for
instance the PSO algorithm in the next section).

4.1.3 Performance assessment of stochastic search algorithms on convex
and quasi-convex quadratic functions

To finish this section, we present the results of some experiments to quantify the performance
of some stochastic search algorithms as local search algorithms. The outcome of this experiment
might look surprising in the state of mind that global optimization algorithms are poor local search
algorithms.

In the papers [20, 19] we have tested three stochastic search algorithms, namely the CMA-ES
algorithm, a particle swarm algorithm (PSO)6 [65] and the differential evolution (DE) algorithm7

[89]. Those two latter algorithms are quite famous at least in the EC community, this motivated
our choice.

4Note that the axis ratio is the square root of the condition number.
5Since the condition number associated to a function has been formally defined for convex-quadratic functions

only, we cannot talk about condition number in general. However, the observation of condition number of 1010

is related to what is observed with the CMA-ES algorithm: the covariance matrix of CMA learns the inverse of
the Hessian matrix on convex-quadratic function, we can then by extension associate the condition number of a
function optimized by CMA-ES to the condition number of the inverse of the covariance matrix.

6“PSO is a bio-inspired algorithm based on the biological paradigm of a swarm of particles that ‘fly’ over the
objective landscape, exchanging information about the best solutions they have ‘seen’. More precisely, each particle
updates its velocity, stochastically twisting it toward the direction of the best solutions seen by (i) itself and (ii)
some parts of the whole swarm; it then updates its position according to its velocity and computes the new value
of the objective function” (sketch of description taken from [20]).

7“DE borrows from Evolutionary Algorithms (EAs) the paradigm of an evolving population. However, a specific
‘mutation’ operator is used that adds to an individual the difference between two others from the population ”
(sketch of description taken from [20]).
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Figure 4.1: Number of function evaluations to reach a target of 10−9 on the convex-quadratic
functions felli and fellirot for five derivative free optimizers. The x-axis depict the condition number
of the Hessian matrix of the convex-quadratic function.

In addition we have tested the quasi-Newton algorithm BFGS (used in the derivative free
mode, that is the gradients are computed by finite differences) and the NEWUOA algorithm.

The algorithms are tested in the optimal scenario for BFGS and NEWUOA, that is a convex-
quadratic function. Note that NEWUOA interpolates a quadratic model. We have tested in
particular the impact of the condition number and the separability. We have considered the
following test function

felli(x) =

n∑
i=1

α
i−1
n−1 x2

i

which condition number equals to α and has a uniform distribution of the eigenvalues of the
Hessian matrix in a log-scale. This function being separable, we have tested as well a rotated
version of the function, that is fellirot(x) = felli(Rx) with R a (non identity) rotation matrix
sampled uniformly in SO(n,R). We have measured the number of function evaluations to reach a
target of 10−9 for different condition numbers. The results obtained are reproduced in Figure 4.1.

On the rotated ellipsoid, for condition numbers between 102 and 105, we observe a factor of
9 between BFGS and CMA-ES and a factor of 2 between NEWUOA and CMA for a condition
number of 105. For a condition number of 107 or higher, CMA-ES outperforms both BFGS8

and NEWUOA. The DE algorithm is within a factor of ten slower than CMA (larger for small
condition numbers, a bit smaller for larger).

We observe that both PSO and NEWUOA are not invariant with respect to a rotation of the
problem. While PSO outperforms CMA-ES on the ellipsoid separable function, it cannot solve
the non-separable problem with condition number of 105 in less than 107 function evaluations.
We will come back on this aspect in Chapter 5.

We have then measured how the difference in performance is affected when the two previous
functions are composed to the left by the strictly increasing transformation x 7→ x1/4, i.e. we
have considered the functions x 7→ felli(x)1/4 and x 7→ fellirot(x)1/4, i.e. those functions have
the same level sets than felli(x) and fellirot(x). We observe that the performance of BFGS and
NEWUOA degrade while the performance of CMA-ES, PSO and DE remain unchanged due to
their invariance to strictly increasing transformations of the objective function (see Chapter 5).
We observe very similar performance of BFGS and CMA-ES (within a factor of 2 or less) on the
non separable function.

In the end of this manuscript, unless specifically stated, the search space X is assumed to be
equal to Rn.

8Note that the decline of the performance of BFGS compared to CMA-ES might be implementation dependent
(we used the Matlab toolbox). At least when considering a higher arithmetic precision, results are improved [75].
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Figure 4.2: Number of function evaluations to reach a target of 10−9 on the functions f
1/4
elli and

f
1/4
ellirot for five derivative free optimizers. The x-axis depict the condition number of the Hessian

matrix of fellirot.

4.2 A formal definition of a comparison-based stochastic
black-box algorithm

We now introduce a more formal definition of a comparison-based black-box algorithm. We denote
by (θt)t∈N the state variables of the algorithm at iteration t that parametrize Pθt . Each θt belongs
to the state space Θ. We consider (Ut)t∈N a sequence of i.i.d. random vectors defined on a
probability space (Ω,A,P) independent of θ0 and taking values into Rnλ. We assume that each
Ut has λ coordinates Ut = (U1

t , . . . ,U
λ
t ) ∈ (Rn)λ (not necessarily i.i.d.) and denote pU the

probability distribution of each Ut. We consider the solution function

Sol : Θ× Rn → Rn (4.1)

that samples candidate solutions starting from the state θt using the random components Ui
t+1

such that the new candidate solutions at iteration t read

Xi
t+1 = Sol(θt,Ui

t+1), i = 1, . . . , λ .

We denote S the permutation of ordered solutions. A comparison-based stochastic black-box
algorithm is determined by the data of (Sol, pU) and an update function F that updates the state
of the algorithm from the ordered coordinates of Ut+1.
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Definition 1 (Comparison-based stochastic black-box algorithm minimizing f : Rn → R). Let
λ ∈ N> and pU be a probability distribution defined on Rnλ where each U, distributed according to
pU, has a representation (U1, . . . ,Uλ) (each Ui ∈ Rn). Let Sol be a mesurable solution function
from Θ× Rn to Rn and F be an (measurable) update function mapping Θ× Rnλ onto Θ.
A comparison-based stochastic black-box algorithm is determined by the triplet (Sol,F , pU) from
which the recursive sequence (θt) ∈ Θ is defined via θ0 ∈ Θ and for all iteration indexes t:

1. Sample candidate solutions

Xi
t+1 = Sol(θt,Ui

t+1), i = 1, . . . , λ . (4.2)

2. Evaluate the solutions on f , i.e. compute f(X1
t+1), . . . , f(Xλ

t+1) and rank solutions.
Denote S the permutation containing index of the ordered solutions, i.e.

f
(
X
S(1)
t+1

)
≤ . . . ≤ f

(
X
S(λ)
t+1

)
. (4.3)

3. Update θt:

θt+1 = F
(
θt,U

S(1)
t+1 , . . . ,U

S(λ)
t+1

)
. (4.4)

where (Ut)t∈N> is an i.i.d. sequence of random vectors on Rnλ distributed according to pU.

The previous definition defines a function G such that the updates write

θt+1 = G(θt,Ut+1) (4.5)

with (Ut)t∈N> i.i.d. More precisely, the function G equals

G(θ,u) = F(θ,Ord(f(Sol((θ, σ),ui))i=1,...,λ) ∗ u) (4.6)

where the function Ord extracts the permutation of ranked solutions and the given a permutation
S,

S ∗ u =
(
uS(1), . . . ,uS(λ)

)
.

We present two examples of algorithms following definition 1 namely the CMA-ES algorithm
and the (1+1)-ES with one-fifth success rule whose definitions will be needed in other parts of the
manuscript.

4.2.1 The CMA-ES algorithm

In CMA-ES, the state of the algorithm is given by θt = (Xt, σt,Ct,pt,p
σ
t ) ∈ (Rn×R+×S(n,R)×

Rn × Rn). New solutions follow N (Xt, σ
2
tCt), hence only Xt, σt and Ct encode the sampling

distribution with Xt representing the mean of the distribution and σ2
tCt its covariance matrix

respectively while pt and pσt are state variables used to update Ct and σt respectively. The
parameter σt is the so-called step-size and can be thought of as a global scaling factor for the
multivariate normal distribution—this view is not fully accurate as Ct also plays on the scale
since it is not normalized in the algorithm—and has been introduced such that the global scaling
can be adapted faster than the covariance matrix. The vectors pσt and pt are auxiliary state
variables used to update the step-size and the covariance matrix. New solutions follow

Xi
t+1 = Xt + σtC

1/2
t Ui

t+1 where Ui
t+1 ∼ N (0, Id), i = 1, . . . , λ . (4.7)

Hence Ut+1 = (U1
t+1, . . . ,U

λ
t+1) is a vector of λ standard multivariate normal distributions and

formally Sol(θ,Ui) = [θ]1+[θ]2[θ]
1/2
3 Ui where we use the intuitive notation θ = ([θ]1, [θ]2, [θ]3, [θ]4, [θ]5) =

(X, σ,C,p,pσ).
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The λ new solutions are evaluated and ranked according to their f -value, that is

f(Xt + σtC
1/2
t U1:λ

t+1︸ ︷︷ ︸
X1:λ
t+1

) ≤ . . . ≤ f(Xt + σtC
1/2
t Uλ:λ

t+1︸ ︷︷ ︸
Xλ:λ
t+1

) (4.8)

where the ordered indexes are denoted i :λ such that the permutation containing the ordered
indexes is defined as S(1) = 1:λ, . . . ,S(λ) = λ:λ. Finally the parameter θt is updated, i.e. each
component of θt is in turn updated. The mean vector Xt moves towards the µ best solutions
(usually µ = λ/2)

Xt+1 = Xt + σtC
1/2
t

µ∑
i=1

wiU
i:λ
t+1 = Xt +

µ∑
i=1

wi(X
i:λ
t+1 −Xt) (4.9)

where wi are weights summing to one (
∑
wi = 1) and typically such that w1 ≥ w2 ≥ . . . ≥ wµ

(see Section 6.3 for an expression of asymptotic optimal weights, in practice an approximation of
those optimal weights is taken). The step-size σt is then updated. For this, a vector pσt cumulates
iteratively the vectors

∑µ
i=1 wiU

i:λ
t+1

9

pσt+1= (1− cσ)pσt + αcσ

µ∑
i=1

wiU
i:λ
t+1 (4.10)

where the learning rate cσ belongs to )0, 1] and where αcσ = µeff

√
cσ(1− cσ) with µeff =

1/
∑
w2
i . The normalization by αcσ for the rightmost term is such that under random selec-

tion, i.e. µeff

∑µ
i=1 wiU

i:λ
t+1 ∼ N (0, Id), assuming pσt ∼ N (0, Id) then pσt+1 ∼ N (0, Id). The length

of the vector pσt+1 is then compared to the expected length, the vector would have under random
selection (hence E[‖N (0, Id)‖]), and the step-size is increased if this length is larger than under
random selection and decreased if it is smaller. The update reads

σt+1= σt exp

(
cσ
dσ

(
‖pσt+1‖

E[‖N (0, Id)‖]
− 1

))
, (4.11)

where dσ is a so-called damping parameter. Last the covariance matrix is adapted by combining
two updates

Ct+1 = (1− c1 − cµ)Ct + c1pt+1p
T
t+1 + cµ

µ∑
i=1

wiC
1/2
t Ui:λ

t+1(C
1/2
t Ui:λ

t+1)T (4.12)

= (1− c1 − cµ)Ct + c1pt+1p
T
t+1 + cµ

µ∑
i=1

wi
(Xi:λ

t+1 −Xt)(X
i:λ
t+1 −Xt)

T

σ2
t

(4.13)

where the vector pt, similarly to the vector pσt , cumulates the steps C
1/2
t

∑µ
i=1 wiU

i:λ
t+1 using

proper normalization constants, that is

pt+1 = (1− c)pt +
√
c(2− c)µeffC

1/2
t

µ∑
i=1

wiU
i:λ
t+1 . (4.14)

with c ∈)0, 1] and c1 + cµ ∈)0, 1].
The first update (associated to the coeffecient c1), the rank-one update, adds a rank-one matrix

with eigenvector associated to the non-zero eigenvalue equal to pt+1. In other words, the update
reinforces the likelihood of steps in the vicinity direction of pt+1. The second update (associated
to the coefficient c2) is the rank-mu update and will be discussed in Section 4.3. One specific

9Note that the vectors cumulated differ from some normalized steps by the C
−1/2
t multiplication. We will see

in Section 5.4 that this seems to be problematic to ensure the affine invariance of the resulting algorithm.
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feature of the CMA-ES algorithm is that all parameters are robustly tuned and are not the choice
of the user who is finally left to give for starting a run, an initial mean vector X0 and an initial
step-size σ0. We refer to [45] for the specific default values of the parameters.

We can now give the explicit expression of the update function θ+ = F(θ,y) of Definition 1

[θ+]1 = [θ]1 + [θ]2[θ]
1/2
3

µ∑
i=1

wiyi (4.15)

[θ+]2 = [θ]2 exp

(
cσ
dσ

(
‖[θ+]5‖

E[‖N (0, Id)‖]
− 1

))
(4.16)

[θ+]3 = (1− c1 − cµ)[θ]3 + c1[θ+]4[θ+]T4 + cµ

µ∑
i=1

wi[θ]3yi([θ]3yi)
T (4.17)

[θ+]4 = (1− c)[θ]4 +
√
c(2− c)µeff [θ]

1/2
3

µ∑
i=1

wiyi (4.18)

[θ+]5 = (1− cσ)[θ]5 + αcσ

µ∑
i=1

wiyi (4.19)

where θ = ([θ]1, [θ]2, [θ]3, [θ]4, [θ]5) = (X, σ,C,p,pσ).

4.2.2 The (1+1)-ES with one-fifth success rule

The so-called (1 + 1)-ES with one-fifth success rule is one of the oldest step-size adaptive ran-
domized algorithms [41, 86, 83]. The algorithm samples new solutions with a multivariate normal
distribution having a covariance matrix proportional to the identity (i.e. isotropic samplings).
The mean of the distribution and its scaling are adjusted with the parameters denoted Xt and
σt respectively. Following the notations of Definition 1, θt = (Xt, σt). At each iteration t, a new
candidate solution following N (Xt, σ

2
t Id) is sampled, that is

X1
t+1 = Xt + σtNt+1 . (4.20)

where Nt+1 ∼ N (0, Id). After the computation of f(X1
t+1), the value obtained is compared to

f(Xt), and the new mean equals the best solution among X1
t+1 and Xt, i.e.

Xt+1 = Xt + σtNt+11{f(X1
t+1)≤f(Xt)} . (4.21)

To comply to Definition 1, the solution operator is defined as

Sol(θ,Ui) = [θ]1 + [θ]2U
i

where U = (U1,U2) with U1 following N (0, Id) and U2 = 0 (i.e. dirac-delta distribution in zero).
The step-size is then increased in case of success and decreased otherwise, i.e.

σt+1 = σt

(
(γ − γ−1/4)1{f(X1

t+1)≤f(Xt)} + γ−1/4
)

(4.22)

with γ > 1. The coefficient γ−1/4 is such that the step-size is unbiased if the probability of success
equals 1/5. The probability of success 1/5 is considered as “optimal” (see Section 6.4).

For the (1 + 1)-ES with 1/5 success rule, the update function θ+ = F(θ,y) of Definition 1 is
given by

[θ+]1 = [θ]1 + [θ]2y1 (4.23)

[θ+]2 = [θ]2

(
(γ − γ−1/4)1{y1 6=0} + γ−1/4

)
. (4.24)

This algorithm is an example of an elitist algorithm, i.e. the best solution is preserved from one
iteration to the next one. It cannot be described with the framework presented in Section 4.1.1
because the two candidate solutions compared at a given iteration do not derive from the same
sampling distribution.
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4.3 An information geometry perspective

An algorithm like CMA-ES has some connections with information geometry and gradient opti-
mization on the Riemannian manifold formed by the family {Pθ, θ ∈ Θ}. The understanding of
those links is recent: the two first publications in that direction being [2, 43] while [80] refines
the connections and present them in a broader context introducing the so-called Information Ge-
ometric Optimization (IGO). We explain here briefly the main aspects of the IGO framework and
how its instanciation on the family of Gaussian distribution recovers the CMA-ES with rank-mu
update.

4.3.1 Defining a joint criterion on the manifold of the family of proba-
bility distributions

We have presented a simple framework in Section 4.1.1 to cast some stochastic (comparison-based)
black-box algorithms. Given a family of probability distributions {Pθ, θ ∈ Θ}, the algorithm
is iteratively updating θ parametrizing the family Pθ that encodes the belief of where optimal
solutions may be located. Hence, while the optimization is taking place on Rn, the algorithm
operates on Pθ.

We assume that {Pθ, θ ∈ Θ} is a Riemannian manifold. We explain now how some θ-updates
can be framed as a gradient update step on Θ. For this, a joint criterion to be optimized on
{Pθ, θ ∈ Θ} needs to be defined first. Given that we want to minimize, f : Rn → R, one easy way
to construct a criterion on Θ is to consider the expected value of f under Pθ

J̃(θ) =

∫
f(x)Pθ(dx) . (4.25)

This criterion is such that minimizing J̃ means finding Pθ concentrated on the global minimum of
f [2, 43]. However, J̃ is not invariant to strictly increasing transformations of f and does not lead
to comparison-based algorithms. A more complex criterion on Θ needs thus to be considered.

Given θt the current parameter value, define on Θ the joint criterion

Jθt(θ) =

∫
W f
θt

(x)Pθ(dx) (4.26)

where W f
θt

is a monotone rewriting of f that depends on θt and that is defined below. Define first

q≤θ (x) as the probability to sample better values than f(x), i.e.

q≤θ (x) = Pr
x′∼Pθ

(f(x′) ≤ f(x))

and q<θ (x) as the probability to sample strictly better values than f(x), i.e.

q<θ (x) = Pr
x′∼Pθ

(f(x′) < f(x)) .

Let w : [0, 1]→ R be a non-increasing function that represents the selection scheme. The monotone

rewriting of f is defined as the following function of q≤θ and q<θ (x)

W f
θ (x) =

w(q≤θ (x)) if q≤θ (x) = q<θ (x)

1

q
≤
θ (x)−q<θ (x)

∫ q≤θ (x)

q=q<θ (x)
w(q)dq otherwise .

