
HAL Id: hal-01470328
https://hal.inria.fr/hal-01470328

Submitted on 17 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance Modeling of the Middleware Overlay
Infrastructure of Mobile Things

Georgios Bouloukakis, Ioannis Moscholios, Nikolaos Georgantas, Valérie
Issarny

To cite this version:
Georgios Bouloukakis, Ioannis Moscholios, Nikolaos Georgantas, Valérie Issarny. Performance Mod-
eling of the Middleware Overlay Infrastructure of Mobile Things. IEEE International Conference on
Communications, May 2017, Paris, France. �hal-01470328�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/80415575?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01470328
https://hal.archives-ouvertes.fr

Performance Modeling of the Middleware Overlay
Infrastructure of Mobile Things

Georgios Bouloukakis∗, Ioannis Moscholios†, Nikolaos Georgantas∗, Valérie Issarny∗
∗MiMove Team, Inria Paris, France.

firstname.lastname@inria.fr
†Dept. of Informatics & Telecommunications, University of Peloponnese, Tripolis, Greece.

idm@uop.gr

Abstract—Internet of Things (IoT) applications con-
sist of diverse Things (sensors and devices) in terms
of hardware resources. Furthermore, such applications
are characterized by the Things’ mobility and multiple
interaction types, such as synchronous, asynchronous,
and streaming. Middleware IoT protocols consider the
above limitations and support the development of ef-
fective applications by providing several Quality of
Service features. These features aim to enable appli-
cation developers to tune an application by switching
different levels of response times and delivery success
rates. However, the profusion of the developed IoT
protocols and the intermittent connectivity of mobile
Things, result to a non-trivial application tuning. In this
paper, we model the performance of the middleware
overlay infrastructure using Queueing NetworkModels.
To represent the mobile Thing’s connections/discon-
nections, we model and solve analytically an ON/OFF
queueing center. We apply our approach to Streaming
interactions with mobile peers. Finally, we validate our
model using simulations. The deviations between the
performance results foreseen by the analytical model
and the ones provided by the simulator are shown to
be less than 5%.

Keywords—Middleware; Queueing Networks; Mobile
Connectivity; Internet of Things

I. Introduction
The mobile Internet of Things (IoT) comprises sen-

sors and actuators that are heterogeneous with different
operating (e.g., operating platforms) and hardware (e.g.,
sensor chip types) characteristics, hosted on diverse Things
(e.g., mobile phones, vehicles, clothing, etc.). To support
the deployment of such devices, major tech industry actors
have introduced their own APIs and protocols to deal
with the: i) limited hardware (energy, memory) resources,
ii) low bandwidth, iii) noticeable underlying protocol
overhead, etc. Existing (IP-based) IoT protocols, such as
CoAP, MQTT, DPWS, XAMPP and ZeroMQ [1], [2], are
being used today to face the above IoT limitations. Each
protocol is placed between the application and transport
layer, running on top of either the reliable TCP or the
unreliable UDP, and implements its own mechanisms (e.g.,
additional retransmissions) to provide several guarantees
to the application layer.

To guarantee specific response times and data delivery
success rates between mobile Things, each protocol pro-
vides several Quality of Service (QoS) features. Initially,
it inherits different characteristics from the underlying

transport mechanisms. Subsequently, it supports different
modes of message delivery. For instance, CoAP offers
a choice between “Confirmable” and “Non-Confirmable”
whereas MQTT support three choices (“Fire and forget”,
“Delivered at least once” and “Delivered exactly once”) [3],
[4]. Depending on the selected mode, response times and
delivery success rates differ significantly. Furthermore, the
devices that deploy such protocols can be mobile (e.g.,
smartphones with embedded sensors, wearable devices,
etc), which results to higher response times due to the
intermittent connectivity. The latter is due to resource
saving purposes or it depends on the network coverage and
capacity of a specific area. Finally, some IoT applications
may need to guarantee the freshness of provided informa-
tion by applying a (limited) lifetime period.

Under these constraints, an application designer should
be able to analyze and configure certain system aspects
(middleware QoS features, network and user connectivity,
message lifetime period, allocated system resources) in
order to guarantee the appropriate response time and de-
livery success rate between mobile Things. To investigate
such features, it is essential to model the performance of
middleware protocols by considering the above constraints.

