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Abstract 

In spite of numerous clinical studies, there is no consensus on the benefit Heliox mixtures can bring 

to asthmatic patients in terms of work of breathing and ventilation distribution. In this article we use 

a 3D finite element mathematical model of the lung to study the impact of asthma on effort and 

ventilation distribution along with the effect of Heliox compared to air. Lung surface displacement 

fields extracted from computed tomography medical images are used to prescribe realistic boundary 

conditions to the model. Asthma is simulated by imposing bronchoconstrictions to some airways of 

the tracheo-bronchial tree based on statistical laws deduced from the literature. This study 

illuminates potential mechanisms for patient responsiveness to Heliox when affected by obstructive 

pulmonary diseases. Responsiveness appears to be function of the pathology severity, as well as its 

distal position in the tracheo-bronchial tree and geometrical position within the lung.   

 

1. Introduction 

The lung is a complex multiscale system. Furthermore, many in-vivo measurements, especially as a 

function of position within the lung parenchyma, are difficult or impossible to perform. Thus, 

mathematical models can provide a unique understanding of physical phenomena associated with 

fundamental physiology and respiratory disease. In (Berger et al., 2015) and (Pozin et al., 2016) 3D 

lung models were developed and used to study the impact of airway bronchoconstrictions on 

ventilation and pressure distributions within the parenchyma. In this paper we perform in silico 

asthma experiments and focus on the variety of response to an helium-oxygen mixture (Heliox or 

HeO2).  

Helium is a low density inert gas. Heliox has been studied as a means to ease breathing and improve 

ventilation in obstructive lung diseases since the 1930s (Barach, 1935). However, consistent benefit 

demonstrated in randomized clinical trials has yet to follow thus preventing widespread use. For 
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example, a Cochrane review (Rodrigo et al., 2002) concluded that current evidence is insufficient to 

support the use of HeO2 mixtures in the treatment of acute exacerbations of COPD and future 

controlled trials are advocated. Recently, a large trial (16 intensive care units, 6 countries) found that 

HeO2 improves respiratory acidosis, encephalopathy and respiratory rate more quickly than Air/O2 

for COPD patients but does not prevent NIV failure(Jolliet et al., 2016). In (Häussermann et al., 2015) 

healthy controls, moderate to severe asthmatic and COPD patients inhaled HeO2 during exercise. The 

impact on lung function and metabolic cost showed no statistical difference compared to air even 

though in each group there were some responders and non-responders. The authors emphasized the 

need to better understand the influence of disease and disease severity on responsiveness to Heliox.  

There are few modeling attempts to study the effect of breathing HeO2 compared to Air. In (Katz et 

al., 2011) a resistance model accounting for gas density effect on pressure drops in a bifurcation is 

proposed and applied to Heliox mixtures. In (Katz et al., 2014) the impact of breathing HeO2 on 

particle deposition is studied, CFD, in-vivo imaging and bench study suggest deeper deposition 

compared to air. In this paper, we use a numerical modeling approach to give insights on why, for a 

given pathology, some patients respond to HeO2 and some others do not. In the following, 

responsiveness to Heliox is judged based on how the gas helps to decrease work of breathing and 

reduce ventilation defaults compared to air. We use a lung finite element model in which the 

tracheo-bronchial tree and the surrounding tissues are coupled (Pozin et al., 2016). To simulate 

obstructive diseases, some airways can be constricted. Depending on which and how many airways 

are narrowed, we evaluate responsiveness to HeO2. 

2. Model and methods 

2.1. Lung structure 

The lung consists of a porous media, called the parenchyma, supplied with gas through a dyadic 

branching structure, the tracheo-bronchial tree (see Figure 1); each level of branching is called a 
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generation (beginning with 0 for the trachea). Each branch is assumed to be a rigid cylinder. Viscous 

and inertial effects induce energy dissipations through the airways. We use the nonlinear Pedley 

branch resistance model (Pedley, Schroter and Sudlow, 1970) to account for pressure drops within a 

bifurcating pipe:  
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where         ,   and   are respectively the branch length and radius,     is the Reynolds number 

defined by    
     

    
 with   the fluid density,    its dynamic viscosity,   the flow rate through the 

branch and the laminar Poiseuille resistance is       
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 is associated with 

inertial losses, sensitive to the fluid (gas) density. In the following, the extra-thoracic component is 

neglected.  

