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New Paradigmn Speech Recognition:
Deep Neural Networks

Dominique FohrOdile Mella anclrina lllina

Abstract—This paper addresses the topic of deep neural
networks (DNN). Recently, DNN has become a flagshim the
fields of artificial intelligence. Deep learning ha surpassed state-
of-the-art results in many domains: image recognitin, speech
recognition, language modelling, parsing, informatn retrieval,
speech synthesis, translation, autonomous cars, gang, etc. DNN
have the ability to discover and learn complex strcture of very
large data sets. Moreover, DNN have a great capahy of
generalization. More specifically, speech recogndn with DNN is
the topic of our work in this paper. We present anoverview of
different architectures and training procedures for DNN-based
models. In the framework of transcription of broadast news, our
DNN-based system decreases the word error rate draatically
compared to a classical system.

companies and organizations are interested by ttypes of
applications. Many business companies are intetést&now
what is said about them and about their competitums

broadcast news or on TV. In the same way, a powerfu

indexing system of audio data would benefit archiv@ell
organized historical archives can be rich in terircutural
value and can be used by researchers or geneda.pub
Classical approach for spoken content retrievainfiaudio
documents is speech recognition followed by tetteeal [2].
In this approach, the audio document
automatically using a speech recognition engineadtet this
the transcribed text is used for the informatiotriegal or
opinion mining. The speech recognition step is ieduc
because errors occurring during this step will pgade in the

is transcribed

Index Terms—speech recognition, deep neural network, following step.
acoustic modeling In this article, we will present the new paradigsed for
speech recognitiorDeep Neural Networké€DNN). This new
methodology for automatic learning from examplebiees
|. INTRODUCTION

better accuracy compared to classical methods.

More and more information appear on Internet eaaf d In section Il, we briefly present automatic spesestognition.
And more and more information is asked by usersis ThSection Ill gives an introduction to deep neuraivoeks. Our
information can be textual, audio or video and espnts speech recognition system and an experimental aiaifuare
multimedia information. About 300 hours of multinieds described in section IV.
uploaded per minute [1]. It becomes difficult famepanies to
view, analyze, and mine the huge amount of multimeldta
on the Web. In these multimedia sources, audio data 1.
represents a very important paBpoken content retrieval
consists in “machine listening” of data and exi@ct of
information. Some search engines like Google, Yalao.
perform the information extraction from text dataryw
successfully and give a response very quickly.é@mple, if
the user wants to get information about “Obamaé, likt of
several textual documents will be given by Googleaifew
seconds of search. In contrast, information relievom
audio documents is much more difficult and consists
“machine listening” of the audio data and detectimgants at ., stic and language models, and to some extricDies,
which the keywords of the query occur in the audigie estimated using huge audio and text corpora.
documents. For example, to find all audio documep&aking  Aytomatic speech recognitioconsists in determining the

ab’\?u: “Oblam_a’;_ idual but al i ?est sequence of wordd’} that maximize the likelihood:
ot only individual users, but also a wide range o W = argmax ,, P(X|W)P(W) )

where P(X|W), known as acoustic probability is the
probability of the audio signakKj given the word sequen¥¥.

AUTOMATIC SPEECHRECOGNITION

An automatic speech recognition system requiresethmain
sources of knowledge: arcoustic modela phonetic lexicon
and alanguage mode[3]. Acoustic model characterizes the
sounds of the language, mainly the phonemes anth ext
sounds (pauses, breathing, background noise, €t
phonetic lexicon contains the words that can begeized by
the system with their possible pronunciations. leayg
model provides knowledge about the word sequerizgscan
be uttered. In the state-of-the-art approachestisttal

This work was funded by tHéontNomingproject supported

by the French National Research Agency (ANR) unciertract ANR-12- i ity i ; ;
B502-0000. This probability is computed using acoustic mode{Ww),
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A. Acoustic modeling

Acoustic modeling is mainly based ddidden Markov
Model (HMM). An HMM is a statistical model in which the
system being modeled is assumed to be a Markoepsoagith
unobservedhidder) states [4].

