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A Decidable Subtyping Logic for
Intersection and Union Types

Luigi Liquori1 Claude Stolze2

Université Côte d’Azur, Inria, France

Abstract

Proof-functional logical connectives allow reasoning about the structure of logical proofs, in this way giving
to the latter the status of first-class objects. This is in contrast to classical truth-functional connectives
where the meaning of a compound formula is dependent only on the truth value of its subformulas.
We present a proof-functional logic and we give a semantics using Mints’ realizers accounting for intersection
types, union types, and subtyping. The semantics interprets the type ω as the set universe, the → type as
a function space, the ∩ and ∪ types as set intersection and set union, respectively, and the subtype relation
6 as a subset operator.
Using the proof-as-types and terms-as-propositions paradigms, we extend the typed calculus previously
defined by the authors with a decidable subtyping relation and we show this calculus to be isomorphic to
the Barbanera-Dezani-Ciancaglini-de’Liguoro type assignment system.
A subtyping algorithm is presented and proved to be sound. Hindley gave a subtyping algorithm for
intersection types but, as far as we know, there is no system in the literature also including union types.

Keywords: Logics and Lambda calculus, Types and Subtypes.

1 Introduction

This paper is a contribution to the study of subtyping in presence of intersection

and union types and the role of such type system in logical investigations; it is a

natural follow up of the recent paper by the authors [DdLS16].

Intersection types were first introduced as a form of ad hoc polymorphism in

(pure) lambda-calculi à la Curry. The paper by Barendregt, Coppo, and Dezani

[BCDC83] is a classic reference, and Hindley [Hin84] gives a useful introduction and

bibliography. Union types were later introduced as a dual of intersection by Mac-

Queen, Plotkin, and Sethi [MPS86]: Barbanera, Dezani, and de’ Liguoro [BDCd95]

is a definitive reference. As intersection and union types had their classical de-

velopment for (undecidable) type assignment systems, many papers moved from

intersection and union type theories to (typed) lambda-calculi à la Church: the

programming language Forsythe, by Reynolds [Rey88,Rey96], is probably the first
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reference for intersection types, while Pierce’s dissertation combines also unions

and intersections [Pie91b,Pie91a]. The logical relation between type assignment

systems and typed systems featuring intersection and union types were studied in

[LR07,DL10,DdLS16].

Proof-functional connectives represent evidence as a “polymorphic” construc-

tion, that is, the same evidence can be used as a proof for different sentences. Pot-

tinger [Pot80] first introduced a conjunction, called strong conjunction ∩, requiring

more than the existence of constructions proving the left and the right hand side

of the conjuncts. According to Pottinger: “The intuitive meaning of ∩ can be ex-

plained by saying that to assert A∩B is to assert that one has a reason for asserting

A which is also a reason for asserting B”. This interpretation makes inhabitants of

A∩B as uniform evidence for both A and B. Later, Lopez-Escobar [LE85] presented

the first proof-functional logic with strong conjunction as a special case of ordinary

conjunction. Mints [Min89] presented a logical interpretation of strong conjunction

(a.k.a. intersection types) using realizers: the logical predicate rA∩B[M ] is true if

the pure lambda-term M is a realizer (also read as “M is a method to assess σ” )

for either the formula rA[M ] and rB[M ]. Inspired by this, Barbanera and Martini

tried to answer to the question of realizing other “proof-functional” connectives, like

strong implication, or Lopez-Escobar’s strong equivalence or provable type isomor-

phism of Bruce, Di Cosmo and Longo [BL85,BCL92]. Recently [DdLS16] extended

the logical interpretation with union types as another proof-functional operator,

the strong union ∪. Paraphrasing Pottinger’s point of view, we could say that the

intuitive meaning of ∪ is that if we have a reason to assert A (or B), then the same

reason will also assert A∪B. This interpretation makes inhabitants of (A∪B) ⊃ C
be uniform evidence for both A ⊃ C and B ⊃ C. Symmetrically to intersection, and

extending the Mints’ logical interpretation, the logical predicate rA∪B[M ] succeeds

if the pure lambda-term M is a realizer for either the formula rA[M ] or rB[M ].

1.1 Contributions.

This paper focus on the logical and algorithmic aspects of subtyping in presence of

union and intersection types: our interest is not only theoretical but also pragmatic

since it open the door to using those type operators in proof-assistants and logical

frameworks, like LF, or Coq, or Isabelle. We also inspect the relationship between

pure (à la Curry) and typed (à la Church) lambda-calculi and their corresponding

proof-functional logics as dictated by the well-known Curry-Howard [How80] corre-

spondence. We’ll present and explore the relationships between the following four

formal systems:

• Λ∩∪u6 , the type assignment system with intersection and union types for pure

lambda-calculus with subsumption rule and the type theory Ξ, as defined in

[BDCd95];

• Λ∩∪t6 , an extension of the type system with intersection and union types for the

typed lambda-calculus, as defined in [DL10], with subtyping as explicit coercions;

• L∩∪6 , an extension proof-functional logic L∩∪ of [DdLS16] with ad hoc predicates

for subtyping;

• NJ(β), a natural deduction system for derivations in first-order intuitionistic logic
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with untyped lambda-terms.

Judgements in these systems take the following four forms below. On the right-

hand sides of the turnstiles, M is an untyped lambda-term, ∆ is a simply-typed

lambda-term with strong conjunction, strong disjunction, and explicit coercions,

and σ is a simple type formed using →,∩, and ∪. The rσ[M ] are typing predicates

to be realized.

Λ∩∪u6 B, xι : τ ` M : σ

Λ∩∪t6 Γ
@
, xι @ ι : τ ` M @ ∆ : σ

L∩∪6 Γ, ι : τ ` ∆ : σ

NJ(β) GB, rτ [xι] ` rσ[M ]

Note that B (resp. Γ) is obtained from Γ
@

by erasing all the @ι (resp. “x@”), and

GB is obtained by B by “realizing” all the xι:τ .

Our first contribution is to extend the typed lambda-calculus Λ∩∪t of [DL10]

with explicit coercions, keeping decidability of type checking, and showing the iso-

morphism with the Λ∩∪u6 type assignment system of [BDCd95].

Our second contribution is to show that the extended L∩∪6 logic of subtyping

corresponds to a realizability logic, so proposing a complete analysis of the rela-

tionship between Curry-style and Church-style typing and the associated logic for

intersection, union, and subtyping.

Our third contribution is to present a decidable algorithm for subtyping in pres-

ence of intersection and union types. To our knowledge, this is the first subtyping

algorithm combining both union and intersection. The algorithm is conceived to

work for the minimal (sub)type theory Ξ (i.e. axioms 1 to 14, as presented in

[BDCd95]), the latter theory being compatible with a set-based interpretation of

→,∩,∪,6 with function space, set intersection, and set union, respectively.

1.2 Related Work

We shortly list the main research lines involving type (assignment) systems with

intersection, union and subtyping for (un)typed lambda-calculi, proof-functional

logics containing “strong-operators”, and realizability.

The formal investigation of soundness and completeness for a notion of realizabil-

ity was initiated by Lopez-Escobar [LE85] and subsequently refined by Mints [Min89].

Following our previous paper [DdLS16], it is Mints’ approach that we build on here.

Barbanera and Martini [BM94] studied three proof-functional operators, namely

the strong conjunction, the relevant implication (related with Meyer-Routley’s [MR72]

system B+), and the strong equivalence connective for double implication, relating

those connectives with a suitable type assignments system, a realizability semantics

and a completeness theorem.