The parenchyma is assumed to be an isotropic elastic medium occupying a domain Ω. Following 

(Cazeaux and Grandmont, 2012) we treat it as a homogenized material characterized by effective 

macroscopic mechanical parameters. As tidal breathing is slow we choose to neglect tissue viscosity. 

The related linearized stress tensor is given by: 

 

                                 

 

where   and   are the effective Lamé parameters,   is the parenchyma displacement defined in the 

reference state domain  , and   the linear strain tensor defined by      
 

 
       

     

 

Note that (1) has been designed for a given angle and at inspiration only. In fact as shown in 
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(MY.Kang, J.Hwang and JW.Lee, 2011), it can be used independently of the angle. Besides, we choose 

to use it at expiration as well. As in tidal breathing displacements are moderate, a large deformation 

non linear constitutive relation may be more appropriate for other respiratory regimes such as 

spirometry and mechanical ventilation.  

2.2. Tree-parenchyma coupled model 

The tree and parenchyma are coupled through the approach introduced in (Pozin et al., 2016). 

Neglecting gravity, the momentum equation of the system is: 
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where      is the parenchyma density and           is the tree-parenchyma coupling term given by 

 

                      

 

Let    be the sub-region of   that is fed in gas by the     tree exit;       is the piecewise constant 

function defined by 

 

                            

  

(3)  

where          and     are the pressure at the trachea entrance and at the     tree exit, respectively. 

The action of the tree on the parenchyma is similar to an apparent pressure (see Figure 1), the greater 

the pressure drop along the path to an exit, the greater the resistance to the fed region’s volume 

variations.  

To complete the problem, the lung surface motion is prescribed as the boundary condition to 

Equation (2) (see Section 2.3).  The same global ventilation scenario is thus imposed, whatever the 
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diseased state and inhaled gas. 

Then to evaluate the benefit of Heliox compared to air we propose local 3D quantities as well as 

global average markers to account for respiratory effort. We define a pressure distribution within the 

parenchyma called local effective pressure     . It consists in an elastic component          

associated with the elastic recoil and a component       associated with the tree.  It is given at time   

by: 

 

                                                                  

 

(4)  

where   is the parenchyma bulk modulus that is a function of the Lamé parameters. In this definition 

shear stress and inertia are neglected.  We also define the global average quantities 
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which can respectively be seen as a measure of the instantaneous effort needed to deform an elastic 

material along the displacement field  , and the effort needed to induce the corresponding flow 

distribution through the tree, respectively. 

The work   of      over a time period T is defined as: 
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where   is the parenchyma velocity field defined by   
  

  
 .  

2.3. Patient-specific structural elements 

 A high resolution computed tomography (HRCT) image, at mean lung volume (MLV), for a single 

subject (Greenblatt et al., 2014) was the basis to build a patient-specific tree and the parenchyma 

geometry. The segmented upper airways and lung envelope were the initial conditions used to build 

a lobar space-filling tree following the methodology described in (Montesantos et al., 2016). From 

the lung envelope a 3D mesh is built using Meshlab (Meshlab - developped with the support of 3D-

CoForm project - meshlab.sourceforge.net, n.d.) and Gmsh (Geuzaine and Remacle, 2009). Using 

Deformetrica (Durrleman et al., 2014) we register a surface displacement field to map the mean to 

the total lung capacity volume HRCT-based envelopes given in (Greenblatt et al., 2014). To generate 

a tidal look-alike breathing profile, this motion is bounded and sinusoidal dynamics are imposed. The 

resulting displacement is prescribed as boundary condition (BC) of the model.  

