
HAL Id: hal-01482129
https://hal.inria.fr/hal-01482129

Submitted on 3 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Visual-Based Shared Control for Remote
Telemanipulation with Integral Haptic Feedback

Nicolò Pedemonte, Firas Abi-Farraj, Paolo Robuffo Giordano

To cite this version:
Nicolò Pedemonte, Firas Abi-Farraj, Paolo Robuffo Giordano. Visual-Based Shared Control for Re-
mote Telemanipulation with Integral Haptic Feedback. IEEE Int. Conf. on Robotics and Automation,
ICRA’17, May 2017, Singapore, Singapore. �hal-01482129�

https://hal.inria.fr/hal-01482129
https://hal.archives-ouvertes.fr


Visual-Based Shared Control for Remote Telemanipulation
with Integral Haptic Feedback

Nicolò Pedemonte, Firas Abi-Farraj and Paolo Robuffo Giordano

Abstract— Nowadays, one of the largest environmental chal-
lenges that European countries must face consists in dealing
with the past half century of nuclear waste. In order to optimize
maintenance costs, nuclear waste must be sorted, segregated
and stored according to its radiation level. Towards this end,
in [1] we have recently proposed a visual-based shared control
architecture meant to facilitate a human operator in controlling
two remote robotic arms (one equipped with a gripper and
another with a camera) during remote manipulation tasks of
nuclear waste via a master device. The operator could then
receive force cues informative of the feasibility of her/his motion
commands during the task execution. The strategy presented
in [1], albeit effective, suffers however from a locality issue since
the operator can only provide instantaneous velocity commands
(in a suitable task space), and receive instantaneous force
feedback cues. On the other hand, the ability to ‘steer’ a whole
future trajectory in task space, and to receive a corresponding
integral force feedback along the whole planned trajectory
(because of any constraint of the considered system), could
significantly enhance the operator’s performance, especially
when dealing with complex manipulation tasks. The aim of this
work is to then extend [1] towards a planning-based shared
control architecture able to take into account the mentioned
requirements. A human/hardware-in-the-loop experiment with
simulated slave robots and a real master device is reported for
demonstrating the feasibility and effectiveness of the proposed
approach.

I. INTRODUCTION

When operating in hazardous environments such as nu-
clear sites [2], outer space [3] or underwater [4], robotic
telemanipulation becomes essential to guarantee the opera-
tor’s safety. The panoply of assisted teleoperation systems
proposed in the literature includes classical techniques such
as virtual fixture [5], [6] or shared control frameworks that
merge robot autonomy and human supervisory capabili-
ties [1], [7]–[10]. In a typical shared control architecture,
the human operator is in charge of the high-level decision
making and all low-level operations are autonomously con-
trolled. Nevertheless, the task allocation between the human
operator and the robotic system remains one of the main
challenge of assisted teleoperation [11].

In [1], a shared control framework for teleoperating a
system on a nuclear site was presented. The work was
motivated by the European H2020 “Robotic Manipulation
for Nuclear Sort and Segregation” (RoMaNS) project1. In the
RoMaNS scenario, a human operator has access to a system
consisting of two robotic arms, one equipped with a gripper

The authors are with the CNRS at Irisa and Inria Rennes Bre-
tagne Atlantique, Campus de Beaulieu, 35042 Rennes Cedex, France
{nicolo.pedemonte,firas.abi-farraj,prg}@irisa.fr

1http://www.h2020romans.eu/

Fig. 1: Left figure: containers with unknown (or partially
known) contents and mixed contamination levels that need to
be examined, sorted and separated. Right figure: new special
storage containers where contaminated waste must be placed.

and the other one with a camera, with the goal of approaching
and grasping nuclear waste for sort and segregation purposes
(see Fig. 1). The shared control architecture presented in [1]
consisted in an instantaneous motion control of the gripper
manipulator for approaching the target object, and of cor-
responding instantaneous force cues informing the operator
about the feasibility of her/his (again instantaneous) motion
commands. Due to the complexity of its motion, the camera
was instead autonomously controlled. The main limitation
of the architecture presented in [1] lies in its ‘local’ nature,
which does not provide the operator with the possibility
of modifying the future behavior of the robot motion, nor
of receiving force cues informative about the future conse-
quences of her/his actions. On the other hand, the possibility
of ‘affecting the future’ (i.e., over some future time window)
and to receive a corresponding sensible force feedback would
be of great importance for facilitating the operator’s task,
especially in complex manipulation environments.

In order to cope with this issue, in this paper we consider
the same scenario of [1] and extend it by including the
possibility of acting on a whole future trajectory for the
gripper. In particular, rather than controlling some DOFs of
the gripper manipulator arm and obtaining an instantaneous
force feedback w.r.t. any pre-defined constraint of the system
(in [1] joint limits were considered), the human operator is
now given the possibility of modifying online the trajectory
for approaching the object of interest with the aid of predic-
tive force feedback cues informing about any constraint of
interest. The force feedback is denoted as predictive since it
informs the operator about the feasibility of her/his planned
(future) trajectory against the system constraints, and thus
is evaluated on a planned motion yet to be executed. The
concept of predictive haptic feedback was introduced in [10],
where it was applied to the problem of shaping the 2D
trajectory of a mobile robot via an input device. In this work,
the ideas of [10] are instead extended to the case of a human



operator in partial control of the pose of a 6-dof manipulator
with the goal of approaching an object of interest to be later
manipulated.

