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The study of the dynamic properties of beam structures is extremely important for proper structural design. This present paper
deals with the free in-plane vibrations of a system of two orthogonal beam members with an internal elastic hinge. The system
is clamped at one end and is elastically connected at the other. Vibrations are analyzed for different boundary conditions at the
elastically connected end, including classical conditions such as clamped, simply supported, and free. The beam system is assumed
to behave according to the Bernoulli-Euler theory. The governing equations of motion of the structural system in free bending
vibration are derived using Hamilton’s principle. The exact expression for natural frequencies is obtained using the calculus of
variations technique and the method of separation of variables. In the frequency analysis, special attention is paid to the influence
of the flexibility and location of the elastic hinge. Results are very similar with those obtained using the finite element method, with
values of particular cases of the model available in the literature, and with measurements in an experimental device.

1. Introduction

The study of the dynamic properties of beam systems is very
important in structural design as they are the cornerstone for
many resistant structures.

The issue is relevant virtually in all fields of engineering:
structures composed of beams can resist by virtue of its geom-
etry. Such structures can be found from large scale, such as
bridges and buildings located in seismically active regions to
microbeam systems used in modern electronic equipment
which is subject to vibration environment.

As Laura and his coworkers pointed out [1], many excel-
lent books and technical papers deal with vibrating beam sys-
tems, including [2–6].

Many researchers have analyzed the vibration of beam
systems. Reference [1] dealt with the determination of the
fundamental frequency of vibration of a frame elastically
restrained against translation and rotation at the ends, car-
rying concentrated masses. Reference [7] proposed a hybrid
analytical/numerical method to do dynamic analysis of
planar serial-frame structures. Reference [8] presented

an elastic- and rigid-combined beam element to determine
the dynamic characteristics of a two-dimensional frame com-
posed of any number of beam segments. In his paper, Mei [6]
considered the vibration inmultistory planar beam structures
from the wave vibration standpoint. Reference [9] analyzed
in-plane vibrations of portal frameswith elastically restrained
ends. An approximate solution is obtained bymeans of a vari-
ational method.

In the particular case of L-beam structures, early studies
have been done by [10–12]. In 2003, [13] extended the pre-
vious papers [12] by relaxing the restrictions on the motion
of the open frame. In 2005, [14] determined natural fre-
quencies and mode shapes of elastically restrained L-beams.
They applied the separation of variables method for the
determination of the exact eigenfrequencies andmode shapes
and calculated the eigenvalues numerically by applying the
Newton method strategy to the corresponding frequency
equation. Reference [15] used a formulation by the Rayleigh-
Ritz method together with the introduction of artificial linear
and torsional springs for computing the natural frequencies
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and modes for the in-plane vibrations of complex planar
beam structures.

The presence of an internal hinge in beams has been
treated in several papers including [16–22].Here, we dealwith
the vibration of L-beams structures assuming an internal
hinge in different positions of the structural system.

The two parts of the L-shaped geometry are joined at right
angle, with the end of one of them clamped and the end of
the other elastically restrained. Figure 1 depicts the structure
under study.

Classical structuralmodels do not consider the properties
of the connection stiffness, because they are based only on
models with pinned or rigid joints. Many authors have stud-
ied structures with flexibly connectedmembers as it is known
that the behavior of the connection plays an important role
in analysis and design. Reference [23] presented a computer-
based method for geometrically nonlinear beam system with
semirigid beam-to-column connections. Reference [24] stud-
ied wooden framed structures; they considered that mechan-
ical connections are recognized as extremely important ele-
ments in the aspect of strength and structural safety. Refer-
ence [25] studied steel frames andobserved that the interstory
shears generally increase when the connections stiffness is
taken into account. As known, ideal supports used in many
structural models do not fit exactly real supports.

In the current presentation it is assumed that the beams
are adequately modeled using Euler-Bernoulli theory, so that
the effects of shear deformation and rotatory inertia are
considered to be small, and they are neglected in the analysis.
The cross sections of beam elements have double symmetry
(the shear centre and centroid are coincident), so it can be
assumed that there is no coupling between bending displace-
ments and torsional rotations.

The beam system is modeled in Mathematica code [26]
using themethod of separation of variables to obtain the exact
values of the natural frequency coefficients.

Finally, numerical results are shown for slender beam
systems by considering the effects of different stiffness of
the elastic connections. A comparison is made with results
obtained by the authors with the finite element method, [27]
and with values available in the literature. In addition, some
particular cases are also compared with the experimental
results of a specially constructed device.

