
HAL Id: hal-01491255
https://hal.archives-ouvertes.fr/hal-01491255v2

Submitted on 23 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementation and performance evaluation of an
extended precision floating-point arithmetic library for

high-accuracy semidefinite programming
Mioara Joldes, Jean-Michel Muller, Valentina Popescu

To cite this version:
Mioara Joldes, Jean-Michel Muller, Valentina Popescu. Implementation and performance evaluation of
an extended precision floating-point arithmetic library for high-accuracy semidefinite programming.
IEEE Symposium on Computer Arithmetic (Arith24), Jul 2017, London, United Kingdom. �hal-
01491255v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/80378703?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01491255v2
https://hal.archives-ouvertes.fr

Implementation and performance evaluation of an extended precision
floating-point arithmetic library for high-accuracy semidefinite programming

Mioara Joldes∗, Jean-Michel Muller† and Valentina Popescu†
∗ LAAS-CNRS, 7 Avenue du Colonel Roche, 31077 Toulouse, France

† LIP Laboratory, ENS Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France

Abstract
Semidefinite programming (SDP) is widely used in

optimization problems with many applications, how-
ever, certain SDP instances are ill-posed and need
more precision than the standard double-precision
available. Moreover, these problems are large-scale
and could benefit from parallelization on specialized
architectures such as GPUs. In this article, we im-
plement and evaluate the performance of a floating-
point expansion-based arithmetic library (CAMPARY)
in the context of such numerically highly accurate SDP
solvers. We plugged-in CAMPARY with the state-of-
the-art SDPA solver for both CPU and GPU-tuned
implementations. We compare and contrast both the
numerical accuracy and performance of SDPA-GMP,
-QD and -DD, which employ other multiple-precision
arithmetic libraries against SDPA-CAMPARY. We show
that CAMPARY is a very good trade-off for accuracy
and speed when solving ill-conditioned SDP problems.

Index Terms
floating-point arithmetic, multiple precision library,

ill-posed semidefinite programming, GPGPU comput-
ing, error-free transform, floating-point expansions

1. Introduction
Nowadays most floating-point (FP) computations

use single-precision (binary32) or double-precision
(binary64) arithmetic. Arithmetic operations on these
two formats are very efficiently implemented in cur-
rently available processors, either CPUs or GPUs, and
are compliant with the IEEE 754-2008 standard for
FP arithmetic [1]. Among other requirements, this
standard defines five rounding modes (round down-
wards, upwards, towards zero, to the nearest “ties to
even”, and to the nearest “ties to away”). An arithmetic
operation should return the result as if computed with
infinite precision and then the rounding function is
applied. Such an operation is said to be correctly

rounded. The IEEE 754-2008 standard enforces correct
rounding of all basic arithmetic operations (addition,
multiplication, division and square root). This im-
proves portability and reliability of numerical software.

These two ubiquitous precision formats are some-
times not sufficient e.g., in some recently studied
optimization problems, which come to solving in a
very accurate way, numerically sensitive and some-
times large-scale semidefinite optimization problems
(SDP). Examples include high-accuracy computation
of kissing numbers [2]; bounds from binary codes;
control theory and structural design optimization (e.g.,
the wing of Airbus A380) [3]; quantum information
and physics [4].

This resulted in a recent increased interest in pro-
viding both higher-precision (also called multiple pre-
cision) and high-performance SDP libraries. To ac-
complish this, firstly, one has to establish the core
mathematical algorithm for numerically solving (say,
in ”real numbers”) the SDP problem: most nowadays
solvers employ primal-dual path-following interior-
point method (PDIPM) [5]. This algorithm is consid-
ered in literature as theoretically mature, is widely
accepted and implemented in most state-of-the-art
SDP solvers like SDPA [6], CSDP [7], SeDuMi [8],
SDPT3 [9]. This algorithm is recalled in Section 2 and
we considered the SDPA implementation in this work,
without any important modification.

Secondly, the underlying multiple-precision arith-
metic operations have to be treated. Several multi-
ple precision arithmetic libraries like GMP and QD
were already ported inside SDPA [10]. The resulted
implementations are more accurate, yet much more
computationally expensive [10]. These libraries and
implementations with SDPA are described in Section 3.
Finally, since most problems are large-scale, paral-
lelization is also very important. We treat the case of
highly parallel architectures of GPUs, for which most
multiple precision libraries are not suitable.

