A-VCI: a flexible method to efficiently compute vibrational spectra

Isabelle Baraille, Didier Bégué, Olivier Coulaud, Vincent Le Bris, Marc

Odunlami

To cite this version:

Isabelle Baraille, Didier Bégué, Olivier Coulaud, Vincent Le Bris, Marc Odunlami. A-VCI: a flexible method to efficiently compute vibrational spectra. [Research Report] RR-9043, Inria. 2017, pp.35. hal-01485877

HAL Id: hal-01485877
 https://hal.inria.fr/hal-01485877

Submitted on 9 Mar 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A-VCI: a flexible method to efficiently compute vibrational spectra

Isabelle Baraille, Didier Bégué, Olivier Coulaud, Vincent Le Bris Marc Odunlami

RESEARCH

A-VCI: a flexible method to efficiently compute vibrational spectra

Isabelle Baraille * *idier Bégué*, Olivier Coulaud \ddagger Vincent Le Bris* Marc Odunlami *
Project-Teams HiePACS
Research Report n 9043 - march 2017 - 35 pages

Abstract

The Adaptive Vibrational Configuration Interaction (A-VCI) algorithm has been introduced as a new method to efficiently reduce the dimension of the set of basis functions used in a Vibrational Configuration Interaction (VCI) process. It is based on the construction of nested basis for the discretization of the Hamiltonian operator according to a theoretical criterion that ensures the convergence of the method. The purpose of this paper is to study the properties and outline the performance details of the main steps of the algorithm. New parameters have been incorporated to increase flexibility, and their influence have been thoroughly investigated. The robustness and reliability of the method are demonstrated for the computation of the vibrational spectrum up to $3000 \mathrm{~cm}^{-1}$ of a widely studied 6 -atom molecule (acetonitrile). Our results are compared to the most accurate up to date computation, and we also give a new reference calculation for future work on this system. The algorithm has also been applied to a more challenging 7 -atom molecule (ethylene oxide). The computed spectrum up to $3200 \mathrm{~cm}^{-1}$ is the most accurate computation that exists today on such a system.

Key-words: Vibrational Hamiltonian, vibrational Configuration Interaction, Eigenvalue problem, adaptive method, high dimension, spectrum, acetonitrile, ethylene oxide

[^0]```
RESEARCH CENTRE
BORDEAUX - SUD-OUEST
351, Cours de la Libération
Bâtiment A 29
33405 Talence Cedex
```


## A-VCI: une méthode flexible pour calculer rapidement des spectres vibrationnels

Résumé : L'algorithme adaptatif d'interaction de configuration vibrationnelle (A-VCI) a été introduit comme une nouvelle méthode pour réduire efficacement la dimension de l'ensemble des fonctions de base utilisées dans un processus d'interaction de configuration vibrationnelle (VCI). Il est basé sur la construction de bases emboîtées pour la discrétisation de l'opérateur Hamiltonien selon un critère théorique qui assure la convergence de la méthode. Cet article présente les propriétés de la méthode et décrit les détails des principales étapes de l'algorithme. De nouveaux paramètres sont introduits pour accroître les potentialités de la méthode et leurs influences sont étudiées. La robustesse et la fiabilité de la méthode sont démontrées pour le calcul du spectre vibrationnel jusqu'à $3000 \mathrm{~cm}^{-1}$ d'une molécule à 6 atomes (acétonitrile). Nos résultats sont comparés au calcul le plus précis à jour, et nous donnons également un nouveau calcul de référence pour les travaux futurs sur ce système. L'algorithme a également été appliqué à un système plus difficile l'oxyde d'éthylène qui comporte 7 atomes. Le spectre calculé jusqu'à $3200 \mathrm{~cm}^{-1}$ est le calcul le plus précis qui existe aujourd'hui sur un tel système.

Mots-clés : Hamiltonien vibrationnel, interaction de configuration vibrationnelle, problème aux valeurs propres, méthode adaptative, grande dimension, spectre, acétonitrile, oxyde d'éthylène

## Contents

1 Introduction 4

| 2 Notations and general overview | 5 |
| :--- | :--- |


| 3 | The A-VCI algorithm | 7 |
| :--- | :--- | :--- |

3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Approximation space definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3.1 Sparse structure definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3.2 Sparse structure construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.3 Sparse structure update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3.4 Matrix coefficient evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Basis expansion strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4.1 Component-wise strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4.2 Collective component-wise strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Results and discussion 12
4.1 Acetonitrile molecule, $\mathrm{CH}_{3} \mathrm{CN}$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.1 Influence of different strategies to expand the A-VCI space . . . . . . . . . . . . . . . . . 13
4.1.2 Convergence study of the A-VCI algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.3 New results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Ethylene oxide molecule, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.1 The first 50 eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.2 The first 200 eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Conclusion 20
A Hermite functions 21
$B$ Supplementary Material 23
B. 1 Acetonitrile molecule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
B. 2 Ethylene oxide molecule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

## Contents

## 1 Introduction

The computation of vibrational properties of a polyatomic molecule usually requires solving the time-independant Schrödinger equation, under the Born-Oppenheimer approximation. Within this framework, the vibrational energy levels are solutions of an eigenvalue problem, where the Hamiltonian of the system is discretized in a finite dimensional sub-space of the Hilbert space associated with the system. The variational [10, 15, 8, 9, 32, 47, 42, 18, principle states that the larger the subspace is, the more accurate the eigenpairs is.

Several methods can be used for this discretization. The Hamiltonian and the wave functions can be expanded using finite basis functions (FBR) [38, 5, 8, 41, 36, 20, 20, 1, 2, 3, 13], or sampled on some grid of points in the configuration space (DVR) [11]. An alternative approach is the phase space representation. It uses Gaussian functions localized in phase space (Von Newmann basis set) [44, 25, 26].

The simplest representation uses the harmonic oscillator direct product basis set, since they are exact wavefunctions of the harmonic Hamiltonian. Each function is a product of one-dimensional Hermite polynomials. However, the direct product structure of the basis set makes it unusable for molecular systems of dimension $D$, with $D=3 N-6$ ("curse of dimensionality"), due to its memory requirements [35, 11, 12].

Some recent works try to overcome this limitation by finding the smalest basis size to be able to deal with larger systems. There are two common strategies for selecting a subset of a direct product basis 24, 17, 48, [50, 37, 21, 22]. In the first strategy a pruning condition is used to remove basis functions [20, 25, 3, ,13] while in the second strategy we begin with a small basis and we enlarge it by adding functions that satisfy some conditions [5, 43, 19, [27, 45, 44, 34, 14, 23, 13, 23].

The first way is then based on a correlated truncation scheme, imposing the pruning condition:

$$
\begin{equation*}
\sum_{i=1}^{D} \alpha_{i} n_{i} \leq b \tag{1}
\end{equation*}
$$

where the $n_{i}$ is the maximal degree of the Hermite polynomial related to the coordinate $q_{i}$, and $b$ is a convergence parameter. Several choices are possible for $\alpha_{i}$ depending if we prune only by the ordering of the element in the energy or by an energy criterion. The simplest approach considers $\alpha_{i}=1$ (called polyad [25, 40, 29, 16, or binomial [23] truncation) and then retains all polynomials of total degree lower than $b$. In such approcah, we have the same discretisation in every the directions even if the harmonic frequencies are very different. By using an energy criterion we take into account this difference in the pruning space. Two criteria are classically used $\alpha_{i}=\omega_{i}$ (Ref. [25]), where $\omega_{i}$ is the harmonic frequency for the coordinate $q_{i}, \alpha_{i}=\left\lfloor\frac{\omega_{i}}{\omega_{\min }}+0.5\right\rfloor$ (Ref. [13]) or $\alpha_{i}=\left\lfloor\sqrt{\frac{\omega_{i}}{\omega_{\min }}}+0.5\right\rfloor$ (Ref. [25, 13]) where $\omega_{\min }$ is the lowest harmonic frequency. It is also possible to impose a more general condition [1, 2, 4, 3, 13]:

$$
\begin{equation*}
\sum_{i=1}^{D} g_{i}\left(n_{i}\right) \leq b \tag{2}
\end{equation*}
$$

While this condition leads to smaller basis sets than the previous one, the choice of suitable $g_{i}\left(n_{i}\right)$ functions is difficult, and strongly depends on the studied molecular system. These choices lead to different convergence properties when the parameter $b$ is increased [25], depending on the energy range considered. However it is difficult to choose $b$ to reach a given accuracy on the eigenvalues.

In the second approach, we start with a small basis and we iteratively add functions to expand the basis until we get accurate enough eigenpairs. This requires to define for each iteration: an admissible set of functions, a method to choose which functions to add and a convergence criterion. The functions are selected from the full direct product space [5, 13, 23]. This selection is based on the definition of neighboring functions. These neighbours are defined differently depending on the authors. For example, Brown and Carrington [13] define the neighbours of $\mathbf{n}=\left\{n_{1}, \ldots, n_{D}\right\}$ by augmenting one of the indices $n_{i}$ by 1 for each $i$, and select elements
such that the basis is increased by $5 \%$ at each iteration. An alternative idea is to evaluate the contribution of each function to the energy at the second order perturbational level [5], and only select the most significant contributions.

Concerning the convergence criterion, it is generally based on differences between the eigenvalues for different values of $b$ in the first approach, or between consecutive iterations to stop the basis growth in an iterative process. These two choices seems misleading since the convergence curve of the eigenvalues exhibit a "stair-step" shaped pattern (see for example Ref. [13]).

The Adaptative Vibrational Configuration Interaction (A-VCI) algorithm [23] has been recently introduced as a more efficient way to select relevant Hermite functions without any limit on their degree, given an energy range of interest. The potential energy operator is used to build the image space of a given set of functions at each iteration. This iterative approach constructs nested subspaces using a result of perturbation theory for linear operators [6, 28, to define an a-posteriori error estimator. This estimator acts both as a condition to build the active space of the configuration interaction process by selecting the most relevant basis elements, as well as a trustworthy convergence criterion on both the eigenvalues and the eigenvectors. A-VCI algorithm is then a robust and general procedure to compute spectrum in the case of sum of product basis without any a-priori chemical and physical information and without defining any arbitrary criterion.

The aim of this paper is to detail the different numerical ingredients of the A-VCI algorithm. We establish new growth strategies resulting in smaller final basis sets to calculate spectra of molecules with 6 and 7 atoms. In Section 2 we briefly recall some notations and we set up the key ideas used by the algorithm. Section 3 presents the algorithm and explain how the matrices are built and how different strategies are used to increase the subspace leading to significant cost reduction of the algorithm. In Section 4 , we exhibit results for two medium sized molecules, $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$, compared to the pruned basis method, and illustrate the good convergence properties of the A-VCI algorithm. Results reported in the Supplementary Material are also compared to the best references that can be obtained using the A-VCI algorithm when pushed to its limits.

## 2 Notations and general overview

Let introduce the vibrational Hamiltonian $\mathcal{H}$ for a $N$-atom molecular system:

$$
\begin{equation*}
\mathcal{H}(\mathbf{q})=\mathcal{H}_{0}(\mathbf{q})+\mathcal{V}(\mathbf{q})=\sum_{i=1}^{D} \frac{\omega_{i}}{2}\left(-\frac{\partial^{2}}{\partial q_{i}^{2}}+q_{i}^{2}\right)+\sum_{\|\mathbf{s}\|_{1}=3}^{S} K_{\mathbf{s}} \prod_{i=1}^{D} q_{i}^{s_{i}} \tag{3}
\end{equation*}
$$

where $\mathcal{H}_{0}$ is the harmonic Hamiltonian operator, $\mathcal{V}$ the anharmonic part of the Potential Energy Surface (PES) as a Taylor expansion, $S$ the maximal degree of the PES, $D=3 N-6$ the number of vibrational degrees of freedom of the considered system, $\mathbf{q}=\left(q_{1}, q_{2}, \ldots, q_{D}\right)$ the normal dimensionless coordinates and $\|\mathbf{s}\|_{1}$ the sum of all components of the multi-index s. Each harmonic frequency $\omega_{i}$ and polynomial degree $s_{i}$ are associated with the $q_{i}$ coordinate.

The solution of the vibrational Schrödinger eigenvalue problem requires the discretization of the Hamiltonian operator $\mathcal{H}$ in a suitable orthonormal basis set. Since $\mathcal{H}$ can be seen as a perturbation of the operator $\mathcal{H}_{0}$ that is Hermitian. Consequently a natural choice is to search the eigenpairs of $\mathcal{H}$ in the space $\Pi_{\mathbf{d}}$ spanned by the eigenvectors of $\mathcal{H}_{0}$ analytically defined by

$$
\begin{equation*}
\phi_{\mathbf{n}}^{0}(\mathbf{q})=\prod_{i=1}^{D} \psi_{n_{i}}\left(q_{i}\right), \text { for all } \mathbf{n}=\left(n_{1}, \ldots, n_{D}\right) \tag{4}
\end{equation*}
$$

where the quantum number $n_{i}$ corresponds to $\omega_{i}$ and $\psi_{n_{i}}$ is the 1-D normalized Hermite function of degree $n_{i}$. The discretization space $\Pi_{\mathbf{d}}$ is a direct-product space of size $M$ and is defined by

$$
\begin{equation*}
\Pi_{\mathbf{d}}=\left\{\phi_{\mathbf{n}}^{0} / \mathbf{n} \in \prod_{i=1}^{D}\left[0, d_{i}\right]\right\} \tag{5}
\end{equation*}
$$

RR n ${ }^{\circ} 9043$
where $\mathbf{d}=\left(d_{1}, \ldots, d_{D}\right)$ and $d_{i}$ is the maximal degree of the Hermite function with respect to the $q_{i}$ coordinate.
The discretized Hamiltonian $H$ in $\Pi_{\mathbf{d}}$ is represented by a $M \times M$ matrix, in which each element $(i, j)$ has the form:

$$
\begin{equation*}
H_{i, j}=\left\langle\phi_{\mathbf{i}}^{0} \mid \mathcal{H} \phi_{\mathbf{j}}^{0}\right\rangle, \tag{6}
\end{equation*}
$$

where the row $i$ (resp. the column $j$ ) of the matrix corresponds to the index of basis function $\phi_{\mathbf{i}}^{0}\left(\right.$ resp. $\left.\phi_{\mathbf{j}}^{0}\right)$ in $\Pi_{d}$.

Let $B$ be a subset of $\Pi_{\mathbf{d}}$, we define $\mathcal{H}(B)$ its image space by the operator $\mathcal{H}$, which is spanned by all harmonic functions $\phi_{\mathbf{n}}^{0}$ such that $\left\langle\phi_{\mathbf{n}}^{0} \mid \mathcal{H} \phi\right\rangle \neq 0$ for all $\phi$ in $B$. As $\mathcal{H}_{0}$ is diagonal in the basis of the 1-D Hermite function products, the image space can be decomposed as the direct sum of two orthogonal spaces

$$
\begin{equation*}
\mathcal{H}(B)=B \oplus B_{R} \tag{7}
\end{equation*}
$$

Let $m$ (resp. $m_{R}$ ) be the number of elements in $B$ (resp. $B_{R}$ ), we denote by $\widetilde{H}$ the Hamiltonian matrix of operator $\mathcal{H}$ in space $\mathcal{H}(B)$. Thanks to the above space decomposition this matrix is decomposed as follows

$$
\widetilde{H}=\left(\begin{array}{c|c}
H & H_{R}^{T}  \tag{8}\\
\hline H_{R} & H_{C}
\end{array}\right)
$$

where $H=B^{T} \mathcal{H} B$ is a $(m \times m)$ Rayleigh matrix that approximates the Hamiltonian operator $\mathcal{H}$ in the orthonormal basis $B, H_{R}=B_{R}^{T} \mathcal{H} B$ a $\left(m_{R} \times m\right)$ matrix and $H_{C}=B_{R}^{T} \mathcal{H} B_{R}$ a $\left(m_{R} \times m_{R}\right)$ matrix.

As $B$ is strictly included into $\mathcal{H}(B)$ when we search eigenvalues of $\mathcal{H}$ we have to evaluate the error due to the projection in $B$. In other words, we want to measure the distance between the eigenvalue of $H$ and the eigenvalue of $\widetilde{H}$. To this end, we introduce an a-posteriori error estimator based on the Bauer-Fike theorem [6, 28]. This theorem is a classical tool in spectral perturbation theory to localize eigenvalues and indicates that if $\Delta H$ is a symmetric perturbation of a symmetric matrix $H$ then for any eigenpairs $(\widetilde{E}, \widetilde{\mathbf{X}})$ of $H+\Delta H$ with $\|\widetilde{\mathbf{X}}\|=1$, there is an eigenvalue $E$ of $H$ such that

$$
\begin{equation*}
|\widetilde{E}-E| \leq\|\Delta H \widetilde{\mathbf{X}}\| \leq\|\Delta H\|_{F} \tag{9}
\end{equation*}
$$

where $\|$.$\| is the usual Euclidian norm, and \|\cdot\|_{F}$ is the Frobenius norm.
Thanks to the matrix decomposition (8), the matrix $\widetilde{H}$ can be written as

$$
\widetilde{H}=\bar{H}+\Delta H=\left(\begin{array}{c|c}
H & 0  \tag{10}\\
\hline 0 & 0
\end{array}\right)+\left(\begin{array}{c|c}
0 & H_{R}^{T} \\
\hline H_{R} & H_{C}
\end{array}\right)
$$

and it can be viewed as a perturbation of the matrix $\bar{H}$ which is an extension of the matrix $H$ in the image space of $B$. Let $(E, \mathbf{X})$ be an eigenpair of $H$, and $\overline{\mathbf{X}}=\left(\mathbf{X}, \mathbf{0}_{m_{R}}\right)^{T}$ its extended eigenvector in $\mathcal{H}(B)$. Then, the residual vector $\mathbf{R}=\widetilde{H} \overline{\mathbf{X}}-E \overline{\mathbf{X}}$ satisfies

$$
\begin{equation*}
\mathbf{R}=\widetilde{H} \overline{\mathbf{X}}-E \overline{\mathbf{X}}=\bar{H} \overline{\mathbf{X}}-E \overline{\mathbf{X}}+\Delta H \overline{\mathbf{X}}=\Delta H \overline{\mathbf{X}}=\left(\mathbf{0}_{m}, H_{R} \mathbf{X}\right)^{T} \tag{11}
\end{equation*}
$$

By using (9) and (11) we obtain the a-posteriori error estimator

$$
\begin{equation*}
|\widetilde{E}-E| \leq\|\mathbf{R}\|=\left\|H_{R} \mathbf{X}\right\| \tag{12}
\end{equation*}
$$

The distance between $E$ and the target eigenvalue $\widetilde{E}$ of $\widetilde{H}$ is bounded by $\|R\|$. More precisely, the above inequality shows that if $E$ is an eigenvalue of the matrix $H$ and $\|\mathbf{R}\| \leq \varepsilon$, then $E$ is also a good approximation of an eigenvalue $\widetilde{E}$ of the matrix $\widetilde{H}$ in the space $\mathcal{H}(B)$, which is a larger space.

The next section presents in a detailed fashion how this criterion can be used to control the behavior of the A-VCI algorithm, and provides more information on how it is implemented.

## 3 The A-VCI algorithm

The A-VCI algorithm introduced in Garnier et. al[23] is an iterative procedure that computes both a minimal basis set in the discretized $\Pi_{\mathbf{d}}$ space and the eigenpairs of the vibrational Hamiltonian discretized in this basis.

The main components of such an iterative procedure are 1) a discretization space and a starting space 2 ) a method to enlarge the current basis of the active space and 3) a robust criterion to assess the convergence.

In this section we briefly recall the main steps of the A-VCI algorithm, then we describe these different elements and how we efficiently use them in the algorithm.

### 3.1 Algorithm

Algorithm 1 describes the full A-VCI process to compute both the first $F$ eigenpairs of the Hamiltonian in the discretized space $\Pi_{\mathbf{d}}$ and the final basis set adjusted to the required accuracy.