2. Theory

Amore realistic model of an L-geometry beam system is pre-
sented to analyze the natural vibration problem.The structure
under study has elastic restrains at F and a clamped end H as
it is shown in Figure 1, with (𝛼

1
+𝛼
3
= 𝜋/2). It is assumed that

the elastic internal hinge at P can be located in different posi-
tions.The structure has three beammembers: FO beam, with
length 𝑙

1
; OP beam, with length 𝑙

2
; and PH beam, with length

𝑙
3
. Each of themhas uniformproperties throughout its length.

The influence of the type of connection between beam-
elements of the structural system and elastic conditions on
the outer edge F is considered in the study. The external end
H has a classical clamped condition, while the external end F
is supported by two translational springs of stiffness 𝑡
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Figure 1: Beam system structure.

and a rotational spring of stiffness 𝑟
𝑧
, Figure 2(a). At point

P, there is an internal hinge, elastically restrained against
rotation between beams 2, OP, and 3, PH; this semirigid
connection is materialized by a rotational spring of stiffness
𝑟
𝑚
, Figure 2(b).
The flexural rigidity, the mass density, the length, and the

area of the cross section of each beam are 𝐸
𝑖
𝐼
𝑖
, 𝜌
𝑖
, 𝑙
𝑖
, and 𝐴

𝑖
,

with 𝑖 = 1, 2, 3.
Three coordinate systems are located as shown in Figure 1.

Respectively, each coordinate origin is at the point F, O, or P.
At abscissa 𝑥

𝑖
(0 ≤ 𝑥

𝑖
≤ 𝑙
𝑖
) and at any time 𝑡:𝑤

𝑖
is the flexural

displacement in the transverse direction of the beam’s neutral
axis, 𝜃

𝑖
= 𝜕𝑤
𝑖
/𝜕𝑥
𝑖
is the section rotation, and 𝑢

𝑖
is the axial

displacement. The deformation of a beam in the 𝑥 direction
is not taken into account.The beams are considered infinitely
rigid in the 𝑥 direction.

The sign convention used for the positive shear force spins
an element clockwise (up on the left and down on the right).
Likewise the normal convention for a positive bending
moment elongates the reference fiber of the beam indicated
by the dotted line. Figure 3 shows the sign convention to be
employed.

For free vibration, the bending moment and the shear
force expressions are
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At time 𝑡, the kinetic energy of the beams is given by
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(2)

The last term of the kinetic energy expression is due to the
rigid body translation of beam 1 of length 𝑙

1
. Due to the

assumption of infinity axial rigidity, 𝜕𝑢
1
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Figure 2: (a) Elastic boundary conditions at end F; (b) elastic internal hinge at joint P.

On the other hand, the potential energy of themechanical
system is given by

𝑈
∗
=

1

2

3

∑

𝑖=1

[

[

∫

𝑙𝑖

0

𝐸
𝑖
𝐼
𝑖
(

𝜕
2
𝑤
𝑖

𝜕𝑥
2

𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨(𝑥𝑖 ,𝑡)

)

2

𝑑𝑥
𝑖
]

]

+

1

2

𝑟
𝑚
(

𝜕𝑤
2

𝜕𝑥
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨(𝑙2 ,𝑡)

−

𝜕𝑤
3

𝜕𝑥
3

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨(0,𝑡)

)

2

+

1

2

𝑟
𝑧
(

𝜕𝑤
1

𝜕𝑥
1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨(0,𝑡)

)

2

+

1

2

𝑡
𝑤
(𝑤
1
(0, 𝑡))

2

+

1

2

𝑡
𝑢
(𝑢
1
(0, 𝑡))

2

,

(3)

which involves the work of the elastic constrains. And again
due to the assumption of infinity axial stiffness, 𝑢

1
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To express equations in dimensionless form, the nondi-

mensional parameter is introduced:
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The characteristics of beam 1 are used as “reference”:
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Figure 3: Sign convention for positive transverse displacement (𝑤),
shear force (𝑄), and bending moment (𝑀).

the dimensionless spring stiffness:
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and the dimensionless frequency coefficient:

𝜆
4
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4
𝜔
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, (9)

where 𝜔 is the circular natural frequency of the vibrating
system in radians per second.

The expression of the energy functional of the system of
beams is 𝐽 = 𝑇∗ − 𝑈∗.