The rest of the paper is organized as follows. In Sect. II
the general problem is introduced, while the shared control
architecture is described in detail in Sect. III. Section IV
reports some experimental results and Section V concludes
the paper and discusses some future directions.

II. PROBLEM SETTING

The scenario considered in this paper consists of two
6-dof serial manipulators, one equipped with a monocu-
lar (calibrated) camera and the other one with a grip-
per, aiming at grasping an object of interest (see Fig. 2).
We consider three frames of reference: a frame FO :
{OO; XO, Y O, ZO} attached to the object to be grasped,
a frame FG : {OG; XG, Y G, ZG} attached to the gripper,
and a frame FC : {OC ; XC , Y C , ZC} attached to the
camera. We assume that ZG is aligned with the gripper
approaching direction, and that (as usual) ZC is aligned with
the camera optical axis.

We let (CPG,
CRG) ∈ R3 × SO(3) represent the 3D

pose of FG w.r.t. FC expressed in FC and, similarly,
(CPO,

CRO) ∈ R3 × SO(3) represent the 3D pose of FO
w.r.t. FC expressed in FC . In the context of the RoMaNS
project, we can assume that an accurate enough 3D model
of both the object to be grasped and of the gripper is avail-
able beforehand. This allows to leverage any model-based
tracker, such as those present in the ViSP library [12], for
retrieving online a reliable estimation of the camera/object
and camera/gripper relative poses in the camera frame.

Fig. 2: An illustrative representation of the two 6-dof serial
manipulator arms equipped with a camera and a gripper,
respectively, together with other quantities of interest.

The goal of the proposed shared control architecture is
to (i) let a human operator modify online the approaching
trajectory towards the object to be grasped via a force-
feedback device, (ii) let an autonomous algorithm verify that
the commanded (desired) trajectory respects all the possible
constraints of the robotic system and, in case it does not,
modify it accordingly, (iii) provide the human operator with
online force cues informing about any discrepancy between
the commanded trajectory and the actual one (modified by
the autonomous algorithm in order to cope with the robot

constraints), thus informing about the future consequences
of the operator’s actions and, finally, (iv) let an autonomous
algorithm control the camera motion so as to keep a suitable
vantage point w.r.t. the observed scene (i.e., both the gripper
and the object). We now proceed to detail the components
of the shared control architecture.

III. SHARED CONTROL ARCHITECTURE

Autonomous
Corrector

Input

Device

Haptic

Feedback

Human

Guidance

Current
Trajectories

Trajectory
Updates

∫

User force

Force feedback ẋH , ωH

ẋA, ωA

u

λ

f

x, p

x, p

ẋ, ω

Fig. 3: An illustration of the proposed shared control frame-
work.

Figure 3 illustrates the proposed framework. Given an
initial trajectory for the gripper manipulator, the human
operator is allowed to modify the trajectory via the input
device while the autonomous corrector verifies that all op-
erator’s modifications respect the constraints of the system.
The haptic feedback is designed in order to assist the user
during the task execution, mantain the trajectory away from
dangerous configurations and keep the user aware of any
autonomously imposed adjustments of the trajectory. The
trajectory planning problem for a 6-dof serial manipulator
is split into the position and the orientation components.
We will then consider two trajectories, γ(t) for the gripper
position and η(t) for the gripper orientation. Both the human
operator and the autonomous correcting algorithm will be
allowed to modify γ and η at runtime.

Figure 3 is detailed in this section. In III-A the trajectory
planning problem is introduced and the block “Trajectory
updates” explained. In III-B, the “Human Guidance” com-
ponent is presented. Then, section III-C focuses on the
autonomous correcting algorithm while section III-D details
the haptic feedback. Finally, in III-E, the control of the
camera is reviewed.

A. Trajectory planning

The trajectory planning algorithm is performed on the
gripper position and orientation (CPG,

CRG) w.r.t. the
target object (CPO,

CRO). Both (CPG,
CRG) and

(CPO,
CRO) are measured by the camera in order to

provide the system with an accurate estimation of the gripper
and object poses.

Consider the position problem. We choose to represent
the trajectory γ as a cubic B-spline. Cubic B-splines are
piecewise curves which guarantee the continuity of velocities
and accelerations and are a typical choice for representing
trajectories [10], [13]. A cubic B-spline can be completely



parametrized by a sequence of scalars U (knot vector) and
a vector of points x = [x0, ...,xn] (control points) with
xi ∈ R3 and n ∈ N. The position trajectory will then be
defined by:

γ(x, u) =

n∑

i=0

xiBi(u), (1)

where u ∈ [0, 1] is the independent variable representing
the position along the curve (u = 0 being the starting
point and u = 1 the final point) and Bi are the basis
functions [13], [14]. Note that, given the knot vector, a
finite number n + 1 of control points is sufficient to define
the whole trajectory. This property of B-splines is crucial
for our application since it reduces an infinite-dimensional
problem (optimization of a continuous trajectory) to a finite-
dimensional one (optimization of the n+ 1 control points).