(4.27)

The definition of W f
θ is invariant under strictly increasing transformations of f . For any θt, if

Pθ is concentrated on the global minimum of f , then θ 7→ Jθt(θ) is maximal equal to w(0). The

objective is hence to maximize θ 7→ Jθt(θ), the expected value of W f
θt

(x) over Pθ.
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4.3.2 (Natural) Gradient ascent on the joint criterion

A gradient step can be performed to maximize Jθt . However, the gradient should be taken
with respect to the Fisher metric such that the resulting gradient is invariant with respect to the
chosen θ-parametrization [80]. This latter gradient is referred to as “natural” gradient and denoted

∇̃θJθt(θ) while the gradient composed of the partial derivatives w.r.t. the given parametrization
is called vanilla gradient.

A gradient ascent step to maximize Jθt reads

θt+δt = θt + δt∇̃θJθt(θ)|θ=θt = θt + δt

(
∇̃θ
∫
W f
θt

(x)Pθ(dx)

)∣∣∣∣
θ=θt

, (4.28)

where δt is a time increment or step-size of the gradient step. The natural gradient of the integral
in the previous equation can be rewritten as

∇̃θ
∫
W f
θt

(x)Pθ(dx) =

∫
W f
θt

(x)∇̃θ lnPθ(x)Pθ(dx) (4.29)

such that a new expression for (4.28) reads

θt+δt = θt + δt

∫
W f
θt

(x) ∇̃θ lnPθ(x)
∣∣∣
θ=θt

Pθt(dx) . (4.30)

The natural gradient of the log-likelihood ∇̃θ lnPθ(x) can be expressed using the Fisher informa-
tion matrix I(θ) via

∇̃θ lnPθ(x) = I−1(θ)
∂ lnPθ(x)

∂θ

where the Fisher information matrix is defined by

Iij(θ) =

∫
x

∂ lnPθ(x)

∂θi

∂ lnPθ(x)

∂θj
Pθ(dx) .

Overall, the update of θt reads

θt+δt = θt + δtI−1(θt)

∫
W f
θt

(x)
∂ lnPθ(x)

∂θ

∣∣∣∣
θ=θt

Pθt(dx) . (4.31)

Remark that this update does not depend on the gradient of f . The update of θt in (4.31) does not
yet lead to a tractable algorithm as the integral cannot be computed exactly in general. However a
Monte-Carlo approximation of the integral can be performed and lead to the so-called Information
Geometric Optimization (IGO) algorithm as explained in the next section.

4.3.3 Monte-Carlo approximation of the gradient of the joint criterion:
the IGO algorithm

In order to approximate the integral in (4.31), at each time step, we draw λ samples x1, . . . ,xλ
according to Pθt (we assume we have no ties). To approximate w(Prx′∼Pθt (f(x′) < f(xi))), we
rank the samples according to f and define rk(xi) = #{j|f(xj) < f(xi)}, then

w( Pr
x′∼Pθt

(f(x′) < f(xi))) ≈ w
(

rk(xi) + 1
2

λ

)
and the update of θt stemming from (4.31) with the integral approximated via Monte-Carlo reads

θt+δt = θt + δtI−1(θt)
1

λ

λ∑
i=1

w

(
rk(xi) + 1

2

λ

)
∂ lnPθ(xi)

∂θ

∣∣∣∣
θ=θt

. (4.32)
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The estimator of the integral
∫
W f
θt

(x) ∂ lnPθ(x)
∂θ

∣∣∣
θ=θt

Pθt(dx) used in the previous equation is

consistent (see Theorem 6 in [80]) but biased in general. An other equivalent way to write the
update (4.32) is by setting

wi =
w((i− 1/2)/λ)

λ
(4.33)

and denoting xi:λ, the ith sampled point ranked according to f , that is the points xi:λ satisfy

f(x1:λ) < . . . < f(xλ:λ)

(assuming we have no ties). The equivalent expression to (4.32) then reads

θt+δt = θt + δtI−1(θt)

λ∑
i=1

wi
∂ lnPθ(xi:λ)

∂θ

∣∣∣∣
θ=θt

. (4.34)

Both updates are referred to as the Information Geometric Optimization (IGO) algorithm.

4.3.4 Recovering part of CMA-ES

In the case of multivariate normal distributions, the Fisher information matrix and its inverse are
known such that the IGO algorithm update can be made more explicit. Interestingly, it recovers
then the rank-mu update part of CMA-ES. More precisely let us denote θt = (Xt,Ct) with Xt the
mean and Ct the covariance matrix of the multivariate normal distribution at iteration t, (4.34)
simplifies to

Xt+δt = Xt + δt

λ∑
i=1

wi(xi:λ −Xt) (4.35)

Ct+δt = Ct + δt

λ∑
i=1

wi
(
(xi:λ −Xt)(xi:λ −Xt)

T −Ct

)
. (4.36)

Those updates coincide with CMA-ES with rank-mu update (i.e. setting c1 = 0, cσ = 0 and
σ0 = 1) and where a learning rate equal to cµ is added to the update of the mean vector. Note
that the weights in (4.35) are not exactly the weights used in the description of CMA-ES in
Section 4.2.1. However, denoting to avoid confusion the weights used in Section 4.2.1 wCMA

i , then

wCMA
i = wi/

∑λ
i=1 wi and cµ = δt

∑λ
i=1 wi.

Using an exponential parametrization for the covariance matrix, the IGO algorithm recovers
the xNES algorithm [43].

4.3.5 The IGO flow

The IGO flow is the set of continuous-time trajectories in space Θ underlying the IGO algorithm
and defined by the ordinary differential equation

dθt
dt

=

(
∇̃θ
∫
W f
θt

(x)Pθ(dx)

)∣∣∣∣
θ=θt

(4.37)

=

∫
W f
θt

(x) ∇̃θ lnPθ(x)
∣∣∣
θ=θt

Pθt(dx) (4.38)

= I−1(θt)

∫
W f
θt

(x)
∂ lnPθ(x)

∂θ

∣∣∣∣
θ=θt

Pθt(dx) . (4.39)

Hence the IGO algorithm results from a time-discretization and Monte-Carlo approximation of
the equation defining the IGO flow.
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The convergence of the IGO flow for a standard multivariate normal distribution with a co-
variance matrix equal to σtId has been studied in [3] where we prove on monotonic C2 composite
functions having positive definite Hessian at critical points of the function, the local convergence
of the flow solutions towards the critical points. This holds under the assumptions that (i) w is
non-increasing and Lipschitz continuous with w(0) > w(1) and that (ii) the standard deviation σt
diverges exponentially on a linear function.

Remark on IGO

We have deliberately described the IGO framework in the context of continuous optimization,
however the definition of IGO does not exploit the continuous structure of the search space. It
has been actually defined on an arbitrary search space [80]. Interestingly, in the case of a discrete
search space equal to {0, 1}n, an other famous algorithm is recovered by the IGO framework,
namely the Population Based Incremental Learning algorithm [25].

4.3.6 Large-scale optimization using IGO

The connexion between CMA-ES and IGO opens the ways for designing new algorithms. For
instance, in large-scale optimization where one is interested to optimize functions with more
than 102 or 103 variables, it becomes too expensive to use the full CMA-ES algorithm where n2

parameters in the the covariance matrix need to be learned. Instead, it seems promising to consider
parametrization of the covariance matrix with a linear number of parameters. We have proposed
such an algorithm and derived the covariance matrix update from the IGO equation. We have
then coupled this covariance matrix update with the cumulation concepts used in CMA-ES [4].

4.4 Markovian and stochastic approximation models

To conclude this introductory chapter, we want to stress two mathematical models that can be
used to analyze the convergence of comparison-based stochastic algorithms and that naturally
follow from the presentation in the previous sections.

On the one hand, comparison-based black-box algorithms have a Markovian structure. From
the definition 1 follows that the θt update can be written as

θt+1 = G(θt,Ut+1)

where G is the composition of the update function F and the ordering of the candidate solutions
(see (4.5) and (4.6)). Hence θt+1 is a deterministic function of θt and an independent vector
Ut+1, which is a typical form for a Markov chain following a non-linear state-space model [78].
This Markovian structure is heavily exploited to study the convergence of some comparison-
based stochastic algorithms in several of my contributions that will be detailed in Chapter 7 and
Chapter 8.

On the other hand, the presentation of the IGO algorithm as a time discretization and Monte-
Carlo approximation of the equation defining the IGO flow suggests to use the ODE method or
stochastic approximation framework to study the convergence of comparison-based algorithms
[74, 28, 69]. More precisely with the stochastic approximation framework, recursions of the form

θt+1 = θt + δtFt = θt + δt(F (θt) +Mt)

are studied where F is the so-called mean field defined as F (θ) = E[Ft|θt = θ] and Mt = Ft−F (θt)
is a martingale difference sequence. The idea is then to control the error between the stochastic
process θt and the solution of the ODE dθ/dt = F (θ) assuming decreasing step-sizes δt or small
enough δt. For instance in the case of the IGO update (4.32),

Ft = I−1(θt)
1

λ

λ∑
i=1

w

(
rk(xi) + 1

2

λ

)
∂ lnPθ(xi)

∂θ

∣∣∣∣
θ=θt

.
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Note that the mean field does not coincide in general with the RHS of (4.37) because the estimator
in IGO is biased.
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This chapter is a general chapter about invariance in optimization. Some definitions introduced
here will be central for Chapter 7 and more generally underlying to many arguments of some the-
oretical results presented in the manuscript. The definitions given are the synthesis and slight
generalization of several articles, namely [52, 24, 53]. While invariance is a general concept in sci-
ence, we never found in the optimization literature invariance definitions suitable for our purpose.
Indeed when the state of the algorithm is reduced to a single vector of Rn and the algorithm is
deterministic, definitions are much simpler (and often so trivial that they are not even formalized)
[40]. In our case, we however have to deal with (i) stochastic algorithms that in addition (ii) have
usually more state variables than just the estimate of the solution of the optimization problem.
We also decided to present a proof of the affine-invariance of CMA given the importance of the
result1. The formalization of the proof is new. As we will see, it is not completely trivial as it
requires a modification in the default CMA algorithm. It however shows that CMA shares the
highly desirable affine-invariance property together with Newton and Nelder-Mead algorithms.

1This result is not yet published but should hopefully be submitted in the coming months.
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5.1 Introduction

Invariance is an important general concept in science related to generalization of results. In short,
an algorithm is invariant if it does not change its behavior under the exchange of f with a function
in an associated equivalent class, however in general, conditionally to an appropriate change of
initial state. Invariance is relevant in that if an algorithm exhibits a certain type of invariance, its
performance on a specific function can be generalized to the whole class of functions associated to
the invariance class. Invariance is particularly important in a black-box scenario where we do not
know in advance the properties of the function to be optimized.

A simple invariant in optimization is translation invariance which is usually taken for granted.
Roughly speaking, a translation invariant algorithm will behave the same on x 7→ f(x) or on
x 7→ f(x − x0) for all x0 ∈ Rn and more precisely it will exhibit “translated” traces (i.e. the
translated sequence of candidate solutions) on both functions given that the initial states are also
properly translated.

We start now by giving a general definition of invariance. We consider the set F of all objective
functions mapping Rn to R

F = {f : Rn → R} . (5.1)

We define H a mapping that associates to each f ∈ F, a function class, which is just a subset of
F. Hence H is a mapping from F to the power set of F:

H : F→ 2F .

We consider for the moment, in order to simplify, a deterministic algorithm and more precisely the
mapping it induces on the state space Θ between two iterations, i.e. A : Θ→ Θ. When optimizing
f the update of the state θt is given for all t by

θt+1 = Af (θt) ,

where we add the function optimized as superscript to A.

Definition 2. ([52]) Let H : F→ 2F that maps a function f ∈ F to a set of functions (thought as
equivalent class of f). Then the algorithm A is invariant under H if for all f , for all h ∈ H(f),
there exists a bijective state-space transformation Tf→h : Θ→ Θ such that for all state θ ∈ Θ

Af (θ) = T−1
f→h ◦ A

h ◦ Tf→h(θ) . (5.2)

If Tf→h is the identity for all f, h then the algorithm A is unconditionally invariant. Equa-
tion (5.2) reveals that A would optimize h just like f if one would be able to perform first the
correct change of variables for the initial state Tf→h. If we are not in the unconditional invariance
scenario, we will typically observe an adaptation phase that can be thought of as the time needed
to forget the initial state. After this adaptation stage the algorithms will perform equivalently.
We will illustrate this point later on when discussing the affine invariance of CMA-ES.

We consider next invariance to monotonically increasing transformations of f (Section 5.2)
and then invariance in the search space where the invariance class associated to each f is coming
from a group action (Section 5.3). As specific cases we will detail, translation, scale, rotation and
affine invariances.

5.2 Invariance to monotonically increasing transformations
of comparison-based algorithms

We consider now comparison-based algorithms as defined in Definition 1. Invariance to monoton-
ically increasing transformations is then quite straightforward. Formally let us define MI the set
of strictly increasing functions g : I → R, where I is a subset of R, i.e. if for all x and y in I
such that x < y we have g(x) < g(y) and define M = ∪IMI . Given any f : Rn → R and any
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Figure 5.1: Illustration of invariance to strictly increasing transformations. Representation of
three instances of functions belonging to the invariance (w.r.t. strictly increasing transformations)
class of f(x) = ‖x‖2 in dimension 1. On the left the sphere function and middle and right functions
g ◦ f for two different g ∈M.

g ∈Mf(Rn), the ranking of candidate solutions being the same on f or g ◦ f , a comparison-based
stochastic black-box algorithm executed on f or on g◦f will exhibit the same sequence θt provided
the same initial states and same random sequence (Ut)t∈N> are taken when running on f or g ◦f .
Let us define the mapping

H : f ∈ F→ {g ◦ f | g ∈Mf(Rn)} .

Then, a comparison-based stochastic black-box algorithm is unconditionally invariant with respect
to H or invariant with respect to monotonically increasing transformations.

In Figure 5.1, we depict three elements of H(f) where f(x) = ‖x‖2 in dimension 1. Hence, the
same trace and thus same convergence rate will be observed for comparison-based algorithms.

This invariance property is shared by pattern search [90, 72] and Nelder-Mead methods [79, 70].
Note that a particular case of strictly increasing functions are affine functions: x ∈ R 7→ αx + β
with α > 0. Thus comparison-based algorithms are affine covariant (affine covariance relates
to affine transformations of f , i.e. by composing f to the left by an affine transformation of R,
while affine invariance to affine transformation of the search space, i.e. composition by an affine
transformation to the right of f , see [40]).

5.3 Invariance in the search space via group actions

We consider invariance in the search space where transformations are stemming from group ac-
tions. In this case, a finer definition of invariance that implies Definition 2 can be given. This
new definition comprises affine-invariance, scale-invariance, rotational invariance and translation
invariance. We consider as a first example of transformations on F the translation. For a function
f ∈ F, we denote fx0 the function fx0(x) = f(x−x0). This new function is induced by the action
of the group (Rn,+) on F defined as (x0, f)→ fx0 .

The notion of translation invariance for an algorithm should reflect that the algorithm “op-
timizes in the same way” the function f and fx0

for all possible f and for all possible x0. For
translation invariance, it is intuitive that the algorithm should satisfy that X′t = Xt+x0 where Xt

is the candidate solution proposed by the algorithm optimizing f and X′t the candidate solution
proposed when optimizing fx0

(this requires that we set initial conditions such that X′0 = X0+x0).
More precisely, assume that the state of the algorithm considered is reduced to Xt, the algorithm
is translation invariant if for all x0 there exists a bijective transformation of the state of the algo-
rithm, Tx0

: X ∈ Θ→ X+x0 ∈ Θ such that Af = T−1
x0
◦Afx0 ◦Tx0

for all f . We remark here that
the bijective transformation of the state depends on x0 but not on f in contrast to Definition 2.

More generally, let us consider a group (G, ∗) (where idG denotes its neutral element) that
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acts on the set of functions F and let us denote fg a transformed function via the action of G:

(G, ∗)× F 7→ F (5.3)

(g, f) 7→ g.f := (x→ fg(x)) (5.4)

Remark that from the group action property fidG = f .

Definition 3. An algorithm A is invariant with respect to the search space transformations induced
by a group action if for all g ∈ G, there exists a bijective state space transformation Tg such that

T−1
g AfgTg = Af (5.5)

holds for all f ∈ F.

This latter definition implies Definition 2. This definition reads that the sequence of states of
the algorithm A optimizing f and fg is connected via the change of variables given by Tg. From
the previous definition and from the group action property on F follow that for all g1 and g2 in G

T−1
g2 A

fg2∗g1Tg2 = Afg1 . (5.6)

This definition turns out to be equivalent to the following one (we have included a small proof of
this statement in the appendix).

Definition 4. An algorithm A is invariant with respect to the search space transformations induced
by a group action if there exists a group homomorphism Φ : (G, ∗)→ (SΘ, ◦) where SΘ is the group
of all bijective state space transformations on Θ such that

Φ−1
g AfgΦg = Af (5.7)

for all f ∈ F for all g.

Let us now consider a stochastic algorithm whose update is given as

θt+1 = Gf (θt,Ut+1) , (5.8)

with (Ut)t∈N> i.i.d. in Rnλ, each Ut distributed as pU and G : Θ × Rn×λ → Θ a measurable
update function. We denote the function optimized f as upperscript to the update function G.
For instance, the algorithm formalized in Definition 1 can be considered, in this case the update
function G has the structure given in (4.6).

In the generalization of the invariance definition to a stochastic algorithm, we want that not
especially the same random numbers are chosen when optimizing on f or fg. We allow a possible
coupling of the random numbers that depends on g but also on the current state of the algorithm
and that should preserve the distribution U. More precisely we define invariance in the following
manner.

Definition 5. The algorithm defined with G : Θ× Rnλ → Θ and the distribution pU is invariant
with respect to the search space transformations induced by a group action if there exists a group
morphism Φ : (G, ∗) → (SΘ, ◦) and ψ : (G, ∗) →

(
Θ× Rnλ → Rnλ

)
with (i) for all g, θ, u 7→

ψg(θ,u) is bijective, (ii) ψg(θ,U) is distributed as U and (iii) ψg−1(Φg(θ), ψg(θ,u)) = u for all
θ, g,u, such that

Gf (θ,u) = Φ−1
g ◦ Gfg (Φg(θ), ψg(θ,u)) .

for all g ∈ G, for all θ ∈ Θ, for all u ∈ Rnλ for all f ∈ F.