Hamilton’s principle requires that 𝛿 ∫𝑡𝑏
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𝑎
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mechanical system are known is equal to zero. That means
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Taking into account the boundary conditions at the ends, the
compatibility, and equilibrium conditions at the joints bet-
ween beam elements and applying the procedure of calculus
of variations in (10), the following boundary and eigenvalue
problem is obtained
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𝜕𝑊
2

𝜕𝑋
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨(1,𝑡)

) = 0,

V
𝐸𝐼1

(V
𝑙1
)

2

𝜕
3
𝑊
1

𝜕𝑋
3

1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨(0,𝑡)

+ 𝑇
𝑤
V
𝑙1
𝑊
1
(0, 𝑡) = 0,

V
𝐸𝐼2

V2
𝑙2

𝜕
3
𝑊
2

𝜕𝑋
3

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨(1,𝑡)

−

V
𝐸𝐼3

V2
𝑙3

𝜕
3
𝑊
3

𝜕𝑋
3

3

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨(0,𝑡)

= 0,

V
𝐸𝐼2

(V
𝑙2
)

2

𝜕
3
𝑊
2

𝜕𝑋
3

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨(0,𝑡)

+ 𝑇
𝑢
V
𝑙2
𝑊
2
(0, 𝑡)

− 𝑘
4V
𝑙1
V
𝑙2
𝑊
2
(0, 𝑡) = 0,

V
𝐸𝐼1

V
𝑙1

𝜕
2
𝑊
1

𝜕𝑋
2

1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨(0,𝑡)

− 𝑅
𝑧

𝜕𝑊
1

𝜕𝑋
1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨(0,𝑡)

= 0,

V
𝑙3
𝑊
3
(1, 𝑡) = 0,

𝜕𝑊
3

𝜕𝑋
3

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨(1,𝑡)

= 0.

(13)

Using the well-known separation of variables method, solu-
tion of (12) is assumed to be of the form:

𝑊
1
(𝑋
1
, 𝑡) =

∞

∑

𝑛=1

𝑊
1𝑛
(𝑋
1
) 𝑇 (𝑡) ,

𝑊
2
(𝑋
2
, 𝑡) =

∞

∑

𝑛=1

𝑊
2𝑛
(𝑋
2
) 𝑇 (𝑡) ,

𝑊
3
(𝑋
3
, 𝑡) =

∞

∑

𝑛=1

𝑊
3𝑛
(𝑋
3
) 𝑇 (𝑡) .

(14)

The functions𝑊
1𝑛
,𝑊
2𝑛
, and𝑊

3𝑛
represent the corresponding

transverse modes of natural vibration of each beam member
and are given by

𝑊
1𝑛
(𝑋
1
) = 𝐶

1
cosh (𝜆

𝑛
𝛼
1
𝑋
1
) + 𝐶
2
senh (𝜆

𝑛
𝛼
1
𝑋
1
)

+ 𝐶
3
cos (𝜆

𝑛
𝛼
1
𝑋
1
) + 𝐶
4
sen (𝜆

𝑛
𝛼
1
𝑋
1
) ,

𝑊
2𝑛
(𝑋
2
) = 𝐶

5
cosh (𝜆

𝑛
𝛼
2
𝑋
2
) + 𝐶
6
senh (𝜆

𝑛
𝛼
2
𝑋
2
)

+ 𝐶
7
cos (𝜆

𝑛
𝛼
2
𝑋
2
) + 𝐶
8
sen (𝜆

𝑛
𝛼
2
𝑋
2
) ,

𝑊
3𝑛
(𝑋
3
) = 𝐶

9
cosh (𝜆

𝑛
𝛼
3
𝑋
3
) + 𝐶
10
senh (𝜆

𝑛
𝛼
3
𝑋
3
)

+ 𝐶
11
cos (𝜆

𝑛
𝛼
3
𝑋
3
) + 𝐶
12
sen (𝜆

𝑛
𝛼
3
𝑋
3
) ,

(15)

where 𝛼
𝑖
= V
𝑙𝑖

4
√V𝜌𝐴𝑖/V𝐸𝐼𝑖 is a mechanical and geometrical

parameter, with 𝑖 = 1, 2, 3, 𝜆
𝑛
=

4
√𝑙
4
𝜔
2

𝑛
𝜌𝐴/(𝐸𝐼) is the

dimensionless frequency coefficient of mode of vibration 𝑛,
and 𝐶

1
, 𝐶
2
, . . . , 𝐶

12
are arbitrary constants to be determined.