```
Algorithm 1: Adaptive vibrational configuration interaction (A-VCI) algorithm
 Result: The first \(F\) eigenpairs of the discretized Hamiltonian and the corresponding minimal basis
 begin
 Define the initial orthonormal basis \(B^{(0)}\)
 Build the sparse structure of the matrices \(H^{(0)}=B^{(0)^{T}} \mathcal{H} B^{(0)}\) and \(H_{R}^{(0)}=B_{R}^{(0)}{ }^{T} \mathcal{H} B^{(0)}\)
 // Start the iterations
 for \(j \geq 0\) do
 Build the coefficients of the sparse Rayleigh matrix \(H^{(j)}=B^{(j)^{T}} \mathcal{H} B^{(j)}\)
 Compute the first \(F\) eigenpairs of \(H^{(j)}\) denoted \(\left(E_{\ell}^{(j)}, \mathbf{X}_{\ell}^{(j)}\right)_{\ell=0}^{F-1}\)
 Build the coefficients of the matrix \(H_{R}^{(j)}=B_{R}^{(j)} \mathcal{H} B^{(j)}\)
 Check the convergence
 Exit if the algorithm has converged
 Expand \(B^{(j)}\) with a selected orthonormal subset \(A^{(j)}\) of \(B_{R}^{(j)}: B^{(j+1)}=B^{(j)} \oplus A^{(j)}\)
 Build the sparse structure of the matrices \(H^{(j+1)}\) and \(H_{R}^{(j+1)}\)
```

After selecting an approximation space $\Pi_{\mathbf{d}}$, an initial basis $B^{(0)}$ belonging to this space must be explicitly defined (line 1). We then construct the sparse structure of the matrices $H^{(0)}$ and $H_{R}^{(0)}$, that is to say only the indices of the rows and the columns of non-zero elements (line 2). During this step we also build the basis of admissible nodes $B_{R}^{(0)}$, which is needed for the sparse structure of the matrix $H_{R}^{(0)}$. The iterative procedure begins by calculating the coefficients of the Hamiltonian matrix (line 3), then the first $F$ eigenpairs (line 4) are computed by an iterative eigensolver. To check the convergence of the algorithm (line 6) we evaluate for all eigenpairs $\left(E_{\ell}^{(j)}, \mathbf{X}_{\ell}^{(j)}\right)$ the scaled residual norms $\left\|\mathbf{r}_{\ell}^{(j)}\right\|=\left\|H_{R}^{(j)} \mathbf{X}_{\ell}^{(j)}\right\| / E_{\ell}^{(j)}$. If the maximal value of these norms is lower than the target threshold $\varepsilon$ the method has converged. This evaluation requires to compute all coefficients of the rectangle matrix $H_{R}^{(j)}$ (line5). If the convergence is not reached we build the new active space by adding directions selected in $B_{R}^{(j)}$ to the $B^{(j)}$ basis (line 7). Finally, we update the sparse structure of the two matrices thanks to the new basis elements we add (line 8). According to 12 ) at the convergence of the algorithm the eigenpairs computed are also the eigenpairs of the Hamiltonian discretized in $B^{(j)} \cup B_{R}^{(j)}$ and not only in $B^{(j)}$.

The main parts of the algorithm are presented in the following subsections. First, we describe how to define the approximation space we work in. Then we explain how we build and update the sparse structure of $H^{(j)}$ and $H_{R}^{(j)}$. Finally, the last part of this section focuses on how the new directions we add to $B^{(j)}$ are selected.

### 3.2 Approximation space definition

In order to compute the eigenvalues of the Hamiltonian operator (3), we first define the approximation space in which the operator will be discretized.

We consider the product space $\Pi_{\mathbf{d}}$ defined in (5). The maximal degree of Hermite $d_{i}$ in each direction $i$ can be determined in different ways. The first idea is to set a constant value $N_{\max }$ in each dimension. In this case each direction is discretized by the same number of functions without taking into account harmonic frequencies. Thus, for small harmonic frequencies the highest state has a lower energy than for large ones. To overcome this problem we propose a second approach based on an energetic criterion to reach the same 1-D harmonic energy in each direction. Let $E_{\max }$ be a given maximal energy above the ground state for the 1-D Hermite functions. Then the maximal degree in the direction $i$ is

$$
\begin{equation*}
d_{i}=1+\left\lfloor\frac{E_{\max }}{\omega_{i}}\right\rfloor \tag{13}
\end{equation*}
$$

This last constraint decreases drastically the number of elements in the approximation space. We can reduce its size even more by introducing a pruning condition. There exist many pruning conditions (see Ref. [20, 25, [3, 13]). Let $P_{b}$ be the pruning space in $\Pi_{\mathbf{d}}$ defined by

$$
\begin{equation*}
P_{b}=\left\{\phi_{\mathbf{n}}^{0} \in \Pi_{\mathbf{d}} \text { such that } g(\mathbf{n}) \leq b\right\} \tag{14}
\end{equation*}
$$

Usual pruning functions write $g(\mathbf{n})=\sum_{i=1}^{D} \alpha_{i} n_{i}$ but they can be more complex such as vectorial or non-linear conditions. Typically $\alpha_{i}=1$ corresponds to the binomial pruning, denoted $\operatorname{BP}(b)$, and $\alpha_{i}=\omega_{i}$ is the energetic pruning.

### 3.3 Matrix Operations

The algorithm is based on the following operations on matrices: the construction and update of their structure, and the calculation of their coefficients. In this subsection we describe these three steps.

### 3.3.1 Sparse structure definition

Before describing the different steps of the matrix building algorithm we recall some definitions on sparse matrices. Due to the choice of the basis elements, the discretized Hamiltonian operator is a sparse matrix. Therefore we only store non-zero elements of $H$ and $H_{R}$ to optimize the storage. We define by sparse structure the rows and the columns of the non-zero elements.

The structure of the sparse symmetric matrix $H$ is represented by its graph $G(V, \mathcal{E})$, characterized by a set of nodes $V$ and their connecting edges $\mathcal{E}$. A node of $V$ stands for a row or a column of $H$ (i.e., an element of the basis $B$ ). There is an edge between two nodes $(i, j) \in V \times V$ if and only if the coefficient $H_{i, j}$ is not zero.

We denote by $G_{H_{R}}\left(W, V, \mathcal{E}_{\mathcal{R}}\right)$ the bipartite graph of the rectangular matrix $H_{R}$. The node sets $W$ and $V$ represent the rows and columns of $H_{R}$, respectively, and are connected by the set of edges $\mathcal{E}_{\mathcal{R}}$. The condition $\left(H_{R}\right)_{i, j} \neq 0$ defines an edge between $i \in W$ and $j \in V$, and $G_{H_{R}}\left(W, V, \mathcal{E}_{\mathcal{R}}\right)$ gives the structure of $H_{R}$.

Thanks to their graphs we store the matrices $H$ and $H_{R}$ in the Compressed Sparse Row (CSR) format.

### 3.3.2 Sparse structure construction

Starting from the basis $B^{(0)}$ the second step of our algorithm (line 2) is to construct the sparse structures of the matrices $H$ and $H_{R}$. As the matrix $H$ is symmetric we only consider its lower triangular part. Moreover, this step also constructs the set of the admissible nodes $B_{R}^{(0)}$ associated to the initial basis $B^{(0)}$. This means that for each element $\mathbf{n}=\left(n_{1}, \ldots, n_{D}\right)$ of $B^{(0)}$ we should determine all nodes $\mathbf{m}$ in $\Pi_{\mathbf{d}}$ connected to it through the anharmonic part of the PES operator. As the PES is a sum of products of monomials we proceed as follows.

Firstly, let $C(\mathbf{n}, \mathbf{s})=\left\{\mathbf{m}\right.$ such that $\left.\left\langle\Phi_{\mathbf{n}}(\mathbf{q}) \mid \mathbf{q}^{\mathbf{s}} \Phi_{\mathbf{m}}(\mathbf{q})\right\rangle \neq 0\right\}$ be introduced as the set of all nodes connected to $\mathbf{n}$ through the monomial $\mathbf{q}^{\mathbf{s}}$, with $\mathbf{s}=\left(s_{1}, \ldots, s_{D}\right)$. Since the basis functions are products of 1-D functions we only have to check if the 1-D integral $\left\langle\phi_{n_{i}}(q) \mid q^{s_{i}} \phi_{m_{i}}(q)\right\rangle$ does not vanish for all $i=1, \ldots, D$. For 1-D Hermite functions these integrals have analytic expressions (see Prop. 2 in Annex A) and due to the approximation space we only keep indices lower than $d_{i}$. Then, to construct all multi-indices connected to $\mathbf{n}=\left(n_{1} \ldots, n_{D}\right)$ with a monomial of the PES, we calculate for each dimension all the integers connected to $n_{i}$ by using Prop. 1 of Annex A. The selected multi-indices are reconstructed and sorted by their key. The key of a node $\mathbf{n}=$ $\left(n_{1}, \ldots, n_{D}\right)$ is defined by

$$
k e y(\mathbf{n})=n_{1}+n_{2}\left(d_{1}+1\right)+\ldots+n_{D}\left(d_{1}+1\right) \ldots\left(d_{D-1}+1\right)
$$

where $d_{i}$ is the maximal Hermite degree in each direction. If needed, a pruning condition can be applied before building the key to decrease the number of connected nodes. It is easy to see that the number of elements in $C(\mathbf{n}, \mathbf{s})$ is bounded by $D\left(\|\mathbf{s}\|_{\infty}+1\right)$, where $\|\mathbf{s}\|_{\infty}=\max _{i=1, \ldots, D} s_{i}$ and the cost to obtain them is $O\left(D\|\mathbf{s}\|_{\infty} \ln \left(D\|\mathbf{s}\|_{\infty}\right)\right)$.

Finally, the set of all nodes connected to $\mathbf{n}$ is obtained by iterating on all monomial elements $\mathbf{q}^{\mathbf{s}}$ of the PES

$$
\begin{equation*}
C(\mathbf{n})=\bigcup_{\mathbf{s} \in D e g(\mathrm{PES})} C(\mathbf{n}, \mathbf{s}) \tag{15}
\end{equation*}
$$

where $\operatorname{Deg}(\mathrm{PES})$ is the set of the monomial degrees $\mathbf{s}$ in the PES such that $\|\mathbf{s}\|_{1} \geq 3$. The total number of nodes connected to $\mathbf{n}$ is bounded by $D(S+1) N_{\text {PES }}$, where $S$ is the maximal degree of the PES and $N_{\text {PES }}$ is the number of anharmonic terms in the PES. This number is also the bound of all non-zero elements on the row associated with the node $\mathbf{n}$ of the Hamiltonian matrix in the full space $\Pi_{\mathbf{d}}$. The complexity of this step is bounded by $O\left(D S \ln (D S) N_{\mathrm{PES}}\right)$.

Thanks to the space decomposition (7) the set of all nodes connected to $\mathbf{n}$ at the beginning of the iterative process splits in two parts as follows:

$$
C(\mathbf{n})=\mathcal{E}(\mathbf{n}) \oplus \mathcal{E}_{\mathcal{R}}(\mathbf{n})
$$

where $\mathcal{E}(\mathbf{n})$ contains the nodes inside $B^{(0)}$ and $\mathcal{E}_{\mathcal{R}}(\mathbf{n})$ the nodes outside $B^{(0)}$ sorted by their key. Since the elements of $\mathcal{E}_{\mathcal{R}}(\mathbf{n})$ belongs to the basis set of admissible nodes $B_{R}^{(0)}$ we have

$$
\begin{equation*}
B_{R}^{(0)}=\bigcup_{\mathbf{n} \in B^{(0)}} \mathcal{E}_{\mathcal{R}}(\mathbf{n}) \tag{16}
\end{equation*}
$$

As the nodes of $\mathcal{E}_{\mathcal{R}}(\mathbf{n})$ are already sorted by their key the construction of $B_{R}^{(0)}$ is just a merge of several arrays. The cost is linear with respect to the maximal length of these arrays.

In this approach, the sparse structure built on the partition space $B^{(0)} \times B_{R}^{(0)}$ corresponds to the sparse structure of the transposed of $H_{R}$. Therefore, the last step consists in transposing this structure to get the final pattern of $H_{R}^{(0)}=B^{(0)^{T}} \mathcal{H} B_{R}^{(0)}$.

### 3.3.3 Sparse structure update

Starting at iteration $j$ from a set of nodes $A^{(j)}$ selected in $B_{R}^{(j)}$, the purpose is to build the new sparse structure $G\left(B^{(j+1)}, \mathcal{E}^{(j+1)}\right)$ (respectively, $G_{H_{R}}\left(B_{R}^{(j+1)}, B^{(j+1)}, \mathcal{E}_{\mathcal{R}}{ }^{(j+1)}\right)$ ) of the matrix $H^{(j+1)}$ (resp. $H_{R}^{(j+1)}$ ) without reconstructing them from scratch. To do that, we only compute the structure for the new nodes and merge it with the one built at the previous iteration. We proceed in three steps:

Step 1 Add nodes of $A^{(j)}$ in $B^{(j)}$ to obtain the new basis set $B^{(j+1)}=B^{(j)} \cup A^{(j)}$. Fill $\mathcal{E}^{(j+1)}$ with the old sparse structure $\mathcal{E}^{(j)}$ and $\mathcal{E}_{\mathcal{R}}{ }^{(j+1)}$ with the old structure $\mathcal{E}_{\mathcal{R}}{ }^{(j)}$ without the nodes in $A^{(j)}$.

Step 2 For all elements a in $A^{(j)}$ we compute the set of the nodes connected with a defined by: $C(\mathbf{a})=$ $\mathcal{E}(\mathbf{a}) \oplus \mathcal{E}_{\mathcal{R}}(\mathbf{a})$, where $\mathcal{E}(\mathbf{a})$ are the nodes in $B^{(j+1)}$ and $\mathcal{E}_{\mathcal{R}}(\mathbf{a})$ the nodes outside $B^{(j+1)}$. We complete the structure $\mathcal{E}^{(j+1)}$ with $\bigcup_{\mathbf{a} \in A^{(j)}} \mathcal{E}(\mathbf{a})$ and the new set of admissible nodes is $B_{R}^{(j+1)}=\left(B_{R}^{(j)} \backslash A^{(j)}\right) \cup \mathcal{E}_{\mathcal{R}}\left(A^{(j)}\right)$, with $\mathcal{E}_{\mathcal{R}}\left(A^{(j)}\right)=\bigcup_{\mathbf{a} \in A^{(j)}} \mathcal{E}_{\mathcal{R}}(\mathbf{a})$.

Step 3 Finally, we transpose $\mathcal{E}_{\mathcal{R}}\left(A^{(j)}\right)$ and add it to $\mathcal{E}_{\mathcal{R}}{ }^{(j+1)}$ to obtain the final sparse structure of $H_{R}^{(j+1)}$.
The most costly part of this update is step 2 but it can easily be parallelized.

### 3.3.4 Matrix coefficient evaluation

Let consider two basis functions $\Phi_{\mathbf{n}}$ and $\Phi_{\mathbf{m}}$, the matrix element $\left\langle\Phi_{\mathbf{n}}(q) \mid \mathcal{H} \Phi_{\mathbf{n}}(q)\right\rangle$ is

$$
\left\langle\Phi_{\mathbf{n}}(q) \mid \mathcal{H} \Phi_{\mathbf{m}}(q)\right\rangle=\sum_{i=1}^{D} \omega_{i}\left(\frac{1}{2}+n_{i}\right) \delta_{\mathbf{n}, \mathbf{m}}+\sum_{\|\mathbf{s}\|_{1}=3}^{S} K_{\mathbf{s}} \prod_{i=1}^{D}\left\langle\phi_{n_{i}}\left(q_{i}\right) \mid q_{i}^{s_{i}} \phi_{m_{i}}\left(q_{i}\right)\right\rangle .
$$

All the 1-D integrals $\mathcal{M}(s, n, m)=\left\langle\phi_{n}(x) \mid x^{s} \phi_{m}(x)\right\rangle$ have an analytic expression (see Annex A). They are pre-computed once and stored in the tensor moment $\mathcal{M}$. Then, the matrix coefficients are given by

$$
\left\langle\Phi_{\mathbf{n}}(q) \mid \mathcal{H} \Phi_{\mathbf{m}}(q)\right\rangle=\sum_{i=1}^{D} \omega_{i}\left(\frac{1}{2}+n_{i}\right) \delta_{\mathbf{n}, \mathbf{m}}+\sum_{\|\mathbf{s}\|_{1}=3}^{S} K_{\mathbf{s}} \prod_{i=1}^{D} \mathcal{M}\left(s_{i}, n_{i}, m_{i}\right)
$$

It is clear that the complexity to build one matrix element is $O\left(D N_{\mathrm{PES}}\right)$ then the total complexity to build the Hamiltonian matrix is $O\left(D N_{\text {PES }} Z_{H}\right)$ and $O\left(D N_{\text {PES }} Z_{H_{R}}\right)$ for $H_{R}$, where $Z_{H}$ and $Z_{H_{R}}$ are the number of non-zero elements of the matrices $H$ and $H_{R}$, respectively. However, this construction is highly parallel and its cost is negligible compared to the construction of the sparse structure of the matrix.

### 3.4 Basis expansion strategies

The cost of A-VCI is mainly related to the total matrix operation complexity, which depends on the size of the basis involved in this adaptive algorithm. The number of elements in $B^{(j)}$ and $B_{R}^{(j)}$ at iteration $j$ and the number of nodes connected to them increase with the dimension $D$, the number of terms of the PES and the required precision. Therefore, the way to select the most relevant nodes to expand the active space is crucial in terms of accuracy and performance. The less functions at each iteration we add, the smaller the final basis and the related memory footprint will be, but the number of iterations can increase and this can penalize the computational time to reach the convergence. In fact, there is a trade-off between the memory requirement and the convergence speed of the algorithm. Moreover, developing an automatic process to select such nodes
is important for the efficiency of the algorithm. In this section we discuss different approaches to enlarge the A-VCI basis (line 7 in Algorithm (1) with respect to the previous constraints.

We remind that the convergence of $\mathrm{A}-\mathrm{VCI}$ is checked by comparing the norms of the scaled residual vectors with a given threshold denoted $\varepsilon$. Let $K^{(j)}=\left\{\ell \in\{0, \ldots, F-1\}\right.$ such that $\left.\left\|\mathbf{r}_{\ell}^{(j)}\right\|>\varepsilon\right\}$ the list of the $k^{(j)}$ non-converged relative residues at iteration $j$. In all cases the expansion strategies will be based on the elements of $K^{(j)}$. Consider a vector $\mathbf{v}$ of size $m_{R}$, we denote by $M_{\eta}(\mathbf{v})=\left\{i\right.$ such that $\left.\left|v_{i}\right|>\eta\right\}$ the space of admissible components of size $m_{\eta}$ and we define the generalized average of $\mathbf{v}$ with respect to this space by

$$
\begin{equation*}
\operatorname{mean}(\mathbf{v}, p, \eta):=\sqrt[p]{\frac{1}{m_{\eta}} \sum_{i=1}^{m_{R}}\left|v_{i}\right|^{p} \mathbf{1}_{M_{\eta}(\mathbf{v})}(i)} \tag{17}