For the orientation problem, we exploit [15] where an
analytical expression for a cubic B-spline quaternion curve
in S3 was presented. Consider the same knot vector U and a
vector of control points (quaternions) p = [p0, ...,pn], with
pi ∈ S3. The whole orientation trajectory is defined by:

η(p, u) = p
B̃0(u)
0

n∏

i=1

exp(ωiB̃i(u)), (2)

where B̃ are cumulative basis functions [15], ωi =
log(p−1i−1pi) and log(·) and exp(·) represent respectively
the logarithmic map, log : S3 → R3, and the exponential
map, exp : R3 → S3 (see Appendix A and [16]). The
cubic B-spline quaternion curve is shown to respect some
important B-spline properties such as C1-continuity and
local controllability [15].

As shown in Fig. 3, the human operator and the au-
tonomous corrector can modify the trajectories γ and η by
commanding the linear and angular velocities of the control
points of the two trajectories. Hence, the human operator
will command (ẋH ,ωH) and the autonomous corrector will
command (ẋA,ωA). The human and the autonomous con-
tributions are then merged as follows (corresponding to the
block “Trajectory updates” in Fig. 3). Concerning the control
points of the position trajectory, the following merging rule
is implemented:

x(t) = x(t0) +

∫ t

t0

ẋH(τ)dτ +

∫ t

t0

ẋA(τ)dτ, (3)

where ẋH represents the velocity of the control points of γ
commanded by the human operator, and ẋA corresponds to
the velocity of the control points of γ commanded by the
autonomous correction.

The equivalent of (3) for the control points of the orien-
tation trajectory is:

p(t) = p(t0) · pH(t) · pA(t) (4)

where pH corresponds to the rotation commanded by the
human operator, pA represents the orientation computed
by the autonomous corrector and · is the usual quaternion

multiplication rule. The quantities pH(t) and pA(t) can be
obtained from the quaternion integration rule as follows:

pH(t) = exp( 1
2

∫ t
t0
ωH(τ)dτ)

pA(t) = exp( 1
2

∫ t
t0
ωA(τ)dτ)

, (5)

where ωH represents the angular velocity applied by the
operator and ωA corresponds to the angular velocity imposed
by the corrector.

B. Human Input

In this section, the block “Human Guidance” of Fig. 3
will be detailed. As we stated above, the human operator
is given the opportunity of commanding the quantities ẋH
and ωH in order to modify the trajectories γ and η to
his/her convenience. Moreover, we also provide the operator
with he possibility of moving along the current trajectories
backwards and forwards at will. The operator will then
generate the commands [λ, λu]

T ∈ R4 by controlling the
position of the input device along four independent DOFs.
The command λu permits to the operator to move the gripper
manipulator along the planned trajectories when all the
autonomous corrections are completed. On the other hand,
the command vector λ ∈ R3 is mapped onto the control
point space R7 in order to modify both trajectories. We now
proceed to detail this mapping.

We consider in this work the approaching (pre-grasping)
phase. We assume that, during this specific phase, the oper-
ator may need to move the gripper around the target object
in order to choose the best pose to grasp. Let the two initial
trajectories γ0(x, u) and η0(p, u) be defined such that the
gripper is, in its final pose, both aligned w.r.t. the target object
and at a certain distance r from it, and letQ : R3 → R7·(n+1)

be the nonlinear mapping matrix from the input device space
to the control point space, where Q can be decomposed as
Q = [Q1 . . .Qi . . .Qn]

T . Then, the velocity of the control
points xi and pi commanded by the human operator are
defined as:

ẋH,i = kH,iQi ·
[
λ
0

]
, ωH,i = kH,iQi ·

[
0
λ

]
, (6)

where kH,i ∈ KH = [0, kH,1, ..kH,n−1, 1] is the vector
of gains. Matrix Qi ∈ R7×3 maps the input commands
λ into the velocities of the i-th control points of γ(x, u)
and η(p, u). In our framework, following [1], we define
Qi = [m1,i, m2,i, m3,i] where m1,i, m2,i and m3,i are
the three motion directions defined as follows: let si be the
3D direction towards the object to be grasped for each control
point xi defined as si =

P s,i

‖P s,i‖ , where P s,i = OO − xi
expressed in the object frame FO. We then take

m1,i =



−[si]×ey

−
GRO,iP s,iey
‖ P s,i ‖


 ,m2,i =




[si]×ex
GRO,iP s,iex
‖ P s,i ‖


 ,

m3,i =

[
0

GRO,isi

]
,

(7)



with ex = [1 0 0]T , ey = [0 1 0]T . As explained in [1], these
three motion directions allow to control the gripper distance
and alignment w.r.t. the target object with an intuitive physi-
cal meaning. In particular, m1,i and m2,i correspond to two
coordinated motions (linear/angular velocity) that displace
the gripper over a sphere centered at the target object and
m3,i realizes a rotation about si, (see 4).

Fig. 4: Visualization of the 3 motion directions actuated by
the human operator when commanding the input vector λ.