Note that this type of coupling for u when considering invariance of stochastic systems is
classical in the control context [76]. The definition 5 can be visualized by a commutative diagram
as in Figure 5.2.

This definition is a generalization of the invariance definition given in [24] where we omitted
the coupling for u.

Applying the previous invariance definition for different groups, we obtain formal definitions
for well-known invariances in the search space:
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(θt,Ut+1) -
Gf

θt+1

(θ′t,U
′
t+1)︸ ︷︷ ︸

(Φg(θt),ψg(θt,Ut+1))

-
Gfg

θ′t+1

?

6

(Φg, ψg) (Φg−1 , ψg−1)

6

?

Φg Φg−1

Figure 5.2: Commutative diagram for invariance with respect to transformations induced by a
group G. The associated definition is given in Definition 5.

1. translation invariance: from the group (Rn,+) acting on F via x0 ∈ Rn 7→ (x→ f(x− x0))

2. scale invariance: from the group R+ endowed with the product in R acting on F via
α ∈ R+ 7→ (x→ f(αx))

3. rotational invariance: from the group special orthogonal SO(n,R) endowed with the
matrix multiplication acting on F via R ∈ SO(n,R) 7→ (x→ f(Rx))

4. affine invariance: from the affine group Aff(Rn) = Rn o GL(n,R) endowed with the
product multiplication given by: (M,v) · (N,w) = (MN, v+Mw) for M,N ∈ GL(n,R) and
v, w ∈ Rn that is acting on F via (B,b) ∈ (GL(n,R),Rn) 7→ (x→ f(Bx + b))

It is straightforward to see that affine invariance implies rotational invariance, scale-invariance
and translation invariance.

5.4 Affine-invariance of CMA-ES

Affine-invariance relating to invariance to affine transformations x 7→ Bx + b, B ∈ GL(n,R) of
the search space is a highly desirable property. Well-known affine-invariant algorithms include
Newton methods [40], Nelder-Mead [70] or the quasi-Newton method BFGS [40]. In this section
we prove the affine-invariance of the CMA-ES method given a small modification of the algorithm
where the step-size update in (4.11) does not use the cumulative path defined in (4.10) but instead

the vector C
−1/2
t pt+1, i.e. the step-size update reads

σt+1= σt exp

(
cσ
dσ

(
‖C−1/2

t pt+1‖
E[‖N (0, Id)‖]

− 1

))
. (5.9)

Theorem 1 (Affine Invariance of CMA-ES). The CMA-ES algorithm defined in Section 4.2.1

where the cumulative path for the step-size pσt+1 (see (4.10)) is replaced by C
−1/2
t pt+1 is affine

invariant according to Definition 5. More precisely, the homomorphism defining the state space
transformation is defined as:

Φ(B,b)(X, σ,C,p) =
(
B−1(X− b), σ,B−1C(B−1)T ,B−1p

)
. (5.10)

In other words consider θt = (Xt, σt,Ct,pt) running on f and θ′t = (X′t, σ
′
t,C

′
t,p
′
t) running on

f(Bx + b) with (X′0, σ
′
0,C

′
0,p
′
0) = Φ(B,b)(X0, σ0,C0,p0). Then for all t the sequences θt and θ′t

are coupled via

(X′t, σ
′
t,C

′
t,p
′
t) =

(
B−1(Xt − b), σt,B

−1Ct(B
−1)T ,B−1pt

)
(5.11)
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with the following coupling for the random numbers:

U′t+1 = ψ(B,b)(θt,Ut+1) =
(
. . . ,C′t

−1/2
B−1C

1/2
t Ui

t+1, . . .
)

(5.12)

with the convention that the notations with prime refer to variables optimizing on the transformed
function f(Bx + b).

Remark that due to the fact that Φ is a homomorphism, we directly obtain the inverse mapping
to go from θ′t to θt, namely

(Xt, σt,Ct,pt) = Φ(B−1,−B−1b)(X
′
t, σ
′
t,C

′
t,p
′
t) (5.13)

= (BX′t + b, σ′t,BC′tB
T ,Bpt) (5.14)

Proof. Given the definition of the homomorphism in (5.10), we need to prove that if (5.11) is
satisfied at time t, then it is satisfied at time t+ 1. Assume then that

(X′t, σ
′
t,C

′
t,p
′
t) =

(
B−1(Xt − b), σt,B

−1Ct(B
−1)T ,B−1pt

)
, (5.15)

and that we run one iteration of CMA-ES on f(x) for advancing θt into θt+1 and similarly we run
one iteration of CMA-ES on f(Bx + b) (that we might denote f̃(x)) for advancing θ′t into θ′t+1.
In addition for this latter step, we choose for the sampling of the multivariate normal distribution

the following coupling of the random vectors U
′i
t+1 = C′t

−1/2
B−1C

1/2
t Ui

t+1. Note that since the

(Ui
t+1)1≤i≤λ are i.i.d. so are the (U

′i
t+1)1≤i≤λ. It is not completely trivial to see that U

′i
t+1 is still

distributed as a standard multivariate normal distribution: it comes from the fact that the matrix

C′t
−1/2

B−1C
1/2
t is orthogonal as proven in the following equation:

C′t
−1/2

B−1C
1/2
t [C′t

−1/2
B−1C

1/2
t ]T = C′t

−1/2
B−1C

1/2
t C

1/2
t

T
B−1TC′t

−1/2T
(5.16)

= C′t
−1/2

B−1CtB
−1TC′t

−1/2T
(5.17)

= C′t
−1/2

C′tC
′
t
−1/2T

(5.18)

= Id . (5.19)

We note that
C′t

1/2
U
′i
t+1 = B−1C

1/2
t Ui

t+1 . (5.20)

This latter equation is used in the following derivation:

f̃(Xi
t

′
) = f̃(X′t + σ′tC

′
t
1/2

U
′i
t+1) (5.21)

= f̃(B−1(Xt − b) + σtB
−1C

1/2
t Ui

t+1) (5.22)

= f(B
(
B−1(Xt − b) + σtB

−1C
1/2
t Ui

t+1

)
+ b) (5.23)

= f(Xt + σtC
1/2
t Ui

t+1) . (5.24)

From the fact that f̃(X′t + σ′tC
′
t
1/2

U
′i
t+1) = f(Xt + σtC

1/2
t Ui

t+1), we deduce that

U
′i:λ
t+1 = C′t

−1/2
B−1C

1/2
t Ui:λ

t+1 . (5.25)

We deduce from this equation the relation (5.15) at time t+1. We start by proving that the step-
sizes stay identical σ′t+1 = σt+1. We only need to prove that

‖(C′t)−1/2p′t+1‖ = ‖(Ct)
−1/2pt+1‖ .

Remark that ‖(C′t)−1/2p′t+1‖2 = 〈(C′t)−1/2p′t+1, (C
′
t)
−1/2p′t+1〉 = 〈p′t+1,C

′
tp
′
t+1〉 because C′t is

symmetric. In addition, 〈p′t+1,C
′
tp
′
t+1〉 = 〈B−1pt+1,C

′
tB
−1pt+1〉 = 〈pt+1,B

−1TC′tB
−1pt+1〉 =
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〈pt+1,Ctpt+1〉 = ‖(Ct)
−1/2pt+1‖2. Hence we have shown ‖(C′t)−1/2p′t+1‖ = ‖(Ct)

−1/2pt+1‖ and
thus that σ′t+1 = σt+1. We now derive the relation for the mean vector:

X′t+1 = X′t + σ′tC
′
t
1/2
∑

wiU
′i:λ
t+1 (5.26)

= B−1Xt −B−1b + σtB
−1C

1/2
t

∑
wiU

i:λ
t+1 (5.27)

= B−1(Xt + σtC
1/2
t

∑
wiU

i:λ
t+1)−B−1b (5.28)

= B−1(Xt+1 − b) , (5.29)

and for the evolution path

p′t+1 = (1− c)p′t + αcC
′
t
1/2
∑

wiU
′i:λ
t+1 (5.30)

= (1− c)p′t + αcC
′
t
1/2
∑

wiC
′
t
−1/2

B−1C
1/2
t Ui:λ

t+1 (5.31)

= (1− c)B−1pt + αcB
−1C

1/2
t

∑
wiU

i:λ
t+1 (5.32)

= B−1pt+1 . (5.33)

It remains to show that C′t+1 = Ct+1:

C′t+1 = (1− c1 − cµ)C′t + c1p
′
t+1p

′
t+1

T
+ cµ

µ∑
i=1

wiC
′
t
1/2

U
′i:λ
t+1U

′i:λ
t+1

T
C′t

1/2

= (1− c1 − cµ)B−1CtB
−T + c1B

−1pt+1p
T
t+1B

−T + cµB−1
∑

wiCt
1/2Ui:λ

t+1U
i:λ
t+1

T
Ct

1/2(B−1)T

= B−1Ct+1(B−1)T

where we have used (5.25) for the latter term and the notation B−T for (B−1)T .

Affine-invariance is certainly one key of the success of CMA-ES. One important consequence
of invariance is the optimization of all functions g ◦ fcq (where fcq is a convex quadratic function
and g : f(Rn) → R is strictly increasing) “in the same manner”. Concretely on g ◦ fcq, after an
adaptation phase where in particular the covariance matrix becomes proportional to the inverse of
the Hessian matrix of fcq, the CMA-ES algorithm optimizes the function like the sphere function
f(x) = ‖x‖2, that is like the easiest convex-quadratic fcq to optimize. So asymptotic convergence
rates of CMA-ES on all g ◦fcq correspond to the asymptotic convergence rate on the sphere. Note
that the asymptotic convergence rate does not take into account the cost of the adaptation time.
However, this adaptation time can be important depending on the spectrum of the Hessian of fcq
and on the initial covariance matrix. The cost of the adaptation depending on the spectrum of
the Hessian matrix of fcq is quantified in [50].

Interestingly, it seems that using cumulative step-size adaptation (CSA) as step-size adaptation
mechanism for CMA-ES requires a modification for the overall algorithm to be affine invariant
according to the Definition 5. For other step-size mechanisms like two point adaptation [51], it is
however clear that the overall algorithm will also be affine invariant. In addition, we conjecture
that while the default CSA-CMA-ES might not satisfy Definition 5 for each iteration step, the
definition should be satisfied for the invariant measure underlying the algorithm.

Remark also that affine-invariance is not the only ingredient to ensure that convex-quadratic
functions are optimized after an adaptation stage like the sphere. The stability of the method is
the other key ingredient. We typically observe that for too large learning rates c1 or cµ in (4.12)
the method is not stable. Proving the stability of CMA-ES is one challenging open question that
will be discussed Chapter 10.

5.5 Discussion on invariance and empirical testing

Invariance or lack of invariance has some impact on empirical testing. Indeed an invariant algo-
rithm will exhibit similar performances on two functions from the same invariance class while a
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non-invariant algorithm can exhibit performances that are drastically different. This point how-
ever assumes that the cost of forgetting the initialization or cost of the adaptation is not prominent
in the overall cost to solve the objective function of the associated invariance class up to a given
precision.

This latter assumption is specifically verified if we consider rotational invariance and CMA-
ES where we observe in effect the same performance on separable ill-conditioned functions or on
their rotated hence non-separable version (see for instance Figure 4.1). In contrast an algorithm
like Particle Swarm Optimization (PSO) which is not rotational invariant exhibits performance
that is very different for separable ill-conditioned or non-separable ill-conditioned problems. This
effect was observed and quantified in [53] where for even a moderate condition number of 104,
on non-separable problems, CMA-ES will be faster than PSO by a factor of 103 while for the
same separable problem, PSO will be slightly faster than CMA. Moreover we have observed that
PSO is unable to solve a standard ill-conditioned convex quadratic problem defined as a rotated

version of the function felli(x) =
∑n
i=1 α

i−1
n−1 x2

i for condition numbers α larger than 104 in less
than 107 function evaluations while CMA-ES solves the problem for α up to 1010 in less than
2× 105 function evaluations for n = 10, 20, 40 (see [53, Figure 3] or also Figure 4.1).

Nonetheless, of course non rotational invariant algorithms can perform well on both a separable
problem and its non-separable rotated version without performing identical on both functions.
This is the case for instance for the NEWUOA algorithm [82] as seen in Figure 4.1 or more
precisely in [20, 19].

We would like to conclude this discussion by stressing that invariance has been overlooked
for decades in the evaluation of optimization algorithms. Consequently, some conclusions drawn
about the good performance of some algorithms were solely due to the fact that several suite of test
functions used to include mostly separable functions. We believe for instance that the large interest
that happened around swarm algorithms like PSO is mainly due to this unfortunate bias towards
separable functions into test function suites. Similarly genetic algorithms (GA) using crossover
operators exploit separability and this has certainly induced some bias into the conclusions drawn
about the performance of real-coded GAs.
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Comparison-based stochastic black-box algorithms as introduced in Definition 1 are typically
observed to converge linearly, that is, given the estimate of the favorite solution, Xt, at iteration
t, the following equation holds

lim
t→∞

1

t
ln
‖Xt − x?‖
‖X0 − x?‖

= −CR (6.1)

where CR > 0 is referred to as convergence rate1. With our sign convention on the convergence
rate: the larger CR, the faster the algorithm converges to x?.

Linear convergence is particularly taking place for step-size adaptive algorithms or for algo-
rithms like CMA-ES that combine step-size and covariance matrix adaptation mechanisms. The
step-size is the main mechanism related to the asymptotic convergence rate in (6.1). Indeed,
as we have seen, the covariance matrix adapts the shape of the underlying metric to transform
an ill-conditioned problem (for instance an ill-conditioned convex-quadratic function) into a well-
conditioned one (the sphere function in the case of the ill-conditioned convex-quadratic problem).
The observed convergence rate of (6.1) will correspond to the convergence rate achieved by the
step-size adaptation mechanism on the well-conditioned function. Without covariance matrix
adaptation, the observed convergence rate on the ill-conditioned problem would be much slower.

Given this context, this chapter focuses on step-size adaptive algorithms where the state θt =
(Xt, σt) ∈ Rn×R+ encodes Xt, the favorite solution at iteration t and σt a scaling parameter, the
step-size. We present upper bounds on the convergence rate CR assuming some specific algorithm
frameworks (i.e. fixing the number of candidate solutions λ, the sampling distribution, how the
update of Xt is done). We consider more precisely the so-called (1 + 1)-ES, (1, λ)-ES and (µ/
µ, λ)- ES frameworks. We exhibit a specific artificial algorithm that uses a step-size proportional
to the distance to the optimum whose convergence rate achieves the upper bound. We then present

1Eq. (6.1) can for instance hold almost surely or with an expectation, i.e. limt→∞ E
[
1
t

ln
‖Xt−x?‖
‖X0−x?‖

]
= −CR as

we will see in Chapter 7.

37
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asymptotic estimates (for the dimension n going to infinity) of the upper bounds recovering results
known in the ES field as progress rate results usually derived under various approximations. Those
results are presented in the publications [61, 17, 62].

The bounds presented are quantitative (i.e. can be precisely estimated) and are observed to
be tight as discussed in the end of the chapter. We also explain how the bounds are useful
for algorithm design and give an overview of the publications where we have use the general
approach presented here to effectively design new algorithm frameworks. The related publications
are [1, 12, 13, 34].

6.1 Bounds for the (1 + 1)-ES

The first framework considered is the one of the (1+1)-ES algorithm that was presented indirectly
through the example of the (1+1)-ES with one-fifth success rule in Section 4.2.2. This framework
is made explicit below:

(1 + 1)-ES - Data: X0 ∈ Rn, σ0 ∈ R>, (Nt)t∈N> i.i.d. distributed as N (0, Id) independent of
X0, σ0

At iteration t:

• Sample a new solution: X1
t+1 = Xt + σtNt+1

• Evaluate the new solution and rank it w.r.t. Xt.

• Update Xt by selecting the best among Xt and X1
t+1: Xt+1 = arg min{f(X1

t+1), f(Xt)},
i.e.

Xt+1 = Xt + σtNt+11{f(Xt+σtNt+1)≤f(Xt)} (6.2)

• Adapt σt (this can be an oracle here giving the step-size)

For a fixed dimension n, the upper bound derived corresponds to the maximum of the following
function

F
(n)
(1+1) : σ ∈ R≥ 7→ E[ln−(‖e1 + σN‖)] =

1

2
E
[
ln−

(
1 + 2σ[N ]1 + σ2‖N‖2

)]
(6.3)

where N is a random vector following N (0, Id) and e1 = (1, 0, . . . , 0). Then F
(n)
(1+1) is well defined

strictly positive on ]0,+∞[ and continuous on [0,+∞] by setting F
(n)
(1+1)(+∞) := 0 (Lemma 1 in

[61]). The function is depicted in Figure 6.1 for several dimensions. We define τ its supremum

τ := supF
(n)
(1+1)([0,+∞]) , (6.4)

it is reached and
σ
F

(n)

(1+1)

:= min(F
(n)
(1+1))

−1(τ) (6.5)

exists (Corollary 1 in [61]). Then a step-size adaptive (1 + 1)-ES optimizing f : Rn → R cannot
converge faster than linear with convergence rate τ , more precisely the following result holds:

Theorem 2. [Bound for a (1 + 1)-ES [61]] Let a (1 + 1)-ES with any step-size adaptation rule
(σt)t∈N (possibly given by an oracle) optimize f : Rn → R. Assume Nt+1 is independent of σt and
Xt. Let x? be any vector of Rn. Assume that E[ln ‖X0−x?‖] <∞ and E[ln(1+rσt/‖Xt−x?‖)] ∈
O(ectr) for ct ≥ 0. Then the convergence is at most linear with

E[ln ‖Xt − x?‖]− τ ≤ E[ln ‖Xt+1 − x?‖] (6.6)

and

inf
t

1

t
E[ln ‖Xt − x?‖/‖X0 − x?‖] ≥ −τ . (6.7)
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It is then proven that this bound is reached on the sphere function f(x) = g(‖x − x?‖)
where g ∈MR+ for a specific algorithm where the step-size is proportional to the distance to the
optimum. More precisely let us consider the (1 + 1)-ES with step-size

σt = σ‖Xt − x?‖ , (6.8)

for σ > 0. Note that this algorithm is “artificial” as it assumes the distance to the optimum.