In [2], [4], [5] the trade-off between response times and
delivery success rates by using key IoT protocols is evalu-
ated. However, such methods are protocol-specific and they
limit the application designer upon the introduction of a
new IoT protocol. Several existing efforts concerning the
design and evaluation of mobile systems aim at guarantee-
ing QoS requirements under several constraints (e.g., inter-
mittent availability, limited resources, etc). The evaluation
methods used are derived mainly from the field of Queue-
ing Theory. For instance, 2-Dimensional (2-D) Markov
chains and quasi-birth-death (QBD) processes have been
used in [6]–[9] to model the changing connectivity of mobile
users when offloading computation or data to the cloud
through either 3G or WiFi connections. However, actually
applying these methods remains a complex and tedious
task for application designers. On the other hand, regard-
ing middleware protocols, Queueing Petri Nets (QPNs)
have been used in [10] for accurate performance prediction.
However, QPNs, while highly expressive in representing
parallelism, are suited for small-to-moderate size systems
and intake considerable computational resources [11].

In this paper, we model the performance of middle-
ware protocols by relying on Queueing Network Models
(QNMs) [12], [13]. QNMs have been extensively applied

Fig. 1. Application/Middleware Overlays and physical network

to represent and analyze communication and computer
systems and they have been proved to be simple and at
the same time powerful tools for application designers with
regard to system performance evaluation and prediction.
Based on QNMs, middleware nodes (clients, servers, bro-
kers, etc) are represented as queues, called service centers
or queueing centers, and the exchanged messages as jobs
served. In this work, we analyze a service center that
represents an intermittently connected mobile Thing. This
is modeled explicitly as an “ON/OFF queueing center”
and is related to the Thing being either connected (ON) or
disconnected (OFF). By analyzing this queueing center, we
are able to derive useful performance metrics and evaluate
the specific middleware platform that incorporates it. The
key contributions of this work are:

– A methodology to model middleware protocols, which
are used for the development of mobile IoT applica-
tions.

– An extensive analysis and performance metrics of
the “ON/OFF queueing center”, which can then be
used as separate component inside queueing networks.
Hence, we enrich the existing bibliography on QNMs
and their solutions.

– A queueing network that models the performance of
reliable Streaming middleware protocols.

– The validation of the proposed model via simulation.

The rest of this paper is organized as follows: Section II
defines the overlay infrastructure introduced by Middle-
ware protocols. In Section III, we provide the theoretical
analysis of the “ON/OFF queueing center”. A methodology
to model the end-to-end message delivery of Streaming
interactions is provided in Section IV. Finally, comparison
with simulations is considered in Section V followed by
conclusions in Section VI.

II. Middleware Overlay Infrastructure
In a typical IoT application scenario, mobile devices

with embedded sensors (mobile peers) interact with each
other, or they provide feedback to a centralized control
center. Middleware protocols are built on top of common
transport-level protocols (e.g., UDP, TCP) and they have
introduced an additional layer. In this work, we focus
on IP-based middleware protocols. Thus, we follow the
TCP/IP model, where middleware protocols are placed
between the application and transport layers.

Each middleware protocol implements its own mecha-
nisms (e.g., additional retransmissions) in order to provide

�������

������	
��

������������

���
�����
��������

������������

�������

�

�

�������

�������

������	
��

������������

�����
���������

�������������

�������

�

�

�������

���

����
��
�	��

��
����

���

���

��

��

��

��

��

��

����������	
������	�
������������

�
����	���������
����	��
���

������������	
����
��
����������	 ������������	

Fig. 2. Mobile peers’ connectivity behaviour

several guarantees to the application layer. Moreover, it is
possible to introduce some additional intermediate nodes
(e.g., a broker node in pub/sub protocols) in order to de-
couple the interactions between mobile Things. Depending
on the role of each node (acting as server/producer/bro-
ker), they communicate directly through TCP or UDP
sockets and they constitute the overlay network.

As depicted in Fig. 1, on the upper level, application
(app) layer, Things interact with each other by relying on
the provided features and mechanisms of the underlying
overlay. On the middleware (mdw) layer, messages traverse
the overlay topology based on their content and the specific
middleware. On the lower (physical) lever, messages are
routed through the physical network, which consists of
physical routers and links that connect the middleware
nodes in the overlay topology. Depending on the layer, we
define the mobile peers’ disconnections as follows: i) ap-
plication layer disconnections occur on a voluntary basis
(e.g., to save energy) independently from each app; and
ii) middleware disconnections occur either due to network
issues (e.g., wireless disconnection) or due to the receiver’s
crash/unavailability.

