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Abstract The notion of tangential cover, based on max-

imal segments, is a well-known tool to study the geo-

metrical characteristics of a discrete curve. However, it

is not robust to noise, while extracted contours from

digital images typically contain noise and this makes

the geometric analysis tasks on such contours difficult.

To tackle this issue, we investigate in this paper a dis-

crete structure, named Adaptive Tangential Cover (ATC),

which is based on the notion of tangential cover and on

a local noise estimator. More specifically, the ATC is

composed of maximal segments with different widths

deduced from the local noise values estimated at each

point of the contour. Furthermore, a parameter-free al-

gorithm is also presented to compute ATC. This study

leads to the proposal of several applications of ATC on

noisy digital contours: dominant point detection, con-
tour length estimator, tangent/normal estimator, de-

tection of convex and concave parts. An extension of

ATC to 3D curves is also proposed in this paper. The

experimental results demonstrate the efficiency of this

new notion.

Keywords maximal blurred segment · noise level ·
geometrical parameters · dominant points · tangent ·
normal vectors · length contour estimator · contour

concave/convexe parts

1 Introduction

In shape recognition or shape matching in image pro-

cessing, the geometric analysis of digital shape contour
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is a fundamental task. A common approach is to de-

scribe the discrete curves of contours by their lists of

points but geometrical information like curvature or

tangent does not appear in this description. For more

than ten years, in discrete geometry field, the notion

of maximal segment has been widely used to describe

and to analyze the geometric properties of the contour

of digital shapes. Based on the definition of discrete

line [1], the sequence of all maximal discrete straight

segments (maximal DSS) along a digital contour C is

called the tangential cover and can be computed in

O(N) time complexity [2] where N is the number of

points on the contour. In [3], F. Feschet studies the

structure of discrete curves with tangential cover and

shows that the tangential cover has the property of

being unique and canonical when computed on closed

curves. Tangential cover and maximal segments induce

numerous discrete geometric estimators (see [4] for a

state of the art): length, tangent, curvature estimators,

detection of convex or concave parts of a curve, mini-

mum length polygon of a digital contour, detection of

the noise level possibly damaging the shape [5,6].

However, as the tangential cover use the rigid arith-

metical definition of DSS [1], it is not adapted to noisy

digital contours. To deal with this issue, several meth-

ods based on non-DSS –often with parameters– were

presented as in [7,8]. There are likewise other approaches

that have been proposed to obtain a better model of

tangential cover, adapted to noise. One of them con-

sists in using the notion of maximal blurred segments

(MBS) which is an extension of maximal segments with

a width parameter [9,12]. It was used in several geomet-

ric estimators: curvature estimator [12], dominant point

detection [13,14], circularity detection, arc and segment

decomposition [15,16]. Nevertheless, the width param-

eter needs to be manually adjusted and the method is
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not adaptive to local amount of noise which can appear

on real contours.

This paper is an extension of the work proposed

in [17]: we present a parameter-free framework to
analyze noisy digital shape contours. We use a

new notion, named Adaptive Tangential Cover (ATC).

An ATC of a digital contour is composed of MBS with

appropriate widths, deduced from the noise level de-

tected in the contour. The local noise estimator com-

putes a value at each point of the discrete contour.

It permits to determine the widths of MBS compos-

ing the ATC. Therefore the algorithm to compute ATC

is parameter-free. The proposed framework works with

different local noise estimators and, in this paper, we

focus on two estimators presented in [18] and in [5,6].

We apply the ATC to extract geometric informa-

tion of noisy contours. In particular, an extension of

dominant point detection algorithm [14] with ATC is

proposed to obtain polygonal representations of noisy

discrete contours. This leads to the proposal of a length

estimator for noisy contours. Furthermore, a tangent es-

timator, based on the λ-MST [19,20], is presented, well

adapted to noisy contours. By using the slopes of the

successive MBS of the ATC, a detector of convex and

concave parts of a contour is also proposed. Experimen-

tations and comparisons with other methods show the

interest of the proposed framework using ATC.

Moreover we propose a first approach of the no-

tion of 3D ATC, directly deduced from the ATC of 2D

curves.

The paper is organized as follows: in section 2, we

recall all necessary definitions and results to make the

paper self-content. Then, in section 3, we describe the

discrete structure named Adaptive Tangential Cover

(ATC), and we illustrate the construction algorithm

of ATC. In section 4, applications to analyze and to

extract geometric information from noisy contours are

presented as well as experimental results and an exten-

sion of ATC to 3D curves.