Theorem 3. [Linear convergence of the (1 + 1)-ES with step-size proportional to the optimum
[61]] Let σ > 0 and the (1 + 1)-ES with step-size proportional to the optimum according to (6.8)
optimizes the sphere function f(x) = g(‖x − x?‖2) with g ∈ MR+ . Then the sequence (Xt)t∈N
converges linearly almost surely at the rate F

(n)
(1+1)(σ) more precisely

lim
t→∞

1

t
ln
‖Xt − x?‖
‖X0 − x?‖

= −F (n)
(1+1)(σ) < 0 a.s. (6.9)

where F
(n)
(1+1) is defined in (6.3).

Consequently the upper bound proven in Theorem 2 is reached for the (1 + 1)-ES with step-
size proportional to the optimum and constant σ = σ

F
(n)

(1+1)

where σ
F

(n)

(1+1)

is defined in (6.5) as the

smallest σ maximizing the function F
(n)
(1+1).

Remark 1. The proof of Theorem 3 is relatively simple and relies on the Law of Large Numbers
(LLN) for independent random variables. Given the assumption that the step-size is proportional
to the distance to the optimum, an update of the algorithm writes

‖Xt+1 − x?‖ = ‖Xt − x?‖
∣∣∣∣∣∣∣∣ Xt − x?

‖Xt − x?‖
+ σYt+1

∣∣∣∣∣∣∣∣ (6.10)

where the vector Yt+1 equals

Yt+1 = Nt+11{‖Xt+σ‖Xt−x?‖Nt+1−x?‖≤‖Xt−x?‖} = Nt+11{‖(Xt−x?)/‖Xt−x?‖+σNt+1‖≤1}

(see (6.2)). Given the isotropy of the sphere function and of the multivariate-normal distribu-

tion, the random variables
∣∣∣∣∣∣ Xt−x?
‖Xt−x?‖ + σYt+1

∣∣∣∣∣∣ are independent identically distributed as ‖e1 +

σN1{‖e1+σN‖≤1}‖. The linear convergence then relies on applying the LLN to obtain the limit of
the following equation (obtained by taking the log in (6.10) and summing-up terms)

1

t
ln
‖Xt − x?‖
‖X0 − x?‖

=
1

t

t−1∑
k=0

ln

∣∣∣∣∣∣∣∣ Xk − x?

‖Xk − x?‖
+ σYk+1

∣∣∣∣∣∣∣∣ (6.11)

that thus converge towards E[ln ‖e1 + σN1{‖e1+σN‖≤1}‖] = −F (n)
(1+1)(σ).

6.2 Bounds for the (1, λ)-ES

Similar results hold for a (1, λ)-ES step-size adaptive algorithm framework defined as

(1, λ)-ES - Data: X0 ∈ Rn, σ0 ∈ R>, (N i
t )i=1,...,λ
t∈N> i.i.d. distributed as N (0, Id); ind. of X0, σ0

At iteration t:

• Sample λ new solutions: Xi
t+1 = Xt + σtN i

t+1 where N i(0, Id) are λ i.i.d. samples

• Select the best amont the λ solutions:

Xt+1 = arg min{f(X1
t+1), . . . , f(Xλ

t+1)}

• Adapt σt .
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The function F
(n)
(1+1) is then replaced by the function

F
(n)
(1,λ) : σ ∈ R≥ 7→ E

[
− ln

(
min

i=1,...,λ
‖e1 + σN i‖

)]
, (6.12)

where N i are λ i.i.d. multivariate normal distributions. Define, τ(1,λ) the supremum of the

function F
(n)
(1,λ), i.e.

τ(1,λ) := sup
σ
F

(n)
(1,λ)(σ) (6.13)

and σ
F

(n)

(1,λ)

such that

σ
F

(n)

(1,λ)

= minF−1(τ(1,λ)) .

Then similarly to Theorem 2, a (1, λ)-ES optimizing f : Rn → R cannot converge faster than
linear with convergence rate τ(1,λ) in the sense of (6.6) and (6.7). This bound is reached on the
sphere function for the artificial algorithm using as step-size the distance to the optimum times
σ
F

(n)

(1,λ)

. Those results are briefly presented in [17].

Note that the function F
(n)
(1,λ) is not always strictly positive contrary to the function F

(n)
(1+1) (see

Figure 6.1). Hence a (1, λ)-ES with step-size σt = σ‖Xt − x?‖ and σ such that F
(n)
(1,λ)(σ) < 0 will

diverge linearly. In contrast, the (1 + 1)-ES cannot diverge as the framework ensures that f(Xt)
cannot increase.

6.2.1 Extension to the framework with recombination: the (µ/µ, λ)-ES

Both previously presented frameworks have as new estimate of the optimum, Xt+1, one of the
previously evaluated solutions. However, in the CMA-ES algorithm, Xt+1 is the result of the
recombination of the µ best solutions out of λ, i.e.

Xt+1 = Xt + σt

µ∑
i=1

wiN i:λ
t+1 (6.14)

where the λ candidate solutions Xt+σtN i
t+1 have been ranked, the index i :λ denotes the ith best

solution, i.e.

f(Xt + σtN 1:λ
t+1) ≤ . . . ≤ f(Xt + σtN λ:λ

t+1) , (6.15)

and (wi)1≤i≤µ are typically strictly positive weights summing to one, i.e.,
∑µ
i=1 wi = 1. It

is natural to ask the question about the generalization of the bounds for this recombination
framework. Note that for µ = 1 we recover the (1, λ)-ES framework. More precisely the (µ/
µ, λ)-ES framework is defined as:
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(µ/µ, λ)-ES - Data: X0 ∈ Rn, σ0 ∈ R>, (N i
t )i=1,...,λ
t∈N> i.i.d. distributed as N (0, Id); ind. of X0, σ0,

weights (wi)1≤i≤λ ∈ Rλ

At iteration t:

• Sample λ new solutions: Xi
t+1 = Xt + σtN i

t+1 where N i(0, Id) are λ i.i.d. samples

• Evaluate the solutions and rank the λ best solutions according to f :

f(Xt + σtN 1:λ
t+1) ≤ . . . ≤ f(Xt + σtN λ:λ

t+1) , (6.16)

• Recombine the µ best solutions:

Xt+1 = Xt + σt

µ∑
i=1

wiN i:λ
t+1 (6.17)

• Adapt σt .

It turns out that in the proof of Theorem 2, the key to prove that the bound holds for any f
exploits the fact that Xt+1 is one of the previously evaluated solutions. Hence the proof does not

generalize. However we can still define an equivalent to F
(n)
(1+1) (in (6.3)) and F

(n)
(1,λ) (in (6.12)) as

F
(n)
(µ/µ,λ)(σ) := −E

[
ln

∣∣∣∣∣
∣∣∣∣∣e1 + σ

µ∑
i=1

wiN i:λ

∣∣∣∣∣
∣∣∣∣∣
]

(6.18)

where the random vectorsN i:λ result from the selection among λ multivariate normal distributions
N i according to

‖e1 + σN 1:λ‖ ≤ . . . ≤ ‖e1 + σN 1:λ‖ .

The quantity F
(n)
(µ/µ,λ)(σ) corresponds to the (linear) convergence rate on the sphere function

g(‖x− x?‖) for g ∈MR+ of the (µ/µ, λ)-ES with step-size proportional to the optimum equal at

iteration t to σ‖Xt−x?‖. The function F
(n)
(µ/µ,λ) has been studied in details in [62, 63]. If µ ≤ λ/2

and n ≥ 2, then there exists an optimal step-size σ
F

(n)

(µ/µ,λ)

such that

F
(n)
(µ/µ,λ)(σF (n)

(µ/µ,λ)

) = sup
σ≥0

F
(n)
(µ/µ,λ)(σ) . (6.19)

Then the (µ/µ, λ)-ES with step-size σt = σF(µ/µ,λ)
‖Xt−x?‖ converges linearly and its convergence

rate is an upper bound on the convergence rate of all step-size adaptive (µ/µ, λ)-ES on spherical
functions [62, 63].2

6.3 Asymptotic estimates of convergence rates - Recovering
the progress rate rigorously

The functions F
(n)
(1+1), F

(n)
(1,λ) and F

(n)
(µ/µ,λ) (generically denoted F (n) in this section) play an im-

portant role because they give bounds on the convergence rates of the (1 + 1)-ES, (1, λ)-ES and
(µ/µ, λ)-ES algorithms respectively. Interestingly, it is possible to derive the limit for a fixed σ
of nF (n)(σ/n) for n to infinity. Hence, asymptotic estimates of the convergence rate of ESs with
step-size proportional to the optimum can be derived and consequently asymptotic estimates of
the bounds they provide can be obtained. More precisely the following result holds:

2We assume here that a set of weights is fixed.
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Figure 6.1: Left: Convergence rate of the (1 + 1)-ES with step-size proportional to the optimum
given in (6.3) for dimension n = 2, 3, 10, 20, 40, 80 (top to bottom in blue). On the x-axis, σn

and on the y-axis nF
(n)
(1+1)(σ) are plotted. The limit of F

(n)
(1+1) given in (6.20) is depicted in black.

Right: Convergence rate of the (1, 4)-ES normalized by λ = 4 with step-size proportional to the

optimum, i.e., on the x-axis σn, on the y-axis nF
(n)
(1,λ)(σ)/λ. Dimensions n = 2, 3, 10, 20, 40, 80 (top

to bottom in blue). In black is depicted the limit of nF
(n)
(1,λ)(σ/n)/λ given in (6.21). The plots of

F
(n)
(1+1) and F

(n)
(1,λ) are obtained by Monte-Carlo integration with 107 samples for each data point.

Theorem 4. The convergence rate F
(n)
(1+1)(σ) satisfies

lim
n→∞

nF
(n)
(1+1)

(σ
n

)
=

σ√
2π

exp

(
−σ

2

8

)
− σ2

2
Φ
(
−σ

2

)
. (6.20)

where Φ is the cumulative distribution function of standard normal distribution.

The previous theorem tells us that the convergence rate of the (1 + 1)-ES with step-size
proportional to the optimum expressed in (6.9) goes to zero with the dimension like 1/n. It
provides in addition a quantitative estimate of the convergence rate for n large. This linear scaling
with respect to the dimension of the convergence rate is typically observed for ES algorithms like
CMA-ES on spherical functions.

The proof of this theorem is sketched in [12], one assumption is however not carefully verified
but just assumed, namely the uniform integrability of a sequence of random variables. The
verification of this assumption was done in details for the (µ/µ, λ)-ES framework in [63] and
follows the same line for the (1+1)-ES. For the sake of completeness we provide the detailed proof
of Theorem 4 in the Appendix.

Similarly to Theorem 4, the following holds for the (µ/µ, λ)-ES framework (and thus for the
(1, λ) framework).

Theorem 5. The convergence rate F
(n)
(µ/µ,λ) satisfies

lim
n→∞

nF
(n)
(µ/µ,λ)

(σ
n

)
= −

(
σ2

2

µ∑
i=1

w2
i + σ

µ∑
i=1

wiE[N i:λ]

)
(6.21)

where N i:λ is the ith order statistic of λ independent standard normal distributions with mean 0
and variance 1, i.e., the ith smallest of λ independent variables N i ∼ N (0, 1).

This theorem is proven in [13] with the detailed proof for the uniform integrability done in
[63].
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Similarly to the (1 + 1)-ES case, this theorem shows that the convergence rate of the (µ/
µ, λ)-ES with step-size proportional to the optimum goes to zero like 1/n.

One interesting aspect of the asymptotic formula (6.21) is that it is explicit and simple: it is
a quadratic polynomial in sigma. Its maximum with respect to σ and wi can be easily derived as

1

2

µ∑
i=1

E(N i:λ)2

and the optimal weights associated equal

wopt
i = − E(N i:λ)∑µ

i=1 |E(N i:λ)|
. (6.22)

Hence we see that if we impose positive weights, then optimally µ = λ/2 with the weights given
by the previous equation. If we also assume that we can have negative weights then optimally
µ = λ with the weights given by the previous equation. This finding about optimal weights was
for the first time published in [5].

Those results are not entirely new in the sense that the quantities limn→∞ nF (n)(σ/n) turn
out to coincide with the so-called progress rate [83, 84, 26] derived under various approximations
as an estimate of

nE

[
‖Xt‖ − ‖Xt+1‖

‖Xt‖

∣∣∣∣Xt

]
[83, 84, 26]. Our contributions are (i) to have connected the convergence rate of a specific algorithm
(ES with step-size proportional to the optimum) to the progress rate and to bounds on convergence
rates of evolution strategies and (ii) to have shown that fully rigorous mathematical analysis are
amenable for ESs while progress rate results relied before on approximations that needed to be
validated with simulations.

6.4 Discussion

We discuss in this section how the bounds derived, the algorithm with step-size proportional to
the optimum are tightly related to algorithm design.

6.4.1 On the tightness of the bounds

We first need to argue on the tightness of the bounds obtained. The relative tightness of the bounds
is observed on simulations. We can typically observe that real step-size adaptive algorithms can
achieve convergence rates close to a factor of two or less to the theoretically derived bounds. This
is illustrated in Figure 6.23. With a mildly tuned damping parameter dσ (see (4.11)), the CSA
algorithm (i.e. CMA without covariance matrix adaptation) achieves a convergence which is less
than a factor of two from the bounds for n = 5, 10, 20, 40, 100. With default damping, CSA is
within a factor of two from the bounds for n = 40, 100.

6.4.2 On algorithm design

The bounds derived via the convergence rate of the artificial algorithm with step-size proportional
to the optimum are used when designing algorithms in different manners:

1. Compare how close step-size adaptation mechanisms can be from the bounds and identify
defects in step-size adaptation mechanisms. This point is related to the fact that the bounds
are “tight”. Practically, if the convergence rates on the sphere are of the order of a factor
of two from the bounds, we know that there is no need to tune further the algorithm on the
sphere function.

3This plot was produced by Asma Atamna in the context of the work published in [51]. I would like to kindly
thank her for providing this plot.
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Figure 6.2: Illustration of bounds tightness. In cyan the bounds for the (µ/µ, λ)-ES given by the

maximum of F
(n)
(µ/µ,λ) normalized by λ for a given dimension n and given in (6.19) are depicted.

The lambda chosen corresponds to the default value of CMA-ES. The convergence rate achieved
by the CSA algorithm (i.e. CMA-ES with covariance matrix adaptation turned off) on the sphere
function with default damping parameters is depicted in green. The convergence rate achieved by
the CSA algorithm with a smaller damping parameter is shown in red.

2. Compare the effectiveness of different frameworks by comparing the optimal convergence
rate for each framework. For instance the bound of the convergence rate of the (1 + 1)-ES
using mirroring and sequential selection gives a 16% speedup compared to the (1 + 1)-ES
(see next section and [12]).

3. Quantify for a given framework the influence of some parameters, or optimal parameters.
For instance optimal λ and µ parameters can be identified, or optimal recombination weights
can also be identified like in (6.22). For the 1/5-success rule, the parameter 1/5 as target
success probability is a compromise between the asymptotic probability of success of the
(1 + 1)-ES with step-size proportional to the optimum (and the proportionality constant
achieving maximal convergence rate) on the sphere and the optimal probability of success
on the so-called corridor function.

6.4.3 Designing new algorithm frameworks

We have been using the algorithm model with step-size proportional to the optimum to design
new algorithm frameworks. In particular we have been studying derandomization within ESs
by replacing i.i.d. samplings of multivariate normal distributions by mirrored samples. Roughly
speaking it means given that we have a solution sampled according to Xt + σtN i(0, Id), then the
vector −N i(0, Id) will also be used to generate another candidate solution [34, 13, 12].

We have been deriving and simulating finite and asymptotic convergence rates for the different
frameworks with step-size proportional to the optimum. We have proven that the (1 + 1)-ES with
mirrored sampling and sequential selection (that concludes an iteration if an offspring is better
than the current parent in which case the evaluation of some mirrored samples can be skipped),
improves by 16 % the (1 + 1)-ES with an asymptotic convergence rate of 0.235 versus 0.202 for
the (1 + 1)-ES [12]. We have also investigated mirrored sampling with weighted recombination,
where we have added two heuristics: (i) select at most one of the two mirrored solutions and (ii)
selective mirroring that consists in mirroring a certain percentage of the worst only. We have
derived an asymptotic convergence rate of 0.390 while 0.25 is the best known convergence rate
with positive weights, i.e. giving an improvement by 56 % [13]. Note that those improvements
refer to convergence rates normalized by the number of function evaluations per iteration.
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Some natural theoretical questions, arising when studying an optimization algorithm, are
whether the algorithm converges, under which conditions (on the class of functions, on the al-
gorithm parameters, ...) and at which rate. We have ample empirical evidences of the linear con-
vergence of adaptive comparison-based algorithms like CMA-ES or the (1 + 1)-ES with one-fifth
success rule on wide classes of functions (see Fig 7.1 for an illustration of the linear convergence
on the sphere function). However the proofs are relatively challenging, in particular compared
to how easy some proofs of convergence can be achieved for stochastic algorithms like the pure
random search or a (1 + 1)-ES with constant step-size. Arguably, the comparison-based property
makes convergence proofs (together with convergence rates) harder has one has a weaker control
on the objective function decrease.