()

Fig. 1. HMM with 3 states, left-to-right topology and self-
loops, commonly used in speech recognition.

HMM is a finite state automaton withi states, composed of
three componentsf4, B,I1}. A is the transition probability
matrix (a;; is the transition probability from the statéo the
state j). I is the prior probability vectorn{ the prior
probability of statei), and B is the emission probability
vector {(x) is the probability of emission of observation
being in statg).

In speech recognition, the main advantage of ulslikigv is
its ability to take into account the dynamic aspeof the
speech. When a person speaks quickly or slowly,nbdel
can correctly recognize the speech thanks to tlidosg on
the states.

To model the sounds of a language (phones), a-tiate
HMM is commonly chosen (cf. Fig. 1). These stataptare
the beginning, central and ending parts of a phtmerder to
capture the coarticulation effectaphone modelga phone in
a specific context of previous and following phonese
preferred to context-independent phone models.

Until 2012, emission probabilities were represenbgda
mixture of multivariate Gaussian probability dibtrtion
functions modeled as:

bi(x) = Xir=1Cim N (X; tjm» Zjm) (2)

The parameters of Gaussian distributions are estina
using theBaum-Welchalgorithm.

A tutorial on HMM can be found in [4]. These modelsre
successful and achieved best results until 2012.

B. Language modeling

C. Search for the best sentence

The optimal computation of the sentence to recagisznot
tractable because the search space is too largerefohe,
heuristics are applied to find a good solution. Tikeal way is
to perform the recognition in two steps:

The aim of this first step is to remove words thate

a low probability to belong to the sentence to
recognize. A word lattice is constructed using beam
search. This word lattice contains best word
hypotheses. Each hypothesis consist of words, their
acoustic probabilities, language model probabditie
and time boundaries of the words.

The second step consists in browsing the lattioggus
additional knowledge to generate the best hypaghesi

Usually, the performance of automatic speech reitiogns
evaluated in terms &ford Error RatgWER), i.e. the number
of errors (insertions, deletion and substitutiais)ded by the
number of words in the test corpus.

In 2012, an image recognition system base®eap Neural
Networks (DNN) won the Image net Large Scale Visual
Recognition Challengeg(ILSVCR) [6]. Then, DNN were
successfully introduced in different domains tovech wide
range of problems: speech recognition [7], speech
understanding, parsing, translation [8], autonomoais [9],
etc.[10]. Now, DNN are very popular in different rdains
because they allow to achieve a high level of abttn of
large data sets using a deep graph with linearrnamdlinear
transformations. DNN can be viewed as universal
approximators. DNN obtained spectacular results aod
their training is possible thanks to the use of GRG
(General-Purpose Computing on Graphics Processinigs)n

DEEPNEURAL NETWORKS
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Fig. 2. Example of one neuron and its connections.

Historically, the most common approach for language ]
modeling is based on statisticalgram model. Ann-gram A. Introduction

model gives the probability of a word; given then-1
previous words:

P(w;|wy, ..., wi-1) = P(w;|w;_(n—1), Wi—(n-2)s - - - » Wi-1)

These probabilities are estimated on a huge tesuso To
avoid a zero probability for
smoothing methods are applied, the best known dmrapt
method being proposed by Kneiser-Ney [5].

Deep Neural Networks are composedneuronsthat are
interconnected. The neurons are organized intordayEhe
first layer is the input layer, corresponding te thata features.
The last layer is the output layer, which providies output
probabilities of classes or labels (classificatiask).

unseen word sequences,The outputy of the neuron is computed as the non-linear

weighted sum of its input. The neuron inputcan be either
the input data if the neuron belongs to the fiestet, or the



output of another neuron. An example of a singleroe and (SGD). It consists in computing the gradient onrealé set of

its connections is given in Figure 2.
A DNN is defined by three types of parameters [11]:

The widely used activation function is theon-linear

training samples (callednini-batch and in updating the
weights after each mini-batch. This speeds up thiming

The interconnection pattern between the differerirocess.

