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As it is known, the problems of free transverse vibrations and instability under in-plane loads of a plate are two different technologi-
cal situations that have similarities in their approach to elastic solution. In fact, they are two eigenvalue problems inwhichwe analyze
the equilibrium situation of the plate in configurations which differ very slightly from the original, undeformed configuration.They
are coupled in the event where in-plane forces are applied to the edges of the transversely vibrating plate. The presence of forces
can have a significant effect on structural and mechanical performance and should be taken into account in the formulation of the
dynamic problem. In this study, distributed forces of linear variation are considered and their influence on the natural frequencies
and corresponding normal modes of transverse vibration is analyzed. It also analyzes their impact for the case of vibration control.
The forces’ magnitude is varied and the first natural frequencies of transverse vibration of rectangular thin plates with different
combinations of edge conditions are obtained. The critical values of the forces which cause instability are also obtained. Due to the
analytical complexity of the problem under study, the Ritz method is employed. Some numerical examples are presented.

1. Introduction

The transverse-free vibrations and buckling of plates which
are subjected to edge loads acting in their middle planes are
areas of research which have received a great deal of attention
in the past century.

As it was stated experimentally by Hearmon [1] for the
case of a beam, bifurcation buckling may be regarded as a
special case of the vibration problem, that is, determining the
in-plane stresses which cause vibration frequencies to reduce
to zero.

Most of the work has dealt with rectangular plates having
uniformly distributed in-plane edge loads. In that case, the
governing differential equations of motion and equilibrium
have constant coefficients, yielding exact solutions for fre-
quencies and buckling loads straightforwardly when two
opposite edges of the plates are simply supported.

Many researchers have analyzed both the buckling and
vibration of rectangular plates subjected to in-plane stress

field. Among them, one can mention Kang and Leissa [2];
Leissa andKang [3]; Bassily andDickinson [4];Dickinson [5];
Kielb and Han [6]; Kaldas and Dickinson [7].

For the linearly varying loading, the governing differen-
tial equations have variable coefficients.

Leissa and Kang [3] found exact solutions for the free
vibration and buckling problems of the SS-C-SS-C isotropic
plate loaded at its simply supported edges by linearly varying
in-plane stresses.

They also found the exact solution [8] for the buckling of
rectangular plates having linearly varying in-plane loading on
two opposite simply supported edges, with different bound-
ary conditions at the other opposite edges.

Within the realm of the classical theory of plates, the case
of buckling and vibrations problems for all the possibilities
of boundary conditions and linearly varying in-plane forces
offers considerable difficulty.This is the reason why it is quite
common to make use of the Ritz variational method.
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Figure 1: Rectangular vibrating plate subjected to in-plane loads:𝑁
𝑥
,𝑁
𝑦
, and𝑁

𝑥𝑦
.

2. Approximate Analytical Solution

In the case of a transversely vibrating, thin, isotropic plate
subjected to in-plane forces 𝑁

𝑥
, 𝑁
𝑦
, and 𝑁

𝑥𝑦
, (Figure 1 and

(5)), the maximum value of the potential energy due to
bending deformation is
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where𝑊 = 𝑊(𝑥, 𝑦) is the deflection amplitude of the middle
plane of the plate, 𝐷 is the well known flexural rigidity 𝐷 =

𝐸ℎ
3

/12(1 − 𝜈
2

), 𝐸 is the Young modulus, and 𝜈 is the Poisson
coefficient.

While the maximum of the kinetic energy is
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where 𝜌 is the density of the plate material, 𝜔 is the circular
frequency, and ℎ is the thickness of the plate.

And themaximumpotential energy of the internal stress-
es caused by the in-plane loading is
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The lengths of the sides of the rectangular plate are 𝑎 in
the 𝑥 direction and 𝑏 in the 𝑦 direction. The coordinates are
written in the dimensionless form as follows:

𝑥 =
𝑥

𝑎
, 𝑦 =

𝑦

𝑏
. (4)

And the in-plane forces are expressed as (Bambill et al.
[9]):
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Then, the governing functional of the system is
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Equation (6) satisfies, if𝑊 is the exact solution, the con-
dition:

𝛿𝐽 [𝑊] = 0. (7)
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Table 1:The first six natural frequency coefficientsΩ
𝑖
for a C-C-F-F

plate under general in-plane loading.