III. Queueing Models
We model the overlay infrastructure of the middleware

layer using simple input and output queues. An input
queue is used to receive and process messages and an
output queue to transmit them. Each queue or queueing
center serves messages through a dedicated server. Each
server supports a specific service demand (time needed to
process or transmit one message) denoted as D. Essen-
tially, each queue is considered to be an M/M/1 queue,
featuring Poisson arrivals and exponential service times.
An M/M/1 queue is a continues queueing center, since
there are no server interruptions when messages are served.
Moreover, an M/M/1 queueing model usually is not the
right model for most computer systems, but studying it
develops the analysis techniques for more flexible models.

Indeed, to tackle with mobile peer’s connections and
disconnections we introduce the ON/OFF queue. Accord-
ingly, we model the app and mdw layer of a mobile sender
by using input and output ON/OFF queues in their local
overlay to transmit messages. If the sender disconnects
(state OFF in Fig. 2), messages remain at the ON/OFF
queue until its next connection (state ON in Fig. 2), in
which are transmitted to: i) the intermediate middleware
nodes (if any exist); or ii) the receiver. A receiver is
modeled as an input M/M/1 queue that receives messages
from the access middleware component(s). Finally, an in-
termediate component (e.g., a broker of a pub/sub system)

�

�

����������	�
	��	�

��
	

�
���

��/���

������

Fig. 3. An ON/OFF queueing node

can be modeled using multiple input and output (M/M/1
or ON/OFF) queues.

An M/M/1 queueing center (qm/m/1) is defined by the
tuple:

qm/m/1 = (λ, λout, D)

where λ is the input rate of messages to the queueing
center, λout is the output rate of messages, and D is the
service demand for the processing of messages.

Based on standard solutions for M/M/1 queues [12], the
time that a message remains in the system (queue+server)
is given by:

Tm/m/1 = D

1 − λD
(1)

A. ON/OFF Queueing Center
As already pointed out, the ON/OFF queue is utilized

to model the local overlay of a mobile sender. In this
section, we provide an extended description, the stated
assumptions, a mathematical model, an extended analysis,
and the performance metrics of the ON/OFF queue.
A.1. Description of the model

An ON/OFF queue represents a system having a single
server, as depicted in Fig. 3. Messages arrive according to
a Poisson process with rate λ > 0, and are placed in a
queue waiting to be “served” (waiting area in Fig. 3). The
ON/OFF queue processes messages through a dedicated
server (server node in Fig. 3). The server supports a spe-
cific service demand (time needed to process one message)
denoted as D, which is exponentially distributed with rate
µ > 0. The service station operates under the First-Come-
First-Served (FCFS) queueing policy.

We assume that the server is subject to an on-off
procedure. That said, it remains in the ON -state for
an exponentially distributed time with parameter θON
(θON = 1/TON), during which it serves messages (if
any). Upon the expiration of this time the server enters the
OFF -state during which it stops working (stops serving
relevant messages) for an exponentially distributed time
with parameter θOFF (θOFF = 1/TOFF).

To model the performance of a component that sends
messages under the effect of the above connectivity, we
introduce the “ON/OFF queueing center”.

A qon/off queueing center is defined by the tuple:

qon/off = (λ, λon/off
out , D, θON, θOFF)

where λ is the input rate of messages to the queueing
center, λon/off

out is the output rate of messages, and D is

the service demand for the transmission of messages (if
any) during TON. The output process λon/off

out is intermit-
tent, because no message exits the queue during TOFF
intervals. Without loss of generality, we make the following
assumption: if TON expires and there is a message currently
being served, the server interrupts its processing and will
continue in the next TON period.

Based on the description above, the probability of the
server to be ON is given by:

Pserver(ON) = θOFF

θON + θOFF
(2)

while the probability to be OFF is expressed as follows:

Pserver(OFF) = θON

θON + θOFF
(3)

A.2. The Analytical Model
The model can be described as a 2-D Markov chain.