The first contribution of this work is to propose

the use of our multiple precision library CAMPARY1

with SDPA, which results in a better performance vs.
accuracy trade-off. Our underlying algorithms based on
floating-point expansions are described in Section 4.
The second contribution is a multiple precision GPU
compatible general matrix multiplication routine that
can be used in SDPA. This routine runs at up to 83%
of the theoretical GPU peak-performance and allows
for an average speedup of one order of magnitude for
SDP instances run in multiple precision with SDPA-
CAMPARY and GPU support compared to SDPA-
CAMPARY on CPU only. Implementation details are
provided in Section 5. Benchmarks were performed
on well-known ill-conditioned examples from [11]
and [3]. The results are discussed in Section 6.

2. Semidefinite programming formulation
Semidefinite programing (SDP) is a convex opti-

mization problem, which can be seen as a natural
generalization of linear programming to the cone of
symmetric matrices with non-negative eigenvalues, i.e.
positive semidefinite matrices. Denote by Rn×n the
space of size n × n real matrices, Sn ⊂ Rn×n the
subspace of real symmetric matrices, equipped with
the inner product 〈A,B〉Sn = tr(ATB), where tr(A)
is the trace of A. Also, a positive semidefinite matrix A
is denoted by A < O (respectively A � O for positive
definite). A typical SDP program is expressed in its
primal-dual form as follows:

(P)

p∗ = sup
X∈Sn

〈C,X〉Sn

s.t. 〈Ai, X〉Sn = bi, i = 1, . . . ,m,

X < O,

(D)

d∗ = inf
y∈Rm

bT y

s.t. Y :=

m∑
i=1

yiAi − C < O,

for given C,Ai ∈ Sn×n, i = 1, . . . ,m and b ∈ Rm.
It is however difficult in general to obtain an

accurate optimum for a SDP problem. On the one
hand, strong duality does not always hold, unlike for
linear programs: weak duality is always satisfied, i.e.
p∗ ≤ d∗, but sometimes, p∗ is strictly less than d∗.
Simpler instances are those where strong duality holds
and this happens when the feasible set contains a
positive definite matrix [12, Thm. 1.3]. In practice, the
method of choice for SDP solving is based on interior-
point algorithm. This relies on the existence of interior
feasible solutions for problems (P) and (D). In such

1. http://homepages.laas.fr/mmjoldes/campary/

cases, these two problems are simultaneously solved in
polynomial time in the size of parameters of the input
problem using the well-established primal-dual path-
following interior-point method (PDIPM) [5]. This
method relies on the fact that when an interior feasible
solution exits, one has the necessary and sufficient
condition for X∗, Y ∗ and y∗ to be an optimal solution:

X∗Y ∗ = 0, X∗ � O, Y ∗ � O, (1)

Y ∗ =

m∑
i=1

y∗iAi − C, (2)

〈Ai, X〉Sn = bi, i = 1, . . . ,m, (3)

The complementary slackness condition (1) is re-
placed by a perturbed one: XµYµ = µI . This perturbed
system has a unique solution and that the central
path C = {(Xµ, Yµ, yµ) : µ > 0} forms a smooth
curve converging to (X∗, Y ∗, y∗) as µ → 0. So, the
main idea is to numerically trace the central path C.
This algorithm, implemented among others by SDPA
is sketched in Algorithm 1, adapted from [10]. Step
1 computes the search direction based on Mehrotra
type predictor-corrector [6]. The stopping criteria (Step
4) depends on several quantities: primal and dual
feasibility error are defined as the maximum absolute
error appearing in (3) and (2), respectively. The duality
gap depends on the absolute or relative difference be-
tween the objectives of (P) and (D). Numerical results
involving these parameters are given in Section 6.

Algorithm 1 PDIPM Algorithm, adapted from SDPA
implementation [10].

Step 0: Choose an initial point X0 � O, y0 and Y 0 � O.
Set h = 0 and choose the parameter γ ∈ (0, 1).

Step 1: Compute a search direction (dy, dX, dY).
Step 2: Compute max step length α to keep the pos-

itive semidefiniteness: α = max {α ∈ [0, 1] :
Y h + αdY � O,Xh + αdX � O

}
.

Step 3: Update the current point: (yh+1, Xh+1, Y h+1) =
(yh, Xh, Y h) + γα(dy, dX, dY).

Step 4: If (yh+1, Xh+1, Y h+1) satisfies the stopping cri-
teria, output it as a solution. Otherwise, set h =
h+ 1 and return to Step 1.

However, problems which do not have an interior
feasible point induce numerical instability and may
result in inaccurate calculations or non-convergences.
Recently, SPECTRA package [13] proposes to solve
such problems with exact rational arithmetic, but the
instances treated are small and this package does not
aim to be a concurrent of general numerical solvers.