2.4. Modeling disease of the tracheo-bronchial tree 

Asthma and COPD affect the tracheo-bronchial lung tree structure. Inflammation can induce airway 

constrictions (Montaudon et al., 2009) (Kotaru et al., 1985) up to closure (Montesantos et al., 

2013)(Aikawa et al., 1992). While some studies argue these pathologies mostly occur in small airways 

(Burgel, 2011) (Carr et al., 1998), autopsies on patients who died from status asthmaticus (Dunnill, 

1960) (Aikawa et al., 1992) and CT scans of diseased subjects have shown upper airways can also be 

affected (Montesantos et al., 2013).  Little quantitative data is provided in the literature about which 

particular airways are affected in asthma and to what extent. Some studies show slight but frequent 

airway narrowing. In (Aikawa et al., 1992) measured lumen area exhibited radius decreases of about 

10% on average compared to controls. In (Montaudon et al., 2009) CT measurements showed 

reductions of 10 to 25%. In addition to those small constrictions, (Carr et al., 1998) demonstrates the 

presence of airway closures in asthmatic patients. In (Montesantos et al., 2013) segmented images of 
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asthmatic patients indicate that severe stenoses can completely occlude airways. Non-published data 

from this study give the number of closures per segmented tree. 

To simulate a bronchoconstriction with diameter reduction ratio   (simply referred as “ratio” in the 

following) we divide the diameter of the affected branch by   ranging from   (healthy) to    (airway 

closure). Furthermore, based on the literature data we simulate an asthma attack with constriction 

ratios generated according to a log-normal law L with average         , standard deviation 0.3 and 

within bounds      . We also impose          severe constrictions (plugs),          being an integer 

randomly selected with uniform law in the interval       . Plugs are applied at random positions 

and with constriction ratios randomly selected with the uniform law in the interval       .  In order 

to compare the effect of severe and moderate obstructions, we can impose          severe plugs 

only, or, alternatively, only divide all the airways diameters by ratios computed following L. Resulting 

trees will be qualified respectively as “plug only” and “plug free”. 

 

3. Results and discussion 

In this section lung ventilation simulation results and breathing effort are provided. Local and global 

differences between healthy and pathological cases are explored. We first simulate a single 

bronchoconstriction on an upper airway and study the effect of breathing HeO2 compared to air on 

both ventilation and  . We then analyze how responsiveness to HeO2 evolves depending on which 

region of the lung is affected and when smaller airways are constricted. After having described the 

physical principles on simplified bronchoconstrictions, asthma attacks are introduced following 

Section 2.4.  

Simulations were performed on a left lung geometry model. A convergence analysis led to a 51 495 

tetrahedral mesh. Mechanical properties are assumed to be homogeneous and are set within the 

ranges provided in (Epstein and Ligas, 1990): Young’s modulus           and Poisson ratio 

      where   and   are linked to the Lamé parameters by   
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Parenchyma density is             . The tree contains ten generations leading to 477 exits. Each 

exit airway resistance includes an additive term to account for the remaining sub-tree resistance.  

The lobe nomenclature is: LU=Left Upper, LL=Left Lower. Branches feeding lobes LU and LL are called 

the “LU branch” and “LL branch”, respectively. Each region “Reg” contains two sub-regions “RegR” 

and “RegL” served by a “RegR branch” and a “RegL branch” respectively. If not specified, the 

breathing period is 4s, the reference state lung volume is 1.04L and maximum volume expansion is 

0.23L. Air density and viscosity at 37°C are respectively 1.125 kg.m-3 and 18.95 10-6 Pa.s, the HeO2 

mixture contains 78%He/22% O2, density is 0.434 kg.m-3 and viscosity is 22.56 10-6 Pa.s. As stated in 

Section 2.3, a displacement BC is applied.  The overall lung volume evolution is thus imposed and, if 

not specified, identical for all the simulations. 

 

3.1. Impact of a bronchoconstriction 

In this section a bronchoconstriction with varying ratios is imposed on the LU branch. Lobar volume 

expansions are plotted for both air and HeO2 in Figure 2.A and 2.B. First a healthy case is simulated 

(Figure 2.A), volumes evolve in phase and lobar ventilation is not affected by the inhaled gas, inertial 

effects are negligible. In Figure 2.B are the results for a bronchoconstriction with ratio 7 applied to 

the LU branch. Lobe LU expands less and does not expel all the gas it contains, gas trapping is typical 

of asthma and COPD (Laurent et al., 2000). Ventilation of the diseased region is improved when 

breathing HeO2 compared to air. Indeed, velocity in the constricted airway, and hence inertial effects, 

are increased because of the diameter reduction. This effect is all the more important when the gas 

density is high (see (1)) so resistance to Air is higher than resistance to HeO2. Finally, in order to 

breathe a given amount of gas, HeO2 flow results in lower pressure drops than air making it easier to 

breathe. For a given lung surface displacement, gas distributes preferentially in regions where it goes 

more easily so lobe LL is more ventilated. In Figure 2.C and Figure 2.D,          and      , are plotted. 