The state space diagram for this chain is depicted in Fig. 4.
The states (n, 1) and (n, 0) refer to the case where there are
n messages in the system (queue + server) and the server is
online (ON) and offline (OFF), respectively. Clearly, if the
server is always ON then we have an M/M/1 queue and
the upper part of the 2D Markov chain (which describes
state OFF) does not exist.

Based on this chain, the steady state probabilities Pn,k

(n = 0, 1, ... while k = 0, 1) of the ON/OFF queue do not
have a product-form solution since there are no backward
transitions between the adjacent states (n, 0) and (n−1, 0).
This is expected since messages cannot be serviced while
the server is offline.

The global balance equations of the 2-D Markov
chain have the form (rate into state (n, k) −
rate out of state (n, k) = 0):
State(0,0): θONP0,1 − (λ+ θOFF)P0,0 = 0
State(0,1): θOFFP0,0 + µP1,1 − (λ+ θON)P0,1 = 0
State(1,0): λP0,0 + θONP1,1 − (λ+ θOFF)P1,0 = 0
State(1,1): λP0,1 + µP2,1 + θOFFP1,0 − (λ+ µ+ θON)P1,1 = 0
...

State(n,0): λPn−1,1 + θONPn,1 − (λ+ θOFF)Pn,0 = 0
State(n,1): λPn−1,1 + µPn+1,1 + θOFFPn,0 − (λ+ µ+ θON)Pn,1 = 0
...

The above set of linear equations together with the
normalization condition

∑∞
n=0

∑1
k=0 Pn,k = 1 provide

a solution to all Pn,k. Having determined Pn,k we can
calculate the average number of messages in the system
(server + queue), E(n)on/off , via the formula:

E(n)on/off =
∞∑

n=1
n(Pn,0 + Pn,1) (4)

In the case of the M/M/1 queue the average number of
messages in the system is given by [14]:

E(n) = λ

µ− λ

ρ = λ
µ= ρ

1 − ρ
(5)

0,0 ���

���

� � � �

1,0 2,0 3,0

3,12,11,10,1
� � � �

� � � �

�
��

�
���

�
��

�
���

�
��

�
���

�
��

�
���

� � 1,0

� �

n, 0

, 1
� � �

� � �

�
��

�
���

�
��

�
���

�
��

�
���

� � 1,0

� � 1,1 � � 1,1
���

������

��

������

���

Fig. 4. 2-D Markov Chain

Since the actual service rate of the ON/OFF server is:

µ
′

= µPserver(ON) (6)

We may assume that:

E(n)on/off ≈ λ

µ′ − λ

ρ
′

= λ

µ
′

= ρ
′

1 − ρ′ (7)

Equation (7) underestimates (4) since in (7) we have
not considered the population of messages that arrive in
the system while the server is offline. Since the server
returns to state OFF with probability Pserver(OFF) and
remains offline for TOFF time units, we can assume that
the average number of messages that arrive in the system
while the server is offline is given by λTOFFPserver(OFF) =
ρOFFPserver(OFF) and re-write (7) as follows:

E(n)on/off ≈ ρ
′ + ρOFFPserver(OFF)

1 − ρ′ (8)

Having determined E(n)on/off (either via (4) or in an
approximate way via (8)), we can calculate the average
system time (server + queue), Ton/off , via Little’s law as
follows:

Ton/off =
E(n)on/off

λ
(9)

In Section IV, we utilize the M/M/1 and ON/OFF
queueing centers to model the performance of Streaming
middleware protocols with mobile peers.

IV. Performance Model for Streaming
Interactions

Sensors and actuators usually produce streams of data
which require continuous processing. Middleware Stream-
ing protocols, such as Websockets [15], Dioptase [16],
XMPP [17], etc, support the transmission and processing
of data streams through the peers involved in the inter-
action. Each peer can play either the producer role, which
exposes data sources (e.g., sensor, database) as streams; or
the consumer role, that acquires these streams. Addition-
ally, the IoT is characterized by a network topology that
may be unknown and highly dynamic, due to the mobility
of Things or their short life span.

In this section, we model the performance of reliable
streaming protocols, by taking into account the intermit-

tent connectivity of mobile Things (producers and con-
sumers). Towards this, we use the queueing models defined
in Section III to form the queueing network of Fig. 5, which
is used to model a reliable Streaming one-way interaction.
Such an interaction is used to model the end-to-end delay
of a message since is sent from an app of the producer, until
the message is received by the consumer’s app (we assume
that the required stream session is already established
between the consumer and the producer).