On the other hand, even for problems which have
interior feasible solutions, numerical inaccuracies may
appear when solving with finite precision due to large
condition numbers (higher than 1016, for example)
which appear when solving linear equations. This hap-
pens, as explained in [10], when approaching optimal
solutions: suppose there exist X∗ � O, Y ∗ � O
and y∗ which satisfy all the constraints in (P) and
(D); or better said, when µ → 0 on the central
path. Then, X∗Y ∗ = 0. From this it follows that
rank(X∗) + rank(Y ∗) ≤ n, which implies that these
matrices are usually singular in practice.

In this second case, having an efficient underlying
multiple-precision arithmetic is crucial to detect (at
least numerically) whether the convergence issue came
simply from numerical errors due to lack of precision.

3. Multiple precision arithmetic libraries

Most SDP solvers are based on single or double
floating-point arithmetic, which is very efficient as it
is implemented in hardware. An increase in precision,
for example to quad-precision (binary128) or more,
comes with a significant performance drawback since
this is currently done by software emulation. Arbitrary
precision, i.e., the user’s ability to choose the precision
for each calculation, is now available in most computer
algebra systems such as Maple. SPECTRA [13] is
implemented with Maple’s rational arithmetic. SDPA
extended precision versions are implemented using
either GMP [14] or QD [15] libraries. GMP offers
arbitrary precision by representing floating-point num-
bers in a so-called multiple-digit format. This is suffi-
ciently general for manipulating numbers with tens of
thousands of bits, but it is a quite heavy alternative
for precisions of few hundreds bits. QD choses to
better optimize precisions of 2 or 4 doubles using a
different multiple-component format. It is known that
most operations implemented in this library do not
come with proven error bounds and correct or directed
rounding is not supported. It is thus usually impossible
to assess the final accuracy of these operations.

However, the performance results of QD are very
good on tested problems (e.g. on SDP instances [6]).
Moreover, only QD is ported on parallel GPU architec-
tures, since floating-point algorithms in the multiple-
digit format are very complex, and they employ non-
trivial memory management. QD code with SDPA
shows in practice that it is possible to compute very
accurate values even when rounding occurs at the
intermediate operation’s level. We modified and gen-
eralized these algorithms for proving their correctness
and keeping good performances.

4. CAMPARY library
For extending the precision, we represent numbers

as unevaluated sums of FP numbers. When the sum
consists of two terms, one has a double-double (DD)
number, triple-double (TD) for three, quad-double for
four, and floating-point expansion when made up with
an arbitrary number of terms. Arithmetic operations
with such numbers are based on so-called error-free
transforms algorithms, which consist in a simple se-
quence of standard precision optimized hardware FP
operations. Knuth’s 2Sum algorithm [16] computes the
error-free sum of 2 FP numbers, with 6 FP operations.
When the operands are ordered, Dekker’s Fast2Sum
algorithm [17] takes only 3 FP operations. Similarly,
when a fused multiply-add 2 (FMA) operator is avail-
able, 2ProdFMA [16] returns the correct rounded prod-
uct, and the rounding error, in 2 FP operations.

Based on chaining together such error-free trans-
forms (resulting in the so called distillation algo-
rithms [18]), efficient basic operations with FP ex-
pansions were recently improved and proved to be
correct in [19]. These are implemented in CAMPARY,
a multiple-precision arithmetic library which targets
both CPU applications and applications deployed on
NVIDIA GPU platforms (compute capability 2.0 or
greater). Both a CPU version (in C++ language) and a
GPU version (written in CUDA C programming lan-
guage [20]) are freely available. This library supports
both the binary64 and the binary32 formats as basic
bricks for the multiple component representation. This
allows for extended precisions on the order of a few
hundreds of bits, with constraints given by the expo-
nent range of the underlying FP format used: the max-
imum expansion size is 39 for double-precision, and
12 for single-precision. Currently, all basic multiple-
precision arithmetic operations (+,−, ∗, /,√) are sup-
ported. The implementation is very flexible: the pre-
cision (FP expansion size) is given as a template
parameter and we provide overloaded operators.

For double-double, authors of this article redis-
cussed, improved and proved in [21], some algorithms
initially proposed in QD library. For example, ad-
dition of two DD numbers takes 20 FP operations
and multiplication 9, when an FMA is available (see
Algorithms 6 and 11 in [21]). For higher precisions, we
use algorithms from [19], with the technicality that the
renormalization of FP expansions is composed of the
first two levels of chained 2Sum of Algorithm 6 in [19].
This generality comes with a higher operation count.
For addition, Algorithm 4 [19], takes 3n2 + 10n − 4

2. FMA operator evaluates an expression of the form xy+ t with
only one final rounding.

double FP additions, while multiplication, Algorithm
5 [19], takes 2n3+2n2+6n−4 double FP operations
(see Table 1).

n Addition Multiplication
2D 20 9
3D 53 86
4D 84 180
5D 121 326
6D 164 536
8D 268 1196

Table 1: Number of operations for addition and multiplication
(FMA compatible) with n-doubles formats.