Dezani-Ciancaglini, Ghilezan, and Venneri [DCGV97], investigated a Curry-

Howard interpretation of intersection and union types (for Combinatory Logic):

using the well-understood relation between combinatory logic and lambda-calculus,

they encode type-free lambda-terms in suitable combinatory logic formulas and then

3
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B `M : ω
(ω)

x:σ ∈ B
B ` x : σ

(V ar)

B `M : σ1 B `M : σ2

B `M : σ1 ∩ σ2
(∩I)

B `M : σ1 ∩ σ2 i = 1, 2

B `M : σi
(∩Ei)

B `M : σi i = 1, 2

B `M : σ1 ∪ σ2
(∪Ii)

B, x:σ1 `M : σ3

B, x:σ2 `M : σ3 B ` N : σ1 ∪ σ2

B `M [N/x] : σ3
(∪E)

Fig. 1. The Intersection and Union Type Assignment System Λ∩∪u [BDCd95] (main rules).

Γ
@
, xι@ι:σ1 `M@∆ : σ2

Γ
@` λxι.M@λι:σ1.∆ : σ1 → σ2

(→I)
Γ
@`M@∆ : σi i ∈ {1, 2}
Γ
@`M@ini ∆ : σ1 ∪ σ2

(∪Ii)

Γ
@`M@∆1 : σ1 Γ

@`M@∆2 : σ2

Γ
@`M@(∆1 ∩∆2) : σ1 ∩ σ2

(∩I)
Γ
@`M@∆ : σ1 ∩ σ2 i ∈ {1, 2}

Γ
@`M@pri ∆ : σi

(∩Ei)

Γ
@
, xι@ι:σ1 `M@∆1 : σ3 Γ

@
, xι@ι:σ2 `M@∆2 : σ3 Γ

@` N@∆3 : σ1 ∪ σ2

Γ
@`M [N/xι]@(λι:σ1.∆1 ∪ λι:σ2.∆2) ∆3 : σ3

(∪E)

Fig. 2. The Typed Calculus Λ∩∪t [DL10] (main rules).

type them using intersection and union types. This is a complementary approach

to the realizability-based one here and in [DdLS16].

Barbanera, Dezani-Ciancaglini, and de’Liguoro [BDCd95] introduced an un-

typed lambda-calculus Λ∩∪u6 with related type assignment system featuring intersec-

tion and union types, and a powerful subtyping relation. The previous work [DL10]

presented a typed calculus Λ∩∪t (without subtyping) that explored the relation-

ship between the proof-functional intersections and unions and the truth-functional

(strong) products and (strong) sums. In [DdLS16] we introduced the new notion of

essence o∆o of a typed lambda-term ∆, used to connect Λ∩∪t and Λ∩∪u . Specifically,

Γ
@`M@∆ : σ if and only if Γ ` ∆ : σ and o∆o =β M.

We proved the isomorphism between Λ∩∪t and Λ∩∪u , and we showed that L∩∪ can be

thought of as a proof-functional logic. The present paper extends all the systems

and logics of [DdLS16] and presents a comparative analysis of the (sub)type theories

Ξ and Π of [BDCd95]: this motivates the use of the (sub)type theory Ξ with their

natural correspondence with NJ(β).

2 System

The pseudo-syntax of σ, M , ∆, and the derived M@∆ are defined using the following

three syntactic categories:
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Γ, ι:σ1 ` ∆ : σ2

Γ ` λι:σ1.∆ : σ1 → σ2
(→I)

Γ ` ∆1 : σ1 → σ2 Γ ` ∆2 : σ1

Γ ` ∆1 ∆2 : σ2
(→E)

Γ ` ∆1 : σ1

Γ ` ∆2 : σ2 o∆1o =β o∆2o
Γ ` ∆1 ∩∆2 : σ1 ∩ σ2

(∩I)
Γ ` ∆ : σ1 ∩ σ2 i ∈ {1, 2}

Γ ` pri ∆ : σi
(∩Ei)

Γ ` ∆ : σi i ∈ {1, 2}
Γ ` ini ∆ : σ1 ∪ σ2

(∪Ii)

Γ, ι:σ1 ` ∆1 : σ3 o∆1o =β o∆2o
Γ, ι:σ2 ` ∆2 : σ3 Γ ` ∆3 : σ1 ∪ σ2

Γ ` (λι:σ1.∆1 ∪ λι:σ2.∆2) ∆3 : σ3
(∪E)

Fig. 3. The proof-functional logic L∩∪ (main rules).

σ 6 σ ∩ σ (1)
σ1 6 σ2 τ1 6 τ2

σ1 ∪ τ1 6 σ2 ∪ τ2
(8)

σ ∪ σ 6 σ
(2)

σ 6 τ τ 6 ρ
σ 6 ρ

(9)

i ∈ {1, 2}
σ1 ∩ σ2 6 σi

(3)
σ ∩ (τ ∪ ρ) 6 (σ ∩ τ) ∪ (σ ∩ ρ)

(10)

i ∈ {1, 2}
σi 6 σ1 ∪ σ2

(4)
(σ → τ) ∩ (σ → ρ) 6 σ → (τ ∩ ρ)

(11)

σ 6 ω
(5)

(σ → ρ) ∩ (τ → ρ) 6 (σ ∪ τ)→ ρ
(12)

σ 6 σ
(6)

ω 6 ω → ω
(13)

σ1 6 σ2 τ1 6 τ2

σ1 ∩ τ1 6 σ2 ∩ τ2
(7)

σ2 6 σ1 τ1 6 τ2

σ1 → τ1 6 σ2 → τ2
(14)

Fig. 4. The (sub)type theory Ξ.

B `M : σ σ 6 τ
B `M : τ

(6)
Γ
@`M@∆ : σ σ 6 τ

Γ
@`M@(τ)∆ : τ

(6) Γ ` ∆ : σ σ 6 τ

Γ ` (τ)∆ : σ
(6)

Fig. 5. Subsumption rule and Explicit Coercion Rules.

σ ::=ω | φ | σ → σ | σ ∩ σ | σ ∪ σ
M ::= x | λx.M |MM

∆ ::= ι | λι:σ.∆ | ∆ ∆ | ∆ ∩∆ | ∆ ∪∆ | pr1 ∆ | pr2 ∆ | in1 ∆ | in2 ∆ | (σ)∆

where φ denotes arbitrary constant types and ω denotes a special type that is

inhabited by all terms. The operators ∪ and ∩ are well-known to be associative and

commutative, so we’ll note ∪iσi (resp. ∩iσi) are shortcuts for σ1 ∪ . . . ∪ σi (resp.

σ1 ∩ . . . ∩ σi).
Figure 1 presents the main rules of the type assignment system of [BDCd95]:

note that the type inference rules are not syntax-directed. Figure 2 presents the

main rules of the typed calculus Λ∩∪t of [DL10]: note that this type system is com-

pletely syntax directed. Figure 3 presents the main rules of the proof-functional

5
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logic, as presented in [DdLS16], where the essence function is presented in Defini-

tion 2.1, showing the syntactic relation between type free and typed lambda-terms.

Definition 2.1 [Proof Essence]

The essence function between pure and typed lambda-terms is defined as follows:

oιo 4= xι

oλι:σ1.∆o 4= λxι.o∆o
o∆1 ∆2o 4= o∆1o o∆2o

o(λι:σ1.∆1 ∪ λι:σ2.∆2) ∆3o 4= o∆1o[o∆3o/xι] if o∆1o =β o∆2o
o∆1 ∩∆2o 4= o∆1o if o∆1o =β o∆2o
opri ∆o 4= o∆o
oini ∆o 4= o∆o
o(σ)∆o 4= o∆o

The logic L∩∪, introduced in [DdLS16] is a proof-functional logic, in the sense

of Pottinger [Pot80] and Lopez-Escobar [LE85]: formulas encode, using the Curry-

Howard isomorphism, derivations D : B ` M : σ in the type assignment system

Λ∩∪u which are, in turn, isomorphic to typed judgments Γ
@`M@∆ : σ of Λ∩∪t . The

next theorem recall the above properties: the key concept is the essence partial

map o−o. This is, to the best of our knowledge, the first attempt to interpret union,

intersection, and subtyping as explicit coercions as proof-functional connectives.