\end{equation*}
$$

where $\mathbf{1}_{M_{\eta}(\mathbf{v})}$ is the indicator function of space $M_{\eta}(\mathbf{v})$ (i.e., 1 when $i$ is in $M_{\eta}(\mathbf{v})$ and 0 otherwise). We also introduce $N_{J}(\mathbf{v})$ the space of the indices of the $J$ largest components of $\mathbf{v}$.

### 3.4.1 Component-wise strategies

Garnier et al. [23] introduced a component-wise procedure on each non-converged relative residue to expand the $B^{(j)}$ basis based on the usual mean (i.e., $p=1$ in 17 ). We denote this strategy $\mathrm{CW}(p=1)$. In this approach, the set of nodes added at iteration $j$ is

$$
\begin{equation*}
A^{(j)}=\bigcup_{\ell \in K^{(j)}}\left\{i \text { such that }\left|\left(\mathbf{r}_{\ell}^{(j)}\right)_{i}\right|>\operatorname{mean}\left(\mathbf{r}_{\ell}^{(j)}, 1, \varepsilon / \sqrt{m_{R}}\right)\right\} \tag{18}
\end{equation*}
$$

Such procedure leads to introduce a lot of components at each step. Then, both $B^{(j)}$ and $B_{R}^{(j)}$ grow quickly during the iterations. Another way, denoted CW2, consists in selecting at iteration $j$ the functions of $B_{R}^{(j)}$ corresponding to the $2(j+1)$ largest components of each non-converged residual vector. Using CW2 the set of nodes enlarging $B^{(j)}$ is

$$
\begin{equation*}
A^{(j)}=\bigcup_{\ell \in K^{(j)}} N_{2(j+1)}\left(\mathbf{r}_{\ell}^{(j)}\right) \tag{19}
\end{equation*}
$$

and the maximal number of components added at iteration $j$ is $2(j+1) k^{(j)}$. Therefore the expansion of the $B^{(j)}$ basis is moderate compared to the CW(1) method. Another advantage of this strategy is that the convergence is adaptive since the number of added nodes increases with respect to the iteration number. At the beginning of the iterative process the error is large in any case, so it is not necessary to expand $B^{(j)}$ in every direction. It seems more sensible to add as many elements as possible when we get close to the convergence in order to accelerate it and refine it. At the end, the basis contains the most relevant nodes to compute the eigenvalues at the given accuracy. On the other hand, to select the largest components we sort each residual vector leading to the global cost $O\left(k^{(j)} m_{R} \ln \left(m_{R}\right)\right)$ compared to the linear cost $O\left(k^{(j)} m_{R}\right)$ for the former CW (1) strategy.

### 3.4.2 Collective component-wise strategies

The main drawback of the component-wise strategies is that the basis expansion procedures take into account each residual vector independently. For $\mathrm{CW}(1)$ the value of $\operatorname{mean}\left(\mathbf{r}_{\ell}^{(j)}, 1, \varepsilon / \sqrt{m_{R}}\right)$ depends on the considered vector $\mathbf{r}_{\ell}^{(j)}$, and in CW2 the $2(j+1)$ largest components do not necessarily correspond to the same level of approximation for two different residues. In fact, it is difficult to say if a relevant component for a given residual vector is useful to decrease the residual components of other eigeinvalues. Moreover the componentwise selection can be redundant since the same nodes are possibly chosen from different residual vectors. To overcome these issues we introduce at iteration $j$ a global residual vector $\mathbf{R}_{\mathbf{A}}{ }^{(j)}$ such that each component is

$$
\mathbf{R}_{\mathbf{A}_{i}^{(j)}}=\frac{1}{k^{(j)}} \sum_{\ell \in K^{(j)}}\left|\left(\mathbf{r}_{l}^{(j)}\right)_{i}\right|, i=1, \ldots, m_{R}
$$

RR n ${ }^{\circ} 9043$

The $\mathbf{R}_{\mathbf{A}}{ }^{(j)}$ vector allows to measure the global contribution to the residue of all individual vectors belonging to $K^{(j)}$. The same strategies used for the component-wise selection can be applied to the $\mathbf{R}_{\mathbf{A}}{ }^{(j)}$ vector:
$\mathbf{C C W}(p)$ we choose the functions thanks to a general mean criterion on $\mathbf{R}_{\mathbf{A}}{ }^{(j)}$ components. The nodes to add to the A-VCI space are defined by

$$
\begin{equation*}
A^{(j)}=\left\{i \text { such that } \mathbf{R}_{\mathbf{A}_{i}}{ }^{(j)}>\operatorname{mean}\left(\mathbf{R}_{\mathbf{A}}{ }^{(j)}, p, \varepsilon / \sqrt{m_{R}}\right)\right\} . \tag{20}
\end{equation*}
$$

CCW2 we select the nodes with the $2(j+1)$ maximal components of $\mathbf{R}_{\mathbf{A}}{ }^{(j)}$ such that

$$
\begin{equation*}
A^{(j)}=N_{2(j+1)}\left(\mathbf{R}_{\mathbf{A}}^{(j)}\right) \tag{21}
\end{equation*}
$$

The number of directions added by $\mathrm{CW}(p)$ or $\mathrm{CCW}(p)$ increases rapidly with respect to the required accuracy. This leads to large CPU times in the matrix operations. In such cases, it is crucial to make the computational cost as affordable as possible. One possibility is to adapt the mean by increasing or by decreasing $p$ in 17) instead of sorting the scaled vector to find the largest components (like in CC2 or CCW2), in order to reach a target number of nodes to add. The goal here is to bound the time spent in the update step. This approach will increase the number of iterations but the size of the final space is smaller than those obtained from other strategies. Let $N_{T}$ the target number of basis vectors (nodes) we want to add, $\delta$ the tolerance criterion we accept on this number, then we adjust $p$ such that $\left|\operatorname{size}\left(A^{(j)}\right) / N_{T}-1\right| \leq \delta$, where $\operatorname{size}\left(A^{(j)}\right)$ is the number of elements of $A^{(j)}$. When the value of $p$ is changed we reconstruct $A^{(j)}$ by 20 ). We call this strategy aCCW $\left(N_{T}, \delta\right)$ for automatic collective component-wise selection. The complexity of this procedure is only linear with respect to $m_{R}$ compared to $m_{R} \ln \left(m_{R}\right)$ with sort operation.

## 4 Results and discussion

The presented method has been tested on the 6 -atom acetonitrile molecule, $\mathrm{CH}_{3} \mathrm{CN}$, and on a more challenging system of 7 atoms: the ethylene oxide molecule, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$. Two implementations of A-VCI have been used: a Python/C prototype and a full $\mathrm{C}++$ version. In the Python/C software all the basis enlargement methods are implemented whereas the $\mathrm{C}++$ driver only provides the collective strategies. These codes use the iterative ARPACK solver [31] to compute the lowest $F$ eigenvalues of the discretized Hamiltonian matrix at each iteration of A-VCI. The initial guess of the eigensolver is a random vector ( $I D O=\mathbf{0}$ ). Moreover, we set the number of Arnoldi vectors to $N C V=2 F+1$ and we use the ARPACK default convergence criteria based on the machine precision. Finally, both implementations of A-VCI take advantage of the OpenMP fork-join paradigm for parallelization.

The results are obtained on two platforms:
(i) A 24-core Haswell Intel Xeon E5-2680 processors running at 2.8 GHz with 128 GB of shared memory. The Intel compiler (2016 update 3) with the following options: -mkl=parallel -march=native -axCORE-AVX2, CORE-AVX-I, AVX -qopenmp is used. We refer to it as plafrim in the sequel.
(ii) A 12-core Nehalem Intel Xeon L5640 nodes running at 2.27 GHz with 24 GB of shared memory. Python 3.5.1 and the open-source GNU 5.1.0 compiler with the options -03 -mtune=native -fopenmp were used. We refer to it as pyrene in the sequel.

### 4.1 Acetonitrile molecule, $\mathrm{CH}_{3} \mathrm{CN}$

The convergence of the A-VCI algorithm depends on how we choose the approximation space, the threshold and the basis expansion method. What would be the most efficient way, for a required precision, to set all these parameters, that is to say to obtain the smallest basis or the lowest CPU time and memory consumption
? In this part, we study this problem in the case of the well-known acetonitrile molecule. The $\mathrm{CH}_{3} \mathrm{CN}$ force constants come from Ref. [1] and are based on the quartic PES originally developed by Bégué et al. [7] The PES is composed of 299 anharmonic terms ( 108 cubic and 199 quartic terms). We consider the 12 harmonic frequencies sorted by ascending order

$$
\begin{aligned}
\omega_{1} & =\omega_{2}=361, \omega_{3}=920 \\
\omega_{4} & =\omega_{5}=1061, \omega_{6}=1413 \\
\omega_{7} & =\omega_{8}=1487, \omega_{9}=2297 \\
\omega_{10} & =3065, \omega_{11}=\omega_{12}=3149\left(\mathrm{~cm}^{-1}\right)
\end{aligned}
$$

First, we compare several approaches to expand the $B^{(j)}$ basis at each iteration $j$, then we show how the threshold and the size of the approximation space $\Pi_{d}$ influence the accuracy of the eigenvalues. Finally, we compute the frequencies up to $3000 \mathrm{~cm}^{-1}$ and compare them with a reference calculation [1].

### 4.1.1 Influence of different strategies to expand the A-VCI space

Here we compare the different strategies to expand the A-VCI space presented in Subsection 3.4 when we compute the first 121 eigenvalues as in Ref. [23]. We remind that CW(1) and CW2 are component-wise whereas $\operatorname{CCW}(p)$ and CCW2 are based on the collective residue vector $\mathbf{R}_{\mathbf{A}}{ }^{(j)}$. In this section, the calculations are done with the Python/C driver on pyrene and we consider the same degree of approximation in each direction fixed to 30 for the approximation space $\Pi_{\mathbf{d}}$, the threshold is $\varepsilon=7.5 \times 10^{-3}$. The initial basis $B^{(0)}$ is given by the first 121 functions of $\Pi_{\mathbf{d}}$ (with $\mathbf{d}=[7,6,2,2,2,1,1,1,1,0,0,0]$ ) sorted by ascending energies in the harmonic approximation.

Table 1 reports the size and the number of non-zero elements in the matrices $H$ and $H_{R}$ obtained for different strategies, with the corresponding CPU time. The absolute error denoted Err is computed with respect to a calculation of Avila and Carrington [1 with a basis of 743103 elements. The first two rows of Table 1 provide the results of the component-wise methods while the others are related to collective strategies. The first line corresponds to the A-VCI approach used in Ref. [23], leading to the largest basis and CPU time but also to the best accuracy. The basis grows smaller when expanding it with the nodes which have the largest residual components, with both collective (line 7) and individual (line 2) strategies. In these cases, the error can be large (more than $1 \mathrm{~cm}^{-1}$ ) and the CPU time is higher than with the CCW methods. We observe that the most efficient strategies are CCW (2) and CCW(3), with equivalent performances. From $p=4$ the cost of the additional iterations overcomes the gain due to the basis reduction, so rising $p$ from this point becomes no longer interesting. The matrix storage cost for CCW strategies is low and then building the full sparse matrix to perform efficient matrix-vector product is a good option. For instance, the number of non-zero elements divided by the total number of elements (sparsity of the matrix) is $0.45 \%$ for $H^{(j)}$ matrix and 3 per million for $H_{R}^{(j)}$ matrix for the CCW (2) strategy. Table 1 shows that a trade-off between the basis size and the number of elements added at each iteration must be considered. Thanks to the exponent $p$ of the generalized mean (17) we can balance this trade-off. The higher its value is, the less basis functions are added, resulting in more iterations and a smaller final basis.

### 4.1.2 Convergence study of the A-VCI algorithm

In order to present the convergence properties of the A-VCI algorithm with respect to the threshold $\varepsilon$ and the approximation space $\Pi_{\mathbf{d}}$, we search the 239 lowest eigenvalues of $\mathrm{CH}_{3} \mathrm{CN}$. The corresponding frequency range is around $0-3000 \mathrm{~cm}^{-1}$ and has been studied in many papers [1, 3, 13. We perform a very accurate A-VCI calculation with a small threshold $\varepsilon_{r e f}=2.5 \times 10^{-4}$ and the CCW $(2)$ strategy to obtain a reference spectrum. The maximal Hermite degrees per direction of the related discretized space $\Pi_{d}$ corresponding to a maximal energy of $15000 \mathrm{~cm}^{-1}$ are

$$
\mathbf{d}=[42,42,17,15,15,11,11,11,7,5,5,5]
$$

Table 1: Convergence of A-VCI for $\mathrm{CH}_{3} \mathrm{CN}$ with different basis expansion strategies. The used parameters are $F=121$ and $\varepsilon=7.5 \times 10^{-3}$. The approximation space $\Pi_{\mathbf{d}}$ is defined by $d_{i}=30, i=1 \ldots 6$. The absolute error $E r r$ is evaluated with respect to Ref. [1]. The cost of the algorithm is given by the number of iterations, the sizes of the final spaces and the computational time. The number of non-zero elements (NNZ) in $H^{(j)}$ and $H_{R}^{(j)}$ at the convergence is also provided.

| Expand <br> strategy | Number of <br> iterations | $B^{(j)}$ <br> size | $B_{R}^{(j)}$ <br> size | $H^{(j)}$ <br> NNZ | $H_{R}^{(j)}$ <br> NNZ | $E r r$ <br> $\left(\mathrm{~cm}^{-1}\right)$ | Time <br> $(\mathrm{s})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CW(1) | 6 | 86238 | 5421360 | 13166360 | 51581366 | 0.305 | 5637 |
| CW2 | 19 | 17839 | 1819345 | 1593955 | 10573541 | 1.333 | 1230 |
| CCW(1) | 6 | 26206 | 2360202 | 2835020 | 15430825 | 0.766 | 711 |
| CCW(2) | 7 | 24158 | 2168898 | 2607190 | 14201050 | 0.997 | 667 |
| CCW(3) | 8 | 22477 | 2064762 | 2357655 | 13212455 | 0.998 | 669 |
| CCW(4) | 10 | 22432 | 2082831 | 2339942 | 13197787 | 0.803 | 723 |
| CCW2 | 17 | 17793 | 1723782 | 1744565 | 10385001 | 0.999 | 902 |

Moreover, the initial basis $B^{(0)}$ is composed of the first 239 elements of $\Pi_{\mathbf{d}}$, which largest degrees are given by $[8,8,3,2,2,2,2,2,1,0,0,0]$. From now we will use these functions as the A-VCI starting space of $\mathrm{CH}_{3} \mathrm{CN}$.

For this computation, the $\mathrm{C}++$ driver on plafrim is used. The algorithm reaches the convergence in 11 iterations producing a basis of 2488511 elements. We denote the associated eigenvalues by $E_{i}^{\text {ref }}$, for $i=$ $0 \ldots F-1$. The corresponding frequencies and their assignments are provided in the Supplementary Material. The maximal degrees of the final basis are $[18,18,17,12,10,11,9,7,7,5,5,5]$. This final set is embedded in the binomial space $\mathrm{BP}(23)$. In the following sections, we compare our results to this reference calculation.

Influence of the threshold on the convergence: First we present the influence of the threshold on the accuracy of the eigenvalues and the basis size. We consider the same parameters as our reference computation described above. Let $\operatorname{Err}(E)$ denote the global error on all eigenvalues

$$
\begin{equation*}
\operatorname{Err}(E)=\max _{i \in\{0, F-1\}}\left|E_{i}^{\varepsilon}-E_{i}^{r e f}\right| \tag{22}
\end{equation*}
$$

where $E_{i}^{\varepsilon}$ is the eigenvalue obtained with the threshold $\varepsilon$.
Figure 1 shows the evolution of the maximal error on the eigenvalues according to the size of the final basis, and the evolution of the latter with the threshold, on a log-log scale. The maximal error nearly evolves as a decreasing power function of the size of the final basis. We deduce that the maximal error quickly and uniformly diminishes when the size of the final basis increases. Moreover, the behavior of the size of the basis with respect to the threshold parameter $\varepsilon$ is similar, making the threshold a good parameter to control the growth of the basis. For this molecule, this figure shows that it is possible to determine an approximate basis size from a required accuracy on the eigenvalues, and deduce from this size a maximal threshold value needed to reach this precision. For example, an error below $1 \mathrm{~cm}^{-1}$ at least requires a basis size of order $5 \times 10^{4}$, for which the threshold needs to be no more than $7 \times 10^{-3}$.

Influence of the truncation parameter of the research space: By using the approximation parameter $E_{\max }$ introduced in Section 3.2, we reduce the size of the approximation space and of the research space to find new directions.

On Table 2 are reported the maximal Hermite degrees per coordinate corresponding to $E_{\text {max }}$ ranging from 8500 to $15000 \mathrm{~cm}^{-1}$. The maximal error of the first 239 eigenvalues with respect to the threshold $\varepsilon$ is presented in Figure 2 for different values of $E_{\max }$. Due to the log-log scales the curves for $E_{\max }$ between $9000 \mathrm{~cm}^{-1}$ and $12000 \mathrm{~cm}^{-1}$ are not visible and give an error above $1 \mathrm{~cm}^{-1}$. Except for the green curve $E_{\max }=14000 \mathrm{~cm}^{-1}$ all