2 Geometrical tools for discrete curves analysis

We recall in this section several notions of discrete ge-

ometry, very useful in the study of discrete curves. The

main ideas of previous works are presented here and we

refer the reader to the given references for more details.

2.1 Maximal blurred segments

As previously described, the discrete primitives, such

as discrete lines [1], blurred segments [9] and maxi-

mal blurred segments [12] have been used in numerous

works to determine geometrical characteristics of dis-

crete curves.

Definition 1 A discrete line D(a, b, µ, ω), with a main

vector (a, b), a lower bound µ and an arithmetic thick-

ness ω (with a, b, µ and ω being integers such that

gcd(a, b) = 1) is the set of integer points (x, y) verify-

ing µ ≤ ax − by < µ + ω. Such a line is denoted by

D(a, b, µ, ω).

Let us consider S as a sequence of integer points.

Definition 2 A discrete line D(a, b, µ, ω) is said to be

bounding for S if all points of S belong to D.

Definition 3 A bounding discrete line D(a, b, µ, ω) of

S is said to be optimal if the value ω−1
max(|a|,|b|) is min-

imal, i.e. if its vertical (or horizontal) distance is equal

to the vertical (or horizontal) thickness of the convex

hull of S.

This definition is illustrated in Fig. 1 and leads to the

definition of the blurred segments.

vertical distance

y

xconvex hull

Fig. 1 D(2, 7,−8, 11), the optimal bounding line of the set
of points (vertical distance = 10

7
= 1.42).

Definition 4 A set S is a blurred segment of width
ν if its optimal bounding line has a vertical or horizontal

distance less than or equal to ν i.e. if ω−1
max(|a|,|b|) ≤ ν.

The notion of maximal blurred segment was intro-

duced in [12]. Let C be a discrete curve and Ci,j a

sequence of points of C indexed from i to j. Let us sup-

pose that the predicate ”Ci,j is a blurred segment of

width ν” is denoted by BS(i, j, ν).

Definition 5 Ci,j is called a maximal blurred seg-

ment of width ν and notedMBS(i, j, ν) iffBS(i, j, ν),

¬BS(i, j + 1, ν) and ¬BS(i− 1, j, ν).

The following important property was proved in [12]

Property 1 Let MBSν(C) be the set of width ν maxi-

mal blurred segments of the curve C. Then,

MBSν(C) = {MBS(B0, E0, ν), MBS(B1, E1, ν),. . . ,

MBS(Bm−1, Em−1, ν)} and satisfies B0 < B1 < . . . <

Bm−1. So we have: E0 < E1 < . . . < Em−1.
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Deduced from the previous property, an incremen-

tal algorithm was proposed in [12] to determine the set

of all maximal blurred segments of width ν of a discrete

curve C. The main idea is to maintain a blurred seg-

ment when a point is added (or removed) to (from) it.

The obtained structure for a given width ν can be con-

sidered as an extension of the tangential cover [2] and

we name it width ν tangential cover of C. Using

the method proposed in [21], such a tangential cover

can be computed in O(n log n). Examples of tangential

covers for different widths are given in Fig. 6(c-f) and

in Fig. 2.

2.2 Local noise estimators

In [5,6], a notion of Meaningful Scale (MS), was

designed to locally estimate what is the best scale to

analyze a digital contour. This estimation is based on

the study of the asymptotic properties of the discrete

lengths L (number of grid points) of maximal digi-

tal straight segments (maximal DSS, based on defi-

nition 1). In particular, it has been shown that the

lengths of maximal DSS covering a point P located on

the boundary of a C3 continuous object should be be-

tween Ω(1/h1/3) and O(1/h1/2) if P is located on a

strictly concave or convex part and near O(1/h) else-

where (where h represents the grid size). This theoret-

ical property defined on finer and finer grid sizes was

used by taking the opposite approach with the compu-

tation of the maximal segment lengths obtained with

coarser and coarser grid sizes (from subsampling). Such

a strategy is illustrated in Fig. 2 (a-c) with a source

point P and its tangential cover defined from subsam-

pling grid size equals to 2 (Fig. 2 (b)) and 3 (Fig. 2 (c)).

From the graph of the maximal DSS mean lengths Li

obtained at different scales, the method consists in rec-

ognizing the first scale for which the lengths follow the

previous theoretical behavior.