Replacing expressions (15) in (14) and these ones in (13),
a linear system of equations in the unknown constants 𝐶

1
,

𝐶
2
, . . . , 𝐶

12
is obtained.

For a nontrivial solution to exist the determinant of the
coefficient matrix in the linear system of equations should be
equal to zero and the roots of the transcendental frequency
equation are the dimensionless frequency coefficients of the
mechanical system in Figure 1.

3. Finite Element Method

The authors solved some numerical examples using the
finite element method, using the software ALGOR 23.1 [27].
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Figure 4: Experimental system device; C-C model.
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Figure 5: Spectrum of the first natural frequency; Case a: F-C
model.

The three members of the structure are divided into 100
beams elements, respectively, each beam element with three
degrees of freedom.

The internal hinge elastically restrained wasmodeled by a
very small beam element, 300 times smaller than the length of
the beam.The moment of inertia of the section was varied in
order to obtain stiffness values that are equivalent to the stiff-
ness constants of the spring connecting the two sections at
location P.

4. Experimental Model

An experimental model was built of steel to compare the
results obtained by the analytical and finite element models.

The experimental beam system has two parts of equal
length 𝑙 (see Figure 4). It was tested under two different
boundary conditions (clamped and free at 𝑥

1
= 0) while the

other end (𝑥
3
= 1) was clamped. The presence of an internal

hinge was not considered.The geometry of the structural sys-
tem is described by 𝑙 = 𝑙

1
= 𝑙
2
+𝑙
3
= 0.50m;𝐴 = 𝐴

𝑖
= 4.064×

10
−5m2; 𝐼 = 𝐼

𝑖
= 3.468×10

−11m4; and thematerial properties
are 𝜌 = 𝜌

𝑖
= 7870 kg/m3 and 𝐸 = 𝐸

𝑖
= 2.1 × 10

6 kg/cm2, with
𝑖 = 1, 2, 3.
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Figure 6: Spectrum of the first natural frequency; Case b: C-C
model.

In order to measure the natural frequencies, an optical
proximity sensor was used as it is seen in Figure 4.

Figures 5 and 6 show the spectrum of the first ten natural
frequencies of the free-clamped (Case a) and the clamped-
clamped (Case b) beam systems, respectively.

5. Numerical Results

Frequency coefficients were obtained by the exact analytical
solution, with the finite element method, FEM, [27] and with
the experimental model.

Table 1 presents the first ten coefficients of natural fre-
quency of vibration of a beam structure with free-clamped
boundary conditions without internal hinge, Figure 5.

For the analytical solution the parameters are taken as

V
𝜌𝐴𝑖

= 1, V
𝐸𝐼𝑖
= 1, ∀𝑖 = 1, 2, 3,

V
𝑙1
= 2V
𝑙2
= 2V
𝑙3
= 1.

(16)

The analytical solution for Case a: F-C model, was obtained
with 𝑇

𝑢
= 𝑇
𝑤
= 𝑅
𝑧
= 0; 𝑅

𝑚
→ ∞. It is remarkable that

for the first ten frequencies, the analytical results are very
close to the experimental ones. The analytical results are also
compared with previous published ones, [7]. As it can be seen
in the table all of them are in excellent agreement.

The exact analytical solution for C-C structure was
obtained with 𝑇

𝑢
= 𝑇
𝑤
= 𝑅
𝑧
= 𝑅
𝑚
→ ∞.

Table 2 shows the first ten coefficients of natural fre-
quency of vibration of the beam structure with clamped-
clamped boundary conditions. Again the first ten frequency
coefficients obtained by the analytical model are very similar
to the experimental model. They also are in excellent agree-
ment with the FEM solution and previous published results
[14].
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Table 3 shows the frequency coefficients for pinned-
clamped L-beams obtained by the analytical procedure and
the finite element method. For the analytical solution the
spring constants are assigned in two different ways to model
the simply supported-clamped system:

(1) V
𝐸𝐼𝑖
= 1, V

𝜌𝐴𝑖
= 1, for all 𝑖 = 1, 2, 3, V

𝑙2
= V
𝑙3
= 1/2,

𝑇
𝑤
→ ∞, 𝑇

𝑢
→ ∞, 𝑅

𝑧
= 0, and 𝑅

𝑚
→ ∞.

(2) V
𝐸𝐼𝑖
= 1, V

𝜌𝐴𝑖
= 1, for all 𝑖 = 1, 2, 3, V

𝑙2
= 0.99, V

𝑙3
=

0.01, 𝑇
𝑤
→ ∞, 𝑇

𝑢
→ ∞, 𝑅

𝑧
→ ∞, and 𝑅

𝑚
= 0.