5. Implementation of SDPA-CAMPARY
SDPA-CAMPARY package is built from SDPA-

QD/DD package, where QD/DD library is replaced
by CAMPARY at the compilation step of SDPA.
This is efficiently done since both SDPA and CAM-
PARY are coded in C/C++. Starting with version 6.0,
SDPA incorporated LAPACK [22] for dense matrix
computations, but also exploits sparsity of data ma-
trices and solves large scale SDPs [23]. More re-
cently, MPACK [24] was developed and integrated
with SDPA. This is a multiple precision linear algebra
package, based on BLAS and LAPACK [22]. For this
package, the major change is the underlying arithmetic
format, since it supports multiple precision libraries,
like GMP, MPFR, and QD. We also integrated CAM-
PARY with MPACK.

Moreover, MPACK also provided a GPU tuned im-
plementation in double-double of the Rgemm routine:
this is the multiple precision Real version of Dgemm,
the general double matrix multiplication [25]. This
routine is central for other linear algebra operations
such as solving linear equations, singular value de-
composition or eigenvalue problems. For this, MPACK
authors re-implemented parts of QD library for CUDA-
compliant code. In our implementation, we used in-
stead our GPU version of CAMPARY.

This routine’s implementation in [25] has best prac-
tical performance and was intensively tuned for GPU-
based parallelism: classical blocking algorithm is em-
ployed, and for each element of a block a thread is cre-
ated; a specific number of threads is allocated per block
also. For example, for the NVIDIA(R) Tesla(TM)
C2050 GPU, best performance of 16.4GFlops (Giga
FP operations per second) is obtained in [25] for A×B,
the product of two matrices A and B with block size
of: 16× 16 for A and 16× 64 for B; 256 threads are
allocated per block. Shared memory is used for each
block. Also, reading is done from texture memory.

In our implementation, we use a similar algorithm,
except that reading is done from global memory
instead of texture memory, since a texture memory

element (texel) size is limited to int4 i.e., 128 bits
and our implementation is generic for n-double. Matrix
block sizes and thread block sizes are similar, since our
bench GPU is similar.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 500 1000 1500 2000

M
F

L
O

P
s

Dimension

[25]
CAMPARY

Figure 1: Performance of RGEMM with CAMPARY
vs [25] in double-double on GPU. Max performance of
14.8GFlops for CAMPARY and 16.4GFlops for [25].

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 100 200 300 400 500 600 700 800 900 1000

M
F

L
O

P
s

Dimension

3D

4D

5D

6D

8D

Figure 2: Performance of RGEMM with CAMPARY
for n-double on GPU. Maximum performance was
1.6GFlops for TD, 976MFlops for QD, 660MFlops for
5D, 453MFlops for 6D, 200MFlops for 8D.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 3 4 5 6 7

S
p
e
e
d
u
p

Precision n-doubles

gpp124-1
gpp250-1
gpp500-1

theta5
theta6

equalG51
mcp500-1

Figure 3: Speedup of SDPA-CAMPARY for n-double
with GPU vs CPU. Maximum speedup was 16.2.

Specifically, our GPU NVIDIA(R) Tesla(TM)
C2075 is part of the same Fermi architecture, with
448 cores, 1.15 GHz, 32KB of register, 64KB shared
memory/L1 cache set by default to 48KB for shared
memory and 16KB for L1 cache. The difference is
that our GPU has 6GB of global memory, compared
to 3GB of C2050. However, this has little impor-
tance for the performance results on kernel execu-
tion once the global memory has been loaded. With
CAMPARY in double-double, the peak kernel per-
formance obtained is 14.8GFlops, see Figure 1. The
theoretical peak performance can be obtained as fol-
lows: first, consider that in Rgemm operations consist
of mainly multiply-add type, so the theoretical peak
for multiply-add is of 1.15[GHz]×14[SM]×32[CUDA
cores]×(2[Flop]/2[cycle]) = 515[Gflops]. Now, since
addition and multiplication in CAMPARY take (20+9)
Flops for double-double, one obtains theoretically:
515.2/29 = 17.8[GFlops]. For double-double, our
implementation is slower by ∼ 10% than [25]. This
can be explained by the generality of our code. Testing
our implementation with texture memory, we observed
no speedup. On the other hand, in our case, higher
precision RGEMM is straightforward. Performance re-
sults for n-double RGEMM are shown in Figure 2: the
increase in number of additions and multiplications re-
ported in Table 1 fits the decrease of performance when
precision is increased. Note that cuBLAS, the NVIDIA
GPU linear algebra package does not support preci-
sions higher than double and it is not open source, so
we consider it difficult to extend in the present context.
In [26], for Fermi GPUs like C2050 or C2075, the peak
performance of DGEMM is 302GFlops with cuBlas
and 362GFlops with further optimizations, which is
58% and 70% of the theoretical peak performance, so
the RGEMM implementation we have is quite efficient
with: 83% of theoretical peak performance for DD,
respectively 43% for TD, 50% for 4D, 57% for 5D,
61% for 6D, 57% for 8D.