Figure 1: Influence of the threshold ( $\log _{10}$ scale) on the final basis size $\left(\log _{10}\right.$ scale) and of the basis size on the maximum error ( $\log _{10}$ scale) for $E_{\max }=15000 \mathrm{~cm}^{-1}$.

Table 2: Maximal Hermite degrees of the product space $\Pi_{\mathbf{d}}$ corresponding to a given energy above the ground state $E_{\max }$.

| $E_{\max }\left(\mathrm{cm}^{-1}\right)$ | $\mathbf{d}$ in $\Pi_{\mathbf{d}}$ |
| :---: | :---: |
| 8500 | $[24,24,10,9,9,7,6,6,4,3,3,3]$ |
| 10000 | $[28,28,11,10,10,8,7,7,5,4,4,4]$ |
| 11000 | $[31,31,12,11,11,8,8,8,5,4,4,4]$ |
| 12000 | $[34,34,14,12,12,9,9,9,6,4,4,4]$ |
| 12500 | $[35,35,14,12,12,9,9,9,6,5,4,4]$ |
| 13000 | $[37,37,15,13,13,10,9,9,6,5,5,5]$ |
| 14000 | $[39,39,16,14,14,10,10,10,7,5,5,5]$ |
| 15000 | $[42,42,17,15,15,11,11,11,7,5,5,5]$ |

the curves present a plateau that means that even if we lower the threshold we cannot improve the accuracy on the eigenvalues. This plateau decreases with the size of the approximation space. Moreover, the same holds the other way around: for $\varepsilon$ higher than $2.5 \times 10^{-3}$ there is no need to increase $E_{\max }$ above $12500 \mathrm{~cm}^{-1}$. Finally, the green curve does not have a plateau because for all thresholds the eigenvectors and the Hamiltonian are well described in the space $\Pi_{\mathbf{d}}$.

### 4.1.3 New results

Our computations highlight a significant gap with the results in Ref. [1]. For instance, the 150th frequency is estimated at $2653.053 \mathrm{~cm}^{-1}$ whereas our reference calculation locates it at $2651.593 \mathrm{~cm}^{-1}$. The difference between the values calculated in the $P_{24}$ and $P_{27}$ spaces is around $2 \mathrm{~cm}^{-1}$ whereas it stays under $1 \mathrm{~cm}^{-1}$ for all other frequencies (see Table I. in Ref. [1]). It seems the convergence of this particular eigenvalue is hard to reach.


Figure 2: Influence of the threshold $\left(\log _{10}\right.$ scale $)$ on the eigenvalues error $\left(\log _{10}\right.$ scale $)$ for different approximation spaces defined by $E_{\max }$.

Moreover, 35 of the 195 first eigenvalues have a difference above $0.1 \mathrm{~cm}^{-1}$ compared to our reference calculation. Finally, A-VCI calculates 238 frequencies under $3000 \mathrm{~cm}^{-1}$ whereas only 202 are reported in Ref. [1]. We see that A-VCI is able to retrieve the last 6 frequencies computed by Avila and Carrington [1] and to catch some energetic levels missing from their paper, represented by frequencies 196-199, 202-228, 230-232 and 235-237.

In order to explain these discrepancies between eigenvalues in the high frequency range of the spectrum, and to validate that our algorithm has good convergence properties, the direct product search basis $\Pi_{d}$ has been replaced by a space with the same pruning condition as in Ref. [1], for different values of the convergence criterion $b$. The use of the A-VCI algorithm in these pruned basis allows us to reach high values of $b$ since the full pruned basis is never constructed. The pruning condition is added in (15) to discard nodes just before constructing the keys. By doing this, we are able to find an optimal basis in the pruned space.

Tab. 3 shows how the A-VCI procedure applied in a pruned basis with increasing values of $b$ brings close to the converged value of this frequency given by our reference calculation: $2651.593 \mathrm{~cm}^{-1}$. Here the A-VCI parameters are $F=239, \varepsilon=5.0 \times 10^{-3}, \mathrm{CCW}(2)$ and we use the pruning condition of Ref. [1] written in our ordering:

$$
\begin{equation*}
n_{1}+n_{2}+3 n_{3}+3 n_{4}+3 n_{5}+3 n_{6}+4 n_{7}+4 n_{8}+4 n_{9}+3 n_{10}+3 n_{11}+3 n_{12} \leq b \tag{23}
\end{equation*}
$$

As shown in Tab. 3, a pruned basis with $b=41$ seems necessary for the A-VCI algorithm to reach the convergence on the 150 th frequency. Solving the eigenvalue problem in the corresponding space $P_{41}$ with either a direct or iterative method is difficult due to its size whereas the A-VCI method succeeds to extract the relevant states in a basis of 82099 elements.

The final A-VCI basis in the product space defined by $E_{\max }=12500 \mathrm{~cm}^{-1}$ counts 79133 elements and leads to the same results that using the pruning condition (23) with $b=41$ : compared to our reference calculation the 150 th frequency has an error of $0.272 \mathrm{~cm}^{-1}$, and the largest error on all computed eigenvalues is $0.425 \mathrm{~cm}^{-1}$. The full comparison between this latter calculation, the A-VCI reference calculation and Avila and Carrington [1] is provided in the Supplementary Material.

Table 3: Absolute error on the 150th frequency of $\mathrm{CH}_{3} \mathrm{CN}$ using the A-VCI procedure in different pruned basis $P_{b}$. The pruning condition is given by Eq. 23). The number of computed eigenvalues is $F=239$ and the threshold is $\varepsilon=5 \times 10^{-3}$. The error is evaluated with respect to the reference calculation described in Part 4.1.2. The last column corresponds to an A-VCI calculation with the same parameters performed in the product basis $\Pi_{\mathbf{d}}$ defined by $E_{\max }=12500 \mathrm{~cm}^{-1}$.

| Basis | $P_{27}$ | $P_{33}$ | $P_{37}$ | $P_{40}$ | $P_{41}$ | $P_{45}$ | $\Pi_{\mathbf{d}}(12500)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Final basis size | 58122 | 79409 | 79743 | 81594 | 82099 | 82405 | 79133 |
| 150th freq. $\left(\mathrm{cm}^{-1}\right)$ | 2653.405 | 2652.101 | 2651.908 | 2651.884 | 2651.869 | 2651.867 | 2651.862 |
| Error $\left(\mathrm{cm}^{-1}\right)$ | 1.815 | 0.511 | 0.318 | 0.294 | 0.279 | 0.277 | 0.272 |

### 4.2 Ethylene oxide molecule, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$

We have shown that A-VCI method accurately computes the spectrum of $\mathrm{CH}_{3} \mathrm{CN}$ in a large frequency range of interest. Let us now consider a more difficult problem with the ethylene oxide molecule. To study the vibrational levels of this 7 -atom system we use the PES described in Bégué et al. [8]. The anharmonic part of this potential is composed of 180 cubic terms and 445 quartic terms. The 15 harmonic frequencies are sorted by ascending order:

$$
\begin{aligned}
\omega_{1} & =815.515, \omega_{2}=850.180, \omega_{3}=899.564 \\
\omega_{4} & =1052.231, \omega_{5}=1156.802, \omega_{6}=1157.906 \\
\omega_{7} & =1174.993, \omega_{8}=1176.045, \omega_{9}=1300.108 \\
\omega_{10} & =1512.350, \omega_{11}=1549.074, \omega_{12}=3109.459 \\
\omega_{13} & =3117.878, \omega_{14}=3196.560, \omega_{15}=3211.265\left(\mathrm{~cm}^{-1}\right)
\end{aligned}
$$

In this section, we consider the automatic collective component wise (aCCW) strategy to expand the basis. All computations were run on plafrim.

### 4.2.1 The first 50 eigenvalues

We focus here on the 50 lowest energetic levels of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$. The corresponding eigenvalues were computed by Brown and Carrington [13] in a basis of 2955289 functions thanks to an adaptive procedure called "O Expand". Using this strategy they proved to be more efficient than with a binomial basis $\mathrm{BP}(11)$ of 7726160 elements. As far as we know, this "O Expand" computation is the most accurate one to date on the first 50 eigenvalues of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$. In this part, the absolute error on the A-VCI eigenvalues is denoted Err and evaluated with respect to this reference calculation.

The A-VCI initial basis $B^{(0)}$ is made of the first 50 harmonic configurations of the product space defined by the Hermite degrees $\mathbf{d}=[6,5,5,4,4,4,4,4,3,3,3,1,1,1,1]$. The approximation spaces $\Pi_{\mathbf{d}}\left(E_{\max }\right)$ and $\mathrm{BP}(b)$ with different values of $\varepsilon$ are considered. Table 4 shows how the choice of these parameters influences the accuracy on eigenvalues, the basis size and the computational time. The first three lines refer to the aCCW automatic selection of A-VCI to limit the number of nodes added at each iteration. The two product spaces $\Pi_{d}$ defined for a maximal energy of $10000 \mathrm{~cm}^{-1}$ and $14000 \mathrm{~cm}^{-1}$ lead to maximal Hermite degree $\mathbf{d}=[13,12,12,10,9,9,9,9,8,7,7,4,4,4,4]$ and $\mathbf{d}=[18,17,16,14,13,13,12,12,11,10,10,5,5,5,5]$, respectively. The last two lines of Table 4 present a pruning approach in the binomial spaces $\mathrm{BP}(11)$ and $\mathrm{BP}(16)$ with two different ways to expand the basis.

In the considered computations a threshold of $5 \times 10^{-3}$ leads to an error of $0.4 \mathrm{~cm}^{-1}$ and final bases almost ten times smaller than the "O Expand" set of Ref. [13], with less than 350000 functions. For this level of precision using the binomial basis $\mathrm{BP}(11)$ with the $\mathrm{CCW}(5)$ strategy (line 4 ) is faster than the aCCW expansion method applied in the product space $\Pi_{\mathbf{d}}(10000)$ (line 1 ). This is no longer true when we decrease the threshold to
$2.5 \times 10^{-3}$ to reach an accuracy around $0.04 \mathrm{~cm}^{-1}$. In this case, the $\Pi_{\mathbf{d}}$ spaces give smaller basis and CPU times than the $\operatorname{BP}(b)$ spaces. A threshold of $2.5 \times 10^{-3}$ with $E_{\max }=10000 \mathrm{~cm}^{-1}$ is enough to obtain an error below $0.1 \mathrm{~cm}^{-1}$. A larger product space corresponding to $E_{\max }=14000 \mathrm{~cm}^{-1}$ leads to an accuracy of $0.047 \mathrm{~cm}^{-1}$ in a basis twice smaller than in Ref. [13] (see line 3). In this later calculation, the maximal Hermite degrees per direction of the the final basis are $[11,9,8,8,8,10,7,7,9,6,7,5,5,5,5]$ and the final basis is embedded in the binomial space $\mathrm{BP}(17)$.

Table 4: Convergence of A-VCI for the 50 lowest eigenvalues of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$. Several approximation spaces and thresholds are used with the aCCW and CCW(5) basis expansion strategies. The corresponding basis sizes and number of iterations are reported. The reference calculation for the absolute error is provided in Brown and Carrington 13.

| Space | Threshold | Iterations | $E r r$ | $m$ | $m_{R}$ | Strategy | Time (s) |
| :--- | :---: | :---: | ---: | ---: | ---: | ---: | ---: |
| $\Pi_{\mathbf{d}}(10000)$ | $5.0 \times 10^{-3}$ | 11 | 0.42 | 325177 | 32469708 | aCCW $(30000,0.6)$ | 4601 |
| $\Pi_{\mathbf{d}}(10000)$ | $2.5 \times 10^{-3}$ | 23 | 0.080 | 1240302 | 92205491 | aCCW $(50000,0.6)$ | 47366 |
| $\Pi_{\mathbf{d}}(14000)$ | $2.5 \times 10^{-3}$ | 25 | 0.047 | 1362866 | 107840100 | aCCW $(50000,0.6)$ | 57529 |
| $\mathrm{BP}(11)$ | $5.0 \times 10^{-3}$ | 13 | 0.41 | 346033 | 7216711 | CCW $(5)$ | 2920 |
| $\mathrm{BP}(16)$ | $2.5 \times 10^{-3}$ | 27 | 0.042 | 1439356 | 105416196 | aCCW $(50000,0.6)$ | 64310 |

Figure 3 presents how the mean order $p$ and the number of points in $A^{(j)}$ fluctuate according to the iterations. The green curve shows how the number of nodes varies with the CCW(5) strategy. At the beginning, a small number of nodes are added in the basis, and it increases strongly during the iterations. On the opposite, with the aCCW strategy, we quickly reach the target number of nodes to add, but this strategy needs more iterations than CCW to obtain the convergence. Finally, the aCCW strategy generally gives the smallest final basis sets.

### 4.2.2 The first 200 eigenvalues

For the mid-IR spectrum of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$, the domain of spectroscopic interest is between 2800 and $3200 \mathrm{~cm}^{-1}$. In this frequency range, the accurate assignment of active bands is still a challenging matter 33, 39, 46. In Thomas and Carrington [46], they compute the first 200 eigenvalues by a tensor-type approach and the last calculated frequency is $3233 \mathrm{~cm}^{-1}$. Brown and Carrington [13] showed that the computation of Ref. [46] is not accurate for the first 50 lowest frequencies and would be certainly worse for higher frequencies. The ground state calculated by Thomas and Carrington [46] is $12461.860 \mathrm{~cm}^{-1}$ whereas the "O Expand" basis of Ref. [13] provides a converged value of $12461.467 \mathrm{~cm}^{-1}$.

In this section, the starting subspace $B^{(0)}$ contains the first 200 elements of $\Pi_{\mathbf{d}}$, with

$$
\mathbf{d}=[5,5,4,4,4,4,3,3,3,3,3,2,2,2,2]
$$

corresponding to the lowest vibrational states, and we expand the basis with the aCCW strategy in order to minimize the memory used by the algorithm. Table 5 presents a preliminary computation to evaluate which approximation space $\Pi_{d}$ gives a good accuracy for a threshold of $5 \times 10^{-3}$. The ground state obtained is always $12461.480 \mathrm{~cm}^{-1}$ except for $\Pi_{\mathbf{d}}(12000)$. This means that this space is too small to accurately approximate the eigenfunctions. This result is confirmed in Brown et. al. [13] when they compare the maximal error on their eigenvalues with those of Thomas et.al. [46]). For $E_{\max }=12000 \mathrm{~cm}^{-1}$, the largest error is $0.300, \mathrm{~cm}^{-1}$ (resp. $23.124, \mathrm{~cm}^{-1}$ ). while with $E_{\max } \geq 13000 \mathrm{~cm}^{-1}$, the error stabilizes at $0.258, \mathrm{~cm}^{-1}$ (resp. $23.142, \mathrm{~cm}^{-1}$ ). These first results also confirm that the computations presented in Thomas's paper [46] have a low accuracy.

According to the previous results, we set $E_{\max }$ to $13500 \mathrm{~cm}^{-1}$ to perform a more accurate computation with a threshold of $3 \times 10^{-3}$ and the aCCW strategy with $N_{T}=100000$ for the targeted number of nodes to add at each iteration and $\delta=0.4$.

This large computation is done on a 72 cores platform with 768 Gb of memory. This run stopped after nearly 5 days of computation at iteration 44 due to a walltime limitation on the batch scheduler and needed


Figure 3: Evolution of the average type $p$ during the A-VCI iterations for $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(F=50)$. The basis expansion strategy is aCCW, except for the green curve obtained with CCW(5). The used approximation spaces are $\Pi_{\mathbf{d}}\left(E_{\max }\right)$ and $\mathrm{BP}(b)$.

Table 5: Convergence of the 200 lowest frequencies of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ computed with $\mathrm{A}-\mathrm{VCI}$ in $\Pi_{\mathbf{d}}$, with $E_{\text {max }}$ ranging from 12000 to $15000 \mathrm{~cm}^{-1}$. The used threshold is $5 \times 10^{-3}$.

| $E_{\text {max }}$ <br> $\left(\mathrm{cm}^{-1}\right)$ | Strategy <br> $\operatorname{aCCW}\left(N_{T}, \delta\right)$ | Iterations | $m$ | $m_{R}$ | Time <br> $(\mathrm{s})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 12000 | $(40000,0.6)$ | 24 | 1469373 | 108175774 | 173625 |
| 13000 | $(60000,0.6)$ | 26 | 1593865 | 124495044 | 217053 |
| 13500 | $(60000,0.6)$ | 26 | 1593892 | 124497716 | 216692 |
| 14000 | $(60000,0.6)$ | 26 | 1593892 | 124497874 | 222639 |
| 15000 | $(60000,0.6)$ | 26 | 1593892 | 124497898 | 217667 |

less than 200 Gb of memory. The basis size obtained at this step counts 5328639 elements and the related research space size is 308316882 . We reach the convergence for 197 eigenvalues over 200 but the largest residue is lower than $3.6 \times 10^{-3}$. Except for the $187^{\text {th }}, 194^{\text {th }}$ and $199^{\text {th }}$ frequencies, the relative residues are all below $3 \times 10^{-3}$ as shown in Fig. 4. In the bottom of the spectrum frequencies are well-converged and A-VCI stands very close to the 50 eigenvalues computed by Brown and Carrington [13], with a maximal error of $0.1052 \mathrm{~cm}^{-1}$. Compared to the 2955289 basis elements used in Ref. [13], the A-VCI basis is larger, but is able to calculate
more eigenstates than Brown and Carrington. As expected the discrepancies between A-VCI and Thomas and Carrington [46] are more important: the largest error on the 200 computed eigenvalues is $23.504 \mathrm{~cm}^{-1}$, and the mean error is $6.948 \mathrm{~cm}^{-1}$. This is not surprising since the highest frequencies are generally the most difficult to converge: we see on Fig. 4 that they correspond to the largest residues. Nevertheless, even on the first 50 eigenvalues, the largest error between A-VCI and Ref. [46] is $17.050 \mathrm{~cm}^{-1}$ and the mean error is $2.428 \mathrm{~cm}^{-1}$, whereas the results of Brown and Carrington are in good accordance with A-VCI. Finally, the ground state evaluated at $12461.474 \mathrm{~cm}^{-1}$ by A-VCI is close to the value found by Brown and Carrington 13 and assess of the accuracy of this calculation. The corresponding eigenvalues, frequencies and assignments are reported in the Supplementary Material.