The percentage differences between both sets of results are
shown in file |Δ|%. Although both sets of results correspond
to a simply supported-clamped system, the small percentage
differences, less than 0.7%, are due to the different numerical
computational aspects between the analytical models (1) and
(2). The results were determined using the Mathematica
software [26] with five significant figures.

Table 4 compares the first five natural coefficients of
vibration for a free-clamped system with Morales published
results [28]. The characteristics of Morales frame are 𝑙

1
=

2.215m and 𝑙
2
+ 𝑙
3
= 4.249m, 𝐸

1
𝐼
1
= 0.0147Nm2, 𝐸

2
𝐼
2
=

𝐸
3
𝐼
3
= 0.0267Nm2, 𝑚

1
= 6 × 10

−3 kg/m, and 𝑚
2
= 𝑚
3
=

4.5 × 10
−5 kg/m. For the analytical solution, the parameters

are assumed as 𝑙
1
= 2.215m, 𝑙

2
= 2.249m, 𝑙

3
= 2.000m,

V
𝑙1
= 1, V

𝐸𝐼1
= 1, V

𝜌𝐴1
= 1, V

𝑙2
= 1.0153, V

𝐸𝐼2
= 1.8163, V

𝜌𝐴2
=

0.0075, V
𝑙3
= 0.0903, V

𝐸𝐼3
= 1.8163, V

𝜌𝐴3
= 0.0075, 𝑇

𝑤
= 0,

𝑅
𝑧
= 0, 𝑇

𝑢
= 0, and 𝑅

𝑚
→ ∞. It can be verified that our

results are in excellent agreement whit those obtained by
Morales.

Traditionally, the analysis and design of beam structures
have been based on the assumption that the boundary con-
ditions are rigid. The disadvantage of this model is that the
flexibility of the real boundary conditions is neglected and
therefore the real natural frequencies cannot be obtained.

Thus, we now analyze the case of beam system structure
with elastic boundary conditions at edge F and clamped at the
other end H, while the internal elastic hinge (at section P) is
assumed to have 𝑅

𝑚
→ ∞. Numerical simulations are car-

ried out to investigate the effect of the rigidity of the boundary
conditions on the natural frequencies of the system.

In Figure 7 the effect of rigidity 𝑇
𝑢
of the translational

spring on the frequency coefficients of the structure is shown.
It can be seen that the first frequency coefficient 𝜆

1
increases

with increasing the value of 𝑇
𝑢
, from 𝑇

𝑢
= 0, 𝜆

1
= 1.5208

to 𝑇
𝑢
→ 200, 𝜆

1
= 3.3762. For values larger than 200 the

fundamental coefficient stays practically the same: 𝑇
𝑢
→ ∞,

𝜆
1
= 3.3920. Its increase is of 124%.
The second frequency is 3.3947 for 𝑇

𝑢
= 0 and 4.4566

for 𝑇
𝑢
→ ∞; its increase is of 31% and the most significant

change occurs between 𝑇
𝑢
= 200 and 𝑇

𝑢
= 1000. The higher

frequency coefficients exhibit a similar behavior.
From Figure 7 it could be concluded that the first and

second frequencies interchange their modal shape for a value
of𝑇
𝑢
between 100 and 1000. A similar behaviour occurs in the

case of third and fourth frequencies for a value of 𝑇
𝑢
between

1000 and 10000.
Figure 8 shows the effect of 𝑇

𝑤
on the first natural fre-

quency coefficients. Again it is observed as a matter of course
that the natural frequency coefficients increase with the
spring constant parameter.
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Figure 7: Effect of 𝑇
𝑢
on the first five natural frequency coefficients.

𝑙
2
= 𝑙
3
, V
𝑙1
= V
𝑙2
= 0.5, V

𝐸𝐼(2)
= V
𝐸𝐼(3)

= 1, V
𝜌𝐴
(2)
= V
𝜌𝐴
(3)
= 1,

𝑅
𝑚
→ ∞, 𝑅

𝑧
= 0, and 𝑇

𝑤
→ ∞.
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Figure 8: Effect of𝑇
𝑤
on the first five natural frequency coefficients.

𝑙
2
= 𝑙
3
, V
𝑙1
= V
𝑙2
= 0.5, V

𝐸𝐼(2)
= V
𝐸𝐼(3)

= 1, V
𝜌𝐴
(2)
= V
𝜌𝐴
(3)
= 1,

𝑅
𝑚
→ ∞, 𝑅

𝑧
= 0, and 𝑇

𝑢
→ ∞.