One crucial aspect for the linear convergence is a proper control of the step-size, a constant
step-size leading to a sub-linear convergence rate similar to the convergence rate of the pure
random search (see Fig 7.1 right). We have seen in Chapter 6 that a “perfect” step-size on the
sphere function would be proportional to the optimum with a proportionality constant well-chosen

(as the sigma where the maximum of the functions F(1+1), F
(n)
(1,λ), ... is reached). In this case, the

proof of linear convergence is quite straightforward relying on the application of the Law of Large
Numbers (LLN) for independent random variables to the quantity

1

t
ln
‖Xt − x?‖
‖X0 − x?‖

=
1

t

t−1∑
k=0

ln
‖Xk+1 − x?‖
‖Xk − x?‖

(7.1)

(see Remark 1). The approach we have developed which is presented in this chapter can be
seen as a generalization of the proof with step-size proportional to the optimum. Using perfect

45
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Figure 7.1: Convergence simulations on spherical functions f(x) = g(‖x‖) for g ∈ MR+ in
dimension n = 10. Left: Simulation of the (1+1)-ES with one-fifth success rule (see Section 4.2.2,
step-size update of (4.22) implemented with γ = exp(1/3)). Middle: xNES(see Section 4.3.4
and [24] for parameters used) using λ = 4 + b3 lnnc and bλ/2c positive weights equals to wi =
ln
(
λ
2 + 1

2

)
− ln i (default weights for the CMA-ES algorithm). Each plot is in log scale and depicts

in black the distance to optimum, i.e. ‖Xt‖, in blue the respective step-size σt and in magenta the
norm of the normalized chain ‖Zt‖. The x-axis is the number of function evaluations corresponding
thus to the iteration index t for the (1 + 1)-ES and to λ × t for xNES. For both simulations 6
independent runs are conduced starting from X0 = (0.8, 0.8, . . . , 0.8) and σ0 = 10−6. Right:
Simulation of a (1 + 1)-ES with constant step-size. Two runs conducted with a constant step-size
equal to 10−3 and 10−6. The distance to the optimum is depicted in black and the step-size in
blue.

step-size, the quantity ‖Xt−x?‖/σt is constant, while, as we will see, for a comparison-based step-
size adaptive randomized search algorithm it will be the norm of a homogeneous Markov chain
Zt = (Xt − x?)/σt. The study of the stability (irreducibility, positivity, Harris recurrence) of this
Markov chain will allow to apply the LLN (for Harris-recurrent Markov chains) to the RHS of
(7.1) and thus obtain a proof of the linear convergence of the associated algorithm. This will hold
for comparison-based step-size adaptive randomized search algorithms that are scale-invariant. I
already exploited this idea during my thesis to provide the first proof of linear convergence of a
so-called self-adaptive ES on the sphere function [7]. However, I did not realize at that time how
more general the approach was, in particular that the construction of the Markov chain Zt can be
done on so-called scaling-invariant functions (a particular case of such functions being the sphere
function) satisfying for all x,y ∈ Rn and ρ > 0

f(x? + x) ≤ f(x? + y)⇔ f(x? + ρx) ≤ f(x? + ρy)

provided the comparison-based step-size adaptive algorithm is translation and scale-invariant.
The presentation of the methodology is the object of the manuscript [24], while the application
of the methodology to prove the linear convergence of the (1 + 1)-ES with one-fifth success rule
is presented in [18]. Remark furthermore that [7] is also an application of the methodology. We
give here an overview of the main results presented in those papers.

The work presented here connects nicely comparison-based adaptive stochastic algorithms with
Markov chain Monte Carlo (MCMC) methods. Indeed, the normalized chain Zt can be seen as
an associated MCMC algorithm for which we need to prove stability properties as done in the
MCMC context.

The algorithms considered in this chapter are thus comparison-based step-size adaptive ran-
domized search (CB-SARS) algorithms as defined in Definition 1 where the state of the algorithm
is θt = (Xt, σt) with Xt ∈ Rn and σt ∈ R+. Note that it means that the full CMA-ES is not
covered by this framework. We assume in addition that the update function in (4.4) takes the
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form of F = (F1,F2) such that one iteration step of the CB-SARS is given by

Xi
t+1 = Sol((Xt, σt),U

i
t+1) , i = 1, . . . , λ (7.2)

S = Ord(f(X1
t+1), . . . , f(Xλ

t+1)) ∈ S(λ) (7.3)

Xt+1 = F1

(
(Xt, σt),U

S(1)
t+1 , . . . ,U

S(λ)
t+1

)
(7.4)

σt+1 = F2

(
σt,U

S(1)
t+1 , . . . ,U

S(λ)
t+1

)
(7.5)

with (Ut)t∈N> i.i.d. distributed according to pU with each Ut admitting a representation as
Ut = (U1

t , . . . ,U
λ
t ) ∈ (Rn)λ. In (7.4), the Ord function ranks the solutions and extracts the

permutation S containing the indexes of the ordered candidate solutions Xi
t+1. A CB-SARS

following the previous equations will be identified to the triplet (Sol, (F1,F2), pU).
Note that for the (1 + 1)-ES with one-fifth success rule, the functions F1 and F2 were already

implicitly given in (4.23) and (4.24). More precisely we have

F1((x, σ),y) = x + σy1 (7.6)

F2((x, σ),y) = σ
(

(γ − γ−1/4)1{y1 6=0} + γ−1/4
)
. (7.7)

Remark 2. In [24] we admit a more general setting where Ut ∈ Uλ = (U× . . .×U) with U ⊂ Rm
where m is not necessarily equal to n. This more general setting allows in particular to include
so-called self-adaptive algorithms where U = Rn+1. For the sake of clarity, we consider U = Rn
in this document.

7.1 Construction of the homogeneous Markov chain: con-
sequence of scale and translation invariance

We explain how the construction of the Markov chain Zt = (Xt−x?)/σt associated to a CB-SARS
on scaling-invariant functions derives from scale and translation invariance of the algorithm.

7.1.1 The class of scaling-invariant functions

The construction of the Markov chain candidate to be stable works on the class of scaling-invariant
functions that satisfy the following definition.

Definition 6. A function f : Rn → R is scaling-invariant with respect to x? ∈ Rn, if for all
ρ > 0, x,y ∈ Rn

f(x? + x) ≤ f(x? + y)⇔ f(x? + ρx) ≤ f(x? + ρy) . (7.8)

Examples of scaling-invariant functions include f(x) = ‖x−x?‖ for any arbitrary norm on Rn
since in this case f(x? + ρx) = ‖ρx‖ = ρ‖x‖ = ρf(x + x?) (for ρ > 0). It also includes functions
with non-convex sublevel sets, i.e. non-quasi-convex functions (see Fig 7.2 for an illustration).

A scaling-invariant function cannot admit any strict local optima besides x?. In addition, on
a line crossing x? a scaling invariant function is either constant equal to f(x?) or cannot admit
a local plateau (see Proposition 3.2 in [24]). A specific class of scaling-invariant functions are
positively homogeneous functions.

Definition 7 (Positively homogeneous functions). A function f : Rn 7→ R is said positively
homogeneous with degree α if for all ρ > 0 and for all x ∈ Rn, f(ρx) = ραf(x).

From this definition follows that if a function f̂ is positively homogeneous with degree α
then f̂(x − x?) is scaling-invariant with respect to x? for any x? ∈ Rn. Examples of positively
homogeneous functions are linear functions that are positively homogeneous functions with degree
1. Also, every function deriving from a norm is positively homogeneous with degree 1.
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Figure 7.2: Illustration of scaling-invariant functions w.r.t. the point x? depicted with a star. The
three functions are composite of g ∈M by f(x−x?) where f is a positively homogeneous function
(see Definition 7). Left: composite of g ∈ M and f(x) = ‖x− x?‖. Middle: composite of g ∈ M
and f(x) = (x − x?)TA(x − x?) for A symmetric positive definite. Right: randomly generated
scaling-invariant function from a “smoothly” randomly perturbed sphere function. Both functions
on the left have convex sublevel sets contrary to the one on the right.

7.1.2 Scale and translation invariant CB-SARS

The construction of the Markov chain is a consequence of scale and translation invariance that
we assume thus for the comparison-based step-size adaptive randomized search considered. More
precisely we will assume that (i) the Sol function satisfies: for all α > 0, for all u ∈ Rn, (x, σ) ∈
Rn × R+

>

Sol((x, σ),u) = αSol
((x

α
,
σ

α

)
,u
)

(7.9)

(ii) the F1 function satisfies for all α > 0, for all y ∈ Rnλ, (x, σ) ∈ Rn × R+
>

F1((x, σ),y) = αF1

((x

α
,
σ

α

)
,y
)

(7.10)

and (iii) the F2 function satisfies for all α > 0, for all y ∈ Rnλ, σ ∈ R+
>

F2(σ,y) = αF2

(σ
α
,y
)
. (7.11)

Those three conditions ensure the scale-invariance of the underlying algorithm and the associated
homomorphism of Definition 5 is Φ : α ∈ R+

> 7→ Φ(α) where for all (x, σ) ∈ Rn × R+
>,

Φ(α)(x, σ) = (x/α, σ/α) (7.12)

(see Proposition 2.9 in [24]). Note that related to Definition 5, no coupling for the random vectors
Ui
t+1 is needed such that ψg(θ,u) = u. For translation invariance we more precisely assume (i)

that for all x,x0 ∈ Rn for all σ > 0 and for all u ∈ Rn

Sol((x + x0, σ),u) = Sol((x, σ),u) + x0 (7.13)

and that (ii) for all x,x0 ∈ Rn for all σ > 0 and for all y ∈ Rnλ

F1((x + x0, σ),y) = F1((x, σ),y) + x0 . (7.14)

Hence, we know then with Proposition 2.7 in [24] that the underlying comparison-based step-size
adaptive randomized search is translation invariant with the associated group homomorphism Φ
defined as

Φ(x0)(x, σ) = (x + x0, σ) for all x0,x, σ . (7.15)

Here also no coupling for the random numbers is needed.
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7.1.3 Construction of a homogeneous Markov chain

The following proposition proves that on scaling-invariant functions for a CB-SARS satisfying the
scale and translation invariance conditions of the previous section, the sequence Zt = (Xt−x?)/σt
is a homogeneous Markov chain.

Proposition 1 ([24, Proposition 4.1]). Consider a scaling-invariant objective function f opti-
mized by (Sol, (F1,F2), pU), a CB-SARS algorithm assumed to be translation-invariant and scale-
invariant satisfying (7.9), (7.10) and (7.11). Let (Xt, σt)t∈N be the Markov chain associated to
this CB-SARS. Let Zt = Xt−x?

σt
for all t ∈ N. Then (Zt)t∈N is a homogeneous Markov chain that

can be defined independently of (Xt, σt), provided Z0 = (X0 − x?)/σ0 via

Zit+1 = Sol((Zt, 1),Ui
t+1), i = 1, . . . , λ (7.16)

S = Ord(f(Z1
t+1 + x?), . . . , f(Zλt+1 + x?)) (7.17)

Zt+1 = G(Zt,S ∗Ut+1) = G(Zt, (U
S(1)
t+1 , . . . ,U

S(λ)
t+1 )) (7.18)

where (Ut)t∈N> is an i.i.d. sequence of random vectors distributed according to pU and where the
function G equals for all z ∈ Rn and y ∈ Rnλ

G(z,y) =
F1((z, 1),y)

F2(1,y)
. (7.19)

Note that because we have assumed scale-invariance and in particular (7.11) for the function
F2, the step-size update has a specific shape. It satisfies namely

σt+1 = σtF2(1,Yt) (7.20)

where Yt = S ∗Ut+1 = (U
S(1)
t+1 , . . . ,U

S(λ)
t+1 ). Denoting the multiplicative step-size update as η?,

i.e.
η?(Yt) = F2(1,Yt) , (7.21)

the update of Zt given in (7.19), reads that Zt+1 equals the mean update for step-size equal 1
divided by the step-size change η?.

Remark 3. The proof of the previous proposition provided in [24] reveals that the ranking permu-
tation S is the same when ranking solutions sampled from (Xt, σt) on x 7→ f(x) or when ranking

solutions sampled from (Zt, 1) on x 7→ f(x+x?) such that η?(Sf(Xt,σt)
∗Ut+1) = η?(Sf

?
x

(Zt,1)∗Ut+1).

7.2 Sufficient Conditions for Linear Convergence

The link between stability of Zt and linear convergence of the CB-SARS can now be explained.
The linear convergence results from investigating (7.1) that sums the log-progresses ln ‖Xt+1 −
x?‖/‖Xt − x?‖. The chains (Xt, σt)t∈N and (Zt)t∈N being connected by the relation Zt = (Xt −
x?)/σt, the log-progress can be expressed as

ln
‖Xt+1 − x?‖
‖Xt − x?‖

= ln
‖Zt+1‖η?(Y(Zt,Ut+1))

‖Zt‖
(7.22)

where the ordered vector Sfx?(Zt,1) ∗Ut+1 is denoted Y(Zt,Ut+1) to signify its dependency in Zt
and Ut+1, i.e.

Y(z,u) = Sfx?(z,1) ∗ u = Ord({f(Sol((z, 1),ui) + x?)}i=1,...,λ) ∗ u . (7.23)

In (7.22) we use the fact that the step-size change starting from (Xt, σt) equals the step-size change
starting from (Zt, 1) (see Remark 3). Using the property of the logarithm, we obtain

1

t
ln
‖Xt − x?‖
‖X0 − x?‖

=
1

t

t−1∑
k=0

ln
‖Xk+1 − x?‖
‖Xk − x?‖

=
1

t

t−1∑
k=0

ln

(
‖Zk+1‖
‖Zk‖

η?(Y(Zt,Ut+1))

)
. (7.24)
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We understand now that we can conclude to the linear convergence of the CB-SARS if the chain Zt
satisfies conditions that ensure that we can apply the LLN to the RHS of the previous equation.
Typical conditions for a Markov chain Zt to satisfy a LLN are positivity (i.e. existence of an
invariant probability measure) and Harris recurrence. In this case one can conclude that

1

t
ln
‖Xt − x?‖
‖X0 − x?‖

a.s.−−−→
t→∞

∫
E[ln(η?(Y(z,U)))]π(dz)

where π is the invariant probability measure of Zt and the expectation in the integral is w.r.t.
U ∼ pU (see [24, Theorem 5.1]). The previous convergence equation can also hold with an
expectation (see [24, Theorem 5.2]).

7.3 Studying the stability of the normalized homogeneous
Markov chain

We have seen that the study of the Markov chain Zt—in particular the establishment of stability
properties that allow to state a strong Law of Large Numbers, that is 1

t

∑t−1
k=0 g(Zk) converges to

π(g) where π is the invariant measure of Zt—can allow to conclude to the linear convergence of
the CB-SARS associated to the Markov chain Zt.

Sufficient stability conditions for proving a LLN for Markov chains are ϕ-irreducibility, Harris
recurrence and positivity whose definitions are briefly reviewed [78].

Let Z = (Zt)t∈N be a Markov chain defined on a state space Z equipped with the Borel sigma-
algebra B(Z). We denote P t(z, A), t ∈ N, z ∈ Z and A ∈ B(Z) the transition probabilities of the
chain

P t(z, A) = Pz(Zt ∈ A) (7.25)

where Pz and Ez denote the probability law and expectation of the chain under the initial condition
Z0 = z. If a probability µ on (Z,B(Z)) is the initial distribution of the chain, the corresponding
quantities are denoted Pµ and Eµ. For t = 1, the transition probability in (7.25) is denoted P (z, A).
The chain Z is ϕ-irreducible if there exists a non-zero measure ϕ such that for all A ∈ B(Z) with
ϕ(A) > 0, for all z0 ∈ Z, the chain started at z0 has a positive probability to hit A, that is there
exists t ∈ N> such that P t(z0, A) > 0. A σ-finite measure π on B(Z) is said invariant if it satisfies

π(A) =

∫
π(dz)P (z, A), A ∈ B(Z) .

If the chain Z is ϕ-irreducible and admits an invariant probability measure then it is called positive.
A small set is a set C such that for some δ > 0 and t > 0 and some non trivial probability measure
νt,

P t(z, .) ≥ δνt(.), z ∈ C .

The set C is then called a νt-small set. Consider a small set C satisfying the previous equation
with νt(C) > 0 and denote νt = ν. The chain is called aperiodic if the greatest common divisor
of the set

EC = {k ≥ 1 : C is a νk-small set with νk = αkν for some αk > 0}
is one for some (and then for every) small set C.

A ϕ-irreducible Markov chain is Harris-recurrent if for all A ⊂ Z with ϕ(A) > 0, and for
all z ∈ Z, the chain will eventually reach A with probability 1 starting from z, formally if
Pz(ηA =∞) = 1 where ηA is the occupation time of A, i.e. ηA =

∑∞
t=1 1Zt∈A. A (Harris-)recurrent

chain admits a unique (up to a constant multiple) invariant measure [78, Theorem 10.0.4].
Typical sufficient conditions for a Law of Large Numbers to hold are ϕ-irreducibility, positivity

and Harris-recurrence as formally stated in the next theorem:

Theorem 6. [[78] Theorem 17.0.1] Assume that Z is a positive Harris-recurrent chain with in-
variant probability π. Then the LLN holds for any g with π(|g|) =

∫
|g(x)|π(dx) <∞, that is for

any initial state Z0, limt→∞
1
t

∑t−1
k=0 g(Zk) = π(g) a.s.
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We typically derive Harris-recurrence of (Zt)t∈N by proving Foster-Lyapunov drift conditions.
We actually derive drift conditions to prove a stronger property, namely geometric ergodicity
which implies then positivity and Harris-recurrence.

Geometric ergodicity translates the fact that convergence to the invariant measure takes place
at a geometric rate. Different notions of geometric ergodicity do exist (see [78]) and we consider the
form that appears in the following theorem. For any V , PV is defined as PV (z) :=

∫
P (z, dy)V (y).

For a function V ≥ 1, the V -norm for a signed measure ν is defined as

‖ν‖V = sup
k:|k|≤V

|ν(k)| = sup
k:|k|≤V

|
∫
k(y)ν(dy)| .

Theorem 7. (Geometric Ergodic Theorem [78, Theorem 15.0.1]) Suppose that the chain Z is
ψ-irreducible and aperiodic. Then the following three conditions are equivalent: (i) The chain
Z is positive recurrent with invariant probability measure π, and there exists some petite set
C ∈ B+(Z) (such that ϕ(C) > 0), ρC < 1, MC <∞, and P∞(C) > 0 such that for all z ∈ C

|P t(z, C)− P∞(C)| ≤MCρ
t
C .

(ii) There exists some petite set C and κ > 1 such that

sup
z∈C

Ez[κτC ] <∞ .

(iii) There exists a petite set C ∈ B(Z), constants b < ∞, ϑ < 1, and a function V ≥ 1 finite at
some one z0 ∈ Z satisfying

PV (z) ≤ ϑV (z) + b1C(z), z ∈ Z. (7.26)

Any of these three conditions imply that the following two statements hold. The set SV = {z :
V (z) < ∞} is absorbing and full, where V is any solution to (7.26). Furthermore, there exist
constants r > 1 and R <∞ such that for any z ∈ SV∑

t

rt‖P t(z, .)− π‖V ≤ RV (z) . (7.27)

The drift operator is defined as ∆V (z) = PV (z)−V (z). The inequality (7.26) is called a drift
condition that can be re-written as

∆V (z) ≤ (ϑ− 1)︸ ︷︷ ︸
<0

V (z) + b1C(z) .