More specifically, multiple apps produce messages on
the producer’s side (app layer). Each app can choose to be
disconnected for energy saving purposes. In case the app is
disconnected, messages are buffered to an ON/OFF queue-
ing center, until its next connection in which messages are
forwarded to the mdw layer. Let λin

app be the input rate
of messages to the app’s ON/OFF queueing center. The
producer’s mdw layer accepts messages from the specific
app and from multiple other apps. Let λin

apps be the input
rate of messages from other apps to the mdw layer.

Reliable middleware protocols build on top of TCP [18].
This is the case when the producer and consumer set-
up or shut-down a reliable end-to-end connection via 3-
way or 4-way handshake, respectively. After the initial 3-
way handshake, a session between the peers starts and a
logical connection state is created. During the lifetime of a
session, intermediate routers can crash and reboot, wireless
disconnections can occur, servers may shut down, etc, and
the session may become broken. There are several ways to
detect such dropped connections in order to re-establish
a TCP session. To model the message transmission of
reliable Streaming protocols we use an ON/OFF queueing
center on the producer’s mdw layer, where the ON/OFF
time periods follow the TCP connections/disconnections.
Let Dtr be the service demand for each message to be
transmitted (i.e., the delay introduced by the physical
layer) to consumers.

Finally, on the consumer’s side, messages arrive to the
mdw layer through an M/M/1 queueing center and are dis-
tributed to multiple apps (e.g., an android app). Let λout

c
be the output rate of messages to multiple apps. Except for
the messages which arrive from the corresponding server,
the mdw layer can accept messages from other servers. Let
λoth be the rate of messages from other servers/producers.

Based on the queueing network of Fig. 5, (1) and (9),
the end-to-end response time (Tpc) of a message sent from
a producer’s app to the consumer’s app is given by:

Tpc = T
on/off
p−app + T

on/off
p−mdw + T

m/m/1
c−mdw (10)

�����������

�������� ���	�
��

���������� �	
������ �	
������ ���������

�
���

��

�
�

���

�������������	
��

�������

�
��

�������������	
��

�������

�
��

��
��
�
�
��
��

	

�
�

���������	�
�������

���� ���� �
�������

����

���������	�
�������

����

�
��	

�
���

��

�
��

Fig. 5. Queueing Network for Streaming one-way reliable interactions.

where T
on/off
p−app is the response time introduced due to

the producer’s app layer disconnections, T on/off
p−mdw is the

response time introduced due to the middleware discon-
nections, and Tm/m/1

c−mdw is the response time introduced due
the to processing of the incoming messages at the consumer
’s mdw layer.

V. Experimental Results
A. Simulation of the Queueing Models

We have developed a simulator that implements our
queueing models. Our simulator, MobileJINQS1, is an
open-source library for building simulations encompassing
constraints of mobile applications. MobileJINQS is an ex-
tension of JINQS, a Java simulation library for multiclass
queueing networks [19]. JINQS provides a suite of primi-
tives that allow developers to rapidly build simulations for
a wide range of QNMs [12].

MobileJINQS retains the generic model specification
power of JINQS, while it provides additional features
of interest to mobile or other systems such as: (i) life-
time limitation for each customer entering a queue, (ii)
intermittently available (on-off) queue server or server
with variable service rate over time to represent mobile
peers’ behavior, and (iii) input flow with variable customer
arrival rate over time to represent real input dataflow
traces. Thus, an application designer is able to assign
lifetimes, ON/OFF intervals, variable service rates and
arrival rates following well-known probability distributions
or real traces.