Figure 9 shows that the effect of the spring 𝑅
𝑧
is small.

Table 5 presents the case of a clamped-clamped structure
with an elastic joint at 𝑙

2
= 0.5𝑙

1
, and 𝑅

𝑚
is the constant

rigidity of the rotational spring at P that connects the beam
members indicated as OP and PH. In this table 𝑅

𝑚
assumes

different values from infinity to zero. It can be seen that all
the first frequency coefficients decrease in value, except for
𝜆
4
, which practically remains constant.
Table 6 presents the case of a clamped-clamped structure

with an elastic connection at P, 𝑙
2
→ 0, 𝑙

3
= 𝑙
1
. In this

table, 𝑅
𝑚
assumes different values, from → ∞ to 0. It can
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Table 1: Comparison of the first ten frequency coefficients 𝜆
𝑛
=
4
√𝑙
4
𝜔
2

𝑛
(𝜌𝐴/𝐸𝐼) for L-beams: Case a: F-C.

𝜆
1

𝜆
2

𝜆
3

𝜆
4

𝜆
5

𝜆
6

𝜆
7

𝜆
8

𝜆
9

𝜆
10

f 1= 4.30 11.90 58.59 86.67 185.38 233.76 386.96 456.54 659.79 751.3 ∗Experimental, in hertz
1.0811 1.7985 3.9907 4.8537 7.0986 7.9541 10.255 11.139 13.392 14.290 ∗∗Experimental, adimensional
1.0820 1.7863 3.9680 4.8031 7.0981 7.9131 10.229 11.034 13.368 14.171 Exact analytical solution
1.0854 1.7903 3.9753 4.8077 7.0956 7.9307 10.225 11.059 13.355 14.191 FEM
1.0880 1.7869 3.9685 4.8021 7.0915 — — — — — Lin and Ro, 2003 [7]
∗Experimental, in hertz: values 𝑓𝑛 were measured in the experimental model (Figure 5).
∗∗Experimental, adimensional: values were obtained from 𝑓𝑛 measured values: 𝜆𝑛 = 𝑙 ⋅

4
√(2𝜋𝑓𝑛)

2
(𝜌𝐴/𝐸𝐼).

Table 2: Comparison of the first ten frequency coefficients 𝜆
𝑛
=
4
√𝑙
4
𝜔
2

𝑛
(𝜌𝐴/𝐸𝐼) for L-beams: Case b: C-C.

𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 𝜆6 𝜆7 𝜆8 𝜆9 𝜆10

f 1 = 56.76 82.01 182.5 225.88 382.08 448.0 653.08 737.92 992.43 1105.3 ∗Experimental, in hertz
3.9270 4.7214 7.0432 7.8357 10.190 11.035 13.323 14.162 16.424 17.333 ∗∗Experimental, adimensional
3.9229 4.7227 7.0528 7.8249 10.159 10.838 13.310 14.137 16.345 17.178 Exact analytical solution
3.9319 4.7295 7.0613 7.8187 10.158 11.014 13.337 14.152 16.465 17.282 FEM
3.9222 4.7142 7.0376 7.7588 10.007 — — — — — Albarracı́n and Grossi, 2005 [14]
∗Experimental, in hertz: values 𝑓𝑛 were measured in the experimental model (Figure 6).
∗∗Experimental, adimensional: values were obtained from 𝑓𝑛 measured values: 𝜆𝑛 = 𝑙 ⋅

4
√(2𝜋𝑓𝑛)

2
(𝜌𝐴/𝐸𝐼).

Table 3: Frequency coefficients 𝜆
𝑛
=
4
√𝑙
4
𝜔
2

𝑛
(𝜌𝐴/𝐸𝐼) for simply supported-clamped beam system; comparison of results.

𝜆1 𝜆2 𝜆3 𝜆4 𝜆5

3.3920 4.4566 6.5383 7.5702 9.6637 Exact analytical solution (1)
3.3943 4.4266 6.5798 7.5666 9.6584 Exact analytical solution (2)
0.07% 0.68% 0.63% 0.05% 0.05% |Δ| = ((1) − (2))/(2) %(difference)
3.3900 4.4266 6.5292 7.5608 9.6301 FEM

Table 4: Non dimensional frequency coefficients 𝜆
𝑛
=
4
√𝑙
4
𝜔
2

𝑛
(𝜌𝐴/𝐸𝐼) for free-clamped beam system; comparison of results.