Theorem 2.2 (Equivalence)

(i) B `M : σ iff Γ
@`M@∆ : σ and o∆o =β M , where B is obtained by erasing all

the @ι in Γ
@
;

(ii) Γ
@` M@∆ : σ iff Γ ` ∆ : σ and o∆o =β M where Γ is obtained by erasing all

the x@ in Γ
@
;

(iii) B `M : σ iff Γ ` ∆ : σ and o∆o =β M , where B is obtained by substituting all

the ι with xι.

Proof. Using Theorem 10 of [DL10]. 2

It is worth noticing that if we drop the restriction concerning the “essence” in

rules (∩I) and (∪E) in the system L∩∪ and replace σ ∩ τ by σ × τ , and σ ∪ τ by

σ + τ then we get a simply typed lambda-calculus with product and sums, namely

a truth-functional intuitionistic propositional logic with implication, conjunction,

and disjunction in disguise.

The whole picture is now ready to be extended with the subtyping relation, as

introduced in [BCDC83] and extended in [BDCd95]. Subtyping is a preorder over

types, and it is written as σ 6 τ : we use the standard terminology of “(sub)type

theories” for any collection of inequalities between types satisfying natural closure

conditions. As such, the (sub)type theory, called Ξ in [BDCd95], is defined by the

subtyping axioms and inference rules defined in Figure 4. The theory Ξ suggests

the interpretation of ω as the set universe, of ∩ as the set intersection, of ∪ as the

6
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GΓ `NJ(β) ⊥
GΓ `NJ(β) A

(⊥)
A ∈ GΓ

GΓ `NJ(β) A
(Hyp)

GΓ, A `NJ(β) B

GΓ `NJ(β) A ⊃ B
(⊃I)

GΓ `NJ(β) A ⊃ B GΓ `NJ(β) A

GΓ `NJ(β) B
(⊃E)

GΓ `NJ(β) A GΓ `NJ(β) B

GΓ `NJ(β) A ∧B
(∧I)

GΓ `NJ(β) A1 ∧A2 i = 1, 2

GΓ `NJ(β) Ai
(∧Ei)

GΓ `NJ(β) Ai i = 1, 2

GΓ `NJ(β) A1 ∨A2
(∨Ii)

GΓ, A `NJ(β) C

GΓ, B `NJ(β) C GΓ `NJ(β) A ∨B
GΓ `NJ(β) C

(∨E)

GΓ `NJ(β) A

GΓ `NJ(β) ∀x.A
(∀I)

GΓ `NJ(β) ∀x.A
GΓ `NJ(β) A[M/x]

(∀E)

GΓ `NJ(β) A[M/x]

GΓ `NJ(β) ∃x.A
(∃I)

GΓ `NJ(β) ∃x.A GΓ, A `NJ(β) B

GΓ `NJ(β) B
(∃E)

GΓ `NJ(β) Pφ(M) M =βη N

GΓ `NJ(β) Pφ(N)
(βη)

GΓ `NJ(β) >
(>)

Fig. 6. The Logic NJ(β)

set union, and of 6 as a sound (but not complete) subset relation, respectively. In

the following, we write σ ∼ τ iff σ 6 τ and τ 6 σ. The astute reader will also notice

that distributivity of union over intersection and intersection over union, i.e.

σ ∪ (τ ∩ ρ) ∼ (σ ∪ τ) ∩ (σ ∪ ρ) and σ ∩ (τ ∪ ρ) ∼ (σ ∩ τ) ∪ (σ ∩ ρ)

are derivable (see, e.g. derivation in [BDCd95], page 9).

Once the subtyping preorder has been defined, a classical subsumption or an

explicit coercion rule, as shown in Figure 5, completes the presentation of the type

assignment Λ∩∪u6 , of the typed system Λ∩∪t6 , and of the logic L∩∪6 , respectively. We

sometimes write `6 for judgments using rules of Figure 5, if it is not clear from the

context.

Theorem 2.3 (Conservativity) The typed system Λ∩∪t6 and the logic L∩∪6 , both

obtained by extending with the (sub)type theory Ξ of Figure 4 and with explicit coer-

cions of Figure 5, preserve parallel subject reduction, Church-Rosser, strong normal-

ization, unicity of typing, decidability of type reconstruction and of type checking,

judgment decidability and isomorphism of typed-untyped derivations.

Proof. The proof proceeds by upgrading Theorem 2 of [DdLS16] with subtyping as

explicit coercions. Note that the extension of Theorem 2.2 also holds. 2
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3 Realizers

We start this section by recalling the logic NJ(β): by NJ we mean the natural

deduction presentation of the intuitionistic first-order predicate calculus [Pra65].

Derivations in NJ are trees of judgments G `NJ A, where G is a set of undischarged

assumptions, rather than trees of formulas as in Gentzen’s original formulation.

Definition 3.1 (Logic NJ(β))

The system NJ(β), extending NJ, is the natural deduction system for first-order

intuitionistic logic shown in Figure 6.

In [DdLS16], we provided a foundation for the proof-functional logic L∩∪ by

extending Mints’ provable realizability to cope with union types. More precisely,

we write rσ[M ] to denote a formula in NJ(β), realized by the pure lambda-term

M of type σ. Observe that M is “distilled” by applying the essence function to

the typed lambda-term ∆, which faithfully encodes the type assignment derivation

B ` o∆o : σ in Λ∩∪u : this enforces the proof-functional nature of L∩∪.

The following definition is a reminder of the notion of realizer, as first introduced

for intersection types by Mints [Min89], and extended by the authors in [DdLS16].

Definition 3.2 (Mints’ realizers in NJ(β))

Let Pφ(x) be a unary predicate for each atomic type φ. Then we define the predi-

cates rσ[x] for each type σ by induction over σ, as follows:

rφ[x] 4= Pφ(x) rσ1→σ2 [x] 4= ∀y.rσ1 [y] ⊃ rσ2 [x y]

rω[x] 4= > rσ1∪σ2 [x] 4= rσ1 [x] ∨ rσ2 [x]

rσ1∩σ2 [x] 4= rσ1 [x] ∧ rσ2 [x]

where ⊃ denotes implication, ∧ and ∨ are the logical connectives for conjunction

and disjunction respectively, that must be kept distinct from ∩ and ∪. Formulas

have the shape rσ[M ], whose intended meaning is that M is a method for σ in the

intersection-union type discipline with subtyping.

To prove soundness and completeness between L∩∪6 and NJ(β), we will make use

of a “bridge” system, a modification of Λ∩∪u6 , where Dom(B) is contains type-free

lambda-terms M instead of simple variables: note that a similar technique was used

in [BCDC83] (see Corollary 4.10 there) to prove the conservativity of Λ∩∪u6 over the

Simple Curry Type Assignment System.

Definition 3.3 (Large Type Assignment System `∗)

(i) A large context, denoted by B, is any arbitrary set of statements M :σ. To

emphasize the difference, ordinary contexts B are called small ;

(ii) Let `∗ denote the type assignment system Λ∩∪u6 of Figure 1 where all contexts

are large and the following rule is added:

B `∗ N : σ M =βη N

B `∗ M : σ
(Eqβη)

We define GB
4
= rσ1 [M1], . . . , rσn [Mn] and B4

= {M1:σ1, . . . ,Mn:σn}.

8
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The following lemma shows some properties of `∗: a natural conservativity

property and a subtyping property that cannot be proved in the type assignment

system of Figure 1.

Lemma 3.4 (Conservativity w.r.t. [BDCd95])

If B `6 M : σ, then for any N such that M =βη N , we have that B `∗ N : σ.