B. Analytical vs. Simulated Response Time
We utilize MobileJINQS to implement the ON/OFF

queueing center described in subsection III-A. Mobile peers
connect and disconnect in the scale of seconds/minutes
to send/receive messages, depending on the application
context. To represent such behavior, we set the ON/OFF
system parameters as follows: i) the server remains in the
ON and OFF states for exponentially distributed time
periods TON = TOFF = 20/40/60 sec, thus, the server
changes its state every 20, 40 and 60 sec; ii) messages are
processed with a mean service demand D = 0.125 sec;
iii) there is sufficient buffer capacity so that no messages
are dropped; and iv) messages arrive to the queue with
a mean rate varying from 0.05 to 4 messages per sec
(λmax = 4 messages/sec). By applying λ rates greater
than 4 messages/sec, the system saturates. Using the above

1xsb.inria.fr/d4d#mobilejinqs

Arrival Rate (λ)

0 0.5 1 1.5 2 2.5 3 3.5 4

R
e
sp

o
n
se

 T
im

e
 (

se
c)

0

50

100

150

200

250

300

350

400

450

500

Sim : T
 ON

 = T
 OFF

 = 20 sec

Analytical : T
 ON

 = T
 OFF

 = 20 sec

Sim : T
 ON

 = T
 OFF

 = 40 sec

Analytical : T
 ON

 = T
 OFF

 = 40 sec

Sim : T
 ON

 = T
 OFF

 = 60 sec

Analytical : T
 ON

 = T
 OFF

 = 60 sec

Fig. 6. Analytical vs. Simulated Response Times at the ON/OFF
queueing center

settings in our simulator, we run the system and derive the
simulated curve of the mean response time for several λ
rates as depicted in Fig. 6. The analytical results obtained
by (9) and depicted also in Fig. 6, show the high accuracy
of (9). For a service center where its server is always ON,
the system does not saturate if λD < 1. However,
for the ON/OFF queueing center the system does not
saturate if 1 − ρ

′
< 1 as indicated by the denominator

of (8). Thus, this confirms that λmax = 4 messages/sec
for this example. Indeed, by comparing the curves for
the simulated and analytical response times, we notice
small differences for rates equal to or higher than 3.5
messages/sec. This is acceptable, since the system is close
to saturation at these rates.

C. End-to-end Response Time Evaluation

In Section IV, we model the performance of Streaming
interactions by incorporating the intermittent connectivity
of mobile peers. For our experimental setup, we use the
end-to-end queueing network of Fig. 5 to evaluate the re-
sponse time from a producer’s app to a consumer. Thus, we
utilize our proposed analytical solutions to study multiple
application scenarios by varying the following parameters:
λ, TON, TOFF and D.

At the input of all the queueing centers, the messages
arrive with rate λin

app (which is the rate of messages
produced the at producer’s app layer ON/OFF queue).
Arrival rates from multiple other apps are isolated and not
considered to the utilization of the servers for each queue.
Due to lack of space, details about this isolation are not
included in this paper.

To parameterize the queueing network, we use the
parameters below. At the app’s layer ON/OFF queueing

Arrival Rate (λ)
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

R
e
sp

o
n
se

 T
im

e
 (

m
in

)

10

20

30

40

50

60

70

Simulation

Analytical

Fig. 7. Analytical vs. Simulated end-to-end response times for
Streaming one-way interactions

center, the app is connected on average for TON = 60
sec to produce messages, and disconnected for TOFF =
10 min to save energy resources to their device or to
reduce the consumption of their monthly data plan. To
process the produced messages and forward them to the
mdw layer when connected, we apply a service demand of
Dpr = 0.0625 sec. The applied service demand is very low,
since the app’s layer queue is used locally only to forward
messages to the mdw layer.

The average middleware connection/disconnection pe-
riods depend on the type of user mobility. For example,
these periods differ for pedestrians, vehicular, rail and
metro passengers. In [20], we conclude that connectivity
patterns of a path depend on both the network coverage
and crowdedness of the metro the ON/OFF periods are in
the scale of 1-3 min. Thus, at the producer’s mdw layer
ON/OFF queueing center, the mdw connects in average
for TON = 292 sec and disconnected for TOFF = 78 sec.
To transmit messages to the corresponding consumer, we
apply service demand Dtr = 0.125 sec. The applied service
demand can be varied, depending the network type and the
distance of the peers. Finally, at the consumer’s mwd layer
M/M/1 queueing center we apply service demand Dpr =
0.0625 sec for the processing of incoming messages.

Using our simulator, we create the queueing network
as depicted in Fig. 5 and apply the above parameters.
Furthermore, we apply the same parameters to (10). Sub-
sequently, we run the queueing network for several arrival
rates (0.2 - 1.2 msg/sec). Fig. 7 shows the resulting simu-
lated and analytical response times in minutes. Confidence
intervals of the simulation results are found to be very
small (less than two order of magnitude) and are not
presented in the figures. High differences are noticed when
the system is close to its saturation (λin

app = 1 - 1.2
msg/sec). It is worth noting that the queueing network
saturates because of the producer’s app layer ON/OFF
queue. Thus, using our approach, system designers are able
to identify such bottlenecks.

