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Visual Servoing Using Model Predictive Control
to Assist Multiple Trajectory Tracking

Nicolas Cazy, Pierre-Brice Wieber, Paolo Robuffo Giordano, and François Chaumette

Abstract— We propose in this paper a new active perception
scheme based on Model Predictive Control under constraints
for generating a sequence of visual servoing tasks. The proposed
control scheme is used to compute the motion of a camera whose
task is to successively observe a set of robots for measuring their
position and improving the accuracy of their localization. This
method is based on the prediction of an uncertainty model (due
to actuation and measurement noise) for determining which
robot has to be observed by the camera. Simulation results are
presented for validating the approach.

I. INTRODUCTION

Visual servoing is a very effective method for control-
ing the robot motion for realizing tasks of all sorts using
feedback from visual sensors [1]. However, an important
constraint of using cameras is their limited field of view.
This constraint is usually mitigated by imposing that the
target features are always kept within the field of view.
Avoiding that visual features leave the camera field of view is
taken into account in [2]. Various works on visual trajectory
planning that take into account occlusions and feature loss
avoidance have also been realized [3]–[7].

However, strictly imposing the visibility of all targets
is not always possible nor desirable. One way to perform
visual servoing when the necessary visual information is
missing is to simply predict how this information would
evolve when no measurement is available [8], [9]. This
solution is limited, however, since the mismatch between
the prediction model and the real measurements is bound to
increase with time. In this respect, we propose in this paper
to monitor this discrepancy for guaranteeing that it stays
between predefined bounds. This requires ensuring that the
necessary visual information can be collected regularly, when
needed. For this, we consider a classical eye-in-hand setup
where the camera view can be modified at will. We model the
drifts between real and modeled positions and predict their
evolution over a future time window. We set bounds on these
drifts, and ensure that they will not be exceeded thanks to
new camera measurements, using a Model Predictive Control
scheme. This control strategy has been already used for
visual servoing handling constraints for different applications
in [10]–[15].
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As an example, we propose to consider one camera carried
by a UAV hovering over ground at a constant height. This
UAV is subject to a drift between its real and its modeled
position. We consider that the only way to correct the
UAV/camera position consists in observing a landmark on
the ground whose position is known. We also consider a set
of mobile ground robots which have to follow some planned
trajectories. These trajectories are far from each other and
from the landmark so that the robots and the landmark cannot
be seen by the flying camera at the same time. The UAV
will then have to decide when to look at which robot and
when to look at the landmark for making sure that the visual
information, necessary for the ground robots to realize their
task, is regularly collected.

A link can be established between our method and the self-
triggered control in the sense that the quantity of information
sent by the camera to the ground robots is intentionally
reduced [16]. Indeed at each sampling instant the knowledge
of the UAV and of the robots dynamics allows to predict the
camera velocity without any measurement. Furthermore, our
proposed method can be considered as an instance of active
perception [17]. As discussed in [18], the proposed control
scheme has to decide online the control inputs and sensor
measurement strategies in order to minimize the uncertainty
in the ground robot localization. Multiple works have already
been conducted in this sense: for instance, in the context
of object search, a mobile robot generates its path thanks
to a web-based knowledge which delivers a customized
execution plan in [19]. A robot path is determined on current
knowledge of the object location encoded by a probability
distribution computed during the search process in [20].
Object recognition is obtained by predicting the optimal
viewpoints in [21], [22]. Finally, a grasping method of
deformable object by a robot arm using depth information
is proposed in [23]. In this paper, we exploit a model of the
uncertainty evolution of the ground robots and UAV position
to determine the sequence of camera visual servoing tasks
to correct model drifts one after the other. The principle of
active perception is thus focused on the control of the camera
such that mobile ground robots and UAV correct their drift.

Section II starts by describing the tasks assigned to mobile
ground robots, as well as the model errors which can
be corrected by camera measures. Section III reviews the
considered Model Predictive Control scheme which is used
to realize the desired camera task. Simulation results are
presented in Sect. IV. Finally, Sect. V concludes the paper
and discusses about future works.