As mentioned in [5,6], the multiscale profile can

be used to locally detect a scale interval considered

as meaningful. From this notion of meaningful scale, a

noise level can be deduced and associated to each point

of the contour (see Fig. 5). In the following, we called

MS estimator this local noise level estimator.

The previous method of meaningful scale detection [5,

6] has been extended to the detection of the Meaningful
Thickness (MT) [18]. This method mainly differs by

the choice of the blurred segment primitive and by the

scale definition which is given by the width parameter

of the blurred segment (called thickness in [18]). Such

a strategy presents the first advantage to be easier to

implement without the need to apply different subsam-

plings. The length variation of the maximal blurred seg-

P

(a) L1 = 9.25

P

(b) L2 = 6.33

P

(c) L3 = 5.5

P

(d) L1
1

= 7.18

P

(e) L2
2

= 4.78

P

(f) L3
3

= 3.87

Fig. 2 Images (a-c) illustrate the maximal segments (with
the mean L of their discrete length) used in the meaningful
scale estimation computed by subsampling the initial contour
(a). The equivalent blurred segments defined with different
widths illustrate the primitives used in the notion of mean-
ingful thickness (d-f). The mean Lk of the Euclidean lengths
of the boxes bounding the width k blurred segments are given
for 3 k values.

ments (Euclidean lengths of the bounding boxes of the

blurred segments) obtained at different widths appears

to follow the equivalent properties for the maximal DSS

defined from sub-sampling. Fig. 3 shows the compari-

son of the length variations obtained with the maximal

DSS (b) and with the maximal blurred segments (c).

In both cases, the evolution of lengths presents equiv-

alent slopes which are included in the same interval.

More formally, if we denote by ti the width of value i, a

multi-thickness profile Pn(P ) of a point P is defined

in [18] as the graph

(log(ti), log(Lti/ti))i=1,...,n

with Lti , the mean of the Euclidean lengths of the boxes

bounding the width ti blurred segments. The following

conjecture has been experimentally checked.

Conjecture 1 (Multi-thickness). The plots of the len-

gths Ltij /ti in log-scale are approximately affine with

negative slopes s located between − 1
2 and − 1

3 for a

curved part and around -1 for a flat part.
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(a) curve
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(b) multiscale profiles of (a)
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(c) multi-thickness profiles of (a)

Fig. 3 Comparison between multiscale (b) and multi-thickness (c) profiles on different types of points defined on a shape (a)
containing curved (PA, PB) and flat (PC , PD) parts.
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Fig. 4 Multi-thickness profiles (b-d) obtained on different
points: Pj with no noise (graph (b)), with low noise (Pk,
graph (c)) and important noise (Pl, graph (d)). The mean-
ingful thickness values ηj , ηk and ηl are represented on each
multi-thickness profile P15.

Such a profile is illustrated on Fig. 4 (a,b) where a

multi-thickness profile is given on a point located on

a contour part presenting no noise.

From Pn(Pj) = (Xi, Yi)i=1,..,n, the multi-thickness

profile of Pj , the meaningful thickness is defined as

a pair (i1, i2), 1 ≤ i1 < i2 ≤ n, such that for all i,

i1 ≤ i < i2, Yi+1−Yi
Xi+1−Xi ≤ Tm, and the property is not true

for i1 − 1 and i2. As suggested in [18], the value of the

parameter Tm is set to 0. In the following, we will denote

by ηj the value i1 corresponding to the first meaningful

thickness (i1, i2) of a point Pj . ηj is named meaningful
thickness value (MT value) and permits to detect

the noise level at each point Pj of a curve. This local

noise level estimator is called MT estimator .

(a) (b)

Fig. 5 Comparison between values obtained with MS esti-
mator (a) and MT estimator (b). The size of the blue boxes
represents for each pixel the MS or MT value.

Fig. 4 illustrates the meaningful thickness values

obtained for different points Pj , Pk and Pl which present

respectively the following values: ηj = 1, ηk = 3 and
ηl = 5. Another illustration of the values obtained with

MT estimator is proposed in Fig. 6(b). Fig. 5 shows

the comparison between the noise level values obtained

with MS estimator and with MT estimator. The MT es-

timator shows slightly more sensitivity for the corners

but has the advantage to be able to process non integer

coordinate contours.

A local noise estimator is used in the next section

to define an adaptive tangential cover by taking into

account the amount of noise on the curve.