6. Numerical results
In order to assess the performance of the SDPA-

CAMPARY solver we look at the results obtained for
some standard SDP problems both on CPU and GPU.
In particular, on GPU we use the Rgemm routine, with
our CAMPARY implementation explained above.

All CPU tests were performed on an Intel(R)
Xeon(R) CPU E3-1270 v3 @ 3.50GHz processor, with
Haswell micro-architecture which supports hardware
implemented FMA instructions. For the GPU tests, we
used a NVIDIA(R) Tesla(TM) C2075.

Table 2 shows the results and performance obtained
for five well-known problems from the SDPLIB pack-
age [11]. We compare the QD library implementation,
both double- and quad-double precisions, with the
double-, triple-, and quad-double offered by CAM-
PARY, on CPU. Our double-double implementation
outperforms the one of QD’s by far, while our quad-
double precision performs the same. Triple-double
proves to be a good intermediary alternative.

Unlike QD, GMP offers arbitrary precision. Since
CAMPARY also has several extended n-double for-
mats, we compare it against GMP in Table 3. We con-
sider three problems from SDPLIB with correspond-
ing precisions of 106, 159, 212, 265, 318 and 424 bits.
For small precisions, up to quad-double, our library
performs better or the same on CPU. Performance
decreases gradually on CPU when precision increases
due to the overhead caused by error propagation and
handling inside the FP expansions. However, since
CAMPARY is generic and ported on GPU, this per-
formance decrease can be overcome when launching
SDPA-CAMPARY with GPU support as seen in Ta-
ble 3. In Figure 3 we show the speedup obtain for
CAMPARY with GPU support, when varying preci-
sion, for several problems from the SDPLIB.

For testing the accuracy of our library, we consid-
ered several examples from Sotirov’s collection [3],
which are badly conditioned numerically, and cannot
be tackled with double precision only. For instance,
a classical problem in coding theory is finding the
largest set of binary words with n letters, such that
the Hamming distance between two words is at least d.
This is reformulated as a maximum stable set problem,
which is solved with SDP, according to the seminal
work of Schrijver [27], followed by Laurent [28].

In Table 4 we show the performance obtained on the
CPU for the Schrijver and Laurent instances from [3].
The comparison is done between SDPA-DD, SDPA-
GMP (run with 106 bits of precision) and SDPA-
CAMPARY-DD. The results obtained were similar and
performance-wise our library performs better. Some
instances do not converge when DD precision is used.
We also include the results obtained with the SDPA-
CAMPARY with triple-double (TD) precision, which
has a better performance comparing to SDPA-GMP
with 106 bits of precision.

7. Conclusion and future works

We implemented and evaluated the performance of
our floating-point expansions-based arithmetic library,
CAMPARY, in the context of highly accurate com-
putations needed by SDP solvers for ill-conditioned

Problem SDPA-DD SDPA-QD SDPA-CAMPARY
(DD) (TD) (QD)

gpp124-1 optimal: −7.3430762652465377
relative gap 7.72e− 04 6.75e− 13 7.72e− 04 8.33e− 12 5.42e− 18
p.feas.error 5.42e− 20 4.37e− 45 5.42e− 20 1.57e− 30 1.14e− 41
d.feas.error 4.40e− 14 1.54e− 30 3.99e− 14 2.58e− 16 3.43e− 22

iteration 24 40 24 38 49
time (s) 3.27 66.37 2.63 35.56 83.92

gpp250-1 optimal: −1.5444916882934067e+ 01
relative gap 5.29e− 04 4.32e− 13 5.19e− 04 1.03e− 12 1.89e− 17
p.feas.error 3.89e− 20 2.27e− 45 1.35e− 20 1.38e− 30 5.73e− 42
d.feas.error 9.78e− 14 1.97e− 30 1.12e− 13 3.04e− 17 3.25e− 22