II. MODELING

In this paper, we consider Nr mobile robots that have to
follow some desired trajectories on the ground, one camera
embedded on a UAV stabilized at a constant height, and
a fixed landmark on the ground whose position is known
in the world frame. The robot and camera are modeled as
kinematic systems with velocity inputs. We also assume that
each real position drifts from its respective model because of
non-idealities such as actuation noise. This noise represents
the fact that the robots and the UAV/camera do not react
perfectly to their control schemes due to, e.g., modeling
errors or delays. The UAV and camera are modeled as simple
kinematic systems in order to focus on the the characteristics
of the model predictive control scheme presented in the
Section III. Future extensions of this work will consider more
realistic dynamical models for the considered robots.

In our settings, the only way to rectify these drifts is
to correct the modeled positions by measuring the robots
(for the robot models) and landmark (for the camera model)
positions. The problem is that, in general, only one robot or
the landmark can be seen by the camera at once. Moreover,
we choose to force the camera to stay focused on one robot
or on the landmark as long as the other models do not
need to be corrected. This is meant to minimize the camera
total displacement. To determine which model should be
corrected, the uncertainty of each position is propagated in
order to quantify the amount of drifts. According to these
uncertainties, the camera controller is able to manage the
priority of which model must be corrected.

A. Representation

We consider that the camera and the robots have 2 DOFs
each, namely their Cartesian coordinates on a plane. More
precisely, we set c =

(
cx , cy

)
and ri =

(
rix , riy

)
respec-

tively as camera and robot i (∀i = 1, ..., Nr) coordinates in
a world frame (in red and orange on Fig. 1). We set also
m =

(
mx , my

)
as the motionless landmark used for the

camera model correction, whose coordinates in the world
frame are supposed known (in black in Fig. 1).

We set also cm and rim as the modeled coordinates of
the camera and the robots (in blue on Fig. 1). These models
are introduced for two reasons: the first one lies in the
structure of the employed model predictive control scheme
(see Section III) in wich future positions of the robots and
the camera are determined using a model. The second one
lies in the fact that, when the robots and the landmark are
outside the camera field of view, no measurement is avail-
able to determine precisely the robot and camera position.
Thus, using a model allows to cope with the lack of direct
measurements and approximate the unmeasurable positions.
Obviously, when a measurement becomes available, the
corresponding model can be corrected accordingly.

Fig. 1: Camera with limited field of view monitoring the
trajectory of two robots on the ground (top view).

B. Dynamics

The dynamics of camera and robots is assumed to evolve
according to this simple kinematic model:{

ċ = uc + nc

ṙi = ui + ni
; (1)

where:

• the velocities applied to the camera allow it to move
parallel to the ground: uc =

(
ucx , ucy

)
.

• the velocities applied to each robot allow them to move
on the ground: ui =

(
uix , uiy

)
.

• nc and ni are additive Gaussian noises applied to the
camera and robots velocities:

n ∼ N (0, σ2), (2)

with σ2 being the variance. They define the error
between the applied and the actual velocity.

As discussed in Sect. II-A, the modeled positions of camera
and robots are the only information always available. Follow-
ing (1), the dynamics of the modeled coordinates are defined
in a discrete time form at each instant tk as:{

cm(tk+1) = cm(tk) + τuc(tk)

rim(tk+1) = rim(tk) + τui(tk)
(3)

with τ being the sampling time. From (3), the modeled
coordinates can be predicted over a prediction horizon N
as: { −→cm = Acm(tk) + B−→uc

−−→r1m = Arim(tk) + B−→ui
(4)

where :

• the sets of the camera and robot positions are:{ −→cm =
(
cm(tk+1) , . . . , cm(tk+N )

)
∈ R2N×1

−−→rim =
(
rim(tk+1) , . . . , rim(tk+N )

)
∈ R2N×1 ,

(5)
• the sets of the camera and robot inputs are:{ −→uc =

(
uc(tk) , . . . , uc(tk+N−1)

)
∈ R2N×1

−→ui =
(
ui(tk) , . . . , ui(tk+N−1)

)
∈ R2N×1 ,

(6)
• and



A =


1 0
0 1
...

...
1 0
0 1

 ∈ R2N×2,

B =



τ 0 0 0 . . . 0
0 τ 0 0 . . . 0
τ 0 τ 0 . . . 0
0 τ 0 τ . . . 0
...

...
...

...
. . .

...
0 τ 0 τ . . . τ


∈ R2N×2N .

(7)

This dynamic over a future horizon is used for the model
predictive control scheme (see Section III).

We now describe how the velocities applied to the robots
are computed to allow them to follow their desired trajectory.