3 Adaptive tangential cover

The tangential covers applied for dominant point [14]

and arc/circle detection [15] use mostly mono-width

value (ie single width), denoted by ν. Such a param-

eter ν allows to take into account the amount of noise

present in digital contours. This method has two draw-

backs. Firstly, the value of ν is manually adjusted in
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order to obtain a relevant approximating polygon of the

contours w.r.t. the noise. Secondly, the noise appearing

along the contour can be random. In other words, dif-

ferent noise levels can be present along the contours.

Fig. 6(b) illustrates the different noise levels detected

by the MT estimator.

Thus, using mono-width value for tangential covers

is inadequate in case of noisy curves.

To overcome these issues, we present the definition

of adaptive tangential cover which is a tangential

cover with different width values. To this end, we first

introduce the notion of inclusion between two MBS.

Definition 6 Let C be a discrete curve and MBSi =

MBS(Bi, Ei, .), MBSj = MBS(Bj , Ej , .) with i 6= j

be two distinct maximal blurred segments on C. MBSj
is said to be included in MBSi if Bi ≤ Bj and Ei ≥
Ej , and noted by MBSj ⊆MBSi.

Definition 7 LetMBS(C) be a set of maximal blurred

segment of a discrete curve C. MBSi = MBS(Bi, Ei, .)

∈MBS(C) is said largest if for all MBSj ∈MBS(C)

with i 6= j, MBSj *MBSi.

Definition 8 Let C = (Ci)0≤i≤n−1 be a discrete curve.

Let η = (ηi)0≤i≤n−1 be the vector of noise levels as-

sociated to each Ci of C, obtained with a noise level

estimator E . Let MBS(C) = {MBSνk(C)} be the sets

of MBS for the different values νk in η. An adaptive

tangential cover associated to E (ATCE) of C is

defined as the set of the largest MBS of
{
MBSj =

MBS(Bj , Ej , νk) ∈ MBS(C) | νk = max{ηt | t ∈
[[Bj , Ej ]]}

}
.

A local noise level estimator E is thus integrated in

the construction of ATCE to provide the information

of noise along the contour. More precisely, the ATCE
contains the MBS with width values varying in function

of the perturbations obtained by the noise level values

from E . Since the noise levels are different along the

contour curve, accordingly, the obtained ATCE has the

MBS with bigger width values at noisy zones, and with

smaller width values in zones with less or no noise (see

Fig. 6(h)). Furthermore, this framework is parameter-

free.

The method for computing ATCE is described in

Algorithm 1. This algorithm is divided into two steps:

(1) labelling the point with the values from the noise

estimator E , and (2) building the ATCE of the curve

from the labels previously obtained.

More precisely, the algorithm is initialized with an

empty ATCE and the labels associated to each point

are the same as the noise level values (Lines 2-3).

In the first step (Lines 4-8), the tangential covers

with widths corresponding to all different noise levels

Algorithm 1: Calculation of adaptive tangential

cover of a curve C, associated to E : ATCE .

Input : C = (Ci)0≤i≤n−1 given discrete curve,
E: a local noise level estimator,
η = (ηi)0≤i≤n−1 vector of noise level
values from E associated to each point
Ci of C,
ν = {νk | νk ∈ η} ordered set of η values,

MBS(C) = {MBSνk (C)}m−1
k=0 sets of

MBS of C for each νk ∈ ν
Output : ATCE(C) adaptive tangential cover of C

associated to E
Variables: α maximum value of η in a given interval

γ = (γ)0≤i≤n−1 vector of labels
associated to each point Ci of C w.r.t. MBS(C),

1 begin
/* Initialization */

2 ATCE(C) = ∅ ;

3 γi = ηi for i ∈ [[0, n− 1]]1} ;

/* Step 1: Label each point of C with the

maximum noise level value w.r.t the MBS of

width νk passing through the point */

4 foreach νk ∈ ν (in decreasing order) do
5 foreach MBS(Bi, Ei, νk) ∈MBSνk (C) do
6 α = max{ηi | i ∈ [[Bi, Ei]]};
7 if α = νk then
8 γi = νk for i ∈ [[Bi, Ei]] ;

/* Step 2: Calculate ATCE by keeping the

MBS that contains at least one point whose

label is equal to the width of the MBS */

9 foreach νk ∈ ν do
10 foreach MBS(Bi, Ei, νk) ∈MBSνk (C) do
11 if ∃γi, for i ∈ [[Bi, Ei]], such that γi = νk

then
12 ATCE(C) =

ATCE(C) ∪ {MBS(Bi, Ei, νk)};

are considered in order to find the label of each point.