iteration 25 41 25 44 52
time (s) 26.68 538.39 21.57 321.35 698.34

gpp500-1 optimal: −2.5320543879075787e+ 01
relative gap 1.008e− 03 4.72e− 13 3.72e− 04 8.89e− 12 9.30e− 18
p.feas.error 1.01e− 20 1.92e− 45 2.71e− 20 8.81e− 31 1.43e− 42
d.feas.error 5.29e− 14 2.95e− 30 3.51e− 13 1.49e− 16 5.13e− 22

iteration 25 42 26 41 51
time (s) 207.63 4340.95 172.95 2396.43 5369.79
qap10 optimal: −1.0926074684462389e+ 03

relative gap 3.84e− 05 3.18e− 14 6.94e− 05 1.08e− 09 7.22e− 14
p.feas.error 2.54e− 21 7.32e− 47 6.56e− 21 6.62e− 35 2.18e− 47
d.feas.error 4.91e− 14 8.78e− 30 1.83e− 13 2.98e− 21 3.45e− 29

iteration 20 36 20 27 35
time (s) 27.75 647.96 21.01 262.03 629.81
hinf3 optimal: 5.6940778009669388e+ 01

relative gap 1.35e− 08 7.93e− 3 3.25e− 05 3.98e− 26 1.98e− 31
p.feas.error 2.75e− 24 1.18e− 54 1.69e− 21 3.32e− 39 3.18e− 55
d.feas.error 3.82e− 14 6.82e− 35 3.41e− 13 2.83e− 29 4.08e− 42

iteration 30 90 24 48 48
time (s) 0.00 0.18 0.00 0.05 0.09

Table 2: The optimal value, relative gaps, primal/dual feasible errors, iterations and time for solving some problems from
SDPLIB by SDPA-QD, -DD, -CAMPARY.

and performance demanding problems. The underly-
ing arithmetic operations of state-of-the-art multiple-
precision solver SDPA were replaced with our algo-
rithms. This was possible since both SDPA and CAM-
PARY are written in open-source and freely available
C/C++. We compare and contrast both the numerical
accuracy and performance of SDPA-GMP, -QD and -
DD, which employ other multiple-precision arithmetic
libraries, against SDPA-CAMPARY. We consider both
CPU and GPU implementations. We show that CAM-
PARY is a very good trade-off for accuracy and speed
when solving ill-conditioned SDP problems.

One current limitation is that compared to the
tuned GPU implementation of double-double RGEMM
of [25], our implementation is 10% slower. However,
the improvement is that our RGEMM is generic for
n-double precision. This allows us to solve very ill-
conditioned problems with SDPA and GPU support in
a more efficient way: before, these problems could be
tackled only with high precision GMP support on CPU
only. Our new results show an order of magnitude
(' 10 times) average speedup when CAMPARY is
used with GPU support. A future work is to solve more
complicated and large scale very ill-conditioned SDP
problems appearing in experimental mathematics, like
for instance, the ”kissing numbers” problem [2].

References

[1] IEEE Computer Society, IEEE Standard for Floating-
Point Arithmetic. IEEE Standard 754-2008, Aug. 2008,
ieeexplore.ieee.org/servlet/opac?punumber=4610933.

[2] H. D. Mittelmann and F. Vallentin, “High-accuracy
semidefinite programming bounds for kissing num-
bers,” Exp. Math., vol. 19, no. 2, pp. 175–179, 2010.

[3] E. de Klerk and R. Sotirov, “A new library of structured
semidefinite programming instances,” Opt. Methods
and Software, vol. 24, no. 6, pp. 959–971, 2009.

[4] D. Simmons-Duffin, “A Semidefinite Program Solver
for the Conformal Bootstrap,” JHEP, vol. 06, p. 174,
2015.

[5] R. D. Monteiro, “Primal–dual path-following algo-
rithms for semidefinite programming,” SIAM Journal
on Optimization, vol. 7, no. 3, pp. 663–678, 1997.

[6] M. Yamashita, K. Fujisawa, M. Fukuda, K. Kobayashi,
K. Nakata, and M. Nakata, “Latest developments in
the SDPA family for solving large-scale SDPs,” in
Handbook on semidefinite, conic and polynomial op-
timization. Springer, 2012, pp. 687–713.

[7] B. Borchers, “CSDP, a C library for semidefinite pro-
gramming,” Opt. methods and software, vol. 11, no.
1-4, pp. 613–623, 1999.