C. Robot control

The desired trajectories to be followed by the robots are
represented by a time-varying desired r∗i (t) (in green on
Fig. 1). The robots are controlled to track their desired
trajectories by applying the simple control scheme:

ui = k(r∗i − rim) (8)

with a scalar gain k > 0. It therefore appears that the drift
between the real and modeled robot coordinates will also
induce a drift between the real and the desired robot position.
We see now how to correct the modeled position thanks to
camera measurements.

D. Models correction

The camera coordinates in the world frame are given by:

sc = c−m, (9)

while the robot coordinates in the camera frame are:

si = ri − c. (10)

However because of image processing errors, camera mea-
surements are subject to an additive noise ns with same form
as (2). This implies a slight error for each measurement s̄c
and s̄i as {

s̄c = sc + ns
s̄i = si + ns

. (11)

These coordinates are available as measurement only
when the landmark and the robots appear in the camera
field of view delimited by the visibility range smin =(
sminx , sminy

)
and smax =

(
smaxx , smaxy

)
(orange lines

in Fig. 1). A measurement allows obtaining either the camera
model coordinates cm or one robot model coordinates rim.
Thus, using (9), (10), and (11), we can write:{

cm ← s̄c + m if smin 6 s̄c 6 smax

rim ← s̄i + cm if smin 6 s̄i 6 smax
(12)

The camera model drift can then be corrected by the land-
mark observation, while the robots and therefore also their
trajectories are corrected by robots observation.

In this section, we discussed the modeling about cam-
era and robots position, and highlighted the importance of
obtaining a camera measurement for correcting the camera
and robot models (and, thus, improving the robot tracking
performance). The main remaining issue is to develop an
appropriate control scheme for the camera moving to the
robots or to the landmark to correct the position models,
which is the goal of the next section.

III. MODEL PREDICTIVE CONTROL SCHEME

In this section we design a model predictive control
strategy for allowing the camera to move towards either the
landmark or one of the robots. Our aim is to force the camera
to switch from one target to another one as a function of the
evolution of the position uncertainties. These uncertainties
are computed from a model characterizing how the drifts
evolve over time. This strategy can be considered as a par-
ticular instance of active perception, since the camera motion
must be optimized online in order to gather information about
the scene.

The use of this approach is justified by the fact that
the camera cannot move instantaneously from one point to
another. It is therefore necessary to anticipate the camera and
robot motion exploiting the evolution of position uncertain-
ties over a prediction horizon. In order to develop this control
strategy, we need to define the overall system dynamics
(which has already been done in Sect. II-B), a suitable
cost function able to capture our control objective, and the
constraints imposed to the system. A proper definition of
these constraints provides the desired behavior of the camera.

A. Cost function

The cost function to be minimized is given by:

min−→uc∈K
J(−→uc) (13)

where K is the constraint domain described in the next
section III-B, and

J(−→uc) =
(−−→scm −

−−→
s∗cm)T (−−→scm −

−−→
s∗cm)

+
∑

(−−→sim −
−−→
s∗im)T (−−→sim −

−−→
s∗im)

, (14)

where −−→scm and −−→sim are the sets of the corresponding models
of −→sc and −→si defined as:{

scm = cm −m

sim = rim − cm
(15)

Moreover,
−−→
s∗cm and

−−→
s∗im are the sets of the desired position

of the landmark and the robot models in the camera frame
along the prediction horizon. To obtain the landmark and
robots in the center of the camera field of view, we set s∗cm
and s∗im always null.

This cost function has been designed so that the camera
keeps at equal distance from the landmark and the robots.
However, this distance will be strongly disturbed by the
constraints (21). Namely, these constraints will force the
camera to move towards the landmark or one robot (as it
will be explained in Sect. III-B.2.b).



B. Constraints

A great advantage of model predictive control is the
possibility to handle constraints in a principled way. We will
use this characteristic to influence the camera motion.

1) Camera inputs constraints: First, constraints on the
control input are included in the domain K as:

u−c 6 uc 6 u+
c (16)

to ensure the camera velocity will not exceed its physical
limitations, with u−c = (u−cx, u

−
cy) and u+

c = (u+cx, u
+
cy).

Obviously, these constraints are applied for all the set of
inputs −→uc.