The mapping (6) applies to all control points xi and pi
such that i ≥ jk with jk ∈ N ≤ n. The index jk can be
readily found by implementing the classical algorithm for
determining the knot span [jk−1, jk) corresponding to the
current value of the independent variable u [13], [14]. Given
a certain value of u, for i ≥ jk, modifying the control points
xi and pi will not change the current pose of the gripper
manipulator. Hence, only the part of the two trajectories yet
to be covered by the gripper/manipulator can be modified by
the operator. Note that the control points x0 and p0 never
move (being kH,0 in (6) equal to 0).

C. Autonomous Correction
In this section, the block “Autonomous Corrector” of

Fig. 3 will be detailed. In our framework, the goal of the
autonomous algorithm is to ensure that the current trajec-
tories respect any predefined constraint, e.g., joint limits,
singularities, or collision avoidance. Let H(q) be the cost
function encoding such constraint(s) and q ∈ R6 the joint
vector of the manipulator carrying the gripper. The objective
of the autonomous corrector is to modify the vectors of
control points x and p in order to minimize the cost
function H(q) along the whole trajectories γ and η. For
a given u, the trajectories γ(x, u) and η(p, u) correspond
to a specific robot configuration q(u) via the robot inverse
kinematics. Letting JP (q) and JO(q) be the geometric
Jacobian matrices related to the position and the orientation
of the gripper, the following then holds



∂γ(x, u)

∂t
∂η(p, u)

∂t


 =




∂γ(x, u)

∂q(u)
∂η(p, u)

∂q(u)



∂q(u)

∂t
=

=

[
JP (q(u))

MQP (p) · JO(q(u))

]
q̇(u)

(8)

where MQP (p) is obtained from the quaternion propagation
rule (see Appendix B). For each position u along the trajec-
tories γ(x, u) and η(p, u), one also has H(q) = H(q(u)) =
H(γ(x, u),η(p, u)). In order to minimize the cost func-
tion H(γ(x, u),η(p, u)) along the whole trajectories, the
autonomous correction ẋA and ωA are then defined as the
negative partial derivative of the cost function w.r.t. γ(x, u)
and η(p, u), respectively, see also [10].

Consider the position problem. The trajectory γ will be
autonomously modified according to the following update
rule

∂γ(x(t), u)

∂t
= −

∫

γ

(
∂H(γ(x, u),η(p, u))

∂γ(x, u)

)T
du. (9)

The velocity ∂γ(x(t), u)/∂t is mapped onto the R3(n+1)

space of control points by using the pseudo-inverse
(∂γ(x, u)/∂x)

† in order to invert the relation

∂γ(x, u)

∂t
=
∂γ(x, u)

∂x
ẋ.

Here u̇ = 0 because we assume that the operator does not
move the robot along the trajectories while the autonomous
correction is in progress. The autonomous correction in terms
of control points can then be expressed by:

ẋA = −
∫

γ

(
∂γ(x, u)

∂x

)†(
∂H(q(u))

∂q(u)

(
∂γ(x, u)

∂q(u)

)†)T
du,

(10)
where ∂γ(x, u)/∂q(u) = JP (q(u)) from (8). The term
(∂γ(x, u)/∂x)

† can be easily computed thanks to the basic
B-spline properties (see Appendix B). The computation of
∂H(q(u))/∂q(u) is straightforward and depends on the
particular choice of function H(q).

In the same spirit, the trajectory η for the orientation
problem are autonomously modified as follows:

∂η(x(t), u)

∂t
= −

∫

η

(
∂H(γ(x, u),η(p, u))

∂η(p, u)

)T
du, (11)

which leads to:

ṗA = −
∫

η

(
∂η(p, u)

∂p

)†(
∂H(q(u))

∂q(u)

(
∂η(p, u)

∂q(u)

)†)T
du,

(12)
where ∂η(p, u)/∂q(u) = MQP (p) · JO(q(u)) from (8).
The term ∂η(p, u)/∂p is described explicitely in Appendix
B. Vector ωA can be easily computed from (12) as ωA =
log(ṗA). The autonomous correction ẋA and ωA are then
merged with the human operator’s modifications (6) as
described in (3) and (4).

D. Haptic Feedback

The haptic feedback is designed in order to assist the
operator during the task execution and inform him/her about
how well the system is following the commanded motion λ.
Specifically, the operator must be aware if any modification
is being applied to the trajectories.



Following the classical bilateral force-feedback frame-
work [17], [18], we then assume the presence of a master
device upon which the operator can act for sending the
commands λ to the slave side (the gripper/manipulator arm)
and receiving force feedback cues. The master device is
modeled as a generic (gravity pre-compensated) mechanical
system

M(yM )ÿM +C(yM , ẏM )ẏM = τ + τh (13)

where yM ∈ Rm is the device configuration vector (with
same dimension as the human commands λ), M(yM ) ∈
Rm×m is the positive-definite and symmetric inertia matrix,
C(yM , ẏM ) ∈ Rm×m accounts for Coriolis/centrifugal
terms, and τ , τh ∈ Rm are the control and human forces,
respectively.

The human control actions are implemented by setting

λ = KλyM , (14)

with Kλ ∈ Rm×m being a diagonal matrix of positive
scaling factors. This coupling then allows the operator to
directly affect the control points of the planned trajectories
along the motion directions mi by adjusting the position
of the master device (Fig. 5). The force feedback is instead
designed as

τ = −BM ẏM −KMyM + f . (15)

Here, BM ∈ Rm×m is a positive definite damping matrix

Fig. 5: Representation of λ on the haptic device.

for stabilizing the haptic device and KM ∈ Rm×m is a
positive definite diagonal matrix meant to implement a ‘soft
spring’ centered at the device rest position2. Vector f =
[. . . fi . . .]