At each level νk, the label of a point is updated to νk
if the MBS passing through the point has the maximal

noise level value being equal to νk. It should be noted

that the number of noise levels overall the contour is

much smaller than the number of points on the con-

tour. Thus, the number of considered tangential covers

is often small. Then, in the second step (Lines 9-12),

the ATCE is composed of the MBS with widths being

the label associated to points constituting the MBS.

As stated in section 2.2, the MT estimator allows

to locally estimate the noise level at each point of a

discrete contour. To illustrate the notion of ATC, we

use the MT estimator as noise level estimator and we

note the adaptive tangential cover associated to

meaningful thickness (ATCMT ). An illustration of

the algorithm is given in Fig. 6.

1 [[a, b]] indicates all integers between a and b.
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(a) Input discrete curve (b) Meaningful thickness η = {1, 2, 3}

(c) Tangential covers of width νk = 1, 2, 3 (d) Labeling points with width νk = 1

(e) Labeling points with width νk = 2 (f) Labeling points with width νk = 3

(g) Point’s label (h) Adaptive tangential cover

Fig. 6 Illustration of Algorithm 1 with E= MT estimator. (a) Input discrete curve C. (b) Noise levels at each point Ci of C
detected by the MT estimator; the red, green and violet points correspond to the meaningful thickness ηi of values 1, 2 and
3 respectively. The label of each point Ci is initialized by its corresponding ηi. (c) Tangential covers of three different widths
νk = 1, 2 and 3 in yellow, blue and cyan. (d) (e) and (f) Labeling all points Ci of C in function of its meaningful thickness
values and the tangent covers of widths 1, 2 and 3 respectively; The label γi of each point Ci is updated to νk if the maximal
meaningful thickness, namely α, of points that belong to the MBS(Bi, Ei, νk) passing by Ci is equal to νk, and stayed as
γi otherwise. (g) Label γi associated to each point of the considering curve. (h) Adaptive tangential cover obtained from the
tangential covers and the labels of points.
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4 Applications

In this section we present some applications of ATC to

dominant point detection, geometric estimators (length

and tangent), convex and concave part detector. The

experiments are performed on the contours of Fig. 7

obtained by using the extraction of connected region

boundary algorithm [22] and the local noise level esti-

mator is the MT estimator. In particular, different noise

levels are presented on these contours for the purpose of

showing the efficiency of ATCMT in case of non-uniform

noise (see Tab. 1). The ATCMT associated to the ex-

tracted contour of these images are shown in Fig. 9.

(a) (b)

(c) (d)

Fig. 7 Series of input images. (a) (resp. (c)) contains man-
ual (resp. natural) noisy areas (images given in [5]) and (b,d)
are obtained by using the Kanugo [23] degradation document
model implemented in the imgAddNoise program of the DG-
talTools project [24].

4.1 Dominant point detection

Tangential covers, as stated previously, are involved in

applications of dominant point detection [14,13]. The

previous approaches use tangential covers composed of

maximal blurred segments with a constant width along

the curve. In general, this parameter needs to be man-

ually adjusted to obtain a good result of detection al-

Contour
Noise levels

1 1.5 2 2.5 3 3.5

Fig. 7 (a) x x x

Fig. 7 (b) x x x x

Fig. 7 (c) x x x x x x

Fig. 7 (d) x x x x x

Table 1 Different noise levels detected by MT estimator on
input images in Fig. 7.

gorithm. Therefore, such approaches are not adaptive

to discrete contours with irregular noise.

In this section, we present a dominant point detec-

tion algorithm using ATCMT . The reason is twofold: (1)

the ATCMT takes into account the amount of noise on

the curve and thus allows a better model of curve seg-

mentation, and (2) the algorithm for computingATCMT

is parameter-free.

We recall hereafter the main idea of the dominant

point detection algorithm [14]. Firstly, the algorithm

finds the candidates as dominant points which are lo-

cated in the smallest common zone induced by succes-

sive maximal blurred segments [13]. Then, the domi-

nant point of each common zone is identified as the

point having the smallest angle with the two extremities

of the left and right of the maximal blurred segments

composing the zone. This is illustrated in Fig 8.

Fig. 8 Illustration of the dominant point detection al-
gorithm with the adaptive tangential cover obtained
by Algorithm 1 in Fig. 6. Considering the maximal
blurred segments MBS(C69, C189, 2), MBS(C164, C191, 2)
and MBS(C186, C235, 3), the common zone determined by
these three segments contains four points: C186, C187, C188

and C189 (green and red points in the zoom). The left and
right extremities of the common zone are C69 and C235 re-
spectively. The angles between each point in the common
zone and the two extremities are respectively 102.7◦, 101.2◦,
99.7◦ and 100.8◦. The dominant point is the point having the
smallest angle measure, i.e., C188 (red point in the zoom).