2) Relative positions constraints: Secondly, the propa-
gation of the positions uncertainty over a future time is
modeled. This propagation is used to select which model
needs to be corrected. Then, to force the camera to move
to the selected model, constraints on the camera position
relative to the landmark and to the robot positions are
included in the domain K.

a) Uncertainties: As introduced in Sect. II-B, the ve-
locity applied to camera and robots is subject to noise in (1),
which causes a drift between the real and the modeled
position. Knowing the variance of that noise, it is possible to
model the drift propagation over time. For this, we introduce
the position uncertainty pj where j = 0, ..., Nr, and j = 0
represents the camera.

Two situations are involved to determine the uncertainty
propagation. Firstly, when a model is corrected thanks to an
observation by the camera, a minimum value can be assigned
to its uncertainty:

pj(tk) = σ2
s if smin 6 s̄j(tk) 6 smax, (17)

which corresponds to the variance σ2
s of the measurement

error (11). Secondly when a model is not corrected, the
propagation of the uncertainty, exlploiting the dynamics (1),
is defined as [24]:

pj(tk+1) = pj(tk) + τ2σ2
j . (18)

Propagating over the future horizon N , we obtain:{
pj(tk+N ) = σ2

s if smin 6 s̄j(tk) 6 smax

pj(tk+N ) = pj(tk) +Nτ2σ2
j otherwise

. (19)

By predicting the position uncertainty over the prediction
horizon, we can define which model has to be corrected. For
this, a condition Cj is associated to each uncertainty as:

Cj ⇔(
pj(tk+N ) > pmaxj

and pj(tk+N )− pmaxj
> pl(tk+N )− pmaxl

)
or(

pj(tk+N ) < pmaxj

and pj(tk+N ) < pl(tk+N )

)
∀l 6= j, ∀j = 0, ..., Nr

(20)

The uncertainty threshold pmaxj
, which corresponds to the

uncertainty value to not exceeded for allowing the correc-
tion of model j will be described in Sect. III-B.2.c. More
precisely:
• If the uncertainty pj is larger than pmaxj over the

prediction horizon and if the difference between pj and
pmaxj

is the largest among all the other uncertainties,
the condition is held. This ensures that the model whose
uncertainty exceeds the most the threshold over the
prediction horizon has to be corrected.

• Or if all uncertainties are lower than their threshold, and
if the uncertainty pj is lower than all the other ones
over the prediction horizon, the condition is held. This
ensures that either the landmark or one of the robots
is always corrected even when no uncertainty exceeds
its threshold over the prediction horizon. This choice
minimizes the camera displacement since it will remain
focused on the same target as long as no other target
needs to be corrected.

The prediction of uncertainties allows the control strategy to
determine which model should be corrected by the obser-
vations of the camera. We now describe how to inject this
information in the model predictive control.

b) Tolerances: Tolerances represent the set of distances−→
δj between the limits of the camera field of view and the
modeled coordinates of the landmark/robot in the camera
frame. The constraints that they define are added to the
domain K:

smin −
−→
δj 6 −−→sjm 6 smax +

−→
δj , ∀j = 0, ..., Nr. (21)

We set δ− and δ+ as respectively a low and a high tolerance
value. They are assigned to the tolerances

−→
δj following the

conditions defined in (20):{ −→
δj = δ− if Cj
−→
δj = δ+ otherwise

. (22)

The idea consists in having a low value δ− for moving the
camera to the model that must be corrected. For instance
on the Figure 2a, the tolerance δ1 is low, the camera moves
then to the first robot. However, even if δ− is low, we cannot
guarantee that the real position will be in the camera field of
view at the end of the camera motion because of the drifts
from the models. This is why the value δ− is set to a negative
value to allow the robot or the landmark to be in the camera
field of view despite the drifts (see Figure 2a). Obviously,
the camera can move to only one robot or to the landmark at
a time. This is why a high value of tolerance δ+ is assigned
to the other models for ensuring that the system tolerates
that they keep far from the camera field of view. Thus, on
Figure 2b, while the tolerance assigned to the camera δ0 is
low, the tolerance assigned to the robot δ1 is high, which
allows the camera to move to the landmark and to keep far
from the robot.

The constraints defined by (21) allow the control scheme
to force the camera to move towards the landmark or one



robot when it is needed. δ− and δ+ are assigned according
to the conditions in (20) depending on the evolution of
uncertainties pj and on the uncertainty threshold pmaxj that
is described now.