T ∈ Rm represents instead the force cues provided
to the human operator: as explained, the design of these cues
is aimed at informing the operator about the feasibility of
each trajectory update w.r.t. possible constraints/limitations
of the gripper/arm system such as, for instance, proximity
to joint limits, to singularities, self-collisions or to collisions
with the surrounding environment. We now proceed to detail
the cueing algorithm which will be then exploited in Sect. IV.

The haptic feedback must inform the operator about how
well the actual trajectories γ(x, u) and η(p, u) are following
his/her commands λ despite the possible modifications of
the autonomous corrector component. In order to obtain

2Therefore, by means of this spring the user will be provided with a
perception of the distance from a zero-commanded velocity.

this goal, we map the autonomous corrector’s commanded
velocities ẋA and ωA onto the human input command space
using the pseudo-inverse of the mapping matrixQ introduced
in III-B. Be Π = [Π1 . . .Πi . . .Πn]

T ∈ R7(n+1)×1, with
Πi = [ẋA,i, ωA,i]

T ∈ R7×1. The haptic cues f are then
defined as:

f = −KτQ
†Π, (16)

where Kτ is a constant gain matrix. The forces f will
push the operator away from any dangerous configuration
with an intensity proportional to H(q) along the directions
of the trajectory modifications imposed by the autonomous
corrector. In conclusion, the haptic cues will provide the
operator with a high-level information about the feasibility of
his/her commanded trajectories w.r.t. the system constraints
along a future time window (the time extension of the
trajectory itself), rather than by providing instantaneous cues
as previously proposed in [1].

As a final step, we make use of the passive set-position
modulation (PSPM) algorithm [19] for coping with the typ-
ical stability issues of any bilateral force feedback loop be-
cause of communication delays, packet losses, master/slave
kinematic/dynamic dissimilarities, and other shortcomings.
To this end, let ψ(t) = K−1M f(t) and rearrange (15) as

τ = −BM ẏM −KM (yM −ψ(t)). (17)

The PSPM action modulates the (arbitrary) signal ψ(t) into
a possibly attenuated version ψ̄(t) which, when plugged
into (17), ensures input/output stability (passivity) of the
master device. This is then sufficient for guaranteeing stabil-
ity (passivity) of the overall bilateral teleoperation, see [19]
for more details and [1], [20] for some recent examples of
the use of the PSPM algorithm.

E. Camera Control

The goal of the vision system goal is to retrieve the object
and gripper poses required by the shared control framework
presented above. The camera manipulator is then controlled
using an IBVS approach so as to keep a suitable vantage
point w.r.t. the observed scene, i.e., both the gripper and the
object. All the details on this component of the architecture
can be found in [1].

IV. EXPERIMENTAL RESULTS

In this section we report the results of a set of experi-
ments designed to illustrate and validate the shared control
architecture presented above and to prove the effectiveness
of the force cues. The master side consists of the Hap-
tion VIRTUOSE 6D haptic device3, a high performance
force feedback device with three translational DOFs and
three rotational DOFs. The maximum force/torque is about
30 [N]/3 [Nm], the workspace has a spherical-like shape with
an approximated radius of 0.9 [m], and the device exchanges
data over ethernet with a control PC at 1 kHz. Four DOFs of
the Haption device were left unconstrained. Three of them
are needed for actuating the m = 3 motion directions mi

3www.haption.com.



detailed in (7). As explained in Sect. III-D, the position
of the master along these three DOFs was coupled to the
input commands λ via (14). The fourth DOF is used by the
operator to move the gripper along the trajectory backwards
and forwards. The remaining two DOFs were constrained via
software to a constant value. The slave side consists of two
6-DOF Viper S850 robotic arms carrying the gripper and the
camera, and simulated in the popular V-REP environment4.
The poses of the gripper and of the target object in the camera
frame were reconstructed by feeding the model-based ViSP
tracker [12] with the segmented location of some fiducial
markers acquired at 30 Hz, see Fig. 6.

Fig. 6: The two simulated 6-DOF manipulators carrying
the camera and the gripper and, in the small window on
the bottom-right, the camera image. The yellow sphere
represents the final pose of the gripper, whereas the cyan
line represents the initial trajectory.

We considered in this work proximity to joints limits
and to singularities as representative constraints of the
gripper/manipulator arm system. The function H(q) in (9)
and (11) is then expressed as

H(q) = HJL(q) +HS(q), (18)

where HJL(q) represents the cost function for the joint limit
constraint and HS(q) the cost function for the singularity
constraint. The joint limit cost function is defined as a
classical quadratic penalty cost

HJL(q) = kJL

6∑

i=1

hi(q),

with

hi(q) =





(qi − (qi,max − qth))2, if qi ≥ qi,max − qth
(qi,min + qth − qi)2, if qi ≤ qi,min + qth

0, otherwise
,

where (qi,max, qi,min) are the maximum/minimum range for
the i-th joint and qth is a user-defined threshold defining
the activation region inside which the user will receive a
force feedback. The cost function related to the singularity

4www.coppeliarobotics.com.

constraint is instead defined as the inverse of the determinant
of the geometric Jacobian matrix J :

HS(q) =

{
kS

det(J) , if det(J) ≤ ε
0, otherwise

,

where ε is a user-defined constant parameter, and kS and
kJL are scaling factors.