Fig. 10 shows the results of dominant point detec-

tion using ATCMT .
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In order to compare the current parameter-free me-

thod, we consider in our experiments the mean tan-
gential cover with MBS of width-η equals to the av-

erage of the obtained meaningful thicknesses at each

point of the studied curve used in [15].

It can be seen in Fig. 10 that using the mean tangen-

tial cover is not always a relevant strategy, particularly

in the high noisy zones of curves. This is due to the

fact that the width-η parameter could not capture the

local noise on curve, contrary to the ATCMT method

(see Fig.10 (a), (d)). In the zoom zones, we observe

that the dominant point detected by ATCMT method

fits better the corners, whereas the mean method in-

duces a decomposition very close to the studied curve

and detects more dominant points. In other words, in

the curved zones, the ATCMT method simplifies the

representation of the curve.

4.2 Geometric estimators

Most of the geometric estimators have a high sensitivity

to the noise perturbing digital contours. The ATCMT

is composed of MBS with appropriate widths, deduced

from the meaningful thicknesses, permits to obtain the

three following parameter-free geometric estimators tak-

ing into account the level of noise detected in the stud-

ied contour.

4.2.1 Contour length estimator

An estimator of the contour length is derived naturally

from the dominant points obtained with the method

presented in the previous section 4.1. The sum of Eu-

clidean distances between each pair of consecutive dom-

inant points on the contour provides an estimation of

the length of the studied contour. The ATCMT ap-

proach permits to reduce the effects of irregular noise

on the contour.

Tab. 2 shows the experimental results usingATCMT

and width ν-tangential cover with ν = 1, 2, 3 and 4 [13].

Note that other contour length estimators could be

adapted with the proposed adaptive tangential cover

in particular by integrating normal vector as described

in [25]. Such a possibility could be done by exploiting

for instance the λ-MST estimator described in the next

section.

4.2.2 Tangent estimator based on λ-MST

The ATCMT can also be used to improve the precision

of existing tangent estimators in presence of noise. In

particular, we focus on a multi-grid convergent tangent

estimator called the λ-MST [19,20]. This estimator is

based on the tangential cover of maximal straight seg-

ment and can handle noise by using the blurred segment

primitive. More precisely, the tangent estimation is ob-

tained by defining a pencil of maximal blurred segments

P(k) = {MBSi = MBS(Bi, Ei, .),with Bi ≤ k ≤ Ei}
and from a mapping function λ defined from [0, 1] to

R+. From this pencil, a notion of eccentricity was in-

troduced in order to distribute weights on all the seg-

ments covering the considered point. More formally, the

eccentricity was defined as [20]:

ei(k) =

{
||Ck − CEi ||1/Li if i ∈P(k)

0 otherwise
,

with Li = ||CEi − CBi ||1 (1)

The tangent direction θ̂(k) of a contour point Ck is

then computed by:
∑
i∈P(k) λ(ei(k))θi∑
i∈P(k) λ(ei(k))

. Note that for the

experiments presented in this paper we have used the

following lambda function λ = 64(−x6+3x5−3x4+x3).

This estimator can naturally be adapted by includ-

ing the ATC in the definition of the pencil P which can

contain a set of MBS of different widths. The Fig. 11

illustrates the main idea of this ATCMT λ-MST esti-

mator. From a given point C1320 of a noisy digital con-

tour, three samples of MBS covering it are displayed

in light gray (MBS0, MBS5 and MBS8 of P(1320)).

From the relative position of C1320 according to the in-

dex Ei, we are able to compute the eccentricity of each

MBS (see Eq. 1) and we can then deduce the weights

from the λ function. Finally, the tangent direction θ̂(k)

can be computed from the different values of θi with

their associated weights.

The comparisons of Tab. 3 were performed by com-

puting the mean of the absolute error defined by the

tangent angle deviation between the estimated and the

ground-truth tangents (deduced from the nearest point

of the reference shape). The percentage of points having

small errors less than 0.1 is also computed to highlight

the amount of tangent vectors estimated with precision

(denoted as P<0.1).