P is then said to admit a drift towards the set C. The previous theorem is using the notion of
petite sets but small sets are actually also petite sets (see Section 5.5.2 [78]).

7.3.1 Linear Convergence of the (1 + 1)-ES with generalized one-fifth
success rule

Using the previously sketched methodology, we have been proving the convergence of the general-
ized (1+1)-ES with one-fifth success rule, a slightly generalized version of the algorithm presented
in Section 4.2.2 [18]. The algorithm first samples a candidate solution from a multivariate normal
distribution centered in Xt and with covariance matrix σ2

t Id (where t is the iteration index):

X1
t+1 = Xt + σtU

1
t+1 (7.28)

where U1
t+1 follows a standard multivariate normal distribution, i.e., U1

t+1 ∼ N (0, Id). The new
solution is accepted and replaces Xt if its f -value is better than f(Xt), i.e.

Xt+1 = Xt + σtU
1
t+11{f(X1

t+1)≤f(Xt)} . (7.29)
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The step-size σt is increased in case of success and decreased otherwise [87, 41, 83]. We denote
γ > 1 the increasing factor and introduce a parameter q ∈ R+

> such that the factor for decrease
equals γ−1/q. Overall the step-size update reads

σt+1 = σtγ1{f(X1
t+1)≤f(Xt)} + σtγ

−1/q1{f(X1
t+1)>f(Xt)} . (7.30)

When −1/q = −1/4, this update implements the idea to maintain a probability of success around
1/5 and correspond to the original idea proposed by Schumer and Steiglitz [87], Devroye [41]
and Rechenberg [83] described in Section 4.2.2. It is relatively straightforward to show that the
generalized (1 + 1)-ES with one-fifth success rule satisfies conditions (7.9), (7.10) and (7.11) such
that, according to Proposition 1, on scaling-invariant functions Zt = Xt−x?

σt
is a homogeneous

Markov chain.
We investigate the stability of the Markov chain Zt on a particular case of scaling-invariant

functions, namely positively homogeneous functions defined in Definition 7 where we make more-
over the following assumptions.

Assumption 1. The function f : Rn → R is homogeneous with degree α and f(x) > 0 for all
x 6= 0.

This assumption implies that the function f has a unique optimum located w.l.o.g. in 0 (if the
optimum x? is not in 0, consider f̃ = f(x − x?)). Note that with this assumption, we exclude
linear functions.

Under this hypothesis and assuming that f is continuous on Rn\{0} we can establish easily the
ϕ-irreducibility of the chain (Zt)t∈N with respect to the Lebesgue measure provided that γ > 1 (see
[18, Proposition 3.2]). Under the same assumptions we prove that the sets D[l1,l2] with 0 < l1 < l2
defined as

D[l1,l2] := {z ∈ Z, l1 ≤ f(z) ≤ l2} . (7.31)

are small sets [18, Lemma 3.3] and that the chain Zt is aperiodic [18, Proposition 3.4]. We finally
establish a drift for geometric ergodicity under the following assumption.

Assumption 2. The function f : Rn → [0,+∞[ is a positively homogeneous function with degree
α and f(x) > 0 for all x 6= 0.
The function f is continuously differentiable and α ≤ n. There exists k ∈ N> and c0, . . . , ck in R
such that for all z̃ ∈ L1 and y ∈ Rn, cz̃, cy ∈ [0, 1]

‖∇f(z̃ + cz̃cyy)‖2 ≤ c0 +

k∑
i=1

ci‖y‖i . (7.32)

Theorem 8 ([18, Theorem 3.11]). Consider (Xt, σt)t∈N associated to the (1+1)-ES with gener-
alized one-fifth success rule algorithm as defined in (7.28), (7.29) and (7.30) optimizing h = g ◦ f
where g ∈ M and f : Rn → [0,+∞[ satisfies Assumption 2. Let Z = (Zt = Xt/σt)t∈N be the
Markov chain associated to the (1+1)-ES optimizing h defined in Proposition 1. Then the function

V (z) = f(z)1{f(z)≥1} +
1

f(z)
1{f(z)<1} (7.33)

satisfies a drift condition for geometric ergodicity (in the sense of (7.26)) for the Markov chain Z
if γ > 1 and

1

2

(
1

γα
+ γα/q

)
< 1 . (7.34)

Interestingly, the condition (7.34) under which the drift for geometric ergodicity holds means
that the expectation of the inverse of the step-size change on linear functions is smaller than one:

E[1/(η?)αlinear] < 1 , (7.35)



7.4. Discussion 53

which translates to a step-size increase on a linear function. This condition is similar to the one
found to prove geometric ergodicity for the (1, λ)-ES with self-adaptation on the sphere function
[7].

Remark that we have some latitude to model a given function f̃ as h ◦ f with f positively
homogeneous with degree α and h ∈ M. Indeed by playing on h we can find different f , say f1

and f2 positively homogeneous α1 and α2 such f̃ = h1 ◦ f1 and f̃ = h2 ◦ f2 (where h1 and h2

belong toM). On a convex quadratic function this will particularly imply that linear convergence
will hold for a given (γ, q) if there exists 2 ≤ α ≤ n such that 1

2

(
1/γα + γα/q

)
< 1.

Some further work is needed to prove the integrability of z → ln ‖z‖ with respect to the
invariant measure of (Zt)t∈N which is established in [18, Lemma 4.2] as a consequence of the
geometric drift condition. The almost sure linear convergence can then be derived and the following
holds almost surely for all X0 and for all σ0

1

t
ln
‖Xt‖
‖X0‖

−−−→
t→∞

ln γ

(
q + 1

q
PS− 1

q

)
(7.36)

1

t
ln
σt
σ0
−−−→
t→∞

ln γ

(
q + 1

q
PS− 1

q

)
, (7.37)

where PS is the asymptotic probability of success defined as

PS := lim
t→∞

P x
σ

(
f(Xt + σtU

1
t+1) ≤ f(Xt)

)
=

∫
1{f(y+n)≤f(y)}(y,n)π(dy)pN (n)dn , (7.38)

where pN denotes the density of a standard normal distribution (see [18, Theorem 4.5]). Last, the
strict negativity of the right-hand side of (7.36) or (7.37) is established [18, Proposition 4.6].

Remark 4. We are able to establish that both the norm of Xt and the step-size σt converge to
zero linearly at the same rate as expressed in (7.36) and (7.37). This is compliant with what we
observe on simulations (see Figure 7.1, plot on the left).

7.4 Discussion

The Markov chain methodology presented in this chapter proves its usefulness to establish the lin-
ear convergence of comparison-based step-size adaptive randomized search on much wider classes
of functions than what was done before. Indeed previous attempts to analyze CB-SARS always
focused on much smaller classes of functions. The sphere function was analyzed in [7], [59, 58],
and a specific class of convex quadratic functions was also analyzed in [56, 57].

The class of functions where we prove linear convergence for the (1+1)-ES includes all functions
deriving from a norm but also non quasi-convex functions. In addition, since if our convergence
results hold for f , they also hold for g ◦ f for any g inM, we include non-continuous functions in
the class of functions where we prove linear convergence.

Interestingly, the condition to obtain a geometric drift reveals that the step-size should increase
on a linear function, similar to the condition that was established for the (1, λ)-ES with self-
adaptation. Similarly, when studying the IGO flow trajectories, we also formulated a condition
on the step-size increase on the linear function to establish the convergence on C2 functions [3].

Increasing the step-size on a linear function appears as a natural requirement for step-size
adaptive algorithms while some algorithms like the (1, 2)-CSA without cumulation [35] and the
(1, 2)-ES with self-adaptation fail to satisfy this condition (see [44] for a thorough analysis of this
problem).

Our algorithm framework for the linear convergence study embeds algorithms like CMA-ES
without covariance matrix adaptation and without cumulation for the path, i.e. cumulative step-
size adaptation (CSA) without cumulation, or the xNES algorithm without covariance matrix
adaptation. That is for those algorithms, Proposition 1 holds. For those algorithms however it
turns out that the irreducibility, aperiodicity and establishing that compact sets are small sets
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is much more intricate to prove than for the (1 + 1)-ES with one-fifth success rule or for comma
strategies using self-adaptation. The drift for geometric ergodicity follows however the same lines
as for the (1 + 1)-ES with one-fifth success rule. The difficulty comes from the fact that the step-
size is a deterministic function of the selected step (this concept was introduced as derandomized
self-adaptation), which makes the step-size adaptive algorithm more precise but renders the proof
of irreducibility and aperiodicity very difficult.

In an ongoing work with Alexandre Chotard, a full set of general conditions using the under-
lying control model is established to be able to then easily verify irreducibility, aperiodicity and
the fact that compact sets are small sets. This work constitutes a generalization of Chapter 7 of
the Meyn and Tweedie seminal book [78]. As a consequence, it should then be easy to finalize
the proof of linear convergence of CMA-ES without covariance matrix adaptation and without
cumulation for the adaptation of the step-size as well as for xNES without covariance matrix
adaptation.

Extension to more complex algorithms, for instance to step-size mechanisms having additional
state variables like the step-size mechanism used in CMA-ES or algorithms with an adaptive co-
variance matrix seems feasible but complex: in this case the drift to prove the geometric ergodicity
becomes particularly challenging.

The approach presented here heavily exploits the scaling-invariant property of the class of
functions considered. It is not clear how the results can be extended to much more general
functions using similar techniques. We believe that then the stochastic approximation approach
can be a nice alternative. This is discussed in Chapter 10.

Ideally we would like to be able to obtain theoretically some properties on the convergence
rate of the algorithm, for instance its dependency in the dimension or its dependency in the
eigenvalues of the Hessian in the case of a convex-quadratic functions. Those types of results seem
to be difficult to establish because we do not know much about the invariant measure entering in
the definition of the convergence rate.

7.4.1 On the connexion with MCMC

Last we want to stress that the work presented in this chapter underlines a clear connexion be-
tween comparison-based stochastic black-box methods and Markov chain Monte Carlo (MCMC)
algorithms. MCMC methods are algorithms to sample probability distributions that aim at con-
structing a stable Markov chain whose invariant distribution is the distribution to be sampled.
This latter distribution contains typically some non-singular parts. In contrast, in optimization,
we want the algorithm to converge to certain points, i.e. we want the underlying sequence θt to
converge towards Dirac distributions, such that the Markov chain generated by the optimization
algorithm is not stable. However as we have seen, on scaling-invariant functions, a joint poten-
tially stable homogeneous Markov chain associated to the original chain exists (here this chain is
Zt = (Xt−x?)/σt. This Markov chain defines an MCMC algorithm associated to the optimization
algorithm.

One typical difference however in our context, is that the invariant distribution is unknown.
We prove its existence, unicity and deduce some properties like integrability w.r.t. the distribution
from (geometric) drift conditions.
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In this chapter, we present three convergence studies of adaptive step-size algorithms that also
involve the study of the stability of some Markov chains. The underlying ideas are quite similar
to the previous chapter: we are interested in proving the linear convergence or divergence of the
algorithm studied. This can be deduced from applying a LLN to a Markov chain that we exhibit.
We then carry out the stability study of the Markov chain.

We consider here three different contexts: 1) the optimization of a linear function [35, 36], 2)
the optimization of a linear function with a linear constraint [37] and 3) the optimization of a
spherical noisy function [60].

While the problems investigated look relatively simple (linear function, spherical function),
the study of the underlying Markov chain can turn out to be quite involved. In particular because
the study of 1) and 2) are carried out on the step-size mechanism used within CMA-ES, that uses
a state variable pσ to be able to update the step-size.

Moreover, as motivated in the different sections, the problems are per se important to be
solved “optimally”, so it is important to look carefully at them. More precisely, the belief that
adaptive stochastic optimization algorithms should in particular be able to solve simple problems
reasonably well has been the driving force behind the development of the CMA-ES algorithm
which has turned out to be quite successful.
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8.1 Study of the (1, λ)-ES with cumulative step-size adap-
tation

The cumulative step-size adaptation (CSA) or path length control is the step-size mechanism
used by default in the CMA-ES algorithm. One particularity compared to the step-size adaptive
framework of the previous chapter is that an additional state variable, the path, is used to update
the step-size, i.e. the state of the algorithm at iteration t is θt = (Xt, σt,p

σ
t ). This implies that the

normalized Markov chain associated on scaling-invariant functions is the couple (Zt,p
σ
t ) and the

analysis of the stability appears to be much more intricate. We however foresee that increasing the
step-size on a linear function will be one main condition for the stability. This is one motivation to
carefully study CSA on a linear function. Related to that, the linear function models the scenario
with (too) small step-size, where hence the algorithm “sees” the objective function very locally
and where the step-size should be increased as fast as possible. As we will sketch, this study
involves again to investigate the stability of some Markov chains. Those results, summarized in
Section 8.1.1, are presented in [35, 36].

8.1.1 Study of the (1, λ)-ES with CSA on a linear function

The algorithm considered is a (1, λ)-ES with CSA. It is optimizing a linear function assumed
w.l.g. equal to f(x) = [x]1 where [x]1 denotes the first coordinate of the vector x. Given Ut+1 =
(Z1

t+1, . . . ,Z
λ
t+1) where the sequence (Zit+1)i follows i.i.d. multivariate normal distributions, the

updates of the state variables θt = (Xt, σt,p
σ
t ) are given by

Xt+1 = Xt + σtZ
1:λ
t+1 (8.1)

pσt+1 = (1− c)pσt +
√
c(2− c)Z1:λ

t+1 (8.2)

σt+1 = σt exp

(
c

2dσ

(
‖pσt+1‖2

n
− 1

))
, (8.3)

where as before the notation 1:λ denotes the index of the best candidate solution. Note that the
last equation is slightly modified compared to the CSA described within the CMA presentation
in Section 4.2.1 as here the squared norm (instead of the norm) of the path pσt+1 is compared to
the squared norm (instead of the norm), the path would have under random selection, that is n
(see (4.11)). This way the theoretical analysis is simpler. The expected behavior of the algorithm
on the linear function is fast linear divergence.

On the linear function f(x) = [x]1, the selection changes only the distribution of the first
coordinates of the vectors Zit+1. More precisely, the first coordinate of Z1:λ

t+1 is distributed according
to the first order statistics of standard normal distributions, i.e. N1:λ and the other coordinates
are i.i.d. following standard normal distributions N (0, 1).

It is then easy to deduce, for the case without cumulation, i.e. c = 1, from a simple application
of the LLN for independent random variables that the following equation is satisfied for all λ ≥ 1

lim
t→∞

1

t
ln

(
σt
σ0

)
=

1

2dσn

(
E[N 2

1:λ]− 1
)

a.s.

For λ ≥ 3, the RHS of the previous equation is strictly positive such that linear divergence takes
place while for λ = 1 and λ = 2 an additive unbiased random walk for ln(σt) is observed (see
[35, 36, Theorem 1]).

With cumulation, i.e. 0 < c < 1, the path (pσt )t is a Markov chain. Given that selection is only
affecting the first coordinate, we can simply analyze the Markov chain ([pσt ]1)t. We can prove
without too many difficulties its ϕ-irreducibility, aperiodicity and the fact that compact sets of R
are small sets for the chain. We then prove that V (x) = x2 + 1 is a drift for geometric ergodicity
and that the function x 7→ x2 is integrable with respect to the stationary distribution of ([pσt ]1)t.
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Figure 8.1: Linear function with a linear constraint, in the plane generated by ∇f and n, a normal
vector to the constraint hyperplane with angle θ ∈ (0, π/2) with ∇f . The point x is at distance
g(x) from the constraint.

We finally deduce the linear divergence for c < 1 with λ ≥ 2 at the rate

1

t
ln

(
σt
σ0

)
a.s.−−−→
t→∞

1

2dσn

(
2(1− c)E[N1:λ]2 + c(E[N 2

1:λ]− 1)
)
. (8.4)

Divergence also holds when considering the expectation in the LHS of the previous equation
[35, 36, Theorem 3]. Equation 8.4 quantifies the divergence rate of the CSA on a linear function
as a function of c, λ and n. We have also studied the variance of ln(σt+1/σt) and found out that
keeping c < 1/n1/3 ensures that the standard deviation of ln(σt+1/σt) becomes small enough
in front of ln(σt+1/σt) when dimension goes to infinity confirming that the default cumulation
parameter which is smaller than 1/

√
n is a reasonable choice.

8.1.2 Study of the (1, λ)-ES with CSA using resampling on a constraint
problem

We consider here the problem of optimizing a linear function with a linear constraint with a (1, λ)-
CSA using in addition a resampling mechanism to ensure that the candidate solutions are within
the bounds. More precisely we want to

maximize f(x) = −x.n = [x]1 subject to

g(x) = −[x]1 cos θ − [x]2 sin θ ≥ 0 .
(8.5)

where n is a vector normal to the constraint and where θ ∈ (0, π/2) (see Fig 8.1). Note that the
point x is at distance g(x) from the constraint. The update equations for the CSA with resampling
boil down to (8.1), (8.2), (8.3) where the distribution of the vector Ut+1 = (Z1

t+1, . . . ,Z
λ
t+1) is

such that each Zit+1 results from resampling multivariate normal distributions till they lie within
the feasible domain. In other words in the direction n, the distribution of Zit+1 is a truncated
Gaussian and it follows standard normal distributions in directions orthogonal to n.

We define δt as the normalized distance to the constraint, i.e.

δt = g(Xt)/σt .

and we show that (δt,p
σ
t ) is a Markov chain ([37, Proposition 5]). Given that

1

t
ln
σt
σt

=
c

2dσ

(
1

nt

t−1∑
i=0

‖pσi ‖2 − 1

)
, (8.6)

the study of the stability of the Markov chain (δt,p
σ
t ) can give us the linear divergence or con-

vergence of the algorithm. We have carried out this stability study for the case where c = 1
and proven the ϕ-irreducibility, aperiodicity, positivity and geometric ergodicity of the chain that
allow us to conclude to the linear divergence or convergence of the algorithm. We refer to [37,
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Theorem 2] for the explicit expression of the divergence (or convergence) rate that does not have
a very comprehensive expression and is thus not reproduced here.

To find out whether divergence or convergence is happening, we have carried out numerical
simulations of the convergence rate and found out that CSA diverges (i.e. the algorithm works
as we want) for small enough cumulation parameter or large enough population size. However,
small values of the constraint angle increase the difficulty of the problem arbitrarily such that we
cannot find values of c and λ where the algorithm diverges.