(a) (b)

Fig. 2: Tolerance principle: The camera field of view is
represented by orange dotted lines. (a) δ1 represented in
magenta is negative. The camera c retrieves the robot r1
in its field of view despite the drift from the model r1m.
(b) δ0 is negative, and δ1 is high. The camera has moved to
the landmark and its model is corrected, while the robot is
allowed to stay far away from the field of view.

c) Uncertainty threshold: As described above, δ− has
to be negative to allow the real robot or the landmark to be in
the camera field of view despite the drifts from the models.
However, whatever the value chosen for δ− the drift distance
between the real and the modeled position will exceed |δ−|
after several iterations. If that would occur, the real position
would be outside the camera field of view and the model
would not be corrected. The solution consists to correct the
model before the distance |δ−| is reached by the drift.

For this, we define Nminj as the number of iterations
required by the drift distance to reach |δ−| from a null value.
Thus, by propagating the uncertainty pj from the minimum
value defined by (17) over Nminj iterations we obtain the
uncertainty threshold pmaxj

, namely the uncertainty reached
when the drift distance attains |δ−| from a null value. Finally,
using this threshold in (20), we ensure that the drift will be
corrected before reaching |δ−|. Using (19), the uncertainty
threshold pmaxj

is given by:

pmaxj
= σ2

s +Nminjτ
2σ2

j . (23)

To understand how we compute Nminj , we firstly introduce
the drift distances of the camera and the robots:{

e0 = ||c− cm||
ei = ||ri − rim||

∀i = 1, . . . , Nr, (24)

with e0 being the distance of the camera from its model, and
ei the distance between the robot i and its model. Because
both drift ditances of the camera and the robot i increase
together, it appears that the distance |δ−| can be reached
by the sum of these two drifts after a minimal number
of iterations. As an example illustrated in Figure 3, we
considere the worst case which can be considered. Because
δ1 = δ−, the camera represented in orange moves to the
robot in red while this one follows its trajectory represented

in green. We can see the drifts between their real and their
model positions, and that the sum e0+e1 reachs the distance
|δ−| after Nmin1 iterations.

The exact values of e0 and ei cannot be exactly computed,
so we need to further explore the considered model of
noise (2) which represents the drift evolution. As well known,
it follows the normal distribution whose probability density
establishes that 99.7% of noise values are distributed between
−3σj and +3σj . The drift distance can then be confidently
modeled by the propagation of 3σj at each iteration. From
this, the corresponding uncertainty is propagated as 9σ2

j at
each iteration. Nminj is then the ration between the square
of the limit distance |δ−|2 and the uncertainty 9σ2

j .
Finally, two different Nminj are computed. The first

Nmini is linked to the robot i. As we saw at the beginning
of this paragraph, the distance |δ−| is reached by the sum
of drift distances of the camera and the robot i. The corre-
sponding minimal number of iterations can then be quantified
as:

Nmini =
|δ−|2

9τ2(σ2
c + σ2

i )
. (25)

Finally, Nmini is injected in (23) to compute the uncertainty
threshold of the robot i.

The second Nmin0 is linked to the camera. The goal is to
ensure that all models of the robots can be corrected despite
the camera drift. This means that we must ensure that the
model of the camera is corrected as much as the model of
the robot which has the largest drift. Therefore Nmin0 is
equal to the Nmini with the lowest value:

Nmin0 = min(Nmini) (26)

Nmin0 can then be injected in (23) to compute the uncer-
tainty threshold of the camera.

We described in this part how to compute the uncertainty
thresholds pmaxj

in order to use it in the conditions (20).
We now describe how to compute properly the value of the
prediction horizon N to ensure that a satisfactory behavior
will always be obtained.

Fig. 3: The robot r1 in red follows the trajectory represented
in green. The camera c and its field of view are in orange.
At t = tk, both models are corrected. At t = tk+Nmin1, the
robot is in the camera field of view despite the sum of errors
caused by robot and camera drifts e0 + e1.



C. Prediction Horizon

To guarantee that the models can be corrected despite er-
rors introduced by noises, we must ensure that no uncertainty
exceeds its corresponding threshold. This can be completed
by a suitable computation of the prediction horizon N .