Fig. 12 shows the experimental results of theATCMT

λ-MST tangent estimator with the display of the nor-

mal vectors. Tab. 3 presents the comparisons of this

estimator with the λ-MST estimator defined by the

ν-tangent covers with ν = 1, 2, 3, 4 and the MSMST

method proposed by Kerautret and Lachaud in [5]. The

MSMST method, simply consists by assigning, for each

point p, the λ-MST tangent value computed from the

contour given at the scale defined by the meaning scale

of p. The ATCMT λ-MST tangent estimator was also

compared with two other digital estimators which are

not based on the recognition of discrete straight seg-

ments. The first one is the estimator based on the Bi-
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Contour Ground-truth
Estimated length

ATCMT 1-TC 2-TC 3-TC 4-TC

Fig. 7 (a) 411.4497 411.594 414.416 412.046 415.639 417.09

Fig. 7 (b) 565.4867 565.419 573.874 568.044 563.393 558.178

Table 2 Contour length estimator of input images in Fig. 7.

Fig. 11 Illustration of the λ-MST estimator principle defined from the adaptive tangential cover. A selection of three maximal
blurred segments extracted from the pencil P(1320) are displayed in gray. For each segment, the eccentricity is given with the
associated tangent angle.

nomial Convolution (BC) [7] and the second one is the

Voronoi Covariance Measure (V CM) based estimator

[8] (see Tab. 3). Both methods use parameters which

are indicated as indexes of the method names in Tab. 3.

The experiments were obtained from the DGtal library

[29] and from the DGtalTools [24] implementation.

These results show that our proposed combination

of the λ-MST estimator using ATCMT improves glob-

ally the stability of the estimator. It locally preserves

the polygonal discontinuities when no noise occurs and

it smoothes the tangent directions when some noisy

variations appear (even if some noise can locally re-

main due to the limits of the MT estimator). As shown

in Tab. 3 (a) the ATCMT λ-MST estimator applied on

a polygonal shape shows the second best results after

the MSMST estimator which uses the meaningful scale

detection (that gives better noise detection than the

meaningful thickness on this shape). For the circle the

result appears also better than the 1,2,3-TC estimator.

The 4-TC estimator, the V CM20,5 and BC estimators

give better results than the ATCMT λ-MST or MSMST

estimator but these configurations are not completely

significant since the circular shape is not too much de-

formed by a too large smoothing parameter.

4.2.3 Convex/concave part detector

The convexity of digital shape contours is defined and

studied in [26,4]. A digital shape O (subset of Z2) is

said digitally convex iff O is 4−connected and the Gauss

digitization of the convex hull of O is equal to O.

(a) (b)

(c) (d)

Fig. 12 Results of ATCMT λ-MST tangent estimator dis-
played as normal vectors on the source shape extracted from
input images of Fig. 7.

Global convexity information can be deduced from

the maximal segments (based on DSS) of the studied

contour. Moreover, the convex and concave parts of the

shape contour are detected from the successive maximal

segments of the tangential cover of the contour. In [26],
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C
o
n
to

u
r

Absolute error
Methods

ATCMT 1-TC 2-TC 3-TC 4-TC MSMST V CM5,2 V CM10,3 V CM20,5 BC1 BC4

F
ig
.
7
(a

)

mean 0.065 0.11 0.065 0.071 0.084 0.02 0.097 0.068 0.066 0.074 0.063

P<0.1 82.1 40.4 77.9 79.5 75.5 94 36.7 60.1 77.1 74.9 78.8

F
ig
.
7
(b

)

mean 0.072 0.283 0.107 0.081 0.061 0.089 0.129 0.079 0.052 0.049 0.05

P<0.1 83 27.1 72 80 86.8 74.8 47.5 71.3 88.5 96.3 93.4

Table 3 Errors of tangent estimator of input images in Fig. 7.

it is proved that the contour of a polyomino is digitally

convex iff the directions of its maximal segments (based

on DSS) are monotonous.

The detector of convex and concave parts on a dig-

ital shape contour consists in detecting the sequence

of successive maximal segments on the tangential cover

whose slopes are monotonous. The maximal segments,

whose slope directions are increasing on one side and

decreasing on the other side, are transitional areas and

they cut the contour of a digital shape into convex and

concave parts.

The ATCMT is an extension of the notion of tangen-

tial cover with maximal blurred segments (MBS) and

we use the same strategy by considering the successive

slope directions of MBS. We have tested on several ex-

amples the behaviour of the obtained sequence of MBS.