8.2 Linear convergence or divergence of a (1+1)-ES in noisy
environment

We consider a noisy optimization problem, that is for each point of the search space x ∈ Rn the
objective function f(x) is perturbed by a random variable, i.e for a given x, we can observe a
distribution of possible objective function values. We investigate a certain class of noisy prob-
lems, which use the so-called multiplicative noise, where the noiseless objective function f(x) is
perturbed by the multiplication with a noise term independent of x and thus of f(x). The plain

multiplicative-noisy objective function f̂ reads

f̂(x) = f(x)ξ (8.7)

The noise random variable, ξ, is sampled independently at each new evaluation of a solution point.
A typical goal in noisy optimization is to converge to the minimum of the averaged value of

the observed random variable f̂ . If the expected value of the noise in (8.7) is positive, this means
minimizing f . We more precisely consider the following noisy objective function

f̂(x) = g(‖x‖αξ) (8.8)

where g ∈M. We assume that the law of ξ has a probability density function denoted pξ. We also
assume that the support of pξ is the range ]mξ,Mξ[ where −∞ ≤ mξ < Mξ ≤ +∞ and mξ 6= 0.

We investigate the (1 + 1)-ES with step-size proportional to the optimum and show essentially
two results:

• First we prove that divergence or convergence of the algorithm can happen even when the
expected objective function value is a positive function with a unique minimum. We prove
that the divergence versus convergence is solely determined by the sign of mξ the left bound
of the interval supporting the noise distribution.

• Second we prove that a linear behavior takes place, i.e. linear convergence takes place if
mξ > 0 and linear divergence takes place if mξ < 0. This result is a theoretical statement of
the robustness of ESs in noisy environments. The proof of this linear behavior involves the
stability study of a Markov chain.

8.2.1 The algorithm considered

We consider (Ut)t∈N a sequence of i.i.d. random vectors distributed according to N (0, Id) and
(ξt)t∈N a sequence of random variables distributed according to pξ and independent from the
sequence (Ut)t∈N. We consider X0 ∈ Rn also independent from (Ut)t∈N and (ξt)t∈N such that
‖X0‖ > 0 almost surely. The objective function value associated to X0 equals g(‖X0‖αξ0)1.

We introduce the sequence Ot as the sequence of selected noise that is defined iteratively
starting from O0 = ξ0.

We assume a step-size proportional to the distance to the optimum, that is σt = σ‖Xt‖ such
that

Xt+1 =

{
Xt + σ‖Xt‖Ut+1 if g

(∥∥∥Xt + σ‖Xt‖Ut+1

∥∥∥αξt+1

)
< g (‖Xt‖αOt)

Xt otherwise ,
(8.9)

1All the random vectors are assumed to be defined on a same probability space.
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and the accepted noise Ot+1 of the new parent Xt+1 obeys:

Ot+1 =

{
ξt+1 if g

(∥∥∥Xt + σ‖Xt‖Ut+1

∥∥∥αξt+1

)
< g (‖Xt‖αOt)

Ot otherwise .
(8.10)

Note that since g preserves the ordering it can be dropped in the acceptance criteria. The sequence
Ot can be written in a more compact manner as

Ot+1 = Ot + (ξt+1 −Ot)1{‖Xt/‖Xt‖+σUt+1‖αξt+1<Ot} .

Then (Ot)t∈N is an homogeneous Markov chain with same initial law and transition kernel as

Zt+1 = Zt + (ξt+1 − Zt)1{‖e1+σUt+1‖αξt+1<Zt} (8.11)

with Z0 distributed according to pξ [60, Proposition 1].

8.2.2 Linear convergence or divergence

To investigate the linear convergence or divergence, we study the same quantity as previously,
namely

1

t
ln
‖Xt‖
‖X0‖

=
1

t

t−1∑
k=0

ln

(∥∥∥ Xk

‖Xk‖
+ σUk+11{∥∥ Xk

‖Xk‖
+σUk+1

∥∥αξk+1<Ok

}∥∥∥) . (8.12)

The RHS of the previous equality can be expressed using rotational invariance of the multivariate
normal distribution with the Markov chain (Zt) introduced above, namely

1

t
ln
‖Xt‖
‖X0‖

=
1

t

t−1∑
k=0

ln ‖e1 + σUk+11{‖e1+σUk+1‖αξk+1<Zk}‖

where the previous equality holds in distribution. To take the limit when t goes to infinity in
the previous equation, we investigate the Markov chain (Zt) and prove that it is positive and
Harris recurrent by proving that it is uniform ergodic [60, Proposition 2]. We then deduce the
convergence of the previous equation for t to infinity and obtain the following theorem.

Theorem 9 ([60, Theorem 6]). The (1+1)-ES defined in (8.9) (and (8.10)) minimizing the noisy
sphere ( (8.8)) converges almost surely to zero if mξ > 0 and diverges almost surely to infinity
when −∞ < mξ < 0. For mξ 6= 0, let γ be defined as

γ :=

∫
E
(
ln ‖e1 + σN01{‖e1+σU1‖αξ1≤z}‖

)
dµ(z) (8.13)

where µ is the invariant probability measure of the Markov chain (Zt)t ( (8.11)). Then γ is well
defined, finite and the algorithm converges (or diverges) log-linearly in the sense that:

1

t
ln ‖Xt‖ → γ (8.14)

holds in probability. Moreover, the convergence (or divergence) rate γ is strictly negative if mξ > 0
and strictly positive if mξ < 0.
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This chapter gathers some of my contributions that are either not directly related to single-
objective optimization using adaptive comparison-based algorithms or not theoretical.

In a first part, I give an overview of my work in the context of multi-objective optimization
where the goal is to optimize simultaneously several conflicting objectives. Those contributions
are related to the study of the so-called hypervolume, an indicator to measure the quality of sets
of solutions widely used in the domain of Evolutionary Multi-objective Optimization (EMO). The
overview given is related to the publications [10], [22], [21], [8], [9].

In a second part, I present some of my contributions in the domain of benchmarking of con-
tinuous black-box algorithms. One main motivation has been to develop better benchmarking
methodologies and thus improve the standards in how benchmarking is done in the domain of
continuous black-box optimization. This work is a long term project that was somehow started
in 2005 with the participation to a benchmarking special session [16, 15] and that we have inten-
sified with the creation of a benchmarking platform, COCO—developped since 2008—and of a
benchmarking workshop, the Black-Box Optimization Benchmarking (BBOB) workshop, that we
have been organizing recurrently since 2009. This part is related to [47, 48, 46] but also to (so far
unpublished) work in preparation.

Last I sketch some work related to the optimal placement of oil wells. Those contributions are
linked to the PhD thesis of Zyed Bouzarkouna in the context of a collaboration with the French
Institute for Petrol (IFP). The related publications are [32, 29, 30, 31].

Note that while those contributions are presented in the end of the manuscript, I do not
consider those contributions as minor or less interesting. Actually the work on multi-objective
optimization has been quite influential as witnessed by the fact that our two main publications [10]
and [22] have overall 148 citations according to Google Scholar1. Also our work on benchmarking
has already some impact: 174 papers on Google Scholar are referring to “Black-Box optimiza-
tion benchmarking (BBOB)” and the Google Scholar citations of the main papers describing our
benchmarking platform [47] [48] [46] have 393, 56, and 230 citations respectively.

1As of March 2015.
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Figure 9.1: Hypervolume indicator computation for µ solutions (xµ1 , f(xµ1 )), . . . , (xµµ, f(xµµ)) and
the reference point r = (r1, r2) in the biobjective case.

9.1 Multi-objective optimization

In multi-objective optimization, the goal is to optimize simultaneously several (conflicting) ob-
jectives. For instance one can be interested to reduce the cost of the design of a product while
maximizing its robustness. The “optimal solutions” that are then thought are the set of best
compromises, that is, informally speaking, the set of solutions that cannot be improved along
one objective without degrading in at least another one. Formally, let us consider the following
(vector-valued) function F : x ∈ Rn → F(x) = (F1(x), . . . ,Fm(x)) ∈ Rm. The space Rm being
then called the objective space while like in the single-objective space, Rn is the search space. We
assume without loss of generality that we want to minimize each Fi simultaneously.

The weak Pareto-dominance relation is given by � defined for x,y ∈ Rn as

x � y⇔ Fi(x) ≤ Fi(y) for all i , (9.1)

i.e. x is not worse than y on all objectives. The optimal solutions (Pareto optima) for F are given
by the minimal elements of the ordered set (Rn,�). The image of the Pareto-set in the objective
space is the so-called Pareto-front.

Evolutionary Multi-Objective algorithms—stochastic search algorithms to approach multi-
objective problems in the EC context— mainly focus on approximating the Pareto-optimal set.
Typically they exploit the population-based framework of the algorithms and attempt to make
the population converge towards the Pareto-optimal set. One approach to guide this convergence
is to use the so-called hypervolume as a quantitative measure of the quality of a set of solutions
[94]. This hypervolume is simply the area comprised between the set of solutions and a reference
point (or reference set), more precisely see Figure 9.1 for the visualisation of the volume in the
case of a bi-objective problem. Hypervolume-based EMO algorithms look for a set of solutions
maximizing the hypervolume.

One advantage of the hypervolume indicator, as opposed to other indicators also used to
measure quality of sets, is that it is compliant with the Pareto-dominance relation, i.e. if a set
dominates another one2, its hypervolume will be larger. Hence it became one of the most used
indicators in indicator-based EMO algorithms.

Many conjectures on how the hypervolume indicator is influencing the final repartition of the
set of solutions found were formulated before. For instance, Zitzler and Thiele [94] indicated that,
when optimizing the hypervolume in maximization problems, “convex regions may be preferred to
concave regions”, which is also stated in [73], whereas Deb et al. [39] argued that “[. . . ] the hyper-
volume measure is biased towards the boundary solutions”. Knowles and Corne observed sets of

2A set A dominates a set B if for all points in B, there exists a point in A that dominates it in the sense of
(9.1) where in addition at least one inequality for the dominance is strict.
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Figure 9.2: The hypervolume indicator IH,w(A) corresponds to the integral of a weight function
w(z) over the set of objective vectors that are weakly dominated by a solution set A and in
addition weakly dominate the reference point r (hatched areas). On the left, the set A consists
of nine objective vectors whereas on the right, the infinite set A can be described by a function
f : [xmin, xmax] → R. The left-hand plot shows an example of a weight function w(z), where
for all objective vectors z that are not dominated by A or not enclosed by r the function w is
not plotted, such that the weighted hypervolume indicator corresponds to the volume of the gray
shape (Figures and caption extracted from [22]).

solutions resulting from maximizing the hypervolume indicator “seems to be ‘well-distributed’ ”
[67, 68, 42].

Additionally, an important question arising in practice is how to choose the reference point.
In particular, extremes of the Pareto-front should preferably be included in the set.

In this context, we have analyzed for bi-objective problems, that is m = 2, the properties
of a set of µ points maximizing the hypervolume, referred to as optimal µ-distributions, that is
the set that hypervolumed-based EMO attempt to approach. We have assumed that the Pareto-
front (located in the objective space) is described by a non-increasing continuous function x ∈
[xmin, xmax] 7→ f(x).

We have established the exact location of optimal µ-distributions in the case of a linear front.
For f derivable on ]xmin, xmax[ we have derived the expression of the density of points for µ to
infinity. More precisely we have shown that this density is proportional to

√
f ′(x) contradicting

hence the previous beliefs that convex regions of the Pareto-front are preferred over concave or
that there exists a bias towards boundary solutions. We have then addressed the practical question
of the choice of the reference point. For fronts characterized via f derivable on ]xmin, xmax[, we
provide a bound on the location of the reference point to be able to enclose the extreme of the
fronts. We also show that for some fronts, the extremes cannot be included (when (f ′(xmax) = 0
the right extreme cannot be included and when f ′(xmin) = −∞, the left extreme cannot be
included). Those results are presented in [10] and were generalized to the case of the weighted
hypervolume where the volume is computed with respect to a pre-defined density on the objective
space (see Figure 9.2), the motivation being to allow users to set preferences beforehand on the
regions they are interested to see solutions [22].

We have also extended part of the results to the case with three objectives [21]. Last we have
exploited the weighted hypervolume idea to show how to practically articulate user preferences
within an indicator-based algorithm [8, 9].

9.2 Benchmarking

While theory is helping to understand better how algorithms work or to design new algorithms (as
we have illustrated in Chapter 6), there are some clear limitations in terms of how much theory
can tell as far as performance of algorithms is concerned. On the one hand, the class of functions
where one can prove convergence is limited, on the other hand the convergence proofs are rarely
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accompanied with exact convergence rates (rather bounds on the convergence rates are proven).
However, it is central to assess performance of algorithms quantitatively on functions that

represent the typical difficulties related to real-world problems the algorithms are supposed to
solve. In a second stage, performance of algorithms can be compared to understand globally the
strengths and weaknesses of different approaches.

For this, it is necessary to ressort to benchmarking of algorithms that consist in running the
algorithms on well-chosen test functions and extracting data to assess and compare performances.

It turns out however that it is not trivial to do proper benchmarking of algorithms. Many
possible biases can be introduced when benchmarking. It was already underlined by J. N. Hooker
in 1995 in the paper “Testing Heuristics: We Have It All Wrong” [55].

In this context, some of my research since my PhD has been focusing on trying to improve
how benchmarking in the black-box optimization context is done. I will sketch below the main
scientific aspects we have been concerned with. The diffusion of the practice we wanted to es-
tablish in terms of benchmarking has been done through the development of the benchmarking
platform COmparing Continuous Optimizers (COCO)3—developed since 2008—that automatizes
the benchmarking of optimization algorithms from running experiments to post-processing them
in order to display graphs and tables presenting the benchmarking results. We have then been
organizing with this platform the Black-Box Optimization Benchmarking (BBOB) workshops4

(this year the 5th and 6th editions of the workshops will take place) where participants are en-
couraged to benchmark their favorite algorithm with the COCO platform, submit papers with the
post-processed data (also produced with the platform) and submit their benchmarking data-set
such that it can be made publicly accessible. We have been able to collect so far 120+ algorithm
data-sets.

The important scientific aspects, we have been concerned with when developing the COCO /
BBOB framework for benchmarking, are summarized below.

On the choice of the test functions. The choice of the test functions is crucial. However,
too often test functions are chosen because they are easy to construct. As a result, we often see
bias in the test-suite used to benchmark algorithms. We have already mentioned the bias towards
separable functions in Chapter 5, but we have observed also bias towards small dimensional test
functions or towards convex functions in the CUTEr test-suit for instance. One aspect to realize
is that if performance is aggregated over functions, a bias towards a certain type of functions
(small dimensional for instance) put forwards algorithms that are especially good for solving this
category of problems. While this remark is simple, it seems to be generally overlooked when
analyzing benchmarking results. Our approach to design the BBOB test functions has been that
the test-suite should represents the typical difficulties encountered in real world applications (ill-
conditioning, non-separability, multi-modality with weak or strong global structure, noise). The
functions are simple enough such that the difficulties behind each function can be understood but
at the same time challenging for algorithms. Scientific questions can be answered from each test
function. Overall, we have designed a first test-suit presenting 24 noiseless functions [47] and a
second one presenting 30 noisy functions [48]. In addition the test-suite proposed is scalable with
respect to the dimension, i.e. each test function is defined for any possible dimension parameter
[47, 48].

On measuring performance. In the black-box setting, the running time of an algorithm is
measured in terms of number of function evaluations (or calls to the black-box) as opposed to real
CPU time. Indeed, in the context of black-box optimization (where the objective function can be
the outcome of large numerical simulations), it is reasonable to assume that the prominent cost
is related to the function evaluations and not to internal CPU time of the algorithm. Using the
number of function evaluations instead of the CPU time presents the main advantage that the
number of function evaluations is a measure independent of the programming language or on the

3http://coco.gforge.inria.fr/doku.php
4http://coco.gforge.inria.fr/doku.php

http://coco.gforge.inria.fr/doku.php
http://coco.gforge.inria.fr/doku.php
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skills of the programmer. As denounced in [55], using CPU time as measurement can lead to focus
too much attention and time in implementation details or in implementing in “fast” programming
languages and distract researchers from doing research on algorithms.

Given that the running-time is measured in function evaluations, we advocate that performance
measures should be quantitative, with a well-interpretable meaning. This has an impact on how
data of experiments are collected. Given a run carried out on a test function, we can decide to

vertical view: either collect at different fixed budgets the function value proposed by the search
algorithm or

horizontal view: fix a set of function-value targets and collect the number of function evaluations
needed to reach those targets.

The first approach (“vertical view”) is easier to implement and does not require to handle the fact
that some target values are not reached. It is hence often the chosen approach. It means that a
possible performance measure is based on f -values at different budgets. However the meaning of
an f -value is not quantitative, cannot be easily interpreted and varies from one function to the
next one. We therefore collect data using the “horizontal view”, i.e. collect running times to reach
a certain f -target.

Our main measure of performance based on the collected data is the expected running time
ERT associated to a (function, target) couple. Formally, assume we have an algorithm with a
strictly positive probability ps to reach a given target, we consider the expected running time of
the algorithm which is restarted until success (hence the restart algorithm has a probability one
to converge). The expected running time of the restart algorithm equals

E[RT] =

(
1

ps
− 1

)
E[RTunsuccessful] + E[RTsuccessful] , (9.2)

where RTunsuccessful is a random variable that models the running time for unsuccessful runs and
RTsuccessful the running time for successful runs.