Figure 4: Final relative residues at iteration 44 for $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\left(\varepsilon=3 \times 10^{-3}\right.$ and $\left.E_{\max }=13500 \mathrm{~cm}^{-1}\right)$.

## 5 Conclusion

The A-VCI algorithm [23] is an adaptative procedure to compute iteratively a spectrum at any desired accuracy. It is applied to the resolution of the vibrational Schrödinger equation of two molecular systems $\left(\mathrm{CH}_{3} \mathrm{CN}\right.$ and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ ), for which sum of product potential energy surfaces, generated by Bégué et al. [7, 8, have been used by several authors [1, 25, 3, 13, 30, 46] to produce the most accurate results currently available.

This iterative method builds nested spaces from an initial active space inside a much larger approximation space. The use of the Bauer-Fike theorem led us to define an a-posteriori criterion to control the convergence of the algorithm and to select significant basis elements to add at each iteration. Three parameters, namely $\varepsilon$ the threshold to control the convergence, $E_{\max }$ to customize the size of the approximation space and $p$ to adjust the selection criterion at each iteration, have been introduced to increase the flexibility of the method. A full study of the influence of these parameters was carried out. We are now able to choose efficiently these parameters to reach the desired precision for a given PES and a given frequency range. In addition to providing
a great accuracy for a large frequency range $\left(0-3000 \mathrm{~cm}^{-1}\right.$ for $\mathrm{CH}_{3} \mathrm{CN}$ and $0-3200 \mathrm{~cm}^{-1}$ for $\left.\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\right)$, the constraints on the parameters can be relaxed to reach an accuracy of $\simeq 1 \mathrm{~cm}^{-1}$ on the same energetic range, with very small resulting basis sets.

Our approach to manage the basis elements and the matrix allows us to handle molecular systems up to 7 atoms, in less than a day on a 24 -core computer with 128 GB of memory capacity (except for the largest $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ results). This limit can be postponed either by using a matrix free approach for the $H_{R}$ matrix elements to reduce the memory foot-print or by using a distributed memory programming (Message Passing Interface) to spread the workload over different platforms.

The A-VCI algorithm extracts eigenvalues from an Hamiltonian operator with an accuracy we are able to estimate. Thus, a comparison with experimental data could allow to deduce the adequacy between an operator (in particular its potential energy part) and the chemical system studied. Moreover, additions such as Coriolis effects or more sophisticated rotational-vibrational couplings will ultimately be useful to help investigate new interpretations of experimental data.

## acknowledgments

We thank G. Avila and T. Carrington for providing us the potential energy surface of the $\mathrm{CH}_{3} \mathrm{CN}$ molecule that was used for the comparison tests. A part of this work was funded by the grand CRA-HPC of the Conseil Régional d'Aquitaine. Experiments presented in this paper were carried out using the PlaFRIM experimental computing platform, being developed under the Inria PlaFRIM development action with support from Bordeaux INP, LABRI, IMB and other entities: Conseil Régional d'Aquitaine, Université de Bordeaux, CNRS and ANR in accordance to the programme Investissements d'Avenir (see www.plafrim.fr). Some numerical computations were also carried out using the MCIA platform (Mésocentre de Calcul Intensif Aquitain, see www.mcia.univbordeaux.fr). Finally we acknowledge the Direction du Numérique of the Université de Pau et des Pays de l'Adour for the computing facilities it provided us.

## A Hermite functions

The 1-D normalized Hermite function of degree $n$ writes

$$
\psi_{n}(q)=\left(\frac{1}{\pi}\right)^{1 / 4} \frac{1}{\sqrt{2^{n} n!}} \cdot e^{-\frac{q^{2}}{2}} \cdot \operatorname{He}_{n}(q)
$$

where $\mathrm{He}_{n}$ is the normalized Hermite polynomial of degree $n$. These polynomials are orthogonal for the weight $e^{-\frac{q^{2}}{2}}$. Moreover we have

$$
\int_{\mathbb{R}} \psi_{n}(x) \psi_{m}(x)=\delta_{n, m}
$$

The sequence of Hermite polynomials satisfies the recursion

$$
\mathrm{He}_{n+1}(q)=q \mathrm{He}_{n}-n \mathrm{He}_{n-1},
$$

and $\psi_{n}$ are the eigenfunctions of the 1-D harmonic Hamiltonian operator defined by

$$
\mathcal{H}_{0}(q)=-\frac{\partial^{2}}{\partial q^{2}}+q^{2}
$$

The properties of Hermite functions provide an analytic formula to calculate the Hamiltonian matrix coefficients as shown in the following propositions.

Proposition 1 (see [49]) The indices $m$ such that $\left\langle\phi_{n}(q) \mid q^{s} \phi_{m}(q)\right\rangle \neq 0$ are given by

- If $s=2 p$, then $m=n+2 l$ for $-s / 2 \leq l \leq s / 2$ if $s=2 p$.
- If $s=2 p+1$, then $m=n+2 l+1$ for $-(s-1) / 2 \leq l \leq(s-1) / 2$.

Proposition 2 (see [49]) The tensor moment $\mathcal{M}(s, n, m)=\left\langle\phi_{n}(q), q^{s} \phi_{m}(q)\right\rangle$ has the following analytic expression

$$
\left\langle\phi_{n}(q) \mid q^{s} \phi_{m}(q)\right\rangle= \begin{cases}0 & \text { if } s-n-m \text { is odd },  \tag{24}\\ \frac{s!}{2^{r}} \sqrt{\frac{2^{m+n}}{m!n!}} \sum_{p=\max (0,-r)}^{\min (n, m)} C_{p}^{n} C_{p}^{m} \frac{p!}{2^{p}(r+p)!} & \text { otherwise },\end{cases}
$$

with $r=(s-n-m) / 2$.

## B Supplementary Material

## B. 1 Acetonitrile molecule

Table 6: Frequencies and assignments for two A-VCI computations. The first column corresponds to the more accurate one with a final basis set of 2488511 elements while in the second computation, the basis size is only of 79133 elements

| Frequency Number | $\begin{gathered} \hline \Pi_{\mathbf{d}}(15000), \\ \varepsilon=2.510^{-4} \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$ | $\begin{gathered} \hline \hline \Pi_{\mathbf{d}}(12500), \\ \varepsilon=0.005 \\ \left(\mathrm{~cm}^{-1}\right) \\ \hline \end{gathered}$ | Reference 11 $\left(\mathrm{cm}^{-1}\right)$ | Assignment |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 360.990 | 361.048 | 360.991 | $\omega_{2}(0.97), \omega_{2}+\omega_{10}(0.20)$ |
| 2 | 360.990 | 361.059 | 360.991 | $\omega_{1}(0.97), \omega_{1}+\omega_{10}(0.20)$ |
| 3 | 723.179 | 723.240 | 723.181 | $\omega_{1}+\omega_{2}(0.97), \omega_{1}+\omega_{2}+\omega_{10}(0.20)$ |
| 4 | 723.179 | 723.253 | 723.181 | $2 \omega_{2}(0.69), 2 \omega_{1}(0.69)$ |
| 5 | 723.825 | 723.886 | 723.827 | $2 \omega_{1}(0.68), 2 \omega_{2}(0.68)$ |
| 6 | 900.657 | 900.722 | 900.662 | $\omega_{3}(0.95), \omega_{3}+\omega_{10}(0.19)$ |
| 7 | 1034.125 | 1034.231 | 1034.126 | $\omega_{5}(0.97), \omega_{5}+\omega_{10}(0.21)$ |
| 8 | 1034.126 | 1034.271 | 1034.126 | $\omega_{4}(0.97), \omega_{4}+\omega_{10}(0.21)$ |
| 9 | 1086.552 | 1086.657 | 1086.554 | $\omega_{1}+2 \omega_{2}(0.84), 3 \omega_{1}(0.48)$ |
| 10 | 1086.552 | 1086.661 | 1086.554 | $2 \omega_{1}+\omega_{2}(0.84), 3 \omega_{2}(0.48)$ |
| 11 | 1087.774 | 1087.881 | 1087.776 | $3 \omega_{2}(0.83), 2 \omega_{1}+\omega_{2}(0.48)$ |
| 12 | 1087.774 | 1087.888 | 1087.776 | $3 \omega_{1}(0.83), \omega_{1}+2 \omega_{2}(0.48)$ |
| 13 | 1259.807 | 1259.916 | 1259.822 | $\omega_{2}+\omega_{3}(0.94), \omega_{2}+2 \omega_{3}(0.21)$ |
| 14 | 1259.807 | 1259.921 | 1259.822 | $\omega_{1}+\omega_{3}(0.94), \omega_{1}+2 \omega_{3}(0.21)$ |
| 15 | 1388.969 | 1389.103 | 1388.973 | $\omega_{6}(0.73), \omega_{2}+\omega_{5}(0.45)$ |
| 16 | 1394.681 | 1394.811 | 1394.689 | $\omega_{1}+\omega_{5}(0.68), \omega_{2}+\omega_{4}(0.68)$ |
| 17 | 1394.681 | 1394.815 | 1394.689 | $\omega_{2}+\omega_{5}(0.68), \omega_{1}+\omega_{4}(0.68)$ |
| 18 | 1394.900 | 1395.032 | 1394.907 | $\omega_{2}+\omega_{4}(0.68), \omega_{1}+\omega_{5}(0.68)$ |
| 19 | 1397.681 | 1397.813 | 1397.687 | $\omega_{6}(0.64), \omega_{1}+\omega_{4}(0.51)$ |
| 20 | 1451.093 | 1451.194 | 1451.101 | $\omega_{1}+3 \omega_{2}(0.68), 3 \omega_{1}+\omega_{2}(0.68)$ |
| 21 | 1451.093 | 1451.251 | 1451.101 | $2 \omega_{1}+2 \omega_{2}(0.84), 4 \omega_{1}(0.34)$ |
| 22 | 1452.818 | 1452.920 | 1452.827 | $3 \omega_{1}+\omega_{2}(0.68), \omega_{1}+3 \omega_{2}(0.68)$ |
| 23 | 1452.818 | 1452.957 | 1452.827 | $4 \omega_{2}(0.68), 4 \omega_{1}(0.68)$ |
| 24 | 1453.394 | 1453.540 | 1453.403 | $4 \omega_{1}(0.58), 4 \omega_{2}(0.58)$ |
| 25 | 1483.220 | 1483.396 | 1483.229 | $\omega_{8}(0.97), \omega_{8}+\omega_{10}(0.20)$ |
| 26 | 1483.220 | 1483.426 | 1483.229 | $\omega_{7}(0.97), \omega_{7}+\omega_{10}(0.20)$ |
| 27 | 1620.196 | 1620.278 | 1620.222 | $2 \omega_{2}+\omega_{3}(0.66), 2 \omega_{1}+\omega_{3}(0.66)$ |
| 28 | 1620.196 | 1620.313 | 1620.222 | $\omega_{1}+\omega_{2}+\omega_{3}(0.93), \omega_{1}+\omega_{2}+2 \omega_{3}(0.22)$ |
| 29 | 1620.740 | 1620.859 | 1620.767 | $2 \omega_{1}+\omega_{3}(0.65), 2 \omega_{2}+\omega_{3}(0.65)$ |
| 30 | 1749.520 | 1749.697 | 1749.530 | $\omega_{2}+\omega_{6}(0.74), 2 \omega_{2}+\omega_{5}(0.50)$ |
| 31 | 1749.520 | 1749.707 | 1749.530 | $\omega_{1}+\omega_{6}(0.74), 2 \omega_{1}+\omega_{4}(0.50)$ |
| 32 | 1756.414 | 1756.576 | 1756.426 | $\omega_{1}+\omega_{2}+\omega_{5}(0.68), 2 \omega_{1}+\omega_{4}(0.48)$ |
| 33 | 1756.414 | 1756.579 | 1756.426 | $\omega_{1}+\omega_{2}+\omega_{4}(0.68), 2 \omega_{2}+\omega_{5}(0.48)$ |
| 34 | 1757.121 | 1757.300 | 1757.133 | $2 \omega_{1}+\omega_{5}(0.83), \omega_{1}+\omega_{2}+\omega_{4}(0.39)$ |
| 35 | 1757.121 | 1757.338 | 1757.133 | $2 \omega_{2}+\omega_{4}(0.83), \omega_{1}+\omega_{2}+\omega_{5}(0.38)$ |
| 36 | 1759.762 | 1759.922 | 1759.772 | $\omega_{2}+\omega_{6}(0.62), 2 \omega_{2}+\omega_{5}(0.60)$ |
| 37 | 1759.762 | 1759.934 | 1759.772 | $\omega_{1}+\omega_{6}(0.62), 2 \omega_{1}+\omega_{4}(0.60)$ |
| 38 | 1785.098 | 1785.180 | 1785.207 | $2 \omega_{3}(0.89), 3 \omega_{3}(0.31)$ |

Table 6 (continued)

| Frequency Number | $\begin{gathered} \Pi_{\mathbf{d}}(15000), \\ \varepsilon=2.510^{-4} \\ \left(\mathrm{~cm}^{-1}\right) \\ \hline \end{gathered}$ | $\begin{gathered} \Pi_{\mathrm{d}}(12500), \\ \varepsilon=0.005 \\ \left(\mathrm{~cm}^{-1}\right) \\ \hline \end{gathered}$ | $\begin{gathered} \text { Reference [1] } \\ \left(\mathrm{cm}^{-1}\right) \\ \hline \end{gathered}$ | Assignment |
| :---: | :---: | :---: | :---: | :---: |
| 39 | 1816.786 | 1816.963 | 1816.799 | $2 \omega_{1}+3 \omega_{2}(0.76), 4 \omega_{1}+\omega_{2}(0.54)$ |
| 40 | 1816.786 | 1816.973 | 1816.799 | $3 \omega_{1}+2 \omega_{2}(0.76), \omega_{1}+4 \omega_{2}(0.54)$ |
| 41 | 1818.938 | 1819.117 | 1818.952 | $\omega_{1}+4 \omega_{2}(0.71), 5 \omega_{1}(0.53)$ |
| 42 | 1818.939 | 1819.126 | 1818.952 | $4 \omega_{1}+\omega_{2}(0.71), 5 \omega_{2}(0.53)$ |
| 43 | 1820.016 | 1820.191 | 1820.031 | $5 \omega_{2}(0.75), 2 \omega_{1}+3 \omega_{2}(0.47)$ |
| 44 | 1820.016 | 1820.200 | 1820.031 | $5 \omega_{1}(0.75), 3 \omega_{1}+2 \omega_{2}(0.47)$ |
| 45 | 1844.245 | 1844.478 | 1844.258 | $\omega_{1}+\omega_{8}(0.68), \omega_{2}+\omega_{7}(0.68)$ |
| 46 | 1844.317 | 1844.523 | 1844.330 | $\omega_{2}+\omega_{7}(0.68), \omega_{1}+\omega_{8}(0.68)$ |
| 47 | 1844.318 | 1844.551 | 1844.330 | $\omega_{2}+\omega_{8}(0.68), \omega_{1}+\omega_{7}(0.68)$ |
| 48 | 1844.677 | 1844.880 | 1844.690 | $\omega_{1}+\omega_{7}(0.68), \omega_{2}+\omega_{8}(0.68)$ |
| 49 | 1931.513 | 1931.657 | 1931.547 | $\omega_{3}+\omega_{5}(0.94), 2 \omega_{3}+\omega_{5}(0.21)$ |
| 50 | 1931.513 | 1931.668 | 1931.547 | $\omega_{3}+\omega_{4}(0.94), 2 \omega_{3}+\omega_{4}(0.21)$ |
| 51 | 1981.811 | 1981.932 | 1981.849 | $\omega_{1}+2 \omega_{2}+\omega_{3}(0.80), 3 \omega_{1}+\omega_{3}(0.46)$ |
| 52 | 1981.812 | 1981.942 | 1981.849 | $2 \omega_{1}+\omega_{2}+\omega_{3}(0.80), 3 \omega_{2}+\omega_{3}(0.46)$ |
| 53 | 1982.812 | 1982.943 | 1982.857 | $3 \omega_{1}+\omega_{3}(0.79), \omega_{1}+2 \omega_{2}+\omega_{3}(0.45)$ |
| 54 | 1982.812 | 1982.944 | 1982.857 | $3 \omega_{2}+\omega_{3}(0.79), 2 \omega_{1}+\omega_{2}+\omega_{3}(0.45)$ |
| 55 | 2057.051 | 2057.244 | 2057.068 | $2 \omega_{5}(0.68), 2 \omega_{4}(0.68)$ |
| 56 | 2065.269 | 2065.409 | 2065.286 | $2 \omega_{4}(0.68), 2 \omega_{5}(0.68)$ |
| 57 | 2065.269 | 2065.559 | 2065.286 | $\omega_{4}+\omega_{5}(0.96), \omega_{4}+\omega_{5}+\omega_{10}(0.22)$ |
| 58 | 2111.365 | 2111.567 | 2111.380 | $\omega_{1}+\omega_{2}+\omega_{6}(0.75), 2 \omega_{1}+\omega_{2}+\omega_{4}(0.43)$ |
| 59 | 2111.365 | 2111.650 | 2111.380 | $2 \omega_{2}+\omega_{6}(0.53), 2 \omega_{1}+\omega_{6}(0.53)$ |
| 60 | 2112.282 | 2112.485 | 2112.297 | $2 \omega_{1}+\omega_{6}(0.53), 2 \omega_{2}+\omega_{6}(0.53)$ |
| 61 | 2119.309 | 2119.542 | 2119.327 | $2 \omega_{1}+\omega_{2}+\omega_{4}(0.59), \omega_{1}+2 \omega_{2}+\omega_{5}(0.59)$ |
| 62 | 2119.309 | 2119.548 | 2119.327 | $2 \omega_{1}+\omega_{2}+\omega_{5}(0.59), \omega_{1}+2 \omega_{2}+\omega_{4}(0.59)$ |
| 63 | 2120.523 | 2120.728 | 2120.541 | $3 \omega_{1}+\omega_{5}(0.67), 3 \omega_{2}+\omega_{4}(0.67)$ |
| 64 | 2120.523 | 2120.760 | 2120.541 | $\omega_{1}+2 \omega_{2}+\omega_{4}(0.57), 2 \omega_{1}+\omega_{2}+\omega_{5}(0.57)$ |
| 65 | 2120.891 | 2121.106 | 2120.910 | $3 \omega_{2}+\omega_{4}(0.58), 3 \omega_{1}+\omega_{5}(0.58)$ |
| 66 | 2122.818 | 2123.020 | 2122.834 | $\omega_{1}+\omega_{2}+\omega_{6}(0.61), 2 \omega_{1}+\omega_{2}+\omega_{4}(0.52)$ |
| 67 | 2122.818 | 2123.086 | 2122.834 | $3 \omega_{2}+\omega_{5}(0.45), 3 \omega_{1}+\omega_{4}(0.45)$ |
| 68 | 2123.283 | 2123.490 | 2123.301 | $3 \omega_{2}+\omega_{5}(0.45), 3 \omega_{1}+\omega_{4}(0.45)$ |
| 69 | 2142.348 | 2142.586 | 2142.614 | $\omega_{1}+2 \omega_{3}(0.87), \omega_{1}+3 \omega_{3}(0.32)$ |
| 70 | 2142.348 | 2142.600 | 2142.614 | $\omega_{2}+2 \omega_{3}(0.87), \omega_{2}+3 \omega_{3}(0.32)$ |
| 71 | 2183.618 | 2183.752 | 2183.635 | $2 \omega_{1}+4 \omega_{2}(0.66), 4 \omega_{1}+2 \omega_{2}(0.66)$ |
| 72 | 2183.618 | 2183.795 | 2183.635 | $3 \omega_{1}+3 \omega_{2}(0.76), 5 \omega_{1}+\omega_{2}(0.42)$ |
| 73 | 2186.117 | 2186.260 | 2186.138 | $\omega_{1}+5 \omega_{2}(0.67), 5 \omega_{1}+\omega_{2}(0.67)$ |
| 74 | 2186.117 | 2186.269 | 2186.138 | $2 \omega_{1}+4 \omega_{2}(0.53), 4 \omega_{1}+2 \omega_{2}(0.53)$ |
| 75 | 2187.618 | 2187.762 | 2187.642 | $6 \omega_{2}(0.64), 6 \omega_{1}(0.64)$ |
| 76 | 2187.618 | 2187.799 | 2187.642 | $3 \omega_{1}+3 \omega_{2}(0.57), 5 \omega_{1}+\omega_{2}(0.52)$ |
| 77 | 2188.119 | 2188.269 | 2188.144 | $6 \omega_{2}(0.52), 6 \omega_{1}(0.52)$ |
| 78 | 2206.608 | 2206.813 | 2206.626 | $\omega_{1}+\omega_{2}+\omega_{8}(0.68), 2 \omega_{2}+\omega_{7}(0.48)$ |
| 79 | 2206.616 | 2206.917 | 2206.633 | $\omega_{1}+\omega_{2}+\omega_{7}(0.68), 2 \omega_{2}+\omega_{8}(0.48)$ |
| 80 | 2206.758 | 2206.959 | 2206.776 | $2 \omega_{1}+\omega_{8}(0.73), \omega_{1}+\omega_{2}+\omega_{7}(0.62)$ |
| 81 | 2206.758 | 2207.071 | 2206.776 | $2 \omega_{2}+\omega_{7}(0.73), \omega_{1}+\omega_{2}+\omega_{8}(0.62)$ |
| 82 | 2207.542 | 2207.753 | 2207.559 | $2 \omega_{2}+\omega_{8}(0.82), 2 \omega_{1}+\omega_{8}(0.41)$ |
| 83 | 2207.542 | 2207.835 | 2207.559 | $2 \omega_{1}+\omega_{7}(0.82), 2 \omega_{2}+\omega_{7}(0.41)$ |
| 84 | 2250.710 | 2250.870 | 2250.746 | $\omega_{9}(0.90), \omega_{3}+\omega_{6}(0.30)$ |
| 85 | 2287.846 | 2288.038 | 2287.939 | $\omega_{2}+\omega_{3}+\omega_{5}(0.60), \omega_{1}+\omega_{3}+\omega_{4}(0.60)$ |
| 86 | 2290.118 | 2290.313 | 2290.222 | $\omega_{1}+\omega_{3}+\omega_{4}(0.66), \omega_{2}+\omega_{3}+\omega_{5}(0.66)$ |

Table 6 (continued)

| Frequency Number | $\begin{gathered} \Pi_{\mathbf{d}}(15000), \\ \varepsilon=2.510^{-4} \\ \left(\mathrm{~cm}^{-1}\right) \end{gathered}$ | $\begin{gathered} \Pi_{\mathbf{d}}(12500), \\ \varepsilon=0.005 \\ \left(\mathrm{~cm}^{-1}\right) \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Reference [1] } \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$ | Assignment |