𝜆1 𝜆2 𝜆3 𝜆4 𝜆5

1.0301 1.9062 3.5186 5.1798 6.1299 Exact analytical solution
1.0385 1.9198 3.5277 5.1787 6.1156 FEM
1.0229 1.9229 3.5337 5.1844 6.1330 (Morales, 2009 [28]) 12-DOF RRMSSM
1.0229 1.9229 3.5337 5.1844 6.1330 (Morales, 2009 [28]) 60-DOF FEM
1.0229 1.9229 3.5337 5.1841 6.1329 (Morales, 2009 [28]) Analytical

Table 5: Effect of 𝑅
𝑚
on the first five non dimensional frequency coefficients of a C-C system, with an elastic joint at l2 = 0.5l1, beam-beam

connection.

𝑅
𝑚

𝜆1 𝜆2 𝜆3 𝜆4 𝜆5

→ ∞ 3.9229 4.7227 7.0528 7.8248 10.1595 Exact analytical solution
500 3.9229 4.7227 7.0528 7.8248 10.1595
100 3.9145 4.7121 7.0499 7.8248 10.1327
50 3.9110 4.7082 7.0498 7.8248 10.1086
20 3.9818 4.6862 7.0436 7.8248 10.0438
10 3.8614 4.6557 7.0346 7.8248 9.9439
3 3.7464 4.5724 7.0075 7.8248 9.6334
1 3.5695 4.4983 6.9776 7.8248 9.3290
0.5 3.4604 4.4692 6.9631 7.8248 9.2013
0 3.2662 4.4332 6.9410 7.8247 9.0429
0 3.2566 4.4247 6.9489 7.8306 9.0501 FEM
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Table 6: Effect of 𝑅
𝑚
on the first five non dimensional frequency coefficients of a C-C beam system, with an elastic joint at 𝑙

2
→ 0, 𝑙

3
= 𝑙
1

(exact analytical solution).

𝑅
𝑚

𝜆1 𝜆2 𝜆3 𝜆4 𝜆5

→ ∞ 3.9229 4.7227 7.0528 7.8284 10.1595
500 3.9229 4.7227 7.0528 7.8248 10.1595
100 3.9127 4.6887 7.0340 7.7679 10.1255
50 3.9127 4.6676 7.0340 7.7352 10.1255
20 3.9127 4.6104 7.0339 7.6520 10.1253
10 3.9127 4.5322 7.0336 7.5490 10.1248
3 3.9125 4.3200 7.0327 7.3245 10.1232
1 3.9122 4.1216 7.0304 7.1710 10.1193
0.5 3.9117 4.0365 7.0277 7.1188 10.1157
0 3.9038 3.9296 7.0161 7.0664 10.1059

Table 7: Effect of 𝑅
𝑚
on the first five non dimensional frequency coefficients of a SS-C beam system, with an elastic joint at l2 = 0.5l1, beam-

beam connection (exact analytical solution).

𝑅
𝑚

𝜆1 𝜆2 𝜆3 𝜆4 𝜆5

→ ∞ 3.3920 4.4566 6.5383 7.5702 9.6637
500 3.3920 4.4566 6.5383 7.5702 9.6637
100 3.3903 4.4470 6.5374 7.5692 9.6607
50 3.3883 4.4349 6.5354 7.5687 9.6541
20 3.3821 4.4009 6.5297 7.5672 9.6337
10 3.3723 4.3514 6.5216 7.5651 9.5984
3 3.3318 4.1975 6.4976 7.5585 9.4430
1 3.2548 4.0264 6.4721 7.5509 9.2192
0.5 3.1959 3.9477 6.4602 7.5470 9.1105
0 3.0686 3.8450 6.4432 7.5412 8.9626

Table 8: Effect of 𝑅
𝑚
on the first five non dimensional frequency coefficients of a SS-C beam system, with an elastic joint at 𝑙

2
→ 0, 𝑙

3
= 𝑙
1

(exact analytical solution).