In the healthy case (Figure 2.C),           is much greater than      . Regarding ventilation effort, 

efforts are negligibly changed when inhaling HeO2. In Figure 2.D a bronchoconstriction with ratio 5 is 
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applied to the LU branch. This ratio was chosen for representation because it emphasizes most 

pressure differences between healthy and constricted configurations while a factor 7 exhibited a 

higher gap for ventilation. Component       is no longer negligible compared to         . Breathing 

HeO2 is clearly easier.  

Figure 3.A shows contour plots of the relative volume expansion (see 2.2) on an interior surface of 

the lung at time 1.68s for both gases in a healthy case and for a bronchoconstriction with ratio 7 

applied on the LU branch. We first note that volume expansion is heterogeneous and greater at the 

base than the apex. Indeed the diaphragm is more active than the ribs during tidal breathing. As 

already observed in Figure 2.A, the ventilation distribution is not affected by the gas in the healthy 

model. In the pathological situation, the LU lobe is less expanded, and breathing HeO2 mitigates the 

ventilation heterogeneity. In Figure 3.B are plots of        as defined by (4), at time 1s. The local 

effort in the diseased region is reduced with HeO2, consistent with Figure 2.B. 

Depending on the pathologic severity, response to HeO2 varies. Figure 4.A shows the evolution of the 

LU lobe volume amplitude as a function of the bronchoconstriction applied to the LU branch; for 

both gases. For every ratio the LU lobe is better ventilated with HeO2 than with air. The more the 

diameter reduction, the more the inertial effects and the higher the ventilation difference between 

both gases, up to 27% for tested cases. In Figure 4.B,   over one respiration cycle is studied. Up to a 

ratio 7, it appears easier to breathe HeO2 than air. For higher ratios the difference between the two 

gases is inversed. As a function of the pressure drop along the tree,   is a balance of resistances and 

flows. As the constriction gets more severe, inertial effects are increased so the resistance to air flow 

increases more than the resistance to HeO2. Concurrently to the resistance ratio decrease, the HeO2 

to air flow rate ratio increases. Thus, after an interval of constrictions where W is lower for HeO2, s it 

becomes comparable for the two gases and eventually W is higher for HeO2. Note that the total 

volume variation is imposed, whatever the effort it takes to reach; so for strong ratios the system 

may exhibit non-physiological efforts. 
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As a conclusion, responsiveness to HeO2 depends on the pathologic severity. A low density gas helps 

reducing   if the pathology is not too severe and improves ventilation of diseased regions in all 

studied cases. However, this model does not include a resistance through the extra-thoracic region 

where inertial losses may be sufficient to make HeO2 consistently easier to breath than air (Sandeau 

et al., 2010). 

 

3.2. Impact of the regional position 

In this section we study how the regional position of the pathology within the lung influences the 

responsiveness to HeO2. To do so we compare the ventilation in three lung regions LURL, LULR, LULL 

for varying reduction ratios. Those regions have the same reference state volume but different 

expansions over the breathing cycle (Figure 5). 

In Figure 6 we see that for high reduction ratios the resulting flow rates are too low to induce inertial 

effects so HeO2/air differences become insignificant. Note that in the absence of inertial effects 

pressure drops are purely viscous; since air viscosity is lower, the relative difference becomes 

negative though absolute values are close. For intermediate ratios, the difference between both 

gases increases with regional expansion because inertial effects are higher. 

As a conclusion responsiveness to HeO2 is highest for intermediate pathology severity and depends 

on the position within the lung. 