| :---: | :---: | :---: | :---: | :---: |
| 87 | 2290.118 | 2290.362 | 2290.222 | $\omega_{1}+\omega_{3}+\omega_{5}(0.66), \omega_{2}+\omega_{3}+\omega_{4}(0.66)$ |
| 88 | 2290.281 | 2290.524 | 2290.384 | $\omega_{2}+\omega_{3}+\omega_{4}(0.66), \omega_{1}+\omega_{3}+\omega_{5}(0.66)$ |
| 89 | 2297.130 | 2297.299 | 2297.189 | $\omega_{3}+\omega_{6}(0.83), \omega_{1}+\omega_{3}+\omega_{4}(0.26)$ |
| 90 | 2344.642 | 2344.871 | 2344.748 | $\omega_{1}+3 \omega_{2}+\omega_{3}(0.65), 3 \omega_{1}+\omega_{2}+\omega_{3}(0.64)$ |
| 91 | 2344.642 | 2344.875 | 2344.748 | $2 \omega_{1}+2 \omega_{2}+\omega_{3}(0.79), 4 \omega_{1}+\omega_{3}(0.32)$ |
| 92 | 2346.006 | 2346.214 | 2346.127 | $4 \omega_{2}+\omega_{3}(0.63), 4 \omega_{1}+\omega_{3}(0.63)$ |
| 93 | 2346.006 | 2346.251 | 2346.127 | $3 \omega_{1}+\omega_{2}+\omega_{3}(0.63), \omega_{1}+3 \omega_{2}+\omega_{3}(0.63)$ |
| 94 | 2346.461 | 2346.689 | 2346.588 | $4 \omega_{2}+\omega_{3}(0.54), 4 \omega_{1}+\omega_{3}(0.54)$ |
| 95 | 2384.790 | 2384.918 | 2384.873 | $\omega_{3}+\omega_{8}(0.95), \omega_{3}+\omega_{8}+\omega_{10}(0.20)$ |
| 96 | 2384.791 | 2385.105 | 2384.873 | $\omega_{3}+\omega_{7}(0.95), \omega_{3}+\omega_{7}+\omega_{10}(0.20)$ |
| 97 | 2414.963 | 2415.178 | 2415.022 | $\omega_{2}+2 \omega_{5}(0.68), \omega_{5}+\omega_{6}(0.51)$ |
| 98 | 2414.963 | 2415.228 | 2415.022 | $\omega_{1}+2 \omega_{4}(0.68), \omega_{4}+\omega_{6}(0.51)$ |
| 99 | 2420.083 | 2420.294 | 2420.135 | $\omega_{1}+2 \omega_{5}(0.65), \omega_{4}+\omega_{6}(0.60)$ |
| 100 | 2420.083 | 2420.331 | 2420.135 | $\omega_{2}+2 \omega_{4}(0.65), \omega_{5}+\omega_{6}(0.60)$ |
| 101 | 2425.374 | 2425.570 | 2425.443 | $\omega_{2}+\omega_{4}+\omega_{5}(0.67), \omega_{1}+2 \omega_{4}(0.48)$ |
| 102 | 2425.408 | 2425.648 | 2425.478 | $\omega_{1}+\omega_{4}+\omega_{5}(0.68), \omega_{2}+2 \omega_{4}(0.48)$ |
| 103 | 2427.910 | 2428.109 | 2427.963 | $\omega_{4}+\omega_{6}(0.55), \omega_{2}+\omega_{4}+\omega_{5}(0.55)$ |
| 104 | 2427.910 | 2428.153 | 2427.963 | $\omega_{5}+\omega_{6}(0.55), \omega_{1}+\omega_{4}+\omega_{5}(0.55)$ |
| 105 | 2474.470 | 2474.699 | 2474.505 | $\omega_{1}+2 \omega_{2}+\omega_{6}(0.65), \omega_{1}+3 \omega_{2}+\omega_{5}(0.39)$ |
| 106 | 2474.470 | 2474.720 | 2474.505 | $2 \omega_{1}+\omega_{2}+\omega_{6}(0.65), 3 \omega_{1}+\omega_{2}+\omega_{4}(0.39)$ |
| 107 | 2476.137 | 2476.369 | 2476.173 | $3 \omega_{1}+\omega_{6}(0.65), 4 \omega_{1}+\omega_{4}(0.45)$ |
| 108 | 2476.137 | 2476.374 | 2476.173 | $3 \omega_{2}+\omega_{6}(0.65), 4 \omega_{2}+\omega_{5}(0.45)$ |
| 109 | 2483.351 | 2483.574 | 2483.414 | $2 \omega_{1}+2 \omega_{2}+\omega_{5}(0.58), 3 \omega_{1}+\omega_{2}+\omega_{4}(0.48)$ |
| 110 | 2483.351 | 2483.619 | 2483.414 | $2 \omega_{1}+2 \omega_{2}+\omega_{4}(0.58), 3 \omega_{1}+\omega_{2}+\omega_{5}(0.48)$ |
| 111 | 2485.027 | 2485.290 | 2485.091 | $3 \omega_{1}+\omega_{2}+\omega_{5}(0.62), 4 \omega_{2}+\omega_{4}(0.53)$ |
| 112 | 2485.028 | 2485.316 | 2485.092 | $\omega_{1}+3 \omega_{2}+\omega_{4}(0.62), 4 \omega_{1}+\omega_{5}(0.53)$ |
| 113 | 2485.806 | 2486.124 | 2485.871 | $4 \omega_{2}+\omega_{4}(0.75), 2 \omega_{1}+2 \omega_{2}+\omega_{4}(0.38)$ |
| 114 | 2485.806 | 2486.126 | 2485.871 | $4 \omega_{1}+\omega_{5}(0.75), 2 \omega_{1}+2 \omega_{2}+\omega_{5}(0.38)$ |
| 115 | 2486.912 | 2487.135 | 2486.958 | $\omega_{1}+2 \omega_{2}+\omega_{6}(0.52), \omega_{1}+3 \omega_{2}+\omega_{5}(0.48)$ |
| 116 | 2486.912 | 2487.162 | 2486.958 | $2 \omega_{1}+\omega_{2}+\omega_{6}(0.52), 3 \omega_{1}+\omega_{2}+\omega_{4}(0.48)$ |
| 117 | 2487.740 | 2487.978 | 2487.791 | $4 \omega_{1}+\omega_{4}(0.57), 3 \omega_{1}+\omega_{6}(0.51)$ |
| 118 | 2487.740 | 2487.978 | 2487.791 | $4 \omega_{2}+\omega_{5}(0.57), 3 \omega_{2}+\omega_{6}(0.51)$ |
| 119 | 2500.898 | 2501.101 | 2501.264 | $2 \omega_{1}+2 \omega_{3}(0.60), 2 \omega_{2}+2 \omega_{3}(0.60)$ |
| 120 | 2500.898 | 2501.230 | 2501.264 | $\omega_{1}+\omega_{2}+2 \omega_{3}(0.85), \omega_{1}+\omega_{2}+3 \omega_{3}(0.34)$ |
| 121 | 2501.287 | 2501.630 | 2501.686 | $2 \omega_{2}+2 \omega_{3}(0.59), 2 \omega_{1}+2 \omega_{3}(0.59)$ |
| 122 | 2519.081 | 2519.330 | 2519.143 | $\omega_{5}+\omega_{8}(0.68), \omega_{4}+\omega_{7}(0.68)$ |
| 123 | 2519.772 | 2520.120 | 2519.834 | $\omega_{5}+\omega_{7}(0.68), \omega_{4}+\omega_{8}(0.68)$ |
| 124 | 2522.051 | 2522.296 | 2522.114 | $\omega_{4}+\omega_{8}(0.68), \omega_{5}+\omega_{7}(0.68)$ |
| 125 | 2522.051 | 2522.393 | 2522.114 | $\omega_{4}+\omega_{7}(0.68), \omega_{5}+\omega_{8}(0.68)$ |
| 126 | 2551.573 | 2551.746 | 2551.630 | $4 \omega_{1}+3 \omega_{2}(0.71), 2 \omega_{1}+5 \omega_{2}(0.55)$ |
| 127 | 2551.573 | 2551.770 | 2551.630 | $3 \omega_{1}+4 \omega_{2}(0.71), 5 \omega_{1}+2 \omega_{2}(0.55)$ |
| 128 | 2554.335 | 2554.509 | 2554.398 | $2 \omega_{1}+5 \omega_{2}(0.61), 6 \omega_{1}+\omega_{2}(0.59)$ |
| 129 | 2554.335 | 2554.532 | 2554.398 | $5 \omega_{1}+2 \omega_{2}(0.61), \omega_{1}+6 \omega_{2}(0.59)$ |
| 130 | 2556.177 | 2556.365 | 2556.245 | $\omega_{1}+6 \omega_{2}(0.60), 7 \omega_{1}(0.53)$ |
| 131 | 2556.180 | 2556.382 | 2556.248 | $6 \omega_{1}+\omega_{2}(0.60), 7 \omega_{2}(0.53)$ |
| 132 | 2557.101 | 2557.291 | 2557.171 | $7 \omega_{2}(0.68), 2 \omega_{1}+5 \omega_{2}(0.45)$ |
| 133 | 2557.101 | 2557.313 | 2557.171 | $7 \omega_{1}(0.68), 5 \omega_{1}+2 \omega_{2}(0.45)$ |
| 134 | 2570.088 | 2570.360 | 2570.145 | $2 \omega_{1}+\omega_{2}+\omega_{7}(0.59), \omega_{1}+2 \omega_{2}+\omega_{8}(0.59)$ |

Table 6 (continued)

| Frequency Number | $\begin{gathered} \Pi_{\mathbf{d}}(15000), \\ \varepsilon=2.510^{-4} \\ \left(\mathrm{~cm}^{-1}\right) \\ \hline \end{gathered}$ | $\begin{gathered} \Pi_{\mathbf{d}}(12500), \\ \varepsilon=0.005 \\ \left(\mathrm{~cm}^{-1}\right) \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Reference [1] } \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$ | Assignment |
| :---: | :---: | :---: | :---: | :---: |
| 135 | 2570.088 | 2570.392 | 2570.145 | $2 \omega_{1}+\omega_{2}+\omega_{8}(0.60), \omega_{1}+2 \omega_{2}+\omega_{7}(0.59)$ |
| 136 | 2570.395 | 2570.667 | 2570.452 | $3 \omega_{1}+\omega_{8}(0.52), 3 \omega_{2}+\omega_{7}(0.51)$ |
| 137 | 2570.395 | 2570.708 | 2570.452 | $\omega_{1}+2 \omega_{2}+\omega_{7}(0.67), 2 \omega_{1}+\omega_{2}+\omega_{8}(0.66)$ |
| 138 | 2571.173 | 2571.457 | 2571.231 | $3 \omega_{2}+\omega_{7}(0.59), 3 \omega_{1}+\omega_{8}(0.59)$ |
| 139 | 2571.575 | 2571.851 | 2571.633 | $2 \omega_{1}+\omega_{2}+\omega_{7}(0.52), \omega_{1}+2 \omega_{2}+\omega_{8}(0.51)$ |
| 140 | 2571.575 | 2571.861 | 2571.633 | $3 \omega_{2}+\omega_{8}(0.67), 3 \omega_{1}+\omega_{7}(0.66)$ |
| 141 | 2572.014 | 2572.305 | 2572.072 | $3 \omega_{2}+\omega_{8}(0.59), 3 \omega_{1}+\omega_{7}(0.59)$ |
| 142 | 2609.197 | 2609.508 | 2609.256 | $\omega_{1}+\omega_{9}(0.90), \omega_{1}+\omega_{3}+\omega_{6}(0.29)$ |
| 143 | 2609.197 | 2609.548 | 2609.256 | $\omega_{2}+\omega_{9}(0.90), \omega_{2}+\omega_{3}+\omega_{6}(0.29)$ |
| 144 | 2646.939 | 2647.249 | 2647.073 | $2 \omega_{2}+\omega_{3}+\omega_{5}(0.65), \omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}(0.50)$ |
| 145 | 2646.939 | 2647.265 | 2647.073 | $2 \omega_{1}+\omega_{3}+\omega_{4}(0.65), \omega_{1}+\omega_{2}+\omega_{3}+\omega_{5}(0.50)$ |
| 146 | 2649.944 | 2650.259 | 2650.084 | $\omega_{1}+\omega_{2}+\omega_{3}+\omega_{5}(0.65), 2 \omega_{1}+\omega_{3}+\omega_{4}(0.46)$ |
| 147 | 2649.945 | 2650.290 | 2650.086 | $\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}(0.65), 2 \omega_{2}+\omega_{3}+\omega_{5}(0.46)$ |
| 148 | 2650.502 | 2650.801 | 2650.647 | $2 \omega_{2}+\omega_{3}+\omega_{4}(0.79), \omega_{1}+\omega_{2}+\omega_{3}+\omega_{5}(0.34)$ |
| 149 | 2650.502 | 2650.895 | 2650.647 | $2 \omega_{1}+\omega_{3}+\omega_{5}(0.79), \omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}(0.34)$ |
| 150 | 2651.593 | 2651.862 | 2653.053 | $3 \omega_{3}(0.78), 4 \omega_{3}(0.41)$ |
| 151 | 2656.657 | 2656.961 | 2656.793 | $\omega_{1}+\omega_{3}+\omega_{6}(0.80), 2 \omega_{1}+\omega_{3}+\omega_{4}(0.33)$ |
| 152 | 2656.657 | 2656.992 | 2656.793 | $\omega_{2}+\omega_{3}+\omega_{6}(0.80), 2 \omega_{2}+\omega_{3}+\omega_{5}(0.33)$ |
| 153 | 2708.676 | 2708.935 | 2708.821 | $2 \omega_{1}+3 \omega_{2}+\omega_{3}(0.71), 4 \omega_{1}+\omega_{2}+\omega_{3}(0.50)$ |
| 154 | 2708.676 | 2709.047 | 2708.821 | $3 \omega_{1}+2 \omega_{2}+\omega_{3}(0.71), \omega_{1}+4 \omega_{2}+\omega_{3}(0.50)$ |
| 155 | 2710.305 | 2710.563 | 2710.482 | $\omega_{1}+4 \omega_{2}+\omega_{3}(0.65), 5 \omega_{1}+\omega_{3}(0.48)$ |
| 156 | 2710.307 | 2710.669 | 2710.484 | $4 \omega_{1}+\omega_{2}+\omega_{3}(0.65), 5 \omega_{2}+\omega_{3}(0.48)$ |
| 157 | 2711.121 | 2711.365 | 2711.318 | $5 \omega_{1}+\omega_{3}(0.67), 3 \omega_{1}+2 \omega_{2}+\omega_{3}(0.42)$ |
| 158 | 2711.121 | 2711.477 | 2711.318 | $5 \omega_{2}+\omega_{3}(0.67), 2 \omega_{1}+3 \omega_{2}+\omega_{3}(0.42)$ |
| 159 | 2743.916 | 2744.107 | 2744.028 | $\omega_{1}+\omega_{3}+\omega_{8}(0.66), \omega_{2}+\omega_{3}+\omega_{7}(0.66)$ |
| 160 | 2743.966 | 2744.140 | 2744.078 | $\omega_{2}+\omega_{3}+\omega_{7}(0.66), \omega_{1}+\omega_{3}+\omega_{8}(0.66)$ |
| 161 | 2743.966 | 2744.154 | 2744.078 | $\omega_{2}+\omega_{3}+\omega_{8}(0.66), \omega_{1}+\omega_{3}+\omega_{7}(0.66)$ |
| 162 | 2744.356 | 2744.527 | 2744.468 | $\omega_{1}+\omega_{3}+\omega_{7}(0.66), \omega_{2}+\omega_{3}+\omega_{8}(0.66)$ |
| 163 | 2768.017 | 2768.282 | 2768.055 | $2 \omega_{6}(0.77), \omega_{2}+\omega_{5}+\omega_{6}(0.36)$ |
| 164 | 2775.077 | 2775.379 | 2775.162 | $\omega_{1}+\omega_{2}+2 \omega_{5}(0.52), \omega_{1}+\omega_{2}+2 \omega_{4}(0.52)$ |
| 165 | 2775.077 | 2775.455 | 2775.162 | $2 \omega_{2}+2 \omega_{5}(0.50), 2 \omega_{1}+2 \omega_{4}(0.50)$ |
| 166 | 2776.518 | 2776.828 | 2776.592 | $2 \omega_{1}+2 \omega_{4}(0.47), 2 \omega_{2}+2 \omega_{5}(0.47)$ |
| 167 | 2777.356 | 2777.679 | 2777.430 | $\omega_{2}+\omega_{4}+\omega_{6}(0.54), \omega_{1}+\omega_{5}+\omega_{6}(0.54)$ |
| 168 | 2781.940 | 2782.250 | 2782.020 | $2 \omega_{1}+2 \omega_{5}(0.49), 2 \omega_{2}+2 \omega_{4}(0.49)$ |
| 169 | 2782.232 | 2782.519 | 2782.313 | $\omega_{1}+\omega_{5}+\omega_{6}(0.43), \omega_{2}+\omega_{4}+\omega_{6}(0.43)$ |
| 170 | 2782.232 | 2782.576 | 2782.313 | $2 \omega_{1}+2 \omega_{5}(0.51), 2 \omega_{2}+2 \omega_{4}(0.51)$ |
| 171 | 2786.666 | 2787.002 | 2786.752 | $2 \omega_{2}+\omega_{4}+\omega_{5}(0.48), \omega_{1}+\omega_{2}+2 \omega_{5}(0.48)$ |
| 172 | 2786.666 | 2787.006 | 2786.752 | $\omega_{1}+\omega_{2}+\omega_{4}+\omega_{5}(0.67), 2 \omega_{1}+2 \omega_{4}(0.34)$ |
| 173 | 2789.026 | 2789.283 | 2789.109 | $2 \omega_{2}+2 \omega_{5}(0.45), 2 \omega_{1}+2 \omega_{4}(0.44)$ |
| 174 | 2789.026 | 2789.381 | 2789.109 | $2 \omega_{1}+\omega_{4}+\omega_{5}(0.58), 2 \omega_{2}+\omega_{4}+\omega_{5}(0.57)$ |
| 175 | 2790.219 | 2790.536 | 2790.298 | $\omega_{2}+\omega_{4}+\omega_{6}(0.41), \omega_{1}+\omega_{5}+\omega_{6}(0.41)$ |
| 176 | 2790.667 | 2790.958 | 2790.743 | $\omega_{1}+\omega_{2}+\omega_{4}+\omega_{5}(0.50), \omega_{1}+\omega_{4}+\omega_{6}(0.43)$ |
| 177 | 2812.024 | 2812.320 | 2812.500 | $2 \omega_{3}+\omega_{5}(0.87), 3 \omega_{3}+\omega_{5}(0.32)$ |
| 178 | 2812.024 | 2812.342 | 2812.500 | $2 \omega_{3}+\omega_{4}(0.87), 3 \omega_{3}+\omega_{4}(0.32)$ |
| 179 | 2838.803 | 2839.142 | 2838.870 | $\omega_{1}+3 \omega_{2}+\omega_{6}(0.53), 3 \omega_{1}+\omega_{2}+\omega_{6}(0.53)$ |
| 180 | 2838.803 | 2839.155 | 2838.870 | $2 \omega_{1}+2 \omega_{2}+\omega_{6}(0.65), 3 \omega_{1}+2 \omega_{2}+\omega_{4}(0.36)$ |
| 181 | 2841.089 | 2841.398 | 2841.159 | $4 \omega_{2}+\omega_{6}(0.53), 4 \omega_{1}+\omega_{6}(0.53)$ |
| 182 | 2841.089 | 2841.454 | 2841.159 | $3 \omega_{1}+\omega_{2}+\omega_{6}(0.53), \omega_{1}+3 \omega_{2}+\omega_{6}(0.53)$ |

Table 6 (continued)

| Frequency Number | $\begin{gathered} \Pi_{\mathbf{d}}(15000), \\ \varepsilon=2.510^{-4} \\ \left(\mathrm{~cm}^{-1}\right) \\ \hline \end{gathered}$ | $\begin{gathered} \Pi_{\mathbf{d}}(12500), \\ \varepsilon=0.005 \\ \left(\mathrm{~cm}^{-1}\right) \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Reference [1] } \\ & \left(\mathrm{cm}^{-1}\right) \\ & \hline \end{aligned}$ | Assignment |
| :---: | :---: | :---: | :---: | :---: |
| 183 | 2841.869 | 2842.208 | 2841.940 | $4 \omega_{1}+\omega_{6}(0.46), 4 \omega_{2}+\omega_{6}(0.46)$ |
| 184 | 2848.525 | 2848.865 | 2848.604 | $2 \omega_{1}+3 \omega_{2}+\omega_{4}(0.53), 3 \omega_{1}+2 \omega_{2}+\omega_{5}(0.53)$ |
| 185 | 2848.525 | 2848.892 | 2848.604 | $3 \omega_{1}+2 \omega_{2}+\omega_{4}(0.53), 2 \omega_{1}+3 \omega_{2}+\omega_{5}(0.53)$ |
| 186 | 2850.580 | 2850.926 | 2850.664 | $5 \omega_{2}+\omega_{4}(0.40), 5 \omega_{1}+\omega_{5}(0.40)$ |
| 187 | 2850.580 | 2850.978 | 2850.664 | $4 \omega_{1}+\omega_{2}+\omega_{5}(0.58), \omega_{1}+4 \omega_{2}+\omega_{4}(0.58)$ |
| 188 | 2851.765 | 2852.077 | 2851.852 | $5 \omega_{1}+\omega_{5}(0.64), 5 \omega_{2}+\omega_{4}(0.64)$ |
| 189 | 2851.765 | 2852.185 | 2851.852 | $\omega_{1}+4 \omega_{2}+\omega_{4}(0.45), 4 \omega_{1}+\omega_{2}+\omega_{5}(0.45)$ |
| 190 | 2852.081 | 2852.422 | 2852.155 | $\omega_{1}+3 \omega_{2}+\omega_{6}(0.42), 3 \omega_{1}+\omega_{2}+\omega_{6}(0.42)$ |
| 191 | 2852.081 | 2852.441 | 2852.155 | $2 \omega_{1}+2 \omega_{2}+\omega_{6}(0.52), 3 \omega_{1}+2 \omega_{2}+\omega_{4}(0.45)$ |
| 192 | 2852.146 | 2852.495 | 2852.233 | $5 \omega_{1}+\omega_{5}(0.52), 5 \omega_{2}+\omega_{4}(0.52)$ |
| 193 | 2853.166 | 2853.516 | 2853.249 | $5 \omega_{2}+\omega_{5}(0.45), 5 \omega_{1}+\omega_{4}(0.45)$ |
| 194 | 2853.167 | 2853.564 | 2853.249 | $4 \omega_{1}+\omega_{2}+\omega_{4}(0.43), \omega_{1}+4 \omega_{2}+\omega_{5}(0.43)$ |
| 195 | 2853.526 | 2853.916 | 2853.611 | $5 \omega_{2}+\omega_{5}(0.41), 5 \omega_{1}+\omega_{4}(0.41)$ |
| 196 | 2860.740 | 2860.972 |  | $\omega_{1}+2 \omega_{2}+2 \omega_{3}(0.72), 3 \omega_{1}+2 \omega_{3}(0.42)$ |
| 197 | 2860.741 | 2861.017 |  | $2 \omega_{1}+\omega_{2}+2 \omega_{3}(0.72), 3 \omega_{2}+2 \omega_{3}(0.42)$ |
| 198 | 2861.403 | 2861.688 |  | $3 \omega_{1}+2 \omega_{3}(0.69), \omega_{1}+2 \omega_{2}+2 \omega_{3}(0.40)$ |
| 199 | 2861.403 | 2861.723 |  | $3 \omega_{2}+2 \omega_{3}(0.69), 2 \omega_{1}+\omega_{2}+2 \omega_{3}(0.40)$ |
| 200 | 2873.300 | 2873.602 | 2873.365 | $\omega_{6}+\omega_{8}(0.81), \omega_{2}+\omega_{5}+\omega_{8}(0.37)$ |
| 201 | 2873.300 | 2873.638 | 2873.365 | $\omega_{6}+\omega_{7}(0.81), \omega_{1}+\omega_{4}+\omega_{7}(0.37)$ |
| 202 | 2880.051 | 2880.354 |  | $\omega_{2}+\omega_{4}+\omega_{7}(0.66), \omega_{2}+\omega_{5}+\omega_{8}(0.52)$ |
| 203 | 2880.051 | 2880.374 |  | $\omega_{1}+\omega_{5}+\omega_{8}(0.66), \omega_{1}+\omega_{4}+\omega_{7}(0.52)$ |
| 204 | 2881.231 | 2881.559 |  | $\omega_{1}+\omega_{5}+\omega_{7}(0.73), \omega_{1}+\omega_{4}+\omega_{8}(0.40)$ |
| 205 | 2881.231 | 2881.574 |  | $\omega_{2}+\omega_{4}+\omega_{8}(0.73), \omega_{2}+\omega_{5}+\omega_{7}(0.40)$ |
| 206 | 2882.644 | 2882.945 |  | $\omega_{1}+\omega_{4}+\omega_{7}(0.48), \omega_{2}+\omega_{4}+\omega_{8}(0.48)$ |
| 207 | 2882.698 | 2883.024 |  | $\omega_{2}+\omega_{4}+\omega_{7}(0.48), \omega_{1}+\omega_{5}+\omega_{7}(0.48)$ |
| 208 | 2884.122 | 2884.416 |  | $\omega_{2}+\omega_{5}+\omega_{8}(0.53), \omega_{1}+\omega_{4}+\omega_{8}(0.51)$ |
| 209 | 2884.122 | 2884.443 |  | $\omega_{1}+\omega_{4}+\omega_{7}(0.53), \omega_{2}+\omega_{5}+\omega_{7}(0.51)$ |
| 210 | 2920.637 | 2920.840 |  | $3 \omega_{1}+5 \omega_{2}(0.63), 5 \omega_{1}+3 \omega_{2}(0.63)$ |
| 211 | 2920.638 | 2920.840 |  | $4 \omega_{1}+4 \omega_{2}(0.71), 2 \omega_{1}+6 \omega_{2}(0.45)$ |
| 212 | 2923.574 | 2923.798 |  | $2 \omega_{1}+6 \omega_{2}(0.62), 6 \omega_{1}+2 \omega_{2}(0.62)$ |
| 213 | 2923.574 | 2923.826 |  | $\omega_{1}+7 \omega_{2}(0.49), 7 \omega_{1}+\omega_{2}(0.49)$ |
| 214 | 2925.674 | 2925.948 |  | $\omega_{1}+7 \omega_{2}(0.61), 7 \omega_{1}+\omega_{2}(0.61)$ |
| 215 | 2925.674 | 2925.953 |  | $4 \omega_{1}+4 \omega_{2}(0.51), 8 \omega_{1}(0.43)$ |
| 216 | 2926.934 | 2927.198 |  | $8 \omega_{2}(0.60), 8 \omega_{1}(0.60)$ |
| 217 | 2926.934 | 2927.266 |  | $5 \omega_{1}+3 \omega_{2}(0.48), 3 \omega_{1}+5 \omega_{2}(0.48)$ |
| 218 | 2927.354 | 2927.651 |  | $8 \omega_{2}(0.47), 8 \omega_{1}(0.47)$ |
| 219 | 2934.730 | 2935.093 |  | $2 \omega_{1}+2 \omega_{2}+\omega_{7}(0.59), 3 \omega_{1}+\omega_{2}+\omega_{8}(0.48)$ |