Conversely, if B `∗ N : σ, then there exists M such that M =βη N and B `6 M : σ.

Proof. If B `6 M : σ, then B `∗ M : σ, and for any M =βη N we can show

that B `∗ N : σ thanks to the rule (Eqβη). The other part of the proof is proved by

showing that the (Eqβη) rule can be safely be postponed at the end of the derivation

(see Lemma A.1 in the appendix for referees). 2

We can now state that the large type assignment system `∗ is sound and com-

plete w.r.t. Mints’ realizers in NJ(β).

Theorem 3.5 (`∗ versus NJ(β)) B `∗ M : σ iff GB `NJ(β) rσ[M ].

Proof. The complete proof given in the appendix for referees. 2

Informally speaking, rσ[M ] can be interpreted as “M is an element of the set

σ”, and the judgment σ1 6 σ2 in the (sub)type theory Ξ can be interpreted as

rσ1 [x] `NJ(β) rσ2 [x]. The next lemma relates the large system with the typed system

Λ∩∪u6 and the logic L∩∪6 as follows:

Lemma 3.6

(i) Γ
@`6 M@∆ : σ iff B `∗ N : σ and M =βη N where B is the @ι-erasing of Γ

@
;

(ii) Γ `6 ∆ : σ iff B `∗ M : σ and o∆o =β M where B is Γ where all occurrence of

ι are substituted with xι.

Proof. By Theorems 2.2 and 2.3, and Lemma 3.4. 2

As a simple consequence of Theorem 3.5 and Lemma 3.6, we can now state one

of the main results of this paper:

Theorem 3.7 (Soundness and Completeness of NJ(β) and L∩∪6 )

(i) If Γ `6 ∆ : σ then GΓ `NJ(β) rσ[o∆o].
(ii) If GΓ `NJ(β) rσ[M ] then there exists ∆ such that Γ `6 ∆ : σ and o∆o =βη M .

Remark 3.8

The type assignment system Λ∩∪u6 of [BDCd95] was based on the (sub)type theory

Ξ of Figure 4 (see Definition 3.6 of [BDCd95]): the paper also introduced a stronger

(sub)type theory, called Π, by adding the extra axiom

(15) P(σ)⇒ σ → τ ∪ ρ 6 (σ → ρ) ∪ (σ → ρ),

where P(σ) is true if σ syntactically corresponds to an Harrop formula. However, in

NJ(β), the judgment rσ→(τ∪ρ)[x] `NJ(β) r(σ→τ)∪(σ→ρ)[x] is not derivable because the

judgment A ⊃ (B ∨ C) `NJ(β) (A ⊃ B) ∨ (A ⊃ C) is not derivable in NJ. As such,

the (sub)type theory Π cannot be overlapped with an interpretation of (sub)types

9
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as (sub)sets, as the following example show. The identity function λx.x inhabits

the function set {a, b} → {a} ∪ {b} but, by axiom (15), it should also inhabits

{a, b} → {a} or {a, b} → {b}, which is clearly not the case.

4 Subtyping algorithm

The previous section showed that the proof-functional logic L∩∪6 is sound and com-

plete w.r.t. the logic NJ(β). The truth of the sequent “Γ `6 ∆ : σ”, complicates

its decidability because of the presence of the predicate σ 6 τ as a premise in rule

(6) of Figure 5: in fact, the subtype system is not an algorithm because of the

presence of reflexivity and transitivity rules that are not syntax-directed. The same

subtyping premise can affect the decidability of type checking of Λ∩∪t6 . This section

presents a decidable algorithm A for subtyping in the (sub)type theory Ξ: as far

as we know, this is the first attempt to study decidability of subtyping in presence

of union and intersection types. The algorithm A needs four decidable subroutines,

all implemented using term rewriting systems:

• R1, to simplify the shape of types containing the ω type: its complexity is linear;

• R2 (well-known), to transform a type in its conjunctive normal form, denoted by

CNF, i.e. types being, roughly, intersection of unions: its complexity is exponen-

tial;

• R3 (well-known), to transform a type in its disjunctive normal form, denoted by

DNF, i.e. types being, roughly, union of intersections: its complexity is exponen-

tial;

• R4, to transform a type in its arrow normal form, denoted by ANF, i.e. types

being, roughly, arrow types where all the domains are intersection of ANF and

all the codomains are union of ANF: its complexity is exponential.

Our algorithm A is proved to be sound w.r.t. the (sub)type theory Ξ. In what

follows we use the following useful shorthands:

∩i(∪jσi,j) 4= ∩1(∪1σ1,1 . . . ∪j σ1,j) . . . ∩i (∪1σi,1 . . . ∪j σi,j), and

∪i(∩jσi,j) 4= ∪1(∩1σ1,1 . . . ∩j σ1,j) . . . ∪i (∩1σi,1 . . . ∩j σi,j)
Those shorthands can also apply to unions of unions, intersections of intersections,

intersections of arrows, etc.

Definition 4.1 (Subroutine R1)

The term rewriting system R1 is defined as follows:

- ω ∩ σ and σ ∩ ω rewrite to σ;

- ω ∪ σ and σ ∪ ω rewrite to ω;

- σ → ω rewrites to ω.

It is easy to verify that R1 terminates and his complexity is linear.

The next definition recall the usual conjunctive/disjunctive normal form with

corresponding subroutines R2 and R3, and introduce the arrow normal form with

his corresponding subroutine R4.

10
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Definition 4.2 (Subroutines R2 and R3)

• A type is in conjunctive normal form (CNF) if it has the form ∩i(∪jσi,j), and all

the σi,j are either atomic types, arrow types, or ω.

• The term rewriting system R2 rewrites a type in its CNF; it is defined as follows:

- σ ∪ (τ ∩ ρ) rewrites to (σ ∪ τ) ∩ (σ ∪ ρ).

- (σ ∩ τ) ∪ ρ rewrites to (σ ∪ ρ) ∩ (τ ∪ ρ).

• A type is in disjunctive normal form (DNF) if it has the form ∪i(∩jσi,j), and all

the σi,j are either atomic types, arrow types, or ω.

• The term rewriting system R3 rewrites a type in its DNF; it is defined as follows:

- σ ∩ (τ ∪ ρ) rewrites to (σ ∩ τ) ∪ (σ ∩ ρ);

- (σ ∪ τ) ∩ ρ rewrites to (σ ∩ ρ) ∪ (τ ∪ ρ).

It is well documented in the literature that R2 and R3 terminate and that the

complexity of those algorithms is exponential.

Definition 4.3 (Subroutine R4)

• A type is in arrow normal form (ANF) if :

· it is an atomic type or ω;

· it is an arrow type in the form (∩iσi)→ (∪jτj), where the σi and τj are ANFs;

• The term rewriting system R4 rewrites an arrow type into an intersection of

ANF; it is defined as follows:

- σ → τ rewrites to R3(σ)→ R2(τ);

- ∪iσi → ∩hτh rewrites to ∩i(∩h(σi → τh)).

Since R2 and R3 terminate, also that R4 terminates and his complexity is

exponential.

Lemma 4.4 For all the term rewriting systems R1,2,3,4 we have that R(σ) ∼ σ.

Proof. Each rewriting rule rewrites a term into an equivalent (∼) term. 2

The next definition introduce the “preprocessing” of types necessary to feed

correctly the algorithm A.

Definition 4.5

• A type is in conjunctive-arrow normal form (CANF) if it is in CNF and all the

arrow type subterms are in ANF. The composition of the term rewriting systems

R2 ◦ R4 ◦ R1 rewrite a type into its CANF.

• A type is in disjunctive-arrow normal form (DANF) if it is in DNF and all the

arrow type subterms are in ANF. The composition of the term rewriting systems

R3 ◦ R4 ◦ R1 rewrite a type into its DANF.