𝑅
𝑚

𝜆1 𝜆2 𝜆3 𝜆4 𝜆5

→ ∞ 3.3920 4.4566 6.5383 7.5702 9.6637
500 3.3920 4.4566 6.5383 7.5702 9.6637
100 3.3884 4.4394 6.5314 7.5314 9.6550
50 3.3851 4.4237 6.5248 7.5123 9.6455
20 3.3757 4.3812 6.5066 7.4501 9.6202
10 3.3614 4.3234 6.4808 7.3751 9.5866
3 3.3107 4.1713 6.4076 7.2219 9.5068
1 3.2413 4.0410 6.3398 7.1283 9.4485
0.5 3.2026 3.9903 6.3120 7.0983 9.4277
0 3.1408 3.9290 6.2768 7.0654 9.4033

be seen that the first, the third, and the fifth frequency coeffi-
cients remain practically constant and the second coefficients
decrease by 20% and the fourth decrease by 11%.

Table 7 presents the frequency coefficients of a simply
supported-clamped structure with an elastic joint at 𝑙

2
=

0.5𝑙
1
.
In the present conditions, the first, the second, and the

fifth frequency coefficients decrease in value and the third and
fourth remain practically constant.

Table 8 contains the frequency coefficients of a simply
supported-clamped beam system with an elastic connection
at P, 𝑙
2
→ 0, 𝑙

3
= 𝑙
1
. It can be seen that all the frequency coef-

ficients decrease in value between 8% (𝜆
1
) and 3% (𝜆

5
).

Figures 10 and 11 show graphically the variation of first
three natural frequency coefficients for various locations of
the elastic hinge: 𝑙

2
/𝑙 → 0 to 𝑙

2
/𝑙 → 1, with different com-

binations of 𝑅
𝑧
, 𝑇
𝑤
, 𝑇
𝑢
and 𝑅

𝑚
. In both figures, it is clear that

for the fundamental frequency coefficient the differences in
the values of frequencies are not so significant.

6. Conclusions

The model presented in this paper allows studying the effect
of the variation in the rigidity of the elastic supports and the
elastic joint on the dynamical behavior of the beam sys-
tem structure. The model enables an efficient, simple, and
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Figure 9: Effect of 𝑅
𝑧
on the first five natural frequency coefficients.

𝑙
2
= 𝑙
3
, V
𝑙1
= V
𝑙2
= 0.5, V

𝐸𝐼(2)
= V
𝐸𝐼(3)

= 1, V
𝜌𝐴
(2)
= V
𝜌𝐴
(3)
= 1,

𝑅
𝑚
→ ∞, 𝑇

𝑤
→ ∞, and 𝑇

𝑢
→ ∞.
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Figure 10: Variation of first three natural frequency coefficients with
location of the elastic hinge, 𝑙

1
= 𝑙
2
+ 𝑙
3
= 𝑙, 𝑙
2
/𝑙 ∈ (0, 1), V

𝐸𝐼(2)
=

V
𝐸𝐼(3)

= V
𝜌𝐴
(2)
= V
𝜌𝐴
(3)
= 1, 𝑅

𝑧
= 3, 𝑇

𝑤
= 10, 𝑇

𝑢
= 5, and 𝑅

𝑚
= 2.

straightforward way of computing natural frequency coeffi-
cients for L-Shaped-Structures withmany different boundary
conditions at simply supported, clamped, free, and elasti-
cally restrained. It was observed that the loss of rigidity of
the translational springs significantly changes the natural
frequency coefficients, especially the fundamental frequency
coefficient.The presence of an elastic joint, modeling a beam-
beam connection, also implies changes in the natural fre-
quencies when the rigidity is lost.

Although themodel with elastic connection and supports
does not represent the inherent complexities of real systems
such as nonlinearity or damping, it provides conceptual
insights regarding the fact that the loss of rigidity can cause
significant changes in the dynamic behavior of the structure.

𝜆
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
l2/l

Figure 11: Variation of first three natural frequency coefficients with
location of the elastic hinge, 𝑙

1
= 𝑙
2
+ 𝑙
3
= 𝑙, 𝑙
2
/𝑙 ∈ (0, 1), V

𝐸𝐼(2)
=

V
𝐸𝐼(3)

= V
𝜌𝐴
(2)
= V
𝜌𝐴
(3)
= 1, 𝑅

𝑧
= 50, 𝑇

𝑤
= 100, 𝑇

𝑢
= 100, and

𝑅
𝑚
= 20.

In this sense, this model can be seen as a useful first approach
to study the real system. The proposed analytical solution
may be applied to include more complicating effects, such as
elastic constraints at both ends, more than one internal elastic
hinge, and another geometry with 𝛼

1
+ 𝛼
3
̸= 𝜋/2. Finally, it

has been demonstrated that an elastic approach constitutes a
reliable tool to deal with beam system structures.
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