| 220 | 2934.730 | 2935.105 |  | $2 \omega_{1}+2 \omega_{2}+\omega_{8}(0.59), 3 \omega_{1}+\omega_{2}+\omega_{7}(0.48)$ |
| 221 | 2935.184 | 2935.550 |  | $3 \omega_{1}+\omega_{2}+\omega_{8}(0.60), 2 \omega_{1}+2 \omega_{2}+\omega_{7}(0.56)$ |
| 222 | 2935.186 | 2935.560 |  | $\omega_{1}+3 \omega_{2}+\omega_{7}(0.59), 2 \omega_{1}+2 \omega_{2}+\omega_{8}(0.56)$ |
| 223 | 2936.542 | 2936.958 |  | $4 \omega_{2}+\omega_{7}(0.72), \omega_{1}+3 \omega_{2}+\omega_{8}(0.40)$ |
| 224 | 2936.542 | 2936.965 |  | $4 \omega_{1}+\omega_{8}(0.72), \omega_{1}+3 \omega_{2}+\omega_{7}(0.40)$ |
| 225 | 2936.702 | 2937.095 |  | $\omega_{1}+3 \omega_{2}+\omega_{8}(0.59), 4 \omega_{1}+\omega_{7}(0.53)$ |
| 226 | 2936.724 | 2937.125 |  | $3 \omega_{1}+\omega_{2}+\omega_{7}(0.59), 4 \omega_{2}+\omega_{8}(0.53)$ |
| 227 | 2937.644 | 2938.041 |  | $4 \omega_{1}+\omega_{7}(0.75), 2 \omega_{1}+2 \omega_{2}+\omega_{7}(0.40)$ |
| 228 | 2937.644 | 2938.064 |  | $4 \omega_{2}+\omega_{8}(0.75), 2 \omega_{1}+2 \omega_{2}+\omega_{8}(0.39)$ |
| 229 | 2947.207 | 2947.512 | 2947.052 | $\omega_{10}(0.58), 2 \omega_{8}(0.51)$ |
| 230 | 2950.918 | 2951.180 |  | $\omega_{3}+2 \omega_{5}(0.65), \omega_{3}+2 \omega_{4}(0.65)$ |


| Table $\sqrt{6}$ (continued) |  |  |  |
| :---: | :---: | :---: | :---: |
| Frequency <br> Number | $\Pi_{\mathbf{d}}(15000)$, <br> $\varepsilon=2.510^{-4}$ <br> $\left(\mathrm{~cm}^{-1}\right)$ | $\Pi_{\mathbf{d}}(12500)$, <br> $\varepsilon=0.005$ <br> $\left(\mathrm{~cm}^{-1}\right)$ | Reference [1] <br> $\left(\mathrm{cm}^{-1}\right)$ |
| 231 | 2959.285 | 2959.487 |  |
| Assignment |  |  |  |

## B. 2 Ethylene oxide molecule

Table 7: Eigenvalues, frequencies and assignments for the first 200 eigenvalues of obtained by an A-VCI computation in $\Pi_{\mathbf{d}}\left(13500 \mathrm{~cm}^{-1}\right)$ with a threshold of $\varepsilon=3 \times 10^{-3}$. The final basis set contains 5328639 elements

| Number | Eigenvalue | Frequency | Assignment |
| :---: | ---: | ---: | :---: |
| GS | 12461.474 | 0.000 | $\omega_{0}(0.98), \omega_{9}(0.13)$ |
| 1 | 13254.106 | 792.632 | $\omega_{1}(0.97), \omega_{1}+\omega_{9}(0.14)$ |
| 2 | 13283.381 | 821.907 | $\omega_{2}(0.96), \omega_{2}+\omega_{9}(0.16)$ |
| 3 | 13339.748 | 878.275 | $\omega_{3}(0.96), \omega_{3}+\omega_{9}(0.17)$ |
| 4 | 13478.613 | 1017.140 | $\omega_{4}(0.97), \omega_{4}+\omega_{9}(0.14)$ |
| 5 | 13582.643 | 1121.169 | $\omega_{6}(0.96), \omega_{6}+\omega_{9}(0.14)$ |
| 6 | 13585.096 | 1123.623 | $\omega_{5}(0.97), \omega_{5}+\omega_{9}(0.14)$ |
| 7 | 13607.198 | 1145.725 | $\omega_{7}(0.97), \omega_{7}+\omega_{9}(0.15)$ |
| 8 | 13609.432 | 1147.958 | $\omega_{8}(0.97), \omega_{8}+\omega_{9}(0.14)$ |
| 9 | 13732.256 | 1270.783 | $\omega_{9}(0.94), 2 \omega_{9}(0.22)$ |
| 10 | 13928.809 | 1467.336 | $\omega_{10}(0.97), \omega_{9}+\omega_{10}(0.13)$ |
| 11 | 13956.634 | 1495.160 | $\omega_{11}(0.94), 2 \omega_{1}(0.20)$ |
| 12 | 14048.548 | 1587.074 | $2 \omega_{1}(0.94), \omega_{11}(0.18)$ |
| 13 | 14072.382 | 1610.909 | $\omega_{1}+\omega_{2}(0.96), \omega_{1}+\omega_{2}+\omega_{9}(0.16)$ |
| 14 | 14102.380 | 1640.906 | $2 \omega_{2}(0.92), 2 \omega_{2}+\omega_{9}(0.18)$ |
| 15 | 14131.644 | 1670.171 | $\omega_{1}+\omega_{3}(0.96), \omega_{1}+\omega_{3}+\omega_{9}(0.18)$ |
| 16 | 14156.376 | 1694.903 | $\omega_{2}+\omega_{3}(0.94), \omega_{2}+\omega_{3}+\omega_{9}(0.19)$ |
| 17 | 14216.146 | 1754.673 | $2 \omega_{3}(0.94), 2 \omega_{3}+\omega_{9}(0.21)$ |
| 18 | 14266.714 | 1805.241 | $\omega_{1}+\omega_{4}(0.96), \omega_{1}+\omega_{4}+\omega_{9}(0.15)$ |
| 19 | 14293.552 | 1832.078 | $\omega_{2}+\omega_{4}(0.94), \omega_{2}+\omega_{4}+\omega_{9}(0.17)$ |
| 20 | 14350.346 | 1888.872 | $\omega_{3}+\omega_{4}(0.91), \omega_{1}+\omega_{5}(0.27)$ |
| 21 | 14368.049 | 1906.576 | $\omega_{1}+\omega_{5}(0.90), \omega_{3}+\omega_{4}(0.28)$ |
| 22 | 14369.968 | 1908.495 | $\omega_{1}+\omega_{6}(0.93), \omega_{2}+\omega_{4}(0.14)$ |
| 23 | 14388.498 | 1927.024 | $\omega_{1}+\omega_{8}(0.82), \omega_{2}+\omega_{6}(0.45)$ |
| 24 | 14398.737 | 1937.263 | $\omega_{1}+\omega_{7}(0.86), \omega_{2}+\omega_{5}(0.43)$ |
| 25 | 14400.360 | 1938.886 | $\omega_{2}+\omega_{6}(0.81), \omega_{1}+\omega_{8}(0.47)$ |
| 26 | 14404.607 | 1943.134 | $\omega_{2}+\omega_{5}(0.85), \omega_{1}+\omega_{7}(0.43)$ |

Table 7 (continued)

| Number | Eigenvalue | Frequency | Assignment |
| :---: | :---: | :---: | :---: |
| 27 | 14422.567 | 1961.093 | $\omega_{2}+\omega_{7}(0.94), \omega_{2}+\omega_{7}+\omega_{9}(0.17)$ |
| 28 | 14431.332 | 1969.858 | $\omega_{2}+\omega_{8}(0.96), \omega_{2}+\omega_{8}+\omega_{9}(0.17)$ |
| 29 | 14458.131 | 1996.657 | $\omega_{3}+\omega_{6}(0.95), \omega_{3}+\omega_{6}+\omega_{9}(0.18)$ |
| 30 | 14459.815 | 1998.342 | $\omega_{3}+\omega_{5}(0.96), \omega_{3}+\omega_{5}+\omega_{9}(0.18)$ |
| 31 | 14481.886 | 2020.412 | $\omega_{3}+\omega_{7}(0.96), \omega_{3}+\omega_{7}+\omega_{9}(0.19)$ |
| 32 | 14484.815 | 2023.341 | $\omega_{3}+\omega_{8}(0.96), \omega_{3}+\omega_{8}+\omega_{9}(0.18)$ |
| 33 | 14492.455 | 2030.981 | $2 \omega_{4}(0.96), 2 \omega_{4}+\omega_{9}(0.16)$ |
| 34 | 14521.233 | 2059.760 | $\omega_{1}+\omega_{9}(0.93), \omega_{1}+2 \omega_{9}(0.23)$ |
| 35 | 14547.330 | 2085.856 | $\omega_{2}+\omega_{9}(0.91), \omega_{2}+2 \omega_{9}(0.25)$ |
| 36 | 14588.244 | 2126.771 | $\omega_{4}+\omega_{6}(0.92), \omega_{4}+\omega_{6}+\omega_{9}(0.15)$ |
| 37 | 14594.652 | 2133.178 | $\omega_{4}+\omega_{5}(0.93), \omega_{4}+\omega_{5}+\omega_{9}(0.15)$ |
| 38 | 14601.685 | 2140.211 | $\omega_{3}+\omega_{9}(0.90), \omega_{3}+2 \omega_{9}(0.27)$ |
| 39 | 14612.482 | 2151.008 | $\omega_{4}+\omega_{7}(0.92), \omega_{5}+\omega_{6}(0.22)$ |
| 40 | 14625.703 | 2164.230 | $\omega_{4}+\omega_{8}(0.96), \omega_{4}+\omega_{8}+\omega_{9}(0.15)$ |
| 41 | 14693.480 | 2232.006 | $2 \omega_{6}(0.83), 2 \omega_{5}(0.41)$ |
| 42 | 14700.820 | 2239.346 | $\omega_{5}+\omega_{6}(0.91), \omega_{4}+\omega_{7}(0.24)$ |
| 43 | 14706.736 | 2245.263 | $\omega_{1}+\omega_{10}(0.83), \omega_{6}+\omega_{8}(0.41)$ |
| 44 | 14708.585 | 2247.111 | $2 \omega_{5}(0.86), 2 \omega_{6}(0.43)$ |
| 45 | 14724.212 | 2262.738 | $\omega_{5}+\omega_{8}(0.70), \omega_{1}+\omega_{11}(0.57)$ |
| 46 | 14727.200 | 2265.726 | $\omega_{5}+\omega_{7}(0.85), \omega_{4}+\omega_{9}(0.36)$ |
| 47 | 14727.210 | 2265.736 | $\omega_{6}+\omega_{7}(0.92), \omega_{5}+\omega_{8}(0.18)$ |
| 48 | 14734.658 | 2273.184 | $\omega_{6}+\omega_{8}(0.85), \omega_{1}+\omega_{10}(0.43)$ |
| 49 | 14742.750 | 2281.276 | $\omega_{1}+\omega_{11}(0.67), \omega_{5}+\omega_{8}(0.64)$ |
| 50 | 14749.045 | 2287.571 | $\omega_{2}+\omega_{10}(0.88), 2 \omega_{7}(0.35)$ |
| 51 | 14750.250 | 2288.776 | $\omega_{4}+\omega_{9}(0.84), \omega_{5}+\omega_{7}(0.40)$ |
| 52 | 14750.562 | 2289.089 | $2 \omega_{7}(0.83), \omega_{2}+\omega_{10}(0.36)$ |
| 53 | 14753.334 | 2291.860 | $\omega_{7}+\omega_{8}(0.95), \omega_{7}+\omega_{8}+\omega_{9}(0.16)$ |
| 54 | 14755.939 | 2294.466 | $2 \omega_{8}(0.91), 2 \omega_{7}(0.31)$ |
| 55 | 14771.517 | 2310.043 | $\omega_{2}+\omega_{11}(0.90), 3 \omega_{2}(0.19)$ |
| 56 | 14806.374 | 2344.901 | $\omega_{3}+\omega_{10}(0.96), \omega_{3}+\omega_{9}+\omega_{10}(0.17)$ |
| 57 | 14831.168 | 2369.695 | $\omega_{3}+\omega_{11}(0.90), 2 \omega_{1}+\omega_{3}(0.19)$ |
| 58 | 14839.316 | 2377.843 | $3 \omega_{1}(0.88), \omega_{1}+\omega_{11}(0.29)$ |
| 59 | 14849.458 | 2387.984 | $\omega_{6}+\omega_{9}(0.90), \omega_{6}+2 \omega_{9}(0.22)$ |
| 60 | 14851.107 | 2389.634 | $\omega_{5}+\omega_{9}(0.92), \omega_{5}+2 \omega_{9}(0.23)$ |
| 61 | 14862.045 | 2400.572 | $2 \omega_{1}+\omega_{2}(0.92), 2 \omega_{1}+\omega_{2}+\omega_{9}(0.16)$ |
| 62 | 14875.493 | 2414.019 | $\omega_{7}+\omega_{9}(0.92), \omega_{7}+2 \omega_{9}(0.24)$ |
| 63 | 14876.364 | 2414.891 | $\omega_{8}+\omega_{9}(0.93), \omega_{8}+2 \omega_{9}(0.23)$ |
| 64 | 14888.515 | 2427.042 | $\omega_{1}+2 \omega_{2}(0.90), \omega_{1}+2 \omega_{2}+\omega_{9}(0.18)$ |
| 65 | 14918.575 | 2457.102 | $3 \omega_{2}(0.85), \omega_{2}+\omega_{11}(0.24)$ |
| 66 | 14924.962 | 2463.488 | $2 \omega_{1}+\omega_{3}(0.92), 2 \omega_{1}+\omega_{3}+\omega_{9}(0.18)$ |
| 67 | 14941.781 | 2480.307 | $\omega_{4}+\omega_{10}(0.96), \omega_{4}+\omega_{9}+\omega_{10}(0.14)$ |
| 68 | 14944.438 | 2482.964 | $\omega_{1}+\omega_{2}+\omega_{3}(0.93), \omega_{1}+\omega_{2}+\omega_{3}+\omega_{9}(0.20)$ |
| 69 | 14967.053 | 2505.579 | $\omega_{4}+\omega_{11}(0.92), 2 \omega_{1}+\omega_{4}(0.21)$ |
| 70 | 14970.762 | 2509.289 | $2 \omega_{2}+\omega_{3}(0.86), 2 \omega_{2}+\omega_{3}+\omega_{9}(0.20)$ |

Table 7 (continued)

| Number | Eigenvalue | Frequency | Assignment |
| :---: | :---: | :---: | :---: |
| 71 | 14998.054 | 2536.580 | $2 \omega_{9}(0.88), 3 \omega_{9}(0.30)$ |
| 72 | 15007.201 | 2545.727 | $\omega_{1}+2 \omega_{3}(0.94), \omega_{1}+2 \omega_{3}+\omega_{9}(0.21)$ |
| 73 | 15027.926 | 2566.452 | $\omega_{2}+2 \omega_{3}(0.90), \omega_{2}+2 \omega_{3}+\omega_{9}(0.22)$ |
| 74 | 15043.649 | 2582.176 | $\omega_{6}+\omega_{10}(0.92), \omega_{5}+\omega_{11}(0.22)$ |
| 75 | 15047.520 | 2586.046 | $\omega_{5}+\omega_{10}(0.91), \omega_{6}+\omega_{11}(0.28)$ |
| 76 | 15053.109 | 2591.635 | $2 \omega_{1}+\omega_{4}(0.89), \omega_{4}+\omega_{11}(0.19)$ |
| 77 | 15059.793 | 2598.319 | $\omega_{7}+\omega_{10}(0.85), \omega_{8}+\omega_{11}(0.39)$ |
| 78 | 15061.847 | 2600.373 | $\omega_{8}+\omega_{10}(0.86), \omega_{7}+\omega_{11}(0.38)$ |
| 79 | 15071.796 | 2610.322 | $\omega_{6}+\omega_{11}(0.74), \omega_{1}+\omega_{2}+\omega_{4}(0.45)$ |
| 80 | 15075.991 | 2614.517 | $\omega_{1}+\omega_{2}+\omega_{4}(0.79), \omega_{6}+\omega_{11}(0.47)$ |
| 81 | 15076.066 | 2614.593 | $\omega_{5}+\omega_{11}(0.89), \omega_{6}+\omega_{10}(0.24)$ |
| 82 | 15090.633 | 2629.159 | $3 \omega_{3}(0.92), 3 \omega_{3}+\omega_{9}(0.24)$ |
| 83 | 15101.083 | 2639.610 | $\omega_{8}+\omega_{11}(0.82), \omega_{7}+\omega_{10}(0.42)$ |
| 84 | 15101.469 | 2639.995 | $\omega_{7}+\omega_{11}(0.84), \omega_{8}+\omega_{10}(0.41)$ |
| 85 | 15105.885 | 2644.412 | $2 \omega_{2}+\omega_{4}(0.87), 2 \omega_{2}+\omega_{4}+\omega_{9}(0.18)$ |
| 86 | 15134.791 | 2673.318 | $\omega_{1}+\omega_{3}+\omega_{4}(0.82), 2 \omega_{1}+\omega_{5}(0.42)$ |
| 87 | 15151.200 | 2689.726 | $2 \omega_{1}+\omega_{5}(0.76), \omega_{1}+\omega_{3}+\omega_{4}(0.46)$ |
| 88 | 15156.069 | 2694.595 | $2 \omega_{1}+\omega_{6}(0.86), \omega_{1}+\omega_{2}+\omega_{4}(0.22)$ |
| 89 | 15160.323 | 2698.849 | $\omega_{2}+\omega_{3}+\omega_{4}(0.88), \omega_{1}+\omega_{2}+\omega_{5}(0.22)$ |
| 90 | 15169.040 | 2707.567 | $2 \omega_{1}+\omega_{8}(0.76), \omega_{1}+\omega_{2}+\omega_{6}(0.43)$ |
| 91 | 15179.362 | 2717.889 | $\omega_{1}+\omega_{2}+\omega_{5}(0.84), 2 \omega_{1}+\omega_{7}(0.26)$ |
| 92 | 15186.772 | 2725.299 | $\omega_{1}+\omega_{2}+\omega_{6}(0.77), 2 \omega_{1}+\omega_{8}(0.45)$ |
| 93 | 15193.776 | 2732.302 | $2 \omega_{1}+\omega_{7}(0.89), \omega_{1}+\omega_{2}+\omega_{5}(0.28)$ |
| 94 | 15197.648 | 2736.175 | $\omega_{9}+\omega_{10}(0.93), 2 \omega_{9}+\omega_{10}(0.22)$ |
| 95 | 15202.616 | 2741.143 | $\omega_{1}+\omega_{2}+\omega_{8}(0.66), 2 \omega_{2}+\omega_{6}(0.58)$ |
| 96 | 15210.689 | 2749.215 | $\omega_{1}+\omega_{2}+\omega_{7}(0.87), 2 \omega_{2}+\omega_{5}(0.30)$ |
| 97 | 15216.441 | 2754.967 | $\omega_{1}+\omega_{2}+\omega_{8}(0.64), 2 \omega_{2}+\omega_{6}(0.62)$ |
| 98 | 15219.835 | 2758.361 | $2 \omega_{2}+\omega_{5}(0.85), \omega_{1}+\omega_{2}+\omega_{7}(0.33)$ |
| 99 | 15220.620 | 2759.147 | $2 \omega_{3}+\omega_{4}(0.88), \omega_{1}+\omega_{3}+\omega_{5}(0.31)$ |
| 100 | 15223.444 | 2761.970 | $\omega_{9}+\omega_{11}(0.88), 2 \omega_{9}+\omega_{11}(0.22)$ |
| 101 | 15234.937 | 2773.464 | $2 \omega_{2}+\omega_{7}(0.88), 2 \omega_{2}+\omega_{7}+\omega_{9}(0.19)$ |
| 102 | 15242.891 | 2781.418 | $\omega_{1}+\omega_{3}+\omega_{5}(0.87), 2 \omega_{3}+\omega_{4}(0.31)$ |
| 103 | 15244.243 | 2782.769 | $\omega_{1}+\omega_{3}+\omega_{6}(0.91), \omega_{1}+\omega_{3}+\omega_{6}+\omega_{9}(0.18)$ |
| 104 | 15249.888 | 2788.414 | $2 \omega_{2}+\omega_{8}(0.91), 2 \omega_{2}+\omega_{8}+\omega_{9}(0.19)$ |
| 105 | 15262.167 | 2800.693 | $\omega_{1}+\omega_{3}+\omega_{8}(0.73), \omega_{2}+\omega_{3}+\omega_{6}(0.54)$ |
| 106 | 15270.730 | 2809.256 | $\omega_{2}+\omega_{3}+\omega_{5}(0.72), \omega_{1}+\omega_{3}+\omega_{7}(0.59)$ |
| 107 | 15272.124 | 2810.650 | $\omega_{2}+\omega_{3}+\omega_{6}(0.71), \omega_{1}+\omega_{3}+\omega_{8}(0.57)$ |
| 108 | 15273.665 | 2812.191 | $\omega_{1}+2 \omega_{4}(0.92), \omega_{1}+2 \omega_{4}+\omega_{9}(0.16)$ |
| 109 | 15275.704 | 2814.230 | $\omega_{1}+\omega_{3}+\omega_{7}(0.74), \omega_{2}+\omega_{3}+\omega_{5}(0.58)$ |
| 110 | 15292.354 | 2830.880 | $\omega_{2}+\omega_{3}+\omega_{7}(0.90), \omega_{2}+\omega_{3}+\omega_{7}+\omega_{9}(0.20)$ |
| 111 | 15299.704 | 2838.230 | $\omega_{2}+2 \omega_{4}(0.91), \omega_{1}+\omega_{4}+\omega_{6}(0.18)$ |
| 112 | 15301.384 | 2839.910 | $\omega_{2}+\omega_{3}+\omega_{8}(0.93), \omega_{2}+\omega_{3}+\omega_{8}+\omega_{9}(0.20)$ |
| 113 | 15311.327 | 2849.854 | $2 \omega_{1}+\omega_{9}(0.87), 2 \omega_{1}+2 \omega_{9}(0.22)$ |
| 114 | 15331.701 | 2870.227 | $2 \omega_{3}+\omega_{6}(0.92), 2 \omega_{3}+\omega_{6}+\omega_{9}(0.21)$ |

Table 7 (continued)

| Number | Eigenvalue | Frequency | Assignment |
| :---: | :---: | :---: | :---: |
| 115 | 15332.157 | 2870.683 | $\omega_{1}+\omega_{2}+\omega_{9}(0.89), \omega_{1}+\omega_{2}+2 \omega_{9}(0.26)$ |
| 116 | 15332.595 | 2871.121 | $2 \omega_{3}+\omega_{5}(0.93), 2 \omega_{3}+\omega_{5}+\omega_{9}(0.21)$ |
| 117 | 15354.656 | 2893.182 | $2 \omega_{3}+\omega_{7}(0.93), 2 \omega_{3}+\omega_{7}+\omega_{9}(0.22)$ |
| 118 | 15357.436 | 2895.962 | $\omega_{3}+2 \omega_{4}(0.84), \omega_{1}+\omega_{4}+\omega_{5}(0.37)$ |
| 119 | 15358.166 | 2896.692 | $2 \omega_{3}+\omega_{8}(0.93), 2 \omega_{3}+\omega_{8}+\omega_{9}(0.22)$ |
| 120 | 15360.828 | 2899.355 | $2 \omega_{2}+\omega_{9}(0.83), 2 \omega_{2}+2 \omega_{9}(0.27)$ |
| 121 | 15367.786 | 2906.312 | $\omega_{12}(0.62), \omega_{10}+\omega_{11}(0.49)$ |
| 122 | 15371.685 | 2910.211 | $\omega_{1}+\omega_{4}+\omega_{5}(0.64), \omega_{3}+2 \omega_{4}(0.35)$ |
| 123 | 15372.337 | 2910.863 | $\omega_{1}+\omega_{4}+\omega_{6}(0.72), \omega_{10}+\omega_{11}(0.35)$ |
| 124 | 15378.145 | 2916.671 | $2 \omega_{10}(0.64), \omega_{13}(0.47)$ |
| 125 | 15389.839 | 2928.365 | $\omega_{1}+\omega_{3}+\omega_{9}(0.88), \omega_{1}+\omega_{3}+2 \omega_{9}(0.27)$ |
| 126 | 15392.130 | 2930.656 | $\omega_{2}+\omega_{4}+\omega_{6}(0.69), \omega_{1}+\omega_{4}+\omega_{8}(0.50)$ |
| 127 | 15397.446 | 2935.972 | $\omega_{1}+\omega_{4}+\omega_{7}(0.74), \omega_{2}+\omega_{4}+\omega_{5}(0.45)$ |
| 128 | 15404.363 | 2942.889 | $\omega_{1}+\omega_{4}+\omega_{8}(0.76), \omega_{2}+\omega_{4}+\omega_{6}(0.51)$ |
| 129 | 15407.391 | 2945.917 | $\omega_{2}+\omega_{4}+\omega_{5}(0.76), \omega_{1}+\omega_{4}+\omega_{7}(0.51)$ |
| 130 | 15412.967 | 2951.494 | $\omega_{2}+\omega_{3}+\omega_{9}(0.86), \omega_{2}+\omega_{3}+2 \omega_{9}(0.29)$ |
| 131 | 15413.868 | 2952.394 | $2 \omega_{10}(0.61), \omega_{13}(0.51)$ |
| 132 | 15424.388 | 2962.915 | $\omega_{2}+\omega_{4}+\omega_{7}(0.79), \omega_{13}(0.25)$ |
| 133 | 15440.016 | 2978.542 | $\omega_{2}+\omega_{4}+\omega_{8}(0.92), \omega_{2}+\omega_{4}+\omega_{8}+\omega_{9}(0.18)$ |
| 134 | 15450.720 | 2989.247 | $\omega_{10}+\omega_{11}(0.63), \omega_{12}(0.52)$ |
| 135 | 15455.329 | 2993.856 | $2 \omega_{11}(0.71), 2 \omega_{1}+\omega_{11}(0.37)$ |
| 136 | 15457.443 | 2995.970 | $\omega_{3}+\omega_{4}+\omega_{6}(0.87), \omega_{1}+\omega_{5}+\omega_{6}(0.19)$ |
| 137 | 15459.743 | 2998.270 | $\omega_{3}+\omega_{4}+\omega_{5}(0.64), \omega_{1}+2 \omega_{5}(0.50)$ |
| 138 | 15468.361 | 3006.887 | $\omega_{3}+\omega_{4}+\omega_{5}(0.63), \omega_{1}+2 \omega_{6}(0.49)$ |
| 139 | 15469.680 | 3008.206 | $2 \omega_{3}+\omega_{9}(0.85), 2 \omega_{3}+2 \omega_{9}(0.31)$ |
| 140 | 15475.932 | 3014.458 | $\omega_{1}+\omega_{5}+\omega_{6}(0.82), \omega_{1}+\omega_{4}+\omega_{7}(0.23)$ |
| 141 | 15482.167 | 3020.694 | $\omega_{3}+\omega_{4}+\omega_{7}(0.88), \omega_{3}+\omega_{5}+\omega_{6}(0.20)$ |
| 142 | 15486.806 | 3025.332 | $\omega_{14}(0.85), \omega_{13}+\omega_{14}(0.20)$ |
| 143 | 15487.621 | 3026.147 | $\omega_{1}+2 \omega_{5}(0.64), \omega_{1}+2 \omega_{6}(0.62)$ |
| 144 | 15491.762 | 3030.289 | $\omega_{1}+\omega_{6}+\omega_{8}(0.54), 2 \omega_{1}+\omega_{10}(0.53)$ |