3.3. Impact of the generational position 

As noted before, responsiveness to HeO2 is higher for higher flows. From proximal to tidal regions, 

flows decrease as they distribute within the tree. Depending on which generations are affected by 

the pathology, responsiveness to HeO2 may be different. In this section we apply a 

bronchoconstriction on all the airways of the LU lobe belonging to generation  , for        . For 

each “diseased generation”, ventilations obtained with both gases are compared for varying ratios. 
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Figure 7 shows two different regimes. When proximal generations (2 and 3) are affected, 

responsiveness to HeO2 increases with the bronchoconstriction ratio. For more distal generations 

responsiveness increases with constriction severity, but then decreases as flows become too slow to 

induce inertial effects. Starting at generation 8, HeO2 brings no benefit compared to air. As a 

conclusion, in case of bronchoconstriction, HeO2 seems to be beneficial when upper airways are 

affected, but this is not the case as the pathology reaches more distal areas, here after generation 8. 

3.4. Asthma attack simulation 

In previous sections one or more localized bronchoconstrictions with diameter reduction ratios 

varying from 2 to 10 were simulated. Here we simulate an asthma crisis with a combination of severe 

obstructions and lower radius changes, as described in 2.4. Following this process fifty “asthma 

attack trees” are built. To compare the effect of severe and moderate obstructions, “plug free” and 

“plug only” related trees are simulated (see 2.4). 

During a crisis patients may panic and experience breathing difficulties and tend to breathe faster 

with lower volumes, even though slow breathing is advised (Thomas and Bruton, 2014). To study the 

effect of breathing HeO2 and the impact of respiration frequency we perform the simulations listed in 

table 1. Results are presented in Figure 8 and Figure 9. 

In the healthy case, HeO2 does not ease breathing. For asthmatic attack models, there is high 

breathing effort variability. Heliox brings a 24% improvement on average and up to 30%. Note that 

  is increased in average by  a factor 6.7 from healthy cases to asthma when breathing air but by a 

factor 5.2 when breathing Heliox.  Variability is reduced when only moderate bronchoconstrictions 

are simulated but  Heliox does perform better than air in both “plug free” and “plug only” 

configurations. Note that on average breathing is harder with numerous moderate plugs than with a 

few severe ones, but variability is much higher in the latter case. This is consistent with the results in 

previous sections. 

In the 2 second breathing period case (so-called “T2”), breathing is faster and shortened. In this 

configuration, flows are increased, inertial effects are more important and Heliox reduces   over 
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one period by 23%. A similar reduction is observed in the 4 second breathing period “T4” case, but in 

terms of energy spent per unit of time, Heliox is two times more beneficial in the fast breathing case. 

It also appears that breathing air two times more slowly brings more profit regarding effort reduction 

than breathing HeO2 at the same pace. 

A Kolmogorov-Smirnov test was performed and showed no statistical differences between the gases. 

That is, on average there is no statistical benefit but there are responders to HeO2 that do benefit. 

4. Conclusion 

This study provides insights on respiratory diseases in the form of bronchoconstrictions and their 

effect on ventilation distribution and effort together with Heliox responsiveness. We focus on why 

some patients might respond to HeO2 and others do not. Low density mixtures can be beneficial 

compared to air when flows within the tree exhibit marked inertial effects. This is especially true 

when constricted airways are in proximal generations. Simulating localized constrictions provides a 

physical understanding of the effects leveraging responsiveness to HeO2. There is a range of 

constriction ratios, where HeO2 is most beneficial, and this range depends on the regional and 

generational positions. Asthma was then simulated based on the geometrical variability reported in 

the literature. The work of breathing is multiplied in average by a factor 6.7 from health to asthma 

when breathing air, and by a factor 5.2 when breathing heliox. During an asthma crisis, breathing can 

be volume restricted and frequency increased; Heliox mixtures prove to be more helpful in that case. 

Slow breathing can be a more efficient way than HeO2 to decrease efforts and improve ventilation 

distribution. These findings may help diagnose potential responders based on their tracheo-bronchial 

morphometry. 
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Figure 1: The parenchyma occupies a domain Ω, fed in gas through a dyadic tree structure. This 

domain is subdivided into non-intersecting regions Ωi, each of them being supplied through the ith 

tree exit. Green arrows represent the apparent pressure applied on terminal region Ω1 due to the 

coupling with the tree. .......................................................................................................................... 18 

Figure 2: Lobar ventilation (A and B) and Pelastic (eqn. (5)) and Ptree (eqn.(6)) efforts (C and D) through a 

sinusoidal respiration cycle for both air and HeO2 in a healthy situation (A and C) and when a 

bronchoconstriction is applied to LU branch (B: ratio 7, D: ratio 5). See the text for the ratio choices.