4.1 The algorithm A

Our algorithm A accepts or rejects an σ 6 τ formula: in a nutshell the algorithm

A proceeds as follows: using R1, R2, R3 and R4, we first “preprocess” σ into a

DANF and τ into a CANF producing a (normalized) subtyping statement of the

shape ∪i(∩jσi,j) 6 ∩h(∪kτh,k), where all the σi,j , τh,k are in ANF; then we call A1.

11
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More precisely, A is composed by two mutually inductive functions, called A1 and

A2.

Definition 4.6 (Main function A1)

input: ∪i(∩jσi,j) 6 ∩h(∪kτh,k) where all the σi,j , τh,k are ANF; output: bool.

- if ∩h(∪kτh,k) is ω, then accept;

- if, for all i and h, there exists some j and some k, such that A2(σi,j 6 τh,k) is

true, then accept, else reject.

Definition 4.7 (Subtyping function A2)

input: σ 6 τ , where σ and τ 6≡ ω are ANFs; output: bool.

- Case ω 6 φ: reject;

- Case ω 6 σ → τ : reject;

- Case φ 6 φ′: accept if φ ≡ φ′, else reject;

- Case φ 6 σ → τ : reject;

- Case σ → τ 6 φ: reject;

- Case σ → τ 6 σ′ → τ ′: accept if A1(σ′ 6 σ) and A1(τ 6 τ ′), else reject.

Algorithms A1, and A2 are polynomial, but the preprocessing of σ 6 τ using

the subroutines R1,2,3,4 makes the whole exponential.

The following two technical lemmas are useful to prove soundness of the algo-

rithm A1.

Lemma 4.8

(i) σ ∪ τ 6 ρ⇐⇒ σ 6 ρ and τ 6 ρ

(ii) σ 6 τ ∩ ρ⇐⇒ σ 6 τ and σ 6 ρ

Proof. The two parts can be proved by examining the subtyping rules of the (sub)type

theory Ξ. 2

Lemma 4.9

If all the σi and τj are ANFs, then

(i) ∃j,∩iσi 6 τj =⇒ ∩iσi 6 ∪jτj
(ii) ∃i, σi 6 ∪τj =⇒ ∩iσi 6 ∪jτj

Proof. The two parts can be proved by induction on the subtyping rules of the

(sub)type theory Ξ using the ANF definition. 2

Theorem 4.10 (A1,A2’s Soundness)

(i) Let σ (resp. τ) be in DANF (resp. CANF). If A1(σ 6 τ) then σ 6 τ .

(ii) Let σ and τ 6≡ ω be in ANF. If A2(σ 6 τ) then σ 6 τ .

Proof. The proof proceeds by mutual induction, where base case is in proving part

(ii).

(i) By case analysis on the algorithm A1 using Lemmas 4.8 and 4.9 and part (ii);

(ii) By case analysis on the algorithm A2, and by looking at the subtyping rules.

12
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2

The completeness of the algorithm is proved in Theorem A.16 in the appendix

for referees.

5 Conclusions

We mention some future research directions.

Strong/Relevant Implication is another proof-functional connective: as well ex-

plained in [BM94], it can be viewed as a special case of implication “whose related

function space is the simplest one, namely the one containing only the identity

function”. Relevant implication is well-known in the literature, corresponding to

Meyer and Routley’s Minimal Relevant Logic B+ [MR72]. Following our parallelism

between type systems for lambda calculi à la Curry, à la Church, and logics, we

could conjecture that strong implication, denoted by ⊃r in the logic, by →r in the

type theory, and by λr in the typed lambda calculus, can lead to the following type

(assignment) rules, proof-functional logical inference, and Mints’ realizer in NJ(β),

respectively:

B ` I : σ → τ
B ` I : σ →r τ

Γ
@
, xι@ι:σ ` xι@∆ : τ

Γ
@` λxι.xι@λrι:σ.∆ : σ →r τ

Γ, ι:σ ` ∆ : τ o∆o =β ι

Γ ` λrι:σ.∆ : σ →r τ

GB ` rσ→τ [I]

GB ` rσ→rτ [I]

As showed in Remark 3.8, even a stronger (sub)type theory of Ξ (i.e. the theory

Π of [BDCd95]) cannot be overlapped with a sound and complete interpretation of

(sub)types as (sub)sets. We also conjecture that, by extending the proof-functional

logic with relevant implication (L∩∪6→r
), we could to achieve completeness, by com-

bining explicit coercions and relevant abstractions as the following derivation shows:

Γ ` ι : σ σ 6 τ

Γ ` (τ)ι : σ o(τ)ιo =β ι

Γ ` λrι:σ.(τ)ι : σ →t τ Γ ` ∆ : σ

Γ ` (λrι:σ.(τ)ι) ∆ : τ

Dependent Types / Logical Frameworks. Our aim is to build a small logical frame-

work, à la the Edinburgh Logical Framework [HHP93], featuring dependent types

and proof-functional logical connectives compatible with a set-based interpretation

of →,∩,∪ with function space, set intersection, and set union, respectively, where

Zermelo-Fraenkel axiom of subsets can be recovered by combination of →r and

6, as shown above. We conjecture that, in addition to the usual machinery deal-

ing with dependent types, the following typing rules can be good candidates for a

13
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proof-functional LF extension:

Γ, ι:σ ` ∆ : τ o∆o =β xi

Γ ` λrι:σ.∆ : Πrι:σ.τ
(ΠrI)

Γ ` ∆1 : σ1 Γ ` ∆2 : σ2 o∆1o =β o∆2o
Γ ` ∆1 ∩∆2 : σ1 ∩ σ2

(∩I)

Γ ` ∆1 : Πι′:σ1.σ3[in1 ι
′/ι] o∆1o =β o∆2o

Γ ` ∆2 : Πι′:σ2.σ3[in2 ι
′/ι] Γ ` ∆3 : σ1 ∪ σ2

Γ ` (∆1 ∪∆2) ∆3 : σ3[∆3/ι]
(∪E)

Studying the behavior of proof-functional connectives would be beneficial to exist-

ing interactive theorem provers such as Coq [Coq17] or Isabelle [Isa17], and de-

pendently typed programming languages such as Agda [Agd17], Beluga [Bel17],

Epigram [Epi17], or Idris [Idr17].

Prototype Implementation. We are current implementing a small kernel for a logical

framework featuring union and intersection types, as the Λ∩∪t calculus and the proof-

functional logic L∩∪ does. The actual type system also features an experimental

implementation of dependent-types à la LF following the above type rules, and of

a Read-Eval-Print-Loop (REPL). We will put our future efforts to integrate our

algorithm A to the type checker engine.

The aim of the prototype is to check the expressiveness of the proof-functional

nature of the logical engine in the sense that when the user must prove e.g. a strong

conjunction formula σ1 ∩ σ2 obtaining (mostly interactively) a witness ∆1 for σ1,

the prototype can “squeeze” the essence M of ∆1 to accelerate, and in some case

automatize, the construction of a witness ∆2 proof for the formula σ2 having the

same essence M of ∆1. Existing proof assistants could get some benefit if extended

with a proof-functional logic. We are also started an encoding of the proof-functional

operators of intersection and union in Coq. The actual state of the prototype can

be retrieved at https://github.com/cstolze/Bull.

Acknowledgment. We are grateful to Daniel Dougherty for useful suggestions

and a careful reading of the document.
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A Appendix (for Referees)

A.1 Proofs on the realizers system

Lemma A.1 (Postponement of the (Eqβη) rule)

If B `∗ M : σ, then there exists N such that B `6 N : σ of Λ∩∪u6 and M =βη N .