The camera cannot move instantaneously from a position
to another. The prediction horizon must thus be greater than
or equal to the number of iterations required to complete the
longest path taken by the camera according to the minimum
of its maximum speed:

N >
dmax

τucmin
(27)

where ucmin = min(|u−cx|, |u−cy|, |u+cx|, |u+cy|) to ensure that
the lower camera speed is taken into account, and dmax is
the longest path taken by the camera to reach robots and
landmark. It can be seen here that the achievement of the
proposed control scheme does not depend on the number of
robots Nr, but rather on dmax whose value depends on the
considered initial configurations (an example is presented in
Section IV-A.3).

We can then use N computed in (27) to determine if
the desired behavior can be realized without any loss of
information. Indeed, the drift distance (24) could exceed the
distance defined by |δ−| before the camera has time to reach
the position. We can then validate the system settings if:

N > min(Nminj). (28)

IV. SIMULATION RESULTS

Simulations results are presented in this section. All coor-
dinates described in the following are expressed in meters.

A. Parameters

1) Initial configurations: The camera is initially located
at c(t0) =

(
0.7 , 0.6

)
, the landmark at m =

(
0.5 , 0.5

)
and

two robots at r1(t0) =
(
0.5 , 0.7

)
and r2(t0) =

(
1 , 0.7

)
.

We set also the model of the positions as being perfeclty
estimated at the beginning of the simulation: cm(t0) = c(t0),
r1m(t0) = r1(t0) and r2m(t0) = r2(t0). Uncertainties are
at their minimum value at the initialization pj(t0) = σ2

s .
The range of visibility is delimited by smin =(
−0.08 , −0.08

)
and smax =

(
0.08 , 0.08

)
.

Concerning the noise added to the robots and the camera
motion, the averages are null µc = µ1 = µ2 = 0, and the
standard deviations are σc = 0.07, σ1 = 0.09 and σ2 = 0.08.
The noise added to the measures is defined by µs = 0 and
σs = 0.005. The maximum value for the tolerance is set
to δ+ = 2, while the minimum value is δ− = −0.08 wich
corresponds to the size of the field of view from the center
of the image plane.
As for the camera control, the minimum and maximum val-
ues that can be reached are u−c = −2m/s and u+

c = +2m/s.
And for the robots control, the gain is set at k = 1. The total
simulation time is divided in 375 steps with sampling time
of τ = 0.04s.

2) Desired trajectories: The robot desired trajectories are
−→
r∗1 = Ar∗1(tk) + BE

(
0.2 cos(tk)
0.2 sin(tk)

)
−→
r∗2 = Ar∗2(tk) + BE

(
−0.2 cos(tk)
−0.2 sin(tk)

) . (29)

with r∗1(t0) = r1(t0), r∗2(t0) = r2(t0) and

E =


cos(τ) − sin(τ)
sin(τ) cos(τ)

...
...

cos(Nτ) − sin(Nτ)
sin(Nτ) cos(Nτ)

 ∈ R2N×2 (30)

to obtain two circular paths repeated indefinitely. The radii
of the circles are R1 = R2 = 0.2 and their centers are
C1 =

(
0.5 , 0.9

)
and C2 =

(
1 , 0.5

)
.

3) Prediction Horizon: To compute the prediction hori-
zon, we first determine the longest path taken by the camera
to correct the models. With the considered configurations,
the longest path can be defined as:

dmax = dm + dr (31)

with dr the farthest distance between the two robots on their
trajectory:

dr = R1 + R2 +
√

(C1x − C2x)2 + (C1y − C2y )2 (32)

and dm the distance between the landmark and the farthest
robot from the landmark on its trajectory:

dm = R2 +
√

(C2x −mx)2 + (C2y −my)2 (33)

Combining (27) and (31) we can then set N = 22. The
condition (28) is then held, which means that the correction
of the model is guaranteed.

B. Small prediction horizon

We first consider our control strategy with a very small
prediction horizon N = 1 (see the first part of the video sub-
mitted as supplementary material). The numerical method
chosen for minimizing J under the constraints K is available
in the function COBYLA (Constrained Optimization BY Lin-
ear Approximation) [25] from the C++ library NLOPT [26].
This function is not the most efficient method to solve
our optimization problem, but nevertheless allows to obtain
simulation results which approach strongly the desired cam-
era behavior. In this first simulation, the computation time
required is approximately 1 ms for each function COBYLA
call.