VI. Conclusions
In this work, we model the overlay infrastructure of IoT

middleware protocols using QNMs. QNMs are employed
to provide an analytical solution for several performance
metrics. To include the intermittent connectivity of mobile
Things, we introduce the “ON/OFF queueing center”.
The ON/OFF queueing center is modeled as a separate
queueing center, which we incorporate within a queueing
network for Streaming interactions. We then validate the
model via simulation. The analytical results obtained by

the proposed model are highly satisfactory compared to
simulation, proving the efficacy of our work. In future, we
intend to extend this model by: i) applying time-to-live
lifetime periods to each published message; ii) modeling
unreliable protocols as well; and iii) introducing IoT pro-
tocols that follow other interaction styles, such as Clien-
t/Server, Publish/Subscribe and Tuplespace. Moreover, we
aim to validate our model using real-word traces.

Acknowledgement
This work is partially supported by the associate team

ACHOR and the H2020 project CHOReVOLUTION.

References
[1] V. Karagiannis et al., “A survey on application layer protocols

for the internet of things,” Transaction on IoT and Cloud
Computing, vol. 3, no. 1, pp. 11–17, 2015.

[2] K. Fysarakis et al., “Which iot protocol? comparing standard-
ized approaches over a common m2m application,” Washington
DC, USA, July 2016.

[3] S. Lee et al., “Correlation analysis of mqtt loss and delay
according to qos level,” in IEEE ICOIN, Bangkok, Thailand,
January 2013.

[4] N. De Caro et al., “Comparison of two lightweight protocols for
smartphone-based sensing,” in IEEE SCVT, 2013.

[5] L. Durkop et al., “Performance evaluation of m2m protocols
over cellular networks in a lab environment,” in IEEE ICIN,
Paris, France, February 2015.

[6] F. Mehmeti and T. Spyropoulos, “Performance analysis of
âĂĲon-the-spotâĂİ mobile data offloading,” in IEEE GLOBE-
COM, Atlanta, USA, December 2013.

[7] K. Lee et al., “Mobile data offloading: how much can wifi
deliver?” in Co-NEXT, Philadelphia, USA, December 2010.

[8] T. Phung-Duc et al., “A simple algorithm for the rate matrices
of level-dependent qbd processes,” in ACM QTNA, Beijing,
China, July 2010.

[9] H. Wu and K. Wolter, “Tradeoff analysis for mobile cloud
offloading based on an additive energy-performance metric,” in
VALUETOOLS. ICST, Bratislava, Slovakia, December 2014.

[10] S. Kounev et al., “A methodology for performance modeling of
distributed event-based systems,” in IEEE ISORC, Orlando,
USA, May 2008.

[11] M. Vernon et al., A comparison of performance Petri nets and
queueing network models. University of Wisconsin-Madison,
Computer Sciences Department, 1986.

[12] E. Lazowska et al., Quantitative system performance: computer
system analysis using queueing network models. Prentice-Hall,
Inc., 1984.

[13] F. Baskett et al., “Open, closed, and mixed networks of queues
with different classes of customers,” Journal of the ACM
(JACM), 1975.

[14] D. Gross et al., Fundamentals of Queueing Theory. John
Wiley, 4th edition, 2008.

[15] I. Fette, “The websocket protocol,” 2011.
[16] B. Billet and V. Issarny, “dioptase: data streaming middleware

for the internet of things,” ERCIM News, vol. 101, pp. 23–24,
2015.

[17] P. Saint-Andre, “Extensible messaging and presence protocol
(xmpp): Core,” 2011.

[18] G. Wright and W. Stevens, TcP/IP Illustrated. Addison-
Wesley Professional, 1995.

[19] T. Field, “Jinqs: An extensible library for simulating multiclass
queueing networks, v1. 0 user guide,” 2006.

[20] G. Bajaj et al., “Toward Enabling Convenient Urban Transit
through Mobile Crowdsensing,” in IEEE ITSC, Gran Canaria,
Spain, September 2015.