We now report two different experiments conducted for
validating the described shared control architecture. The
reader is also encouraged to watch the video attachment
for a better understanding of the results of the experimental
session.

A. First Experiment

The first experiment is designed in order to show the
main features of our approach, i.e., (i) the possibility of
modifying the current trajectories (γ and η) by actuating the
m motion directions, (ii) the possibility of moving along
the current trajectories, and (iii) the assistance provided by
the haptic feedback when the trajectories are in proximity
of joint limits and singularities. The experiment can be split
into three phases where, in each of them, a single motion
command is activated. The trajectories are modified until
they reach a joint limit/singular configuration. In the first
phase (7 [s] ≤ t ≤ 34 [s]), the operator sends the motion
command λ2. In the second phase (51 [s] ≤ t ≤ 57 [s]), λ1
is activated. Finally, in the third phase (68 [s] ≤ t ≤ 88 [s]),
the operator commands λ3. Between the first and the second
phase (43 [s] ≤ t ≤ 47 [s]) and between the second and the
third phase (64 [s] ≤ t ≤ 69 [s]) the operator commands the
manipulator to move forward along the trajectory.

Figures 7(a–c) report the experimental results. In particu-
lar, the behavior of the haptic cues f (Fig. 7b), the value of
the cost function H(q) (Fig. 7c), and the user commands λ
and λA (Fig. 7a) are shown over time. The three phases show
the system reaction to the three possible motion commands.
It is worth noting that in the first two phases the highest
force cue is produced along the direction of the commanded
motion. In the third phase, on the other hand, the user
activates the input λ3 but the haptic feedback is mainly
projected along the motion direction m1 (see Fig. 7b). This
behavior might not seem intuitive but it can be explained by
the gradient-based algorithm: in this situation, the fastest way
to reduce the cost function was to move along the direction
m1 rather than pushing back the user along m3. Finally, it
is interesting to observe how the haptic cues in Fig. 7b are
activated when the cost function H(q) ≥ 0 (Fig. 7c). The
algorithm will autonomously correct the trajectories γ and
η until H(q) is minimized.

B. Second Experiment

The second experiment is meant to assess the effectiveness
of the haptic feedback during a possible task execution. In
this case, the human operator commands a random trajectory
modification for purposely reaching joint limits and expe-
riencing the corresponding force feedback. Figures 8(a–c)
report the experimental results. As it can be observed in



0 20 40 60 80 100 120

Time (s)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
λ

λ
1

λ
2

λ
3

λ
A

(a)

0 20 40 60 80 100 120

Time (s)

-1

0

1

2

3

4

5

6

f
i
(N

)

f
1
 (N) f

2
 (N) f

3
 (Nm)

(b)

0 20 40 60 80 100 120

Time (s)

0

0.05

0.1

0.15

0.2

0.25

H
(q
)

H
JL

H
S

(c)

Fig. 7: Results of the first experiment.(a) Behavior of the op-
erator’s commands λ, λA for actuating the motion directions
mi and moving along the trajectories. (b) Behavior of the
three force cues fi displayed to the human operator during
the robot motion; (c) behavior of the scalar cost functions
H(q)JL for joint limits and H(q)S for singularities, quan-
tifying the proximity to the relative constraint.

Fig. 8a, the operator initially sends the motion commands
λ1 (4 [s] ≤ t ≤ 33 [s]) and λ2 (7 [s] ≤ t ≤ 33 [s]) and
successively also λ3 (17 [s] ≤ t ≤ 33 [s]). At t ' 33 [s],
a joint limit is reached and H(q) rapidly increases (see
Fig. 8c). The haptic cues (Fig. 8b) are consequently activated
and the operator is forced to move backwards along λ. This
backward motion is particularly evident along λ1, where
the haptic feedback is the highest. The operator tries one
more time to move forward along λ1 but she/he is repulsed
again by the haptic feedback (at t ' 43 [s]). Eventually, the
operator commands the robot to move along the trajectory
and the gripper reaches the final pose (55 [s] ≤ t ≤ 73 [s]).

In conclusion, the designed force cues proved to be both
informative and efficient while assisting the user in “steering”
the trajectories away from undesired configurations by either
moving back along the operator’s commanded direction, or
by manoeuvring over the other available motion directions
as a function of the magnitude (and sign) of the received
haptic information.