layers of neurons; During the training, it may happen that the netwtadrns
The training process for updating the weigitsof features or correlations that are specific to tizéning data
the interconnections; rather than generalize the training data to beiegiple to the
The activation functiorf that converts a neuron's test data. This phenomenon is calteebrfitting One solution
weighted input to its output activation (cf. eqoatin IS to use a development set that should be as elgessible
Fig. 2). to the test data. On this development set, recognérror is

calculated at each epoch of the training. Wherether begins

weighted sumUsing only linear functions, neural networksto increase, the training is stopped. This processlledearly

can separate only linearly separable classes. fiinerenon-

stopping Another solution to avoid overfitting consists in

linear activation functions are essential for mafa. Figure 3 Usingregularization It consists in inserting a constraint to the

shows

hyperbolic tangentténh), RELU (Rectified Linear Units and

maxout

some classical non-linear functions as sigmoierror function to restrict the search space of wsig For
instance, the sum of the absolute values of thghteican be
added to the error function [14].

One more solution to avoid overfitting dopout [15]. The
idea is to “remove” randomly some neurons during th
training. This prevents neurons from co-adapting touch
and performs model averaging.

C. Different DNN architectures
There are different types of DNN regarding the deciure

[16]:

5 0 5 10

‘ Logistic Sigmoid

MultiLayer Perceptron(MLP): each neuron of a
layer is connected with all neurons of the previous
layer (feedforward and unidirectional).

Recurrent Neural NetworRNN): when it models

a sequence of inputs (time sequence), the network
can use information computed at previous tite (
1) while computing output for time Fig. 4 shows

Maxout (n=2)

Fig. 3. Sigmoid, RELU, tangent hyperbolic and maxout non-
linear functions

B. Training

The goal of the training is to reduce the erromigein the
outputs computed on the training data and the targees.
This supervised training consists in estimatingwheéghtsw;.
of all neurons of all layers. Until now, there ie tearning
process that converges to a global optimum. Thesidal
learning algorithm is based on stochastic gradiksstent and
only a local optimum can be achieved.

At eachepoch(oneepochconsists of one training cycle on
the whole training set), the cost functida (difference
between target output and computed output) is coecpand
the weightsw are adjusted using:

n is called the learning rate. In general, the legymrate is
decreased during the training process [12][13].
Theoretically, the gradient should be computed gigime
whole training corpus. However, the convergenoeery slow
because the weights are updated only onceepech One
solution of this problem is to ustochastic Gradient Descent

an example of a RNN for language modeling: the
hidden layerh(t-1) computed for the word-1 is
used as input for processing the woft7].

[ )
C
[ ®
w(t) @ ()
o 0} [ ]
: 8 : P(w(t+1))
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g h(t) :
@

T

Fig. 4. Example of a RNN.

* Long Short-Term Memorft STM) is a special type
of RNN. The problem with RNN is the fact that the
gradient is vanishing, and the memory of past
events decreases. Sepp Hochreiter and Jirgen



Schmidhuber [18] have proposed a new recurrent
model that has the capacity to recall past events. 1(1]/1/0]/0
They introduced two conceptsnemory celland
gates These gates determine when the input is 0|1j1]1/0 4134
significant enough to remember or forget the value, o|o0f1|11, 21413
and when it outputs a value. Fig. 5 displays the
structure of an LSTM. 0/0 ]so ]&1 ono 2|34
e Convolutional Neural NetworkCNN) is a special 01 ]s(1 Oxo Ql
case of Fee_dforward N_eural Network. The layer Convolved
consists of filters (cf. Fig. 6). The parameters of Image
these filters are learned. One advantage of thid ki Feature
of architecture is the sharing of parameters, sceth 10 1
are fewer parameters to estimate. In the case of Fig. 6. Example of a convolution with af”tﬁ{ll) (1) <1)

Image rPfCOQn'tlon_’ eaph filter detecj{s a simple Original image is in green, filter applied on bettaight of
feature (like a vertical line, a contour line, ptén image is in orange and convolution result is irkpin

deeper layer, the features are more complex (cf.