| 145 | 15492.388 | 3030.915 | $\omega_{3}+\omega_{4}+\omega_{8}(0.72), \omega_{1}+\omega_{5}+\omega_{8}(0.53)$ |
| 146 | 15498.388 | 3036.914 | $\omega_{15}(0.80), \omega_{1}+2 \omega_{8}(0.26)$ |
| 147 | 15499.312 | 3037.838 | $\omega_{2}+2 \omega_{6}(0.72), 2 \omega_{1}+\omega_{10}(0.38)$ |
| 148 | 15499.969 | 3038.495 | $\omega_{3}+\omega_{4}+\omega_{8}(0.59), \omega_{1}+\omega_{5}+\omega_{8}(0.58)$ |
| 149 | 15500.793 | 3039.319 | $3 \omega_{4}(0.93), 3 \omega_{4}+\omega_{9}(0.16)$ |
| 150 | 15507.666 | 3046.192 | $\omega_{1}+\omega_{5}+\omega_{7}(0.80), \omega_{1}+\omega_{4}+\omega_{9}(0.28)$ |
| 151 | 15509.516 | 3048.042 | $\omega_{2}+\omega_{5}+\omega_{6}(0.72), \omega_{1}+\omega_{6}+\omega_{7}(0.35)$ |
| 152 | 15512.803 | 3051.330 | $\omega_{1}+\omega_{6}+\omega_{7}(0.83), \omega_{2}+\omega_{5}+\omega_{6}(0.24)$ |
| 153 | 15517.932 | 3056.458 | $\omega_{1}+\omega_{6}+\omega_{8}(0.62), 2 \omega_{1}+\omega_{10}(0.51)$ |
| 154 | 15520.625 | 3059.151 | $2 \omega_{1}+\omega_{11}(0.54), \omega_{1}+\omega_{5}+\omega_{8}(0.41)$ |
| 155 | 15522.167 | 3060.693 | $\omega_{1}+\omega_{2}+\omega_{10}(0.68), \omega_{2}+\omega_{6}+\omega_{8}(0.44)$ |
| 156 | 15522.842 | 3061.369 | $\omega_{2}+2 \omega_{5}(0.85), \omega_{2}+2 \omega_{6}(0.33)$ |
| 157 | 15526.483 | 3065.009 | $\omega_{1}+\omega_{7}+\omega_{8}(0.66), \omega_{2}+\omega_{6}+\omega_{7}(0.58)$ |
| 158 | 15526.976 | 3065.503 | $\omega_{1}+2 \omega_{8}(0.75), \omega_{1}+\omega_{2}+\omega_{10}(0.40)$ |

Table 7 (continued)

| Number | Eigenvalue | Frequency | Assignment |
| :---: | :---: | :---: | :---: |
| 159 | 15533.150 | 3071.676 | $\omega_{1}+\omega_{4}+\omega_{9}(0.83), \omega_{1}+\omega_{5}+\omega_{7}(0.34)$ |
| 160 | 15537.494 | 3076.020 | $\omega_{1}+\omega_{2}+\omega_{11}(0.57), \omega_{2}+\omega_{5}+\omega_{8}(0.49)$ |
| 161 | 15538.773 | 3077.299 | $\omega_{2}+\omega_{5}+\omega_{7}(0.69), \omega_{1}+2 \omega_{7}(0.40)$ |
| 162 | 15542.509 | 3081.035 | $\omega_{1}+\omega_{7}+\omega_{8}(0.60), \omega_{2}+\omega_{6}+\omega_{7}(0.51)$ |
| 163 | 15543.705 | 3082.232 | $\omega_{1}+2 \omega_{7}(0.85), \omega_{2}+\omega_{5}+\omega_{7}(0.28)$ |
| 164 | 15551.329 | 3089.855 | $\omega_{2}+\omega_{6}+\omega_{8}(0.79), \omega_{1}+\omega_{2}+\omega_{10}(0.41)$ |
| 165 | 15557.571 | 3096.098 | $\omega_{2}+\omega_{5}+\omega_{8}(0.75), \omega_{1}+\omega_{2}+\omega_{11}(0.52)$ |
| 166 | 15559.373 | 3097.899 | $\omega_{2}+2 \omega_{7}(0.90), \omega_{2}+2 \omega_{7}+\omega_{9}(0.18)$ |
| 167 | 15559.907 | 3098.433 | $\omega_{2}+\omega_{4}+\omega_{9}(0.76), \omega_{2}+\omega_{5}+\omega_{7}(0.46)$ |
| 168 | 15565.653 | 3104.179 | $\omega_{3}+2 \omega_{6}(0.79), \omega_{3}+2 \omega_{5}(0.44)$ |
| 169 | 15567.112 | 3105.639 | $2 \omega_{2}+\omega_{10}(0.90), 2 \omega_{2}+\omega_{9}+\omega_{10}(0.17)$ |
| 170 | 15568.263 | 3106.789 | $\omega_{2}+\omega_{7}+\omega_{8}(0.92), \omega_{2}+\omega_{7}+\omega_{8}+\omega_{9}(0.18)$ |
| 171 | 15572.098 | 3110.624 | $\omega_{3}+\omega_{5}+\omega_{6}(0.88), \omega_{3}+\omega_{4}+\omega_{7}(0.23)$ |
| 172 | 15577.098 | 3115.624 | $\omega_{2}+2 \omega_{8}(0.93), \omega_{2}+2 \omega_{8}+\omega_{9}(0.18)$ |
| 173 | 15579.734 | 3118.260 | $\omega_{3}+2 \omega_{5}(0.83), \omega_{3}+2 \omega_{6}(0.45)$ |
| 174 | 15582.380 | 3120.906 | $\omega_{1}+\omega_{3}+\omega_{10}(0.77), \omega_{3}+\omega_{6}+\omega_{8}(0.43)$ |
| 175 | 15585.225 | 3123.751 | $2 \omega_{2}+\omega_{11}(0.82), 4 \omega_{2}(0.24)$ |
| 176 | 15588.303 | 3126.830 | $2 \omega_{4}+\omega_{6}(0.87), \omega_{1}+\omega_{4}+\omega_{5}(0.18)$ |
| 177 | 15596.549 | 3135.076 | $\omega_{3}+\omega_{5}+\omega_{7}(0.76), \omega_{3}+\omega_{4}+\omega_{9}(0.43)$ |
| 178 | 15597.261 | 3135.787 | $\omega_{3}+\omega_{5}+\omega_{8}(0.71), \omega_{1}+\omega_{3}+\omega_{11}(0.51)$ |
| 179 | 15598.807 | 3137.333 | $2 \omega_{4}+\omega_{5}(0.87), \omega_{4}+\omega_{6}+\omega_{7}(0.17)$ |
| 180 | 15599.090 | 3137.616 | $\omega_{3}+\omega_{6}+\omega_{7}(0.89), \omega_{3}+\omega_{5}+\omega_{8}(0.21)$ |
| 181 | 15607.750 | 3146.277 | $\omega_{3}+\omega_{6}+\omega_{8}(0.79), \omega_{1}+\omega_{3}+\omega_{10}(0.49)$ |
| 182 | 15613.910 | 3152.436 | $2 \omega_{4}+\omega_{7}(0.85), \omega_{4}+\omega_{5}+\omega_{6}(0.25)$ |
| 183 | 15614.965 | 3153.491 | $\omega_{3}+\omega_{4}+\omega_{9}(0.69), \omega_{3}+\omega_{5}+\omega_{7}(0.50)$ |
| 184 | 15615.813 | 3154.339 | $\omega_{1}+\omega_{3}+\omega_{11}(0.68), \omega_{3}+\omega_{5}+\omega_{8}(0.57)$ |
| 185 | 15621.233 | 3159.759 | $\omega_{3}+2 \omega_{7}(0.70), \omega_{2}+\omega_{3}+\omega_{10}(0.58)$ |
| 186 | 15621.722 | 3160.249 | $\omega_{2}+\omega_{3}+\omega_{10}(0.68), \omega_{3}+2 \omega_{7}(0.57)$ |
| 187 | 15622.426 | 3160.952 | $4 \omega_{1}(0.75), 2 \omega_{1}+\omega_{11}(0.38)$ |
| 188 | 15624.986 | 3163.512 | $\omega_{3}+\omega_{7}+\omega_{8}(0.93), \omega_{3}+\omega_{7}+\omega_{8}+\omega_{9}(0.20)$ |
| 189 | 15628.101 | 3166.628 | $\omega_{3}+2 \omega_{8}(0.91), \omega_{3}+2 \omega_{7}(0.23)$ |
| 190 | 15629.515 | 3168.042 | $\omega_{1}+\omega_{5}+\omega_{9}(0.84), \omega_{3}+\omega_{4}+\omega_{9}(0.24)$ |
| 191 | 15633.060 | 3171.587 | $\omega_{1}+\omega_{6}+\omega_{9}(0.86), \omega_{1}+\omega_{6}+2 \omega_{9}(0.22)$ |
| 192 | 15637.449 | 3175.976 | $2 \omega_{4}+\omega_{8}(0.94), 2 \omega_{4}+\omega_{8}+\omega_{9}(0.17)$ |
| 193 | 15641.670 | 3180.196 | $\omega_{2}+\omega_{3}+\omega_{11}(0.85), \omega_{2}+\omega_{3}+\omega_{9}+\omega_{11}(0.18)$ |
| 194 | 15646.530 | 3185.057 | $3 \omega_{1}+\omega_{2}(0.84), \omega_{1}+\omega_{2}+\omega_{11}(0.25)$ |
| 195 | 15651.151 | 3189.677 | $\omega_{1}+\omega_{8}+\omega_{9}(0.71), \omega_{2}+\omega_{6}+\omega_{9}(0.48)$ |
| 196 | 15660.065 | 3198.592 | $\omega_{2}+\omega_{5}+\omega_{9}(0.74), \omega_{1}+\omega_{7}+\omega_{9}(0.48)$ |
| 197 | 15660.707 | 3199.233 | $\omega_{2}+\omega_{6}+\omega_{9}(0.69), \omega_{1}+\omega_{8}+\omega_{9}(0.53)$ |
| 198 | 15665.851 | 3204.377 | $\omega_{1}+\omega_{7}+\omega_{9}(0.75), \omega_{2}+\omega_{5}+\omega_{9}(0.48)$ |
| 199 | 15674.352 | 3212.878 | $2 \omega_{1}+2 \omega_{2}(0.83), 2 \omega_{1}+\omega_{11}(0.20)$ |

## References

[1] G. Avila and T. Carrington Jr. Using nonproduct quadrature grids to solve the vibrational schrödinger equation in 12d. J. Chem. Phys., 134(5):054126, 2011.
[2] Gustavo Avila and Tucker Carrington. Solving the vibrational schrödinger equation using bases pruned to include strongly coupled functions and compatible quadratures. The Journal of chemical physics, 137(17):174108, November 2012.
[3] Gustavo Avila and Tucker Carrington. Pruned bases that are compatible with iterative eigensolvers and general potentials: New results for CH3CN. Chemical Physics, pages 1-16, 2016.
[4] Gustavo Avila and Tucker Carrington Jr. Solving the schrödinger equation using smolyak interpolants. The Journal of Chemical Physics, 139(13):134114, 2013.
[5] I Baraille, C Larrieu, A Dargelos, and M Chaillet. Calculation of non-fundamental \{IR\} frequencies and intensities at the anharmonic level. i. the overtone, combination and difference bands of diazomethane, \{H2CN2\}. Chemical Physics, 273(2-3):91-101, 2001.
[6] F.L. Bauer and C.T. Fike. Norms and exclusion theorems. Numer. Math, 2(1):137-141, 1960.
[7] D. Begue, P. Carbonniere, and C. Pouchan. Calculations of vibrational energy levels by using a hybrid ab initio and dft quartic force field: Application to acetonitrile. J. Phys. Chem. A, 109(20):4611-4616, 2005.
[8] D. Bégué, N. Gohaud, C. Pouchan, P. Cassam-Chenai, and J. Liévin. A comparison of two methods for selecting vibrational configuration interaction spaces on a heptatomic system: Ethylene oxide. J. Chem. Phys., 127(16):164115, 2007.
[9] J.M. Bowman, T. Carrington, and H.-D. Meyer. Variational quantum approaches for computing vibrational energies of polyatomic molecules. Mol. Phys., 106(16-18):2145-2182, 2008.
[10] J.M. Bowman, K. Christoffel, and F. Tobin. Application of scf-si theory to vibrational motion in polyatomic molecules. J. Phys. Chem., 83(8):905-920, 1979.
[11] Matthew J. Bramley and Tucker Carrington Jr. A general discrete variable method to calculate vibrational energy levels of three and four atom molecules. The Journal of Chemical Physics, 99(11):8519-8541, 1993.
[12] Matthew J. Bramley, John W. Tromp, Tucker Carrington Jr., and Gregory C. Corey. Efficient calculation of highly excited vibrational energy levels of floppy molecules: The band origins of $\mathrm{h}+3$ up to $35000 \mathrm{~cm}^{-1}$. The Journal of Chemical Physics, 100(9):6175-6194, 1994.
[13] James Brown and Tucker Carrington. Using an expanding nondirect product harmonic basis with an iterative eigensolver to compute vibrational energy levels with as many as seven atoms. The Journal of Chemical Physics, 145(14):144104, 2016.
[14] James Brown and Tucker Carrington Jr. Using an iterative eigensolver to compute vibrational energies with phase-spaced localized basis functions. The Journal of Chemical Physics, 143(4):044104, 2015.
[15] S. Carter and N.C. Handy. The variational method for the calculation of ro-vibrational energy levels. Computer Physics Reports, 5(3):117-171, 1986.
[16] Stuart Carter, Joel M. Bowman, and Amit R. Sharma. The multimode approach to ro-vibrational spectroscopy. AIP Conference Proceedings, 1504(1):465-466, 2012.
[17] Stuart Carter, Susan J. Culik, and Joel M. Bowman. Vibrational self-consistent field method for manymode systems: A new approach and application to the vibrations of co adsorbed on cu(100). The Journal of Chemical Physics, 107(24):10458-10469, 1997.
[18] P. Cassam-Chenaï and J. Liévin. Alternative perturbation method for the molecular vibration-rotation problem. International Journal of Quantum Chemistry, 93(3):245-264, 2003.
[19] Johnny Chang and Robert E. Wyatt. Influence of rotational states on molecular multiphoton excitation. The Journal of Chemical Physics, 85(4):1840-1847, 1986.
[20] Jason Cooper and Tucker Carrington. Computing vibrational energy levels by using mappings to fully exploit the structure of a pruned product basis. The Journal of Chemical Physics, 130(21):214110, 2009.
[21] Richard Dawes and Tucker Carrington Jr. How to choose one-dimensional basis functions so that a very efficient multidimensional basis may be extracted from a direct product of the one-dimensional functions: Energy levels of coupled systems with as many as 16 coordinates. The Journal of Chemical Physics, 122(13):134101, 2005.
[22] Richard Dawes and Tucker Carrington Jr. Using simultaneous diagonalization and trace minimization to make an efficient and simple multidimensional basis for solving the vibrational schrödinger equation. The Journal of Chemical Physics, 124(5):054102, 2006.
[23] Romain Garnier, Marc Odunlami, Vincent Le Bris, Didier Bégué, Isabelle Baraille, and Olivier Coulaud. Adaptive vibrational configuration interaction (a-vci): A posteriori error estimation to efficiently compute anharmonic ir spectra. J. Chem. Phys., 144(20):204123, 2016.
[24] L. Halonen, D. W. Noid, and M.S. Child. Local mode predictions for excited stretching vibrational states of hccd and h12c13ch. The Journal of Chemical Physics, 78(5):2803-2804, 1983.
[25] Thomas Halverson and Bill Poirier. Large scale exact quantum dynamics calculations: Ten thousand quantum states of acetonitrile. Chemical Physics Letters, 624:37-42, 2015.
[26] Thomas Halverson and Bill Poirier. One million quantum states of benzene. The Journal of Physical Chemistry A, 119(50):12417-12433, 2015. PMID: 26418314.
[27] Bernd Hartke. Propagation with distributed gaussians as a sparse, adaptive basis for higher-dimensional quantum dynamics. Phys. Chem. Chem. Phys., 8:3627-3635, 2006.
[28] Roger A. Horn and Charles R. Johnson. Topics in matrix analysis. Cambridge University Press, Cambridge, New York, Melbourne, 1994.
[29] Michael E. Kellman and Vivian Tyng. The dance of molecules: New dynamical perspectives on highly excited molecular vibrations. Accounts of Chemical Research, 40(4):243-250, 2007. PMID: 17256881.
[30] A. Leclerc and T. Carrington. Calculating vibrational spectra with sum of product basis functions without storing full-dimensional vectors or matrices. J. Chem. Phys., 140(17):174111, 2014.
[31] R B Lehoucq, D C Sorensen, and C Yang. ARPACK Users' Guide : Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods . Communication, 6:147, 1998.
[32] John C Light and Tucker Carrington Jr. Discrete-variable representations and their utilization. Advances in Chemical Physics, 114:263-310, 2000.
[33] R. C. Lord and B. Nolin. Vibrational spectra of ethylene oxide and ethylene oxide- $\mathrm{d}_{4}$. The Journal of Chemical Physics, 24:656-658, apr 1956.
[34] Shai Machnes, Elie Assémat, Henrik R. Larsson, and David J. Tannor. Quantum dynamics in phase space using projected von neumann bases. The Journal of Physical Chemistry A, 120(19):3296-3308, 2016. PMID: 26977715.
[35] U. Manthe and H. Köppel. New method for calculating wave packet dynamics: Strongly coupled surfaces and the adiabatic basis. The Journal of Chemical Physics, 93(1):345-356, 1990.
[36] Michael Neff and Guntram Rauhut. Toward large scale vibrational configuration interaction calculations. The Journal of Chemical Physics, 131(12), 2009.
[37] Bill Poirier. Using wavelets to extend quantum dynamics calculations to ten or more degrees of freedom. Journal of Theoretical and Computational Chemistry, 02(01):65-72, 2003.
[38] Claude Pouchan and Khalil Zaki. Ab initio configuration interaction determination of the overtone vibrations of methyleneimine in the region 2800-3200 cm-1. The Journal of Chemical Physics, 107(2):342-345, 1997.
[39] Cristina Puzzarini, Malgorzata Biczysko, Julien Bloino, and Vincenzo Barone. Accurate Spectroscopic Characterization of Oxirane: a Valuable Route To Its Identification in Titan'S Atmosphere and the Assignment of Unidentified Infrared Bands. The Astrophysical journal, 785(2), 2014.
[40] Martin Quack. Spectra and dynamics of coupled vibrations in polyatomic molecules. Annual Review of Physical Chemistry, 41(1):839-874, 1990.
[41] Guntram Rauhut. Configuration selection as a route towards efficient vibrational configuration interaction calculations. The Journal of Chemical Physics, 127(18), 2007.
[42] Hubert Romanowski, Joel M. Bowman, and Lawrence B. Harding. Vibrational energy levels of formaldehyde. The Journal of Chemical Physics, 82(9):4155-4165, 1985.
[43] Yohann Scribano and David M. Benoit. Iterative active-space selection for vibrational configuration interaction calculations using a reduced-coupling \{VSCF\} basis. Chemical Physics Letters, 458(4-6):384-387, 2008.
[44] Asaf Shimshovitz, Zlatko Bačič, and David J. Tannor. The von neumann basis in non-cartesian coordinates: Application to floppy triatomic molecules. The Journal of Chemical Physics, 141(23), 2014.
[45] J. Sielk, H. F. von Horsten, F. Kruger, R. Schneider, and B. Hartke. Quantum-mechanical wavepacket propagation in a sparse, adaptive basis of interpolating gaussians with collocation. Phys. Chem. Chem. Phys., 11:463-475, 2009.
[46] Phillip S. Thomas and T. Carrington Jr. Using nested contractions and a hierarchical tensor format to compute vibrational spectra of molecules with seven atoms. J. Phys. Chem. A, 119(52):13074-13091, 2015.
[47] Alexandra Viel and Claude Leforestier. Six-dimensional calculation of the vibrational spectrum of the hfco molecule. The Journal of Chemical Physics, 112(3):1212-1220, 2000.
[48] Xiao-Gang Wang and Tucker Carrington. The utility of constraining basis function indices when using the lanczos algorithm to calculate vibrational energy levels. The Journal of Physical Chemistry A, 105(12):25752581, 2001.
[49] R. M. Wilcox. Matrix Elements of General Potentials in the HarmonicOscillator Representation. The Journal of Chemical Physics, 45(1966):3312, 1966.
[50] Hua-Gen Yu. An exact variational method to calculate vibrational energies of five atom molecules beyond the normal mode approach. The Journal of Chemical Physics, 117(5):2030-2037, 2002.

RESEARCH CENTRE BORDEAUX - SUD-OUEST

351, Cours de la Libération Bâtiment A 29 33405 Talence Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105-78153 Le Chesnay Cedex
inria.fr


[^0]:    * IPREM, Université de Pau et des Pays de l'Adour, 2, avenue du Président Pierre Angot, F-64053 Pau Cedex 9
    $\dagger$ Inria Bordeaux Sud-Ouest, 200, avenue de la Vieille Tour, F-33405 Talence Cedex