Proof. We proceed by induction on the derivation tree. As a representative case,

we get by induction hypothesis that:

B, x:σ1 `6 M1 : σ3 M =βη M1...
B, x:σ1 `∗ M : σ3

B, x:σ2 `6 M2 : σ3 M =βη M2...
B, x:σ2 `∗ M : σ3

B `6 N ′ : σ1 ∪ σ2 N =βη N
′

...
B `∗ N : σ1 ∪ σ2

B `∗ M [N/x] : σ3
(∪E)

Using the Church-Rosser property on the Gross-Knuth parallel reduction (as

defined in [Bar84], 13.2.7), we know that there is some M ′ such that M1 and M2

reduce in parallel to M ′. As a consequence, we have that using subject (parallel)

reduction of Λ∩∪u6 , we get B, x:σ1 `6 M ′ : σ3 and B, x:σ2 `6 M ′ : σ3, and therefore

by (∪E) we get B `6 M ′[N ′/x] : σ3 and M ′[N ′/x] =βη M [N/x], as desired. 2

Lemma A.2 (Substitution)

If B, x:σ `∗ M : τ and B `∗ N : σ, then B `∗ M [N/x] : τ

Proof. By induction on the derivation tree. 2

As a step towards the proof of Theorem 3.5, consider the following new elimination

rule for the large type assignment system:

B, N :σ1 `∗ M : σ3 B, N :σ2 `∗ M : σ3 B `∗ N : σ1 ∪ σ2

B `∗ M : σ3
(∪E∗)

This rule is an admissible rule, as the following lemma states:

Lemma A.3 The rule (∪E∗) is admissible.

Proof. Let M and N such that N does not appears in M . We suppose we have a

derivation tree D for B, N :σ1 `∗ M [N/x] : σ3, a derivation tree D′ for B, N :σ2 `∗
M [N/x] : σ3 and a derivation tree D′′ for B `∗ N : σ1 ∪ σ2. We have to show that

B `∗ M [N/x] : σ3.

Let S = {Di}16i6n (resp S′ = {D′i}16j6n′) be the set of all the minimal (in

the sense of tree inclusion) subtrees of D (resp. D′) whose goal has the shape

B, N :σ1, Bi `∗ N : τi (resp. B, N :σ2, B
′
j `∗ N : τ ′j) for some Bi, τi (resp. B′j,

τ ′j). Note that S and S′ may be empty, and that Bi and B′i are small bases. In the

rest of the proof, Bi, B
′
j, τi and τ ′i will refer to the corresponding bases and types

in the Di and D′i derivation trees. Let τ (resp. τ ′) the intersection of all the τi and

σ1 (resp. τ ′i and σ2). It is clear that, for any i and j, τ 6 τi and τ ′ 6 τ ′j. Notice

that none of the free variable of N appears in any of the Bi or B′i, therefore if τi
(resp. τ ′j) is not σ1 (resp. σ2), then we have that B `∗ N : τi (resp. B `∗ N : τ ′j).

Without loss of generality, we can assume that σ1 is one of the τi and that σ2 is

one of the τ ′j. We construct a derivation of B `∗ M [N/x] : σ3 ending by:
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B, x:τ `∗ M : σ3 B, x:τ ′ `∗ M : σ3 B `∗ N : τ ∪ τ ′

B `∗ M [N/x] : σ3
(∪E)

We now have to prove that:

• B, x:τ `∗ M : σ3: we modify D by replacing N by x and by replacing all the

Di ∈ S subtrees by:

B, Bi, x:τ `∗ x:τ
(Var)

τ 6 τi
B, Bi, x:τ `∗ x:τi

(6)

• B, x:τ ′ `∗ M : σ3: we proceed in a similar way;

• B `∗ N : τ ∪ τ ′: by distributing the intersection over the union in τ ∪ τ ′, we can

show that

τ ∪ τ ′ ∼ (τ1 ∪ τ ′1) ∩ (τ1 ∪ τ ′2) ∩ . . . ∩ (τ1 ∪ τ ′n′) ∩ (τ2 ∪ τ ′1) ∩ . . . ∩ (τn ∪ τ ′n′)

We now have to show that:

· for any i, j, B `∗ N : τi ∪ τ ′j, where τi 6≡ σ1: obtained since B `∗ N : τi;

· B `∗ N : τi ∪ τ ′j, where τ ′j 6≡ σ2: obtained since B `∗ N : τ ′j;

· B `∗ N : σ1 ∪ σ2: by the derivation tree D′′.
2

Lemma A.4 If σ 6 τ , then we can derive x:σ `∗ x:τ without the (6) rule.

Proof. By induction on the subtyping rules. 2

Lemma A.5 (Swapping)

In the large type assignment system `∗, the rules (6) and (∪E) can be safely

replaced by the rule (∪E∗).

Proof.

• (6) rule. If σ 6 τ , then by Lemma A.4, for any B, we have that B, x:σ `∗ x : τ .

Then, by Lemma A.2, if B `∗ M : σ, then we have that B `∗ M : τ .

• (∪E) rule. By hypothesis, we have that B, N :σ1, x:σ1 `∗ M : σ3 and B, N :σ1, x:σ2 `∗
M : σ3, therefore, using the Substitution Lemma A.2 we have that B, N :σ1 `∗
M [N/x] : σ3 and B, N :σ2 `∗ M [N/x] : σ3. We conclude by using (∪E∗).

2

Thanks to Lemma A.5, we can now consider that, in `∗, rules (6) and (∪E) are

replaced by the rule (∪E∗).

Lemma A.6 If B `∗ M : σ, then GB `NJ(β) rσ[M ].

Proof. By induction on the derivation tree. 2

Lemma A.7 If GB `NJ(β) rσ[M ], then B `∗ M : σ.

Proof. Recall that NJ(β) is a particular case of systems called I(S) in [Pra71],

which enjoys the property of being strongly normalizable. The normal form of a
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derivation, called “fully normal derivation” by Prawitz, is split into branches that

contain a topmost “analytical part” consisting of elimination rules, an intermedi-

ate “minimum part” consisting of rules of the Post system and (⊥), and a final

“synthetical part” (ending with the very conclusion of the branch) only consisting

of introduction rules. This implies the subformula property. Note that the major

premise of the elimination rules contains a subformula of some assumption.

We proceed by induction on the fully-normal derivation of GB ` rσ[M ]. As GB

does not contain the symbol ⊥ or ∃, the fully-normal derivation cannot contain the

rules (⊥) or (∃E). It also cannot contain the rule (∃I).

It is clear that the rules (Hyp), (∧I), (∧Ei), (∨Ii), (∨E), (βη), (>) of Figure 6 are

respectively translated into the rules (Var), (∩I), (∩Ei), (∪Ii), (∪E∗), (Eqβη), (ω) of

`∗.
From the Definition 3.2 of the Mints’ realizers, we can verify that, in the as-

sumptions, an implication is always enclosed by a ∀ quantifier, and reciprocally, a

∀ quantifier always encloses an implication.

Therefore, we can verify that if the (∀I) is used in the synthetical part, then the

conclusion has the shape GB ` ∀y.rσ1 [y] ⊃ rσ2 [M y]. The rule above cannot be an

elimination rule. Indeed, from the shape of the assumptions this elimination rule

would be (∀E), which is absurd because the tree is fully normalized. Therefore the

derivation tree ends necessarily by:

GB, rσ1 [y] ` rσ2 [M y]

GB ` rσ1 [y] ⊃ rσ2 [M y]
(⊃ I)

GB ` ∀y.rσ1 [y] ⊃ rσ2 [M y]
(∀I)

This part of the tree can be translated into:

B, y:σ1 `∗ My : σ2

B `∗ λy.My : σ1 → σ2
(→ I)

B `∗ M : σ1 → σ2
(Eqβη)

If the (⊃ E) rule is used in the derivation tree, then the major premise uses an

elimination rule (because the tree is fully normalized), and this rule is necessarily

(∀E) (because of the shape of the assumptions). For the same reason, we also know

that the conclusion has necessarily the shape GB `NJ(β) rσ2 [M N ]. Therefore the

derivation tree ends by:

GB `NJ(β) ∀y.rσ1 [y] ⊃ rσ2 [M y]

GB `NJ(β) rσ1 [N ] ⊃ rσ2 [M N ]
(∀E)

GB `NJ(β) rσ1 [N ]

GB `NJ(β) rσ2 [M N ]
(⊃E)

This part of the tree can be translated into the (→ E) rule. 2

Finally, Theorem 3.5 is deducible from Lemmas A.6 and A.7.