Figures 4a and 4b show the evolution of real sx, sy and
desired s∗x and s∗y robot coordinates in the camera frame,
while Figure 4c represents the evolution of the landmark
coordinates. The camera field of view is depicted in orange
while the evolution of the tolerances is in magenta (for the
first robot), cyan (for the second robot) and black (for the
landmark). We can thus visualize when the models have
been corrected, that is when the blue and red curves are



between the two orange lines at the same time. Finally,
Figure 4d shows the evolution of uncertainties together with
the uncertainty thresholds.

It can be observed at t = 0 that the uncertainties do
not exceed their thresholds. However, the one related to
the camera is smaller than the other ones on the prediction
horizon. Thanks to the conditions (20), δ− is assigned to
the landmark tolerance while δ+ is assigned to the robots
tolerance. Moreover, we can see on Figure 4c that scx(t0)
and scy(t0) are not located in the interval described by
smin−δ0 and smax+δ0. The camera must therefore move to
the landmark to satisfy the constraint (21). The model of the
camera is then corrected by the observation of the landmark.

In the same way, the camera must move to the first robot
at t = t1, when the prediction of the uncertainty p1(tk+N )
reaches pmax1. We can see that p1 exceeds pmax1 while the
camera moves to the first robot. However, the camera is still
able to recover the robot in its field of view. Indeed, the drift
distance of the first robot and the camera is not large enough
for exceed the distance described by |δ−|.

This limit is however exceeded for the second robot at
t = t2, the minimum tolerance value δ− is fixed to the second
robot tolerance, while δ+ is fixed to the landmark and the
first robot until the end of the simulation. The robots are not
assisted by the camera observations anymore and diverge
from their desired trajectories. Thus, the blue and red curves
diverge from green curves on Figures 4a and 4b.

The solution consists in properly computing the prediction
horizon following the method described in Section III-C.

C. Large prediction horizon

We now apply our method with a prediction horizon set to
N = 22 following the computation presented in Section IV-
A.3 (see the last part of the video submitted as supplementary
material). The computation time required is obviously greater
than in the previous case. To be consistent with the sampling
time τ , and for real-time issue, we have limited the resolution
time of (13) to 40 ms. This is possible with the NLOPT
library but may introduce a loss of accuracy in the solution.

As we can see on Figures 5a, 5b, 5c, the large prediction
horizon allows the camera to switch from a target to another
much earlier than in the previous simulation, resulting in an
increase of the tolerances modification frequency. It causes
a greater number of corrections achieved by the camera to
satisfy the constraint (21).

It can also be observed Figure 5d that the uncertainties
never exceed their threshold. The drift distance is never
large enough for exceed the distance described by |δ−|. The
camera can then always retrieve the robots in its field of
view, resulting in the success of the trajectory tracking of
the robots throughout the simulation thanks to the proper
horizon prediction.

V. CONCLUSION

We introduced in this paper a new camera control scheme
to achieve a succession of visual servoing tasks by following
the principle of active perception. This method is based

(a)

(b)

(c)

(d)

Fig. 4: Small prediction horizon: (a) and (b) show the desired and
real coordinates of robots in the camera image plane, with smin−δi
and smax + δi represented in magenta and cyan. (c) depicts the
real coordinates of the landmark in the camera image plane, with
smin − δ0 and smax + δ0 represented in black. (d) represents the
uncertainties and their thresholds. At t = t2, the camera is not able
to observe the second robot in its field of view because of the small
prediction horizon which does not anticipate the model errors.

on the model predictive control to anticipate the model
errors over a future time horizon and, thanks to constraints,
force the camera to move for correcting these errors. This
method has been used to assist multiple robots subjected
to noises to perform a trajectory tracking task. With the
reported simulation results, we showed the effectiveness of
our method and the importance of the prediction horizon in
the parameters settings.

We applied this method in a 2D configuration. Future
works will consider this method applied in more realistic



(a)

(b)

(c)

(d)

Fig. 5: Large prediction horizon: Compared to Fig. 4, the toler-
ance modification frequency increases thanks to the large horizon
prediction, resulting by a greater number of model correction to
achieve by the camera, which allows to assist indefinitely the robots
trajectory tracking.

applications. This will involve considering more complex
models for the UAV and robotics dynamics, as well as a
more realistic propagation of the state estimation uncertainty.
Morover, we will also consider different possible numerical
solvers for solving the proposed minimization problem in
order to meet real-time constraints.
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