For weakly noisy digital contour, the slope directions

of MBS in ATC well localize the convex and concave

parts of the shape (see Fig 13(c)). For more noisy digi-

tal contours, the transitional areas are larger but convex

and concave parts are also detected (see Fig. 13(a,d)).

In some cases, if noise is irregularly distributed, small

perturbations in slope direction induce false detections

of convexity or concavity on small parts of the contour

(see Fig. 13(b)).

4.3 Extension of ATC in 3D

In this section, we propose an extension of ATC in 3D

space, namely 3D ATC. The main idea is to use the

2D projections onto the base planes of the 3D input

digital curve. Hereafter, we assume that the 3D input

curve has at least two valid2 projections. Without loss

of generality, we can suppose the valid projections are

on (O, x, y) and (O, x, z).

The notion of 3D discrete line [27] is defined as fol-

lows:

2 valid in the sense of there are no two points of 3D digital
curve having the same projection onto a 2D plane.

(a) (b)

(c) (d)

Fig. 13 Convex and concave part detector of input images in
Fig. 7. The segments in green and blue denote the convex and
concave parts respectively. While, the red segments denote a
transition between convex and concave parts.

Definition 9 A 3D discrete line , denoted

D3D(a, b, c, µ, µ′, e, e′), with a main vector (a, b, c) such

that (a, b, c) ∈ Z3, and a ≥ b ≥ c is defined as the set

of points (x, y, z) from Z3 verifying:

D
{
µ ≤ cx− az < µ+ e

µ′ ≤ bx− ay < µ′ + e′

with µ, µ′, e, e′ ∈ Z. e and e′ are called arithmetical

width of D.

The notion of 3D blurred segment (3D BS) is then

proposed in [28] and it is shown that a 3D BS is bijec-

tively projected into two projection planes.

Definition 10 Let S3D be a sequence of integer points

in Z3. A set S3D is a 3D blurred segment of width
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ν with a main vector (a, b, c) ∈ Z3 and a ≥ b ≥ c, if it

possesses an optimal discrete line, denoted by

D3D(a, b, c, µ, µ′, ω, ω′) such that

– D(a, b, µ, ω) is optimal for the sequence of projec-

tions of points of S3D in the plane (O, x, y) and
ω−1

max(|a|,|b|) ≤ µ
– D(a, c, µ′, ω′) is optimal for the sequence of projec-

tions of points of S3D in the plane (O, x, z) and
ω′−1

max(|a|,|c|) ≤ µ
′

Still in [28], the recognition algorithm of 3D MBS is

given and has a linear complexity as in 2D. The main

idea of the 3D MBS recognition is to add simultaneously

the 2D points in the corresponding projection planes

until at least one of them fails; i.e., we can not add

any point more. Then, the 3D MBS is determined from

the two corresponding MBS projected onto 2D planes.

More details can be found in [28].

Similarly, the 3D ATC computation is performed by

combining its two projections. Regarding the noise lev-

els, we apply separately the noise estimation on each

projection plane. Then, the noise level at each point of

the 3D curve –without loss of generality– is the maxi-

mum value of the two projections. Note that the prin-

ciple for the algorithm of 3D ATC remains the same as

in 2D. Fig. 14 illustrates the 3D ATC of the 3D curves

with and without noise.

5 Conclusion and perspectives

Based on the new notion of adaptive tangential cover

[17], we have presented a new framework to analyze

a noisy digital contour. More precisely, this approach

combines the local scale analysis of a noise level esima-

tor (in this paper most of the experimentations are done

with the MT estimator) with the tangential cover and

permits to obtain a geometric analysis which is adap-

tive to noise. A first new application was proposed with

the classical problem of dominant point detection. The

use of the ATC allows to obtain a parameter-free noise-

resistant polygonalization method. Then, the ATC was

used in different geometric estimators based on the tan-

gential cover notion: (i) contour length estimator, (ii)

tangent estimator with the λ-MST multigrid conver-

gent tangent estimator and (iii) concave/convex part

detector. Thanks to ATC, the robustness to noise of

these estimators were improved without the need to

manually adjust any parameter. An online demonstra-

tion based on the DGtal [29] and ImaGene [30] library

can reproduce the main results of the ATC and polyg-

onalization algorithm [31].

In this paper, we also proposed a first approach to

extend the notion of ATC to 3D by using the noise levels

of the 2D curves obtained by projecting the 3D curve.

A complete study for 3D ATC would be investigated

for any 3D curves. Another perspective is to study and

to construct a local noise level estimator adapted to 3D

curves.
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