A.2 Proofs on the subtyping algorithm

Definition A.8

18



Liquori and Stolze

(i) L>
ω is the least set such that:

• ω ∈ L>
ω ;

• ∀σ, τ ∈ L>
ω we have that σ ∩ τ, τ ∩ σ ∈ L>

ω ;
• ∀σ ∈ L>

ω , ∀τ we have that σ ∪ τ, τ ∪ σ ∈ L>
ω ;

• ∀τ ∈ L>
ω ,∀σ we have that σ → τ ∈ L>

ω .

(ii) For any atomic type φ, L>
φ is the least set such that:

• φ ∈ L>
φ ;

• ∀σ, τ ∈ L>
φ we have that σ ∩ τ, τ ∩ σ ∈ L>

φ ;

• ∀σ ∈ L>
φ , ∀τ we have that σ ∪ τ, τ ∪ σ ∈ L>

φ ;

• ∀σ ∈ L>
ω we have that σ ∈ L>

φ .

(iii) For any arrow type σ → τ , L>
σ→τ is the least set such that:

• ∀σ′, τ ′ such that σ′ 6 σ and τ 6 τ ′, we have that σ′ → τ ′ ∈ L>
σ→τ ;

• ∀σ′, τ ′ ∈ L>
σ→τ we have that σ′ ∩ τ ′, σ′ ∩ τ ′ ∈ L>

σ→τ ;
• ∀σ′ ∈ L>

σ→τ , ∀τ ′ we have that σ′ ∪ τ ′, τ ′ ∪ σ′ ∈ L>
σ→τ ;

• ∀σ′ ∈ L>
ω we have that σ′ ∈ L>

σ→τ .

(iv) For any intersection of types ∩iσi such that the σi are either atomic types,

arrow types, or ω, L>
∩iσi is the least set such that:

• ∀i, L>
σi ⊆ L

>
∩iσi

• ∀σ′, τ ′ ∈ L>
∩iσi we have that σ′ ∩ τ ′, σ′ ∩ τ ′ ∈ L>

∩iσi ;
• ∀σ′ ∈ L>

∩iσi ,∀τ
′ we have that σ′ ∪ τ ′, τ ′ ∪ σ′ ∈ L>

∩iσi ;
• ∀σ → τ, σ → ρ ∈ L>

∩iσi we have that L>
σ→(τ∩ρ) ⊆ L

>
∩iσi

• ∀σ → ρ, τ → ρ ∈ L>
∩iσi we have that L>

(σ∪τ)→τ ⊆ L
>
∩iσi

(v) L6
ω is the set of all types

(vi) For any atomic type φ, L6
φ is the least set such that:

• φ ∈ L6
φ

• ∀σ ∈ L6
φ , ∀τ we have that σ ∩ τ, τ ∩ σ ∈ L6

φ

• ∀σ, τ ∈ L6
φ we have that σ ∪ τ, τ ∪ σ ∈ L6

φ

(vii) For any σ, τ such that ω 6 τ (ie. ω 6 σ → τ), L6
σ→τ is the set of all types;

(viii) For any ∩iσi,∪jτj ,∪kρk such that all the σi, τj , ρk are ANFs and ω 66 ∪jτj , we

define by mutual induction the sets L6
∩iσi→∪jτj and L6

∪kρk :

• ∀k, L6
ρk
⊆ L6

∪kρk
• ∀σ ∈ L6

∪kρk ,∀τ we have that σ ∩ τ, τ ∩ σ ∈ L6
∪kρk

• ∀σ, τ ∈ L6
∪kρk we have that σ ∪ τ, τ ∪ σ ∈ L6

∪kρk
• ∀σ ∈ L>

∩iσi ,∀τ ∈ L
6
∪jτj we have that σ → τ ∈ L6

∩iσi→∪jτj
• ∀σ ∈ L6

∩iσi→∪jτj ,∀τ we have that σ ∩ τ, τ ∩ σ ∈ L6
∩iσi→∪jτj

• ∀σ, τ ∈ L6
∩iσi→∪jτj we have that σ ∪ τ, τ ∪ σ ∈ L6

∩iσi→∪jτj

Lemma A.9

For any σ such that L>
σ is defined, we have:

(i) τ ∈ L>
σ ⇐⇒ σ 6 τ ;

(ii) σ 6 τ ∪ ρ⇐⇒ σ 6 τ or σ 6 ρ.
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Proof. (ii) is deducible from (i) by looking at the construction rules of L>
σ , so we

only have to prove (i).

• By induction on the construction rules of L>
ω , for any σ ∈ L>

ω , we have that

ω 6 σ. For the same reasons, if σ ∈ L>
φ , we have that φ 6 σ, if σ′ ∈ L>

σ→τ , we

have that σ → τ 6 σ′, if σ ∈ L>
∪iσi, we have that ∪iσi 6 σ;

• We prove by induction on the subtyping rules of the (sub)type theory Ξ, that for

any σ, τ such that σ 6 τ and σ ∈ L>
ω , we have that τ ∈ L>

ω . Some cases of the

inductive proof need a case analysis on the construction rules of L>
ω . Therefore,

if ω 6 τ , then τ ∈ L>
ω ;

• For any σ, τ such that σ 6 τ and σ ∈ L>
φ , we have two cases:

· If ω 6 σ, then, as L>
ω ⊆ L

>
φ , we now that τ ∈ L>

ω , so it is clear that τ ∈ L>
φ ;

· If ω 66 σ, we prove by induction on the subtyping rules of the (sub)type theory

Ξ that τ ∈ L>
ω .

Therefore, if φ 6 τ , then τ ∈ L>
φ ;

• For any σ′, τ ′ such that σ′ 6 τ ′ and σ′ ∈ L>
σ→τ , we have two cases:

· If ω 6 σ′, then it is clear that τ ′ ∈ L>
σ→τ ;

· If ω 66 σ′, we prove by induction on the subtyping rules of the (sub)type theory

Ξ that τ ′ ∈ L>
σ→τ . Notice that, for rules (12) and (13), we need to use Lemma

4.8. For instance, in rule (12), we suppose σ′ ≡ (σ1 → τ1)∩ (σ1 → τ2) ∈ L>
σ→τ .

From the construction rules of L>
σ→τ , we know that both σ1 → τ1 ∈ L>

σ→τ and

σ1 → τ2 ∈ L>
σ→τ . These types cannot be both in L>

ω , because it would be contrary

to the supposition ω 66 σ′. From the construction rules of L>
σ→τ , we know that

both τ 6 τ1 and τ 6 τ2, so by Lemma 4.8 we get τ 6 τ1∩ τ2. Moreover, σ1 6 σ.

Therefore σ1 → (τ1 ∩ τ2) ∈ L>
σ→τ .

As σ → τ ∈ L>
σ→τ , we conclude that, if σ → τ 6 τ ′, then τ ′ ∈ L>

σ→τ .

• We prove by induction on the subtyping rules of the (sub)type theory Ξ that for

any σ, τ such that σ 6 τ and σ ∈ L>
∩iσi, we have that τ ∈ L>

∩iσi. Moreover,

∩iσi ∈ L>
∩iσi. Therefore, if ∩iσi 6 τ , then τ ∈ L>

∩iσi.