Given a finite number of independent runs, Nruns, of an algorithm on a given test function,
and a collection of Nunsuccessful realizations of the random variables RTunsuccessful and Nsuccessful

realizations of RTsuccessful such that Nruns = Nunsuccessful + Nsuccessful, a natural estimator for
E[RT] is

ERT =

∑
RT iunsuccessful +

∑
RT isuccessful

Nsuccessful
=

#Total number of evaluations

Nsuccessful
.5 (9.6)

On displaying performance. In the COCO / BBBO setting, we have a large amount of
collected data. For instance in the noiseless case, for each of the 24 functions, we collect for
a large amount of targets (around 50), the running times of 15 different runs for 6 different
dimensions (n = 2, 3, 5, 10, 20, 40). It is hence crucial to display the results in a meaningful
way and have other alternatives than providing tables of numbers. One series or useful graphs are
scaling graphs showing for each function, ERT as a function of the dimension for 7 different targets
(see Figure 9.3 and also in Figure 1 of [11] available at http://researchers.lille.inria.fr/

~brockhof/publicationListFiles/abh2010k.pdf). For comparing two algorithms scatter plots

5The estimate (9.4) comes naturally from

E[RT] ≈
(

Nruns

Nsuccessful
− 1

) ∑
RT i

unsuccessful

Nruns −Nsuccessful
+

∑
RT i

successful

Nsuccessful
= (9.4)(

Nruns −Nsuccessful

Nsuccessful

) ∑
RT i

unsuccessful

Nruns −Nsuccessful
+

∑
RT i

successful

Nsuccessful
(9.5)

=
#Total number of evaluations

Nsuccessful
(9.6)

http://researchers.lille.inria.fr/~brockhof/publicationListFiles/abh2010k.pdf
http://researchers.lille.inria.fr/~brockhof/publicationListFiles/abh2010k.pdf
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Figure 9.3: Top Left: Example of display of performance on single functions using ERT. log10 of
ERT divided by dimension versus dimension on the sphere function for different targets ranging
from 101 to 10−8. Top Right: Empirical Cumulative Distribution Function (ECDF) aggregated
overall all functions and all targets of the noiseless BBOB test-suite in 20-D for 11 different
algorithms (name is displayed on the right). Low Left: ECDF of the same algorithms in 20-D
aggregated over functions with a high condition number only. Low Right: ECDF of the same
algorithms in 20-D aggregated over multi-modal functions only.

of ERT are also useful (see for instance Figure 2 in [33] available at http://researchers.lille.
inria.fr/~brockhof/publicationListFiles/bah2012c.pdf).

An other type of useful display to aggregate information is to plot the empirical cumulative
distribution (ECDF) of the run-length. One peculiarity of the COCO framework is that we
aggregate results over several targets but not over dimension. ECDF plots allow to compare in
a same graphs various algorithms. We plot ECDF graphs over all functions and over subset of
functions having specific properties (see Figure 9.3).

9.3 Application to optimal placement of oil wells

We describe in this last part an industrial black-box application and sketch the different contri-
butions that were done to address it. The problem consists in finding optimal (petroleum) well
placements in a given reservoir and was investigated by the French Institute for Petrol through
the thesis of Zyed Bouzarkouna. Different reservoir simulators able to predict for a certain set of
well configurations the amount of oil, gaz and water that could be extracted are available. The
simulators are typically some real black-box because they are either commercial solvers for which
only an executable of the code is available or much too complex such that useful information

http://researchers.lille.inria.fr/~brockhof/publicationListFiles/bah2012c.pdf
http://researchers.lille.inria.fr/~brockhof/publicationListFiles/bah2012c.pdf
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can be extracted. Each evaluation of a configuration of well is taking between 20 minutes to
several hours such that the formulated black-box optimization problem is expensive. The working
hypothesis is to use non-conventional wells, that typically have several connected non-vertical
branches, in order to increase the quantity of hydrocarbon that can be recovered (while typical
conventional wells are composed of a single vertical branch). Those non-conventional wells have
a higher drilling cost that is taken into account in the formulation of the optimization problem.
The optimization problem is to place several wells in a reservoir simulator and maximize the Net
Present Value associated. The optimization landscape is typically rugged due to heterogeneities
in the geology of the reservoir. The CMA-ES algorithm is thus a good candidate algorithm to
tackle the problem that was previously addressed with Genetic Algorithms (GAs) [32].

However, because of the specifically expensive setting, it is natural to address the problem using
surrogate or hybrid approaches where a meta-model of the objective function is learned, this model
is used to save some expensive function evaluations [32]. The algorithm that was used is the local-
meta-model CMA-ES (lmm-CMA). The core of the lmm-CMA algorithm is CMA-ES, however
some evaluations on the expensive function are saved by doing the following procedure. Given a
large enough archive of (points, function value of the points), for a new query-point sampled within
CMA that needs to be evaluated, a local quadratic models of the objective function is learned
by using a weighted regression using the points from the archive. The metric used to choose the
points closed to query-point and the weights is the Mahalanobis distance associated to the current
covariance matrix of CMA-ES. This meta-model building is repeated for each of the λ sampled
points of CMA-ES. To know whether the function-value prediction of the meta-model is good,
a fraction of the λ points are evaluated on the expensive objective function and the meta-model
building procedure is restarted using the freshly enriched archived. If the predicted ranking of the
points with the new meta-models and points evaluated on the expensive function did not change,
the ranking predicted is considered as good enough and a next iteration of CMA-ES is started
[66] [29, 14].

The particularity of the optimization problem was taken into account in a variant of lmm-CMA.
More precisely, given that the wells are placed in the same reservoir it is reasonable to assume
that the objective function to optimize is partially separable, that is, the objective function can
be written as the sum of sub-functions where each sub-function depends on the local parameters
of a single well plus an additional global parameter (typically encoding the distance between
two wells). It has been possible to design a variant of lmm-CMA using meta-models having
this specific objective function structure [30] and applied it successfully to the well placement
optimization problem [31].
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Chapter 10

Discussion and perspectives

Black-box continuous optimization methods are needed in various domains in academy or industry.
Those past years have known a resurgence of interest for such methods in the mathematical
programming community. The methods in this field, presented under the name derivative-free
optimization methods, are mostly deterministic [38]. In contrast, this manuscript has presented
stochastic continuous black-box methods, tailored to tackle challenging numerical optimization
problems with an emphasis on comparison-based adaptive methods whose most notable example
is the covariance matrix adaptation evolution strategy (CMA-ES). Both the stochastic component
and the comparison-based property confer some robustness to the methods that is particularly
useful when rugged or non-convex problems needs to be solved.

While introduced in an engineering and computer-science context, the methods of interest in
the manuscript and particularly CMA-ES have strong mathematical foundations. Those founda-
tions were often discovered after the introduction of the methods. We have in particular sketched
the connexion with information geometry and detailed the connexion with Markov chain Monte
Carlo (MCMC) methods. We have also emphasized the importance of invariance.

One central theoretical question when studying optimization algorithms is whether they con-
verge and at which rate. Linear convergence observed on wide classes of functions for comparison-
based adaptive algorithms like CMA-ES is an important property of the methods.

We have presented a general methodology in the context of step-size adaptive algorithms to
prove the linear convergence on so-called scaling-invariant functions. This methodology exploits
invariance properties (scale and translation invariance) of the algorithm to exhibit a Markov chain
candidate to be “stable”. Using tools particularly developed and used in the context of MCMC,
we have presented a proof of the linear convergence for the (1+1)-ES with one-fifth success rule—
a natural method introduced by several authors independently already in the 70’s. The class
of functions where the linear convergence holds includes non-quasi-convex and non-continuous
functions.

We want to argue that those theoretical results have a strong practical meaning: they allow
to handle real algorithms without any simplification assumption as opposed to some results ob-
tained with stochastic approximation methods that rely on predefined gain sequences, which seem
unrealistic in practice [88].

We have also illustrated that the theory of Markov chains on a continuous state space is useful
to study comparison-based algorithms in various contexts: optimization without the presence of
noise, constrained optimization and noisy optimization. While the algorithm analyzed in the
context of noise is assuming an optimal step-size, we still argue that the preservation of the
linear convergence property in the case of multiplicative noise is a strong theoretical hint of the
robustness of comparison-based stochastic adaptive algorithms.

We have also presented convergence bounds for specific algorithm frameworks. Those bounds
are linked to the (approximative) theory that accompanied the development of Evolution Strate-
gies since its introduction, namely the progress rate theory. They are quantitative and we have
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explained the relative tightness of the bounds. In addition, asymptotic explicit estimates of the
bounds w.r.t. dimension can be rigorously obtained. We have then described how such bounds
are useful for algorithm design.

So what is next? We strongly believe that the Markov chain methodology and the connexion
with MCMC methods to prove linear convergence presented in Chapter 7 can be exploited much
further to give convergence proofs of more algorithms:

• Under the same assumption that the state of the algorithm is reduced to θt = (Xt, σt), we
would like to cover algorithms like CSA (without cumulation) or xNES (where the covariance
matrix is σ2

t times identity) where the step-size change is tightly connected to the steps used
to update the mean vector Xt (as opposed to self-adaptive algorithms [7]). It turns out
that proving the irreducibility and aperiodicity of the normalized chain is then becoming
very difficult while finding and proving a drift for geometric ergodicity does not appear to
pose major problems. It therefore seems that we need to develop specific tools for Markov
chain models that embed the chains we are investigating. One approach to do so, that
constitutes an on-going work with Alexandre Chotard, consists in extending the connection
of irreducibility and aperiodicity with the underlying control model as done in Chapter 7 of
[78] for chains of the form

θt+1 = F (θt, α(θt,Ut+1))

where F is C1, (Ut)t is i.i.d. and α is a deterministic function of the state θt and the
independent random vector Ut+1 that models in our case the selection process.

• It is also natural to extend the approach to algorithms with more state variables for instance
for CSA with cumulation where the path needs to be taken into account or for CMA-ES where
the state includes a covariance matrix. The construction of the normalized Markov chain to
be studied seems relatively straightforward while establishing drift conditions becomes very
challenging. Indeed, establishing a drift condition requires to prove the negativity of the
drift function “outside a small set”: while the study of what is going on outside a small set
in the case of θt = (Xt, σt) boils down to the study of a simple one-dimensional function,
controlling the drift for CMA or CSA outside a small set requires to handle simultaneously
different scenarios, each of them being less straightforward.

Still, we strongly believe that the functioning of CMA-ES is tightly connected to the Markov
chain methodology that relies on invariance and stability of an underlying Markov chain
constructed by exploiting invariance properties of the algorithm. We foresee in particular
that affine invariance will be central for the CMA convergence proof. We also understand
that the stability is related to proper learning rates (i.e. the algorithm is not stable for too
large learning rates).

Finally, the ODE method or stochastic approximation framework [74, 28, 69] has not been really
explored so far to analyze the convergence of comparison-based adaptive stochastic methods. Some
first attempts in that direction were however presented by Yin et al. [92, 93]. They have analyzed
a step-size adaptive evolution strategy. Nevertheless, they have only considered the mean vector
as state variable of the algorithm and imposed the variance to be equal to the gradient of the
objective function. Hence their analyzed algorithm departs significantly from comparison-based
step-size adaptive algorithms. In addition, they have assumed that the learning rate for the mean
update decreases to zero and can therefore not obtain linear convergence (Theorem 5.2 of [93]).

We believe that it is however possible to use the ODE method for proving the linear convergence
of step-size adaptive ESs by encoding the “real” state of the algorithm, namely in a first time
θt = (Xt, σt). We think it is possible to obtain results with a fixed learning rate, that will however
need to be chosen small enough. The approach will rely on the one hand on studying the solutions
of the underlying mean field ODE similarly to what was done in [3] and on the other hand on
adapting current tools to control the error between the solution of the ODE and the stochastic
trajectory. This is an ongoing work together with Youhei Akimoto.
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Appendix

11.1 Proof from invariance chapter

Proposition 2. Definition 3 and Definition 4 are equivalent.

Proof. • It is obvious that Definition 4 implies Definition 3. We hence have to show that
Definition 3 implies Definition 4:

• We consider G′ the generating set of the group G, that is all element of G can be written as
a finite combination (under the law of the group ∗) of elements of G′ and their inverse.

• We now consider Definition 3 on the elements of G′ only. Then we can build a group
homomorphism from Definition 3 from the bijective transformations arising from G′. Indeed,
consider g ∈ G, then g = g1 ∗ g2 ∗ . . . ∗ gk for gi ∈ G′. We consider Tg = Tg1 ◦ Tg2 ◦ . . . ◦ Tgk .
It is clear that Tg−1 = Tg−1

k
◦ Tg−1

k−1
◦ . . . ◦ Tg−1

1
. Assume for the sake of simplicity k = 2.

Tg2 is a bijective state-space transformation for the commutative relation to hold between f
and fg2 . Tg1 is a bijective state-space transformation for the commutative relation to hold
between fg2 and fg1∗g2 :

T−1
g2 A

fg2Tg2 = Af (11.1)

T−1
g1 A

fg1∗g2Tg1 = Afg2 (11.2)

Hence Tg = Tg1 ◦ Tg2 satisfies the commutative relation from f to fg1∗g2 . Note that we have
used that we have a group action and that g1.(g2.f) = (g1 ∗ g2).f . This way we can build
a homomorphism by defining the bijective transformation for elements of g that are the
product of elements of G′ as the composition of the elementary bijective transformations.
Since the relation

Tg = Tg1 ◦ Tg2
if g = g1 ∗ g2 corresponds to the homomorphism property, we have build an homomorphism
and proven that Definition 2 is satisfied.

11.2 Proof of Theorem 4

Proof. We need to take the limit for n to infinity of the following expectation

nF (n)
(σ
n

)
=

1

2
E

n ln−

1− 2
σ

n
[N ]1 +

σ2

n2
‖N‖2︸ ︷︷ ︸
χ2 dist.
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where N follows a n-dimensional multivariate normal distribution. Let us define

Yn =
n

2
ln−

(
1− 2

σ

n
[N ]1 +

σ2

n2

n∑
i=1

[N ]2i

)

such that nF (n)
(
σ
n

)
= E[Yn]. We have the following almost sure limit

lim
n→∞

Yn =

(
σ[N ]1 −

σ2

2

)
1{−2[N ]1+σ≤0} ,

where we use the fact that by the Strong Law of Large numbers 1
n

∑n
i=1[N ]2i = 1. We now need

to prove the uniform integrability of the family (Yn)n≥1. We use the fact that for x > −1

n ln−(1 + x) = n ln−(1 + x)1{−1<x≤0} = −n ln(1 + x)1{−1<x≤0} = ln

[(
1

1 + x

)n]
1{−1<x≤0}

= 8 ln

[(
1

1 + x

)n/8]
1{−1<x≤0} ≤ 8

(
1

1 + x

)n/8
1{−1<x≤0} (11.3)

We apply the obtained inequality to Yn and thus obtain the following bound:

Yn =
n

2
ln−

(
1− 2

σ

n
[N ]1 +

σ2

n2
‖N‖2

)
≤ 4

(
1

1− 2σn [N ]1 + σ2

n2 ‖N‖2

)n/8
1{−1<−2 σn [N ]1+ σ2

n2 ‖N‖2≤0}

To prove the uniform integrability of (Yn)n we prove the that there exists C such that E[|Yn|2] < C
for all n. We have according to the previous inequality

E
[
|Yn|2

]
≤ 16E

( 1

1− 2σn [N ]1 + σ2

n2 ‖N‖2

)n/4
1{−1<−2 σn [N ]1+ σ2

n2 ‖N‖2≤0}


We now apply spherical coordinates (assuming n ≥ 2) to the RHS of the previous equation

E
[
|Yn|2

]
≤ 16

4Wn−2

∫ π
2

0

∫ +∞

0

(
1

1− 2σn
√
r cos θ + σ2

n2 r

)n/4
1{−1<−2 σn

√
r cos θ+ σ2

n2 r≤0}

sinn−2(θ)
exp(− r2 )r

n
2−1

Γ(n2 )2n/2
dθdr (11.4)

From simple geometry we know that 1− 2σn
√
r cos θ + σ2

n2 r ≥ sin2 θ such that

E
[
|Yn|2

]
≤ 16

4Wn−2

∫ π
2

0

∫ +∞

0

(
1

sin θ

)n/2
sinn−2(θ)

exp(− r2 )r
n
2−1

Γ(n2 )2n/2
dθdr (11.5)

=
16

4Wn−2

∫ π/2

0

sin
n
2−2 θdθ =

4Wn
2−2

Wn−2
≤ 4(
√

2 + 1) (11.6)

where the latter inequality holds for n large enough. Hence for all n, there exists C such that
E[|Yn|2] <∞ such that (Yn)n is uniformly integrable. Hence we can conclude that

lim
n→∞

nF (n)(σ/n) = E

[(
σ[N ]1 −

σ2

2

)
1{−2[N ]1+σ≤0}

]
= σE[[N ]11{[N ]1≥σ2 }]−

σ2

2
Pr([N ]1 ≥

σ

2
)

=
σ√
2π

exp

(
−σ

2

8

)
− σ2

2
Φ
(
−σ

2

)
(11.7)

where for the latter inequality we have use Lemma 14 in [12].
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Notations - Abbreviations -
Terminology

[x]i ith coordinate of a vector x
e1 first unit vector in Rn, i.e. e1 = (1, 0, . . . , 0)
N natural numbers counting zero {0, 1, . . .}
N> natural numbers excluding zero {1, 2, . . .}
R real numbers
R+ R+ = [0,+∞(
R+
> )0,+∞(
N (0, 1) standard normal distribution
Id Identity matrix (in dimension n)
N (0, Id) multivariate normal distribution with mean zero and covariance matrix identity
N (m,C) multivariate normal distribution with mean vector m and covariance matrix C
GL(n,R) real n× n invertible matrices
S(n,R) real n× n symmetric positive definite matrix
SO(n,R) group special orthogonal
C1/2 square root of C that satisfies C1/2[C1/2]T = C and is symmetric
MI set of strictly monotone functions from I ⊂ R→ R
M =

⋃
I⊂RMI

A ⊂ B A is a subset of B that can also be equal to B
sphere function x ∈ Rn 7→

∑n
i=1 x2

i = ‖x‖2
spherical function x ∈ Rn 7→ g(

∑n
i=1 x2

i ) where g ∈MR+

i.i.d. independent identically distributed
w.l.g. without loss of generality
w.r.t. with respect to
w.l.o.g. without loss of generality
RHS right hand side
LHS left hand side
DFO Derivative-Free Optimization
EC Evolutionary Computation
EA Evolutionary Algorithms
ES Evolution Strategies
CMA Covariance Matrix Adaptation
CMA-ES Covariance Matrix Adaptation Evolution Strategy
CSA Cumulative Step-size Adaptation (default step-size mechanism of the CMA-ES

algorithm)
IGO Information Geometric Optimization

73



74 Chapter 12. Notations - Abbreviations - Terminology

GA Genetic Algorithm
NEWUOA NEW Unconstraint Optimization Algorithm
CB-SARS Comparison-Based Step-Size Adaptive Randomized Search
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