V. CONCLUSIONS

This paper extended the work presented in [1] to a
planning-based shared control architecture. In the proposed
framework, the human operator is given the possibility of
modifying two initial trajectories (γ0 for the position of the
gripper/manipulator and η0 for its orientation) via a haptic
device. In parallel, an autonomous corrector verifies that all
human modifications respect the system constraints, such as
(in the reported cases) joint limits and singularities. When
the human-modified trajectories are in proximity of any of

0 20 40 60

Time (s)

-1

-0.5

0

0.5

λ

λ
1

λ
2

λ
3

λ
A

(a)

0 20 40 60

Time (s)

-12

-10

-8

-6

-4

-2

0

2

f
i
(N

)

f
1
 (N) f

2
 (N) f

3
 (Nm)

(b)

0 20 40 60

Time (s)

0

0.05

0.1

0.15

H
(q
)

H
JL

H
S

(c)

Fig. 8: Results of the second experiment. (a) Behavior of
the operator’s commands λ, λA for actuating the motion di-
rections mi and moving along the trajectories. (b) Behavior
of the three force cues fi displayed to the human operator
during the robot motion; (c) behavior of the scalar cost func-
tions H(q)JL for joint limits and H(q)S for singularities,
quantifying the proximity to the relative constraint.

these constraints, the autonomous system is able to steer
the trajectories away from the constraints by minimizing
the associated cost function. The autonomous intervention
is then converted into a set of force cues fed to the human
operator in order to keep him/her aware of the feasibility
of his/her commanded motions, and informed about any
change autonomously imposed to the current trajectories.
The effectiveness of our proposed shared control architecture
with integral haptic cues was then demonstrated in a set of
experiments presented in the last section of the paper.

In the next future, two real 6-dof manipulators equipped
with a gripper/camera will be employed to validate the
planning-based shared control architecture. To this end, we
will use vision-based reconstruction methods able to handle
more complex scenes than the ones considered in this work.
Furthermore, we are interested in evaluating other criteria
for generating force cues other than the system intrinsic
constraints, such as, for instance manipulability or collision
avoidance measures. Finally, we also planning to run a set
of user studies in order to assess the effectiveness of the
described algorithm in a principled way.

APPENDIX A

B Consider p = [w,v]T ∈ S3. The logarithmic map log :

S3 → R3 is defined by log(p) = (arccosw· v
||v||

) ∈ R3 [16].

B Consider v ∈ R3. The exponential map exp : R3 → S3

is defined by exp(v) =

[
cos ||v||, sin||v||

||v||
· v
]T

if v 6= 0,

else exp(v) = [1,0]T [16].



APPENDIX B

B For the position trajectory, the term
∂γ(x, u)

∂x
=[

∂γ(x, u))

∂x1
, ...

∂γ(x, u)

∂xi
, ...

∂γ(x, u)

∂xn

]
where

∂γ(x, u)

∂xi
=



Bi 0 0
0 Bi 0
0 0 Bi


, remembering that for a cubic B-spline

curve, no more than 4 basis function B are not null for each
knot span [13].

B For the orientation trajectory, the term
∂η(p, u)

∂p
=

[
∂η(p, u)

∂p1
, ...

∂η(p, u)

∂pi
, ...

∂η(p, u)

∂pn

]
where

∂η(p, u)

∂pi
=

p
B̃0(u)
0

i−1∏
j=1

exp(ωjB̃j(u)) · D1 ·
n∏

j=i+1

exp(ωjB̃j(u)) +

p
B̃0(u)
0

i∏
j=1

exp(ωjB̃j(u)) · D2 ·
n∏

j=i+2

exp(ωjB̃j(u)), with

ωj = log(p−1j−1pj) and Dk =
∂exp(·)
∂log(·)

∂log(·)
∂ρ

dk, with

ρ = p−1j−1pj .
Consider v = [v1, v2, v3]T ∈ R3, from the

definition of exp(v), it follows that
∂exp(v)

∂v
=




− s
‖v‖v1 − s

‖v‖v2 − s
‖v‖v3(

c
‖v‖2 −

s
‖v‖3

)
v21 + s

‖v‖

(
c
‖v‖2 −

s
‖v‖3

)
v1v2

(
c
‖v‖2 −

s
‖v‖3

)
v1v3(

c
‖v‖2 −

s
‖v‖3

)
v1v2

(
c
‖v‖2 −

s
‖v‖3

)
v22 + s

‖v‖

(
c
‖v‖2 −

s
‖v‖3

)
v2v3(

c
‖v‖2 −

s
‖v‖3

)
v1v3

(
c
‖v‖2 −

s
‖v‖3

)
v2v3

(
c
‖v‖2 −

s
‖v‖3

)
v23 + s

‖v‖




where c = cos ‖ v ‖ and s = sin ‖ v ‖ (see also [16]).
Consider now ρ = [w,v]T = [w, v1, v2, v3]T ∈ S3,

from the definition of log(ρ) it follows that
∂log(ρ)

∂ρ
=




− v1
‖v‖2 + arccos(w)wv1

‖v‖
3
2

arccos(w)
‖v‖ 0 0

− v2
‖v‖2 + arccos(w)wv2

‖v‖
3
2

0 arccos(w)
‖v‖ 0

− v3
‖v‖2 + arccos(w)wv3

‖v‖
3
2

0 0 arccos(w)
‖v‖


 .

Finally, from [21], d1 =
∂(p−1i−1pi)

∂pi
= [1,0]T , d2 =

∂(p−1i pi+1)

∂pi
= −p−1i · R{pi}.

B Consider the quaternion p =

[
w
v

]
. From the quaternion

propagation rule:

ṗ =

[
ẇ
v̇

]
=

[
− 1

2v
T

1
2 (wI3 − v×)

]
ω = MQP (p) · ω

where ω = JOq̇ is the angular velocity [22].