2

Corollary A.10 If σ → τ 6 σ′ → τ ′ and ω 66 τ ′, then σ′ 6 σ and τ 6 τ ′.

Proof. According to the construction rules of L>
ω , σ′ → τ ′ 6∈ L>

ω . Therefore, by

looking at the definition of L>
σ→τ , we can say that σ′ 6 σ and τ 6 τ ′. 2

Lemma A.11 If σ ∼ ω, then R1 rewrites σ as ω.

Proof. Since σ ∼ ω, we have that σ ∈ L>
ω . The proof proceeds by induction on σ.2

Lemma A.12

For any τ such that L6
τ is defined, we have:

(i) σ ∈ L6
τ ⇐⇒ σ 6 τ ;

(ii) σ ∩ ρ 6 τ ⇐⇒ σ 6 τ or ρ 6 τ .

Proof. (ii) is deducible from (i) by looking at the construction rules of L6
σ , so we

only have to prove (i).
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• By induction on the construction rules of L6
φ , if σ ∈ L6

φ , we have that σ 6 φ.

For the same reasons, if σ ∈ L6
∩iσi→∪jτj , we have that σ 6 ∩iσi → ∪jτj , and if

σ ∈ L6
∪iσi , we have that σ 6 ∪iσi;

• We prove by induction on the subtyping rules of the (sub)type theory Ξ that for

any σ, τ such that τ 6 σ and τ ∈ L6
φ , we have that σ ∈ L6

φ . Therefore, if σ 6 φ,

then σ ∈ L6
φ ;

• For L6
ω and L6

σ→τ where ω 6 τ , the proof is trivial;

• We notice that ∪kρk ∈ L6
∪kρk and ∩iσi → ∪jτj ∈ L6

∩iσi→∪jτj ;

• We note P1 the proposition “for any union of ANFs ∪kρk, for any σ, τ , such that

σ 6 τ and τ ∈ L6
∪kρk we have that σ ∈ L6

∪kρk”, and P2 the proposition “for any

ANF ∩isi → ∪jτj , for any σ, τ , such that σ 6 τ and τ ∈ L6
∩isi→∪jτj we have that

σ ∈ L6
∩isi→∪jτj”. We prove by induction on the subtyping rules of the (sub)type

theory Ξ that:

· P1 =⇒ P2

· P2 =⇒ P1

• We prove by mutual induction on the definitions of L6
∩isi→∪jτj and L6

∪kτk that P1

and P2 hold. The base case is P ′1: “for any union of ANFs (excluding arrow-types)

∪kρk, for any σ, τ , such that σ 6 τ and τ ∈ L6
∪kρk we have that σ ∈ L6

∪kρk”. P ′1
is provable by induction on the subtyping rules of the (sub)type theory Ξ.

2

Corollary A.13 If all the σi and τi are ANFs, then ∩iσi 6 ∪jτj ⇐⇒ ∃i, j, σi 6 τj.

Proof. If ∃i, j, σi 6 τj , it is clear that ∩16i6mσi 6 ∪16j6nτj . Reciprocally, we

proceed by strong recurrence on m+ n.

• If m = 1 and n = 1, then it is clear that σ1 6 τ1;

• Ifm = 1 and n > 1, then, by Lemma A.12, either ∩16i6bm
2
cσi 6 τ1, or ∩bm

2
c+16i6mσi 6

τ1;

• If m > 1 and n > 1, then, by Lemma A.9, either ∩iσi 6 ∩16j6bn
2
cτj , or ∩iσi 6

∩bn
2
c+16j6nτj .

2

Lemma A.14

• R2 ◦ R1 = R1 ◦ R2

• R3 ◦ R1 = R1 ◦ R3

• R4 ◦ R1 = R1 ◦ R4 ◦ R1

Proof. Merging R1 and R2 (resp. R3) is strongly normalizing, and all the critical

pairs are locally confluent, so according to Newman’s lemma, we get a confluent

abstract rewriting system. Therefore, R2 ◦R1 = R1 ◦R2 (resp. R3 ◦R1 = R1 ◦R3).

For any rewriting rule R in R4, we have that R ◦R1 = R1 ◦ R ◦ R1:

• R1(σ → τ) is R1(σ) → R1(τ), which then rewrites, by the first rule of R4, to

R3 ◦ R1(σ)→ R2 ◦ R1(τ), which is equivalent to R1(R3 ◦ R1(σ)→ R2 ◦ R1(τ));

• Let (∪jσ′j → ∩kτ ′k) be R1(∪iσi → ∩hτh), which then rewrites, by the second rule
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of R4, to ∩j(∩k(σ′j → τ ′k)). All the σ′j and τ ′k are already normalized by R1, so

the whole expression is already normalized by R1.

By composing these rewriting rules, we see that R4 ◦ R1 = R1 ◦ R4 ◦ R1. 2

Corollary A.15

• R2 ◦ R4 ◦ R1 = R1 ◦ R2 ◦ R4 ◦ R1

• R3 ◦ R4 ◦ R1 = R1 ◦ R3 ◦ R4 ◦ R1

Proof. Immediate from Lemma A.14. 2

Theorem A.16 (A1,A2’s Completeness)

(i) For any type σ′, τ ′ such that σ′ 6 τ ′, let ∪i(∩jσi,j) ≡ R3 ◦ R4 ◦ R1(σ′) and

∩h(∪kτh,k) ≡ R2 ◦ R4 ◦ R1(τ ′). We have that A1(∪i(∩jσi,j) 6 ∩h(∪kτh,k)).
(ii) Let σ and τ 6∼ ω be ANFs. If σ 6 τ then A2(R1(σ) 6 R1(τ)).

Proof. We know by Lemma 4.4 that, as σ′ 6 τ ′, ∪i(∩jσi,j) 6 ∪j ∩h (∪kτh,k). The

proof proceeds by mutual induction.

(i) For (i), if any of the τh,k is equivalent to ω, then ∪kτh,k is equivalent to ω, then

by Lemma A.11, ∪kτh,k has been rewritten into ω. As we suppose τh,k has not

been erased by R1, it means that ∩h(∪kτh,k) ≡ ω. The algorithm is accepting,

so we can conclude.

On the other hand, we know by Corollary A.15 that R1(σi,j) = σi,j and

R1(τh,k) = τh,k, so if none of the τh,k are equivalent to ω, we can safely call

A2(σi,j , τh,k). Moreover, we know by Lemmas 4.8 and A.13, that for all i

and h, there exists some j and some k, such that σi,j 6 τh,k. As the induction

hypothesis states that A2 can decide subtyping for any of the possible σi,j 6 τh,k,

we can conclude;

(ii) For (ii), we proceed by case analysis on the algorithm A2, and by looking at

the subtyping rules.

- Case ω 6 τ : by hypothesis, ω 66 τ , so this case is impossible;

- Case φ 6 φ′: according to Lemma A.9, the only atomic variable φ′′ such that

φ 6 φ′′ is φ itself;

- Case σ → τ 6 φ: impossible by inspecting L6
φ ;

- Case φ 6 σ → τ : by inspecting L>
φ , we have φ 6 σ → τ iff σ → τ ∼ ω.

However, this is contrary to the hypothesis σ → τ 6∼ ω. This case is therefore

impossible;

- Case σ → τ 6 σ′ → τ ′: we know that τ ′ 6∼ ω, therefore, by Corollary A.10,

τ 6 τ ′, and σ′ 6 σ. We know that σ, σ′, τ, τ ′ have already been rewritten

by R1, and that they already are in CANF or DANF, therefore it is no need

to preprocess them through R2 ◦ R4 ◦ R1, or R3 ◦ R4 ◦ R1. By induction

hypothesis, A1 decides that σ′ 6 σ and τ 6 τ ′, so we can conclude.

2
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