Problem SDPA-CAMPARY SDPA-GMP
CPU GPU CPU

gpp124-1 optimal: −7.3430762652465377
precision DD DD 2 ∗ 53 bits
iteration 24 24 38
time (s) 2.63 1.19 56.31
precision TD TD 3 ∗ 53 bits
iteration 38 39 48
time (s) 35.56 15.1 78.30
precision QD QD 4 ∗ 53 bits
iteration 49 57 59
time (s) 83.92 27.9 103.32
precision 5 D 5 D 5 ∗ 53 bits
iteration 62 62 77
time (s) 178.23 46.5 149.76
precision 6 D 6 D 6 ∗ 53 bits
iteration 77 77 77
time (s) 330.08 101 149.76
precision 8 D 8 D 8 ∗ 53 bits
iteration 77 77 77
time (s) 666.60 217 186.32

gpp250-1 optimal: −1.5444916882934067e+ 01
precision DD DD 2 ∗ 53 bits
iteration 25 25 39
time (s) 21.57 7.65 455.36
precision TD TD 3 ∗ 53 bits
iteration 44 39 46
time (s) 321.35 50.6 591.12
precision QD QD 4 ∗ 53 bits
iteration 52 52 64
time (s) 698.34 100.3 880.90
precision 5 D 5 D 5 ∗ 53 bits
iteration 62 62 73
time (s) 1404.48 180.4 1117.60
precision 6 D 6 D 6 ∗ 53 bits
iteration 73 73 73
time (s) 2465.30 350.6 1116.72
precision 8 D 8 D 8 ∗ 53 bits
iteration 73 73 73
time (s) 4987.770 1047.7 1392.71

hinf3 optimal: 5.6940778009669388e+ 01
precision DD DD 2 ∗ 53 bits
iteration 24 24 39
time (s) 0.00 0.51 0.06
precision TD TD 3 ∗ 53 bits
iteration 48 48 47
time (s) 0.05 0.82 0.07
precision QD QD 4 ∗ 53 bits
iteration 48 48 47
time (s) 0.09 2.01 0.08
precision 5 D 5 D 5 ∗ 53 bits
iteration 48 48 47
time (s) 0.16 3.52 0.09
precision 6 D 6 D 6 ∗ 53 bits
iteration 48 48 47
time (s) 0.25 5.13 0.09
precision 8 D 8 D 8 ∗ 53 bits
iteration 48 48 47
time (s) 0.53 8.11 0.10

Table 3: The optimal value, iterations and time for solving
some problems from SDPLIB by SDPA-GMP, -CAMPARY

[8] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox
for optimization over symmetric cones,” Opt. methods
and software, vol. 11, no. 1-4, pp. 625–653, 1999.

[9] K. Toh, M. Todd, and R. Tutuncu, “SDPT3 — a Matlab
software package for semidefinite programming,” Opt.
methods and software, vol. 11, no. 1-4, pp. 545–581,
1999.

[10] M. Nakata, “A numerical evaluation of highly accurate
multiple-precision arithmetic version of semidefinite
programming solver: SDPA-GMP,-QD and -DD.” in
2010 IEEE International Symposium on Computer-
Aided Control System Design. IEEE, 2010, pp. 29–34.

[11] B. Borchers, “SDPLIB 1.2, a library of semidefinite
programming test problems,” Opt. Methods and Soft-
ware, vol. 11, no. 1-4, pp. 683–690, 1999.

[12] M. Laurent, “Sums of squares, moment matrices and
optimization over polynomials,” in Emerging applica-
tions of algebraic geometry. Springer, 2009, pp. 157–
270.

[13] D. Henrion, S. Naldi, and M. Safey El Din, “SPECTRA
- a Maple library for solving linear matrix inequalities
in exact arithmetic.” arXiv:1611.01947, 2016.

[14] T. Granlund, “GMP, the GNU multiple precision arith-
metic library, version 4.1.2,” December 2002, http:
//www.swox.com/gmp/.

[15] Y. Hida, X. S. Li, and D. H. Bailey, “Algorithms
for quad-double precision floating-point arithmetic,” in
Proceedings of the 15th IEEE Symposium on Computer
Arithmetic (ARITH-16), N. Burgess and L. Ciminiera,
Eds., Vail, CO, Jun. 2001, pp. 155–162.

[16] J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jean-
nerod, V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé,
and S. Torres, Handbook of Floating-Point Arithmetic.
Birkhäuser Boston, 2010, ACM G.1.0; G.1.2; G.4;
B.2.0; B.2.4; F.2.1., ISBN 978-0-8176-4704-9.

[17] T. J. Dekker, “A floating-point technique for extend-
ing the available precision,” Numerische Mathematik,
vol. 18, no. 3, pp. 224–242, 1971.

[18] S. M. Rump, T. Ogita, and S. Oishi, “Accurate floating-
point summation part I: Faithful rounding,” SIAM Jour-
nal on Scientific Computing, vol. 31, no. 1, pp. 189–
224, 2008.