ACKNOWLEDGMENTS

This work was supported by the EU H2020 RoMaNS
project 645582.

REFERENCES

[1] F. Abi-Farraj, N. Pedemonte, and P. Robuffo Giordano, “A visual-
based shared control architecture for remote telemanipulation,” in
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2016.

[2] R. Schilling, “Telerobots in the nuclear industry: a manufacturer’s
view,” Industrial Robots, vol. 19, no. 2, pp. 3–4, 1992.

[3] J. Wright, A. Trebi-Ollennu, F. Hartman, B. Cooper, S. Maxwell,
J. Yen, and J. Morrison, “Driving a rover on mars using the rover
sequencing and visualization program,” in International Conference
on Instrumentation, Control and Information Technology (Okayama
University, Okayama 2005), 2005.

[4] R. R. Murphy, K. L. Dreger, S. Newsome, J. Rodocker, E. Steimle,
T. Kimura, K. Makabe, F. Matsuno, S. Tadokoro, and K. Kon, “Use of
remotely operated marine vehicles at minamisanriku and rikuzentakata
japan for disaster recovery,” in Safety, Security, and Rescue Robotics
(SSRR), 2011 IEEE International Symposium on. IEEE, 2011, pp.
19–25.

[5] L. B. Rosenberg, “Virtual fixtures: Perceptual tools for telerobotic
manipulation,” in Virtual Reality Annual International Symposium,
1993., 1993 IEEE. IEEE, 1993, pp. 76–82.

[6] J. J. Abbott, P. Marayong, and A. M. Okamura, “Haptic virtual fixtures
for robot-assisted manipulation,” in Robotics research. Springer,
2007, pp. 49–64.

[7] C. Masone, A. Franchi, H. H. Bülthoff, and P. Robuffo Giordano,
“Interactive Planning of Persistent Trajectories for Human-Assisted
Navigation of Mobile Robots,” in 2012 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2012, pp. 2641–2648.

[8] K. Hauser, “Recognition, prediction, and planning for assisted tele-
operation of freeform tasks,” Autonomous Robots, vol. 35, no. 4, pp.
241–254, 2013.

[9] H. Boessenkool, D. A. Abbink, C. J. Heemskerk, F. C. van der Helm,
and J. G. Wildenbeest, “A task-specific analysis of the benefit of haptic
shared control during telemanipulation,” Haptics, IEEE Transactions
on, vol. 6, no. 1, pp. 2–12, 2013.

[10] C. Masone, P. Robuffo Giordano, H. H. Bülthoff, and A. Franchi,
“Semi-autonomous Trajectory Generation for Mobile Robots with
Integral Haptic Shared Control,” in 2014 IEEE Int. Conf. on Robotics
and Automation, 2014, pp. 6468–6475.

[11] T. Inagaki, “Adaptive automation: Sharing and trading of control,”
Handbook of cognitive task design, vol. 8, pp. 147–169, 2003.

[12] E. Marchand, F. Spindler, and F. Chaumette, “ViSP for visual servoing:
a generic software platform with a wide class of robot control skills,”
IEEE Robotics and Automation Magazine, vol. 12, no. 4, pp. 40–52,
2005.

[13] L. Biagiotti and C. Melchiorri, Trajectory Planning for Automatic
Machines and Robots. Springer, 2008.

[14] L. Piegl and W. Tiller, The NURBS book. Springer Science &
Business Media, 2012.

[15] M.-J. Kim, M.-S. Kim, and S. Y. Shin, “A general construction scheme
for unit quaternion curves with simple high order derivatives,” in
Proceedings of the 22nd annual conference on Computer graphics
and interactive techniques. ACM, 1995, pp. 369–376.

[16] ——, “A compact differential formula for the first derivative of a unit
quaternion curve,” Journal of Visualization and Computer Animation,
vol. 7, no. 1, pp. 43–57, 1996.

[17] P. F. Hokayem and M. W. Spong, “Bilateral teleoperation: An histor-
ical survey,” Automatica, vol. 42, no. 12, pp. 2035–2057, 2006.

[18] E. Nuño, L. Basañez, and R. Ortega, “Passivity-based control for
bilateral teleoperation: A tutorial,” Automatica, vol. 47, no. 3, pp. 485–
495, 2011.

[19] D. J. Lee and K. Huang, “Passive-set-position-modulation framework
for interactive robotic systems,” IEEE Trans. on Robotics, vol. 26,
no. 2, pp. 354–369, 2010.

[20] D. Lee, A. Franchi, H. I. Son, H. H. Bülthoff, and P. Robuffo
Giordano, “Semi-Autonomous Haptic Teleoperation Control Architec-
ture of Multiple Unmanned Aerial Vehicles,” IEEE/ASME Trans. on
Mechatronics, vol. 4, no. 18, pp. 1334–1345, 2013.

[21] D. Xu and D. P. Mandic, “The theory of quaternion matrix derivatives,”
IEEE Transactions on Signal Processing, vol. 63, no. 6, pp. 1543–
1556, 2015.

[22] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: mod-
elling, planning and control. Springer Science & Business Media,
2010.