Fig. 7). Frequently, @ooling layer is used. This A difficult DNN issue is the choice of the hyperpareters:
layer allows a non-lineardownsampling max number of hidden layers, number of neurons per)ay®ice
pooling (cf. Fig. 8) computes maximum values orbf non-linear functions, choice of learning rateapigtion
sub-region. The idea is to reduce the size of thfgnction. Often, some hyperparameters are adjusted
data for the following layers. An example of stateexperimentally (trial and error), because they depen the
of-the-art acoustic model using CNN is given inask, the size of the database and data sparsity.

Fig. 9. )
D. DNN-based acoustic model

net-output h(t) As said previously, for acoustic modeling, HMM with
T left-to-right states are used to model each phormotextual
phone (triphone). Typically, there are several Hamd of

memory block outputgate-state HMM states in a speech recognition system.

In DNN-based acoustic model, contextual phone HMMs
are keeped but all the Gaussian mixtures of the Hlales
(equation 2) are replaced by DNN. Therefore, DNisedl
acoustic model computes the observation probali|ity) of
forgetgate-state each HMM phone state given the acoustic signalguBINN

f(t) o ct) ) cell-state(s) networks [21]. The input of the DNN will be the astic
parameters at timé¢. The DNN outputs correspond to all
inputgate-state HMM states, one output neuron for one HMM state.

o 1(t) In order to take into account contextual effedtg, acoustic
vectors from a time window centered on time t (festance
from time t-5 to t+5) are put together.

To train the DNN acoustic model, the alignment bé t
training data is necessary: for each frame, theesponding
HMM state that generated this frame should be knoiis

alignment of the training data is performed usinglassical
Fig. 5. Example of LSTM with three gates: input gate, forge s MM-HMM model.

gate, output gate and a memory cell (from [19]).

. o(t)

N

net-input: x(t) + h(t-1)

The main advantage of RNN and LSTM is their abitidy
take into account temporal evolution of the inpaatfires.
These models are widely used for natural languageegsing.
Strong point of CNN is the translation invarianice, the skill
of discover structure patterns regardless the ipositFor
acoustic modelling all these structures can beoibgual.

[ . : ol s S i
Fig. 7. Feature visualization of convolutional network red
on ImageNet from Zeiler and Fergus [20].



Single depth slice

X 111|124
max pool with 2x2 filters
ORINGHl 7 | 8 and stride 2
3 | 2 NG
112)|3)| 4
y

Fig. 8. Max pooling with a 2x2 filter (from www.wildml.con

E. Language model using DNN

A drawback of classical N-gram language models (Li#/1)
their weak ability of generalization: if a sequerafewords
was not observed during training, N-gram model wile
poor probability estimation. To address this issune solution
is to move to a continuous space representatiorurdie
networks are efficient for carrying out such a potjon. To
take into account the temporal structure of languégord
sequences), RNN have been largely studied. The Nst
based language models use LSTM and RNN [23][24].

featuremap size

(freq x time)
FC 2048
FC 2048
FC 2048
—
2x4
 —
4x8
[ 10x16
3x3 conv, 256
3x3 conv, 128
20x 16
3x3 conv, 128
3x3 conv, 64
40 x 16

3x3 conv, 64

input (40x16)

IV. KATS (KALDI BASED TRANSCRIPTIONSYSTEM)

In this section we present the KATS speech recmgnit
system developed in our speech group. This syssebuiit
usingKaldi speech recognition toolkit, freely available under
the Apache License. Our KATS system can use GMM¢thas
and DNN-based acoustic models.

A. Corpus

The training and test data were extracted from reuio
broadcast newscorpus created in the framework of the
ESTER project [25]. This corpus contains 300 hoafs
manually transcribed shows from French-speakingiorad
stations France Inter Radio France Internationaind TVME
Moroccg. Around 250 h were recorded in studio and 50h on
telephone. 11 shows corresponding to 4 hours ofdpe
(42000 words) were used for evaluation.

B. Segmentation

The first step of our KATS system consists in segfiagon
and diarization. This module splits and classifies audio
signal into homogeneous segments: non-speech ségmen
(music and silence), telephone speech and studieckp For
this, we used the toolkit developed by LIUM [27].eW
processed separately telephone speech and stueléchspn
order to estimate two sets of acoustic models;istotbdels
and telephone models.