[19] M. Joldeş, O. Marty, J.-M. Muller, and V. Popescu,
“Arithmetic algorithms for extended precision using
floating-point expansions,” IEEE Transactions on Com-
puters, vol. 65, no. 4, pp. 1197–1210, 2016.

[20] NVIDIA, NVIDIA CUDA Programming Guide 5.5,
2013.

[21] M. Joldes, V. Popescu, and J.-M. Muller, “Tight
and rigourous error bounds for basic building
blocks of double-word arithmetic,” Jul. 2016,
working paper or preprint. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01351529

Problem SDPA-DD SDPA-CAMPARY-DD SDPA-CAMPARY-TD SDPA-GMP
Laurent A(19,6) optimal: −2.4414745686616550e− 03

iteration 92 94 71 73
time (s) 4.3 3.1 18.65 29.16

Laurent A(26,10) optimal: −1.3215201241629400e− 05
iteration 80 80 123 125
time (s) 12.8 8.68 109.54 173.42

Laurent A(28,8) optimal: −1.1977477306795422e− 04
iteration 93 100 76 113
time (s) 47.8 36.85 219.46 541.19

Laurent A(48,15) optimal: −2.229e− 09
iteration 134 134 165 145
time (s) 2204.61 1569.48 14691.92 21695.08

Laurent A(50,15) optimal: −1.9712e− 09
iteration 142 142 191 154
time (s) 3463.2 2421.86 25773.96 35173.79

Laurent A(50,23) optimal: −2.5985e− 13
iteration 124 124 155 140
time (s) 342.73 221.32 2333.74 3426.17

Schriver A(19,6) optimal: −1.2790362700180910e+ 03
iteration 40 40 66 95
time (s) 1.59 1.14 14.65 32.21

Schriver A(26,10) optimal: −8.8585714285713880e+ 02
iteration 54 54 127 108
time (s) 7.75 5.2 100.73 134.48

Schriver A(28,8) optimal: −3.2150795825792913e+ 04
iteration 45 45 69 97
time (s) 21.05 15.06 182.25 422.78

Schriver A(37,15) optimal: −1.40069999999999886e+ 03
iteration 58 58 132 116
time (s) 54.86 36.35 683.07 988.21

Schriver A(40,15)* optimal: −1.9e+ 04
iteration 23 23 23 23
time (s) 53.99 35.99 285.3 471.870

Schriver A(48,15)* optimal: −2.56e+ 06
iteration 27 27 27 27
time (s) 432.13 307.88 2260.24 3862.29

Schriver A(50,15)** optimal: −7.6e+ 06
iteration 29 29 29 29
time (s) 694.07 471.57 3695.95 677.830

Schriver A(50,23)** optimal: −5.2e+ 03
iteration 29 29 29 29
time (s) 76.55 47.84 413.31 6370.97

Table 4: The optimal value, iterations and time for solving some ill-posed problems for binary codes by SDPA-DD, -CAMPARY-
DD, -CAMPARY-TD, and -GMP-DD. ∗ problems that converge to more than two digits only when using quad-double precision.
∗∗ problems that converge to more than two digits with precision higher that quad-double. The digits written with blue were
obtained only when triple-double precision was employed.

[22] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Dem-
mel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, and D. Sorensen, LAPACK
Users’ Guide, 3rd ed. Philadelphia, PA: Society for
Industrial and Applied Mathematics, 1999.

[23] M. Yamashita, K. Fujisawa, and M. Kojima, “Imple-
mentation and evaluation of sdpa 6.0 (semidefinite
programming algorithm 6.0),” Optimization Methods
and Software, vol. 18, no. 4, pp. 491–505, 2003.

[24] K. Nakata, “The MPACK (MBLAS/MLAPACK) a mul-
tiple precision arithmetic version of BLAS and LA-
PACK,” http://mplapack.sourceforge.net/, 2008–2012.

[25] M. Nakata, Y. Takao, S. Noda, and R. Himeno, “A
fast implementation of matrix-matrix product in double-
double precision on NVIDIA C2050 and application to
semidefinite programming,” in 2012 Third International

Conference on Networking and Computing, Dec 2012,
pp. 68–75.

[26] G. Tan, L. Li, S. Triechle, E. Phillips, Y. Bao, and
N. Sun, “Fast implementation of DGEMM on Fermi
GPU,” in Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage
and Analysis. ACM, 2011, p. 35.

[27] A. Schrijver, “New code upper bounds from the Ter-
williger algebra and semidefinite programming,” IEEE
Transactions on Information Theory, vol. 51, no. 8, pp.
2859–2866, 2005.

[28] M. Laurent, “Strengthened semidefinite programming
bounds for codes,” Mathematical programming, vol.
109, no. 2-3, pp. 239–261, 2007.