 ............................................................................................................................................................... 19 

Figure 3: Left lung slice from basis to apex representing: (A) the relative volume expansion        in 

a healthy case and when a bronchoconstriction with ratio 7 is applied to LU branch, for both Air and 

HeO2 at time 1.68s, (B) the local pressure      defined by (4) in a healthy case and when a 
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Figure 4: Bronchoconstriction applied on LU branch with varying ratios, evolution of: (A) LU lobe 
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Figure 5: Three comparable regions belonging to the left lung are picked (A). They have the same 
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Figure 1: The parenchyma occupies a domain Ω, fed in gas through a dyadic tree structure. This domain is 
subdivided into non-intersecting regions Ωi, each of them being supplied through the i

th
 tree exit. Green 

arrows represent the apparent pressure applied on terminal region Ω1 due to the coupling with the tree. 
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Figure 2: Lobar ventilation (A and B) and Pelastic (eqn. (5)) and Ptree (eqn.(6)) efforts (C and D) through a 
sinusoidal respiration cycle for both air and HeO2 in a healthy situation (A and C) and when a 
bronchoconstriction is applied to LU branch (B: ratio 7, D: ratio 5). See the text for the ratio choices. 
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Figure 3: Left lung slice from basis to apex representing: (A) the relative volume expansion        in a 
healthy case and when a bronchoconstriction with ratio 7 is applied to LU branch, for both Air and HeO2 at 
time 1.68s, (B) the local pressure      defined by (4) in a healthy case and when a bronchoconstriction with 

ratio 5 is applied to LU branch, for both Air and HeO2 at time 1s. See the text for the ratio choices. 
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Figure 4: Bronchoconstriction applied on LU branch with varying ratios, evolution of: (A) LU lobe volume 
maximum amplitude over a breathing period for both Air and HeO2, and the relative difference between 
both gases, (B)   (defined by eqn. (7)) over a breathing period for both Air and HeO2. 
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Figure 5: Three comparable regions belonging to the left lung are picked (A). They have the same reference 
state volume (B) but different volume expansions over the breathing cycle (C). 
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Figure 6:  Ventilation in three lung regions. Volume amplitude with Air and HeO2 for varying ratios (A) and 
relative difference between both gases for each region (B). 
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Figure 7: Bronchoconstrictions are applied to all the airways of a given generation belonging to LU lobe. Each 
curve corresponds to a different “diseased generation” and shows the maximum inhaled volume relative 

difference between both gases (
                  

        
) for varying ratios. 
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table 1: simulations performed on the asthma model. We generate fifty “asthma attack trees”, for each we 
run breathing simulations with sinusoidal displacement boundary conditions, time period is T and volume 

expansion along the cycle is Vfrc. To simulate a crisis, we consider reduced Vfrc  and  T. To evaluate the 
benefit of slow breathing we take a longer period, this is done for air only since Heliox has little impact for 
low flows. An “asthmatic” tree contains both severe and moderate bronchoconstrictions as described in 2.4. 
Tree qualified as “plug only” and “plug free” respectively contain only severe bronchoconstrictions and only 
diffuse moderate bronchoconstrictions (see 2.4). “Healthy” means no bronchonconstrictions. Blue and red 
refer respectively to Figure 8 and Figure 9. 
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Figure 8: average and standard deviations of the   over a respiration cycle in different configurations: one 
healthy patient breathing air and HeO2, fifty asthmatic configurations ith bronchonconstrictions simulated 
according to 2.4, fifty patients with only diffuse moderate bronchoconstrictions (plug free) and fifty patients 
with only severe bronchoconstrictions (plug only). 
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Figure 9: average and standard variations of the   over a respiration cycle in different configurations: one 
healthy patient breathing air and HeO2, fifty asthmatic patients with bronchoconstrictions simulated 
according to 2.4 breathing air and HeO2 with time period 4s and volume expansions 0.23L (T4), the same fifty 
asthmatic patients breathing air and HeO2 with time period 2s and volume expansions 0.16L (T4), the same 
fifty asthmatic patients breathing air with time period 8s and volume expansions 0.23L (T8). 

 