C. Parametrization

The speech signal is sampled at 16 kHz. For arsal25i ms
frames are used, with a frame shift of 10 ms. 13K2Rvere
calculated for each frame completed by the 13 damfic 13
delta-delta coefficients leading to a 39-dimensiservation
vector. In all experiments presented in this papes, used
MCR (Mean Cepstral Removal

D. Acoustic models

In order to compare GMM-HMM and DNN-HMM acoustic
models, we used the same HMM models with 4048 s=h0n
The only difference is the computation of the eibiss
probability {y(x) of equation 2): for GMM-HMM it is a
mixture of Gaussians, for DNN-HMM, it is a deep ra&u
network. Language model and lexicon stay the sdrfog.
GMM-HMM acoustic models, we used 100k Gaussians. Fo
DNN, the input of the network is the concatenatmfnll
frames (fromt-5 to t+5) of 40 parameters. The network is a
MLP with 6 hidden layers of 2048 neurons per laigér Fig.
10). The output layer has 4048 neurons (correspgnttd
4048 senones). The total number of parameters iN-BIMIM
is about 30 millions.

E. Language models and lexicon
Language models were trained of huge text corpora:

Fig. 9. The very deep convolutional system proposed by IBMiewspaper corpusLé Monde, L'Humanité news wire

for acoustic modeling: 10 CNN, 4 pooling, 3 fullnvected  (Gigaword), manual transcriptions of training corpus and web
(FC MLP) (from [22]).

data. The total size was 1.8 billion words. Theram
language model is a linear combination of LM modedined
on each text corpus. In all experiments presemehis paper,
only a 2-gram model is used with 40 million bigraarsd a



lexicon containing 96k words and 200k pronunciation

Hidden layers
output

2048 neurons

per layer

Fig. 10. Architecture of the DNN used in KATS system.

F. Recognition results

Recognition results in terms of word error rate floe 11
shows are presented in Table 1. The confidencevalt®f
these results is about +/- 0.4 %. Two systems anepared.
These systems use the same lexicon and the samaatsn
models but differ by their acoustic models: GMM-HMamnd
DNN-HMM, so, the comparison is fair. For all shovwhke
DNN-based system outperforms the GMM-based sysidma.
WER difference is 5.3% absolute, and 24% relatiVhe
improvement is statistically significant. The lamjéference in
performance between the two systems suggests tNat- D
based acoustic models achieves better classificati@ has
generalization ability.

GMM- | DNN-

Shows # words HMM | HMM
20070707_rfi (France) 5473 23.6 16,5
20070710 _rfi (France) 3020 22.7 17/4
20070710_france_inter 3891 16.Y 121
20070711 _france_inter 3745 19.8 14{4
20070712_france_inter 3749 23.6 16(6
20070715 _tvme (Morocca) 2663 32.% 26(5
20070716 _france_inter 3757 20.y 17,0
20070716 _tvme (Moroccq) 2453 22.8 17|0
20070717_tvme (Moroccq) 2646 25.1 20|11
20070718 tvme (Moroccq) 2466 20.2 15{8
20070723 _france_inter 8045 22.4 17.4

Average 41908 224 171

Table 1. Word Error Rate (%) for the 11 shows otediusing the
GMM-HMM and DNN-HMM KATS systems.

V. CONCLUSION

From 2012, deep learning has shown excellent wesalt
many domains: image recognition, speech recognition
language modelling, parsing, information retrievaheech
synthesis, translation, autonomous cars, gamirg, Ietthis
article, we presented deep neural networks for cdpee
recognition: different architectures and trainirrgqedures for
acoustic and language models are visited. Usingspeech
recognition system, we compared GMM and DNN acousti
models. In the framework of broadcast news trapton, we
shown that the DNN-HMM acoustic model decreases the
word error rate dramatically compared to classiGAIM-
HMM acoustic model (24% relative significant impemaent).

The DNN technology is now mature to be integratetd i
products. Nowadays, main commercial recognitiontesys
(Microsoft Cortang Apple Siri, Google Now and Amazon
Alexg are based on DNNSs.
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