𝑁/𝑁crit

0 0.25 0.5 0.75 1
𝜆 = 𝑎/𝑏 = 0.75;𝑁crit = 5.95168

Ω
1

5.39789 4.75442 3.95041 2.84503 0
Ω
2

15.7547 15.2037 14.5835 13.8967 13.1443
Ω
3

23.8207 23.9071 24.0071 24.1145 24.2241
Ω
4

36.3999 36.2826 36.1113 35.7654 35.1888
Ω
5

38.1446 37.5193 36.9334 36.5072 36.2961
Ω
6

59.7605 59.5098 59.2367 58.9439 58.6327
𝜆 = 𝑎/𝑏 = 1;𝑁crit = 3.69137

Ω
1

6.93254 6.06065 4.99441 3.56413 0
Ω
2

23.9780 23.9778 23.6766 23.0314 22.1751
Ω
3

26.6265 26.0033 25.6318 25.5511 25.6238
Ω
4

47.7179 47.4465 47.1607 46.8601 46.5440
Ω
5

62.8830 62.6774 62.3443 61.9069 61.3970
Ω
6

65.6818 65.4396 65.3185 65.2954 65.3384
𝜆 = 𝑎/𝑏 = 2;𝑁crit = 1.85222

Ω
1

17.1515 14.9296 12.2458 8.69504 0
Ω
2

36.4410 36.0647 35.6415 35.1668 34.6357
Ω
3

73.5943 73.8555 74.0906 74.2962 74.4680
Ω
4

91.1002 89.5702 88.0081 86.4144 84.7901
Ω
5

115.363 114.262 113.147 112.021 110.886
Ω
6

131.962 132.267 132.566 132.855 133.130

Table 2:The first six natural frequency coefficientsΩ
𝑖
for a C-C-SS-

SS plate under uniform𝑁
𝑥
loading (𝛼 = 0).

𝜆 = 𝑎/𝑏 = 1

𝑁crit =61.4151

𝑁/𝑁crit

0 0.1 0.25 0.5 0.75 1
Ω
1

27.0542 25.7489 23.6368 19.5326 14.0587 0
Ω
2

60.5387 58.4465 54.9733 48.6153 41.2865 32.4139
Ω
3

60.7863 60.1238 59.2827 57.8385 56.3769 54.8441
Ω
4

92.8371 91.4269 89.2672 85.5386 81.6286 77.5081
Ω
5

114.557 112.082 108.152 101.257 93.8564 85.8259
Ω
6

114.704 114.350 113.923 113.207 112.485 111.755

Following the Ritz method, the expression of the deflec-
tion of the plate is approximated in the form of a truncated
series:
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where 𝑋
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(𝑥) and 𝑌
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(𝑦) are the characteristic functions for

the normal modes of vibration of beams with end conditions
nominally similar to those of the opposite edges of the plate
in each coordinate direction [10]. Consequently, they satisfy
the essential boundary conditions, as the method requires.
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where 𝜆 = 𝑎/𝑏 is the aspect ratio
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where 𝑆 is a factor that indicates themagnitude of the in-plane
loading system, regarding the relative value of the forces.
Consider
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As it is known, the condition Ω = 0 in (11) yields the
critical value of the in-plane loading.
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Table 3: The first six natural frequency coefficients Ω
𝑖
for a C-C-SS-SS plate under uniform shear𝑁

𝑥𝑦
loading.

𝜆 = 𝑎/𝑏 = 1.5

𝑁crit = 89.8137

𝑁/𝑁crit

0 0.1 0.25 0.4 0.5 0.75 0.9 1
Ω
1

44.8904 44.7005 43.7991 42.4070 40.2822 32.4323 22.3996 0
Ω
2

76.5451 76.1864 74.3165 70.7817 67.4142 54.4376 41.3590 27.7956
Ω
3

122.319 122.349 122.548 121.465 117.487 104.882 95.5807 88.7020
Ω
4

129.393 128.871 126.129 122.871 123.101 123.415 123.108 122.473
Ω
5

152.529 152.707 153.680 155.033 155.912 157.429 157.633 157.273
Ω
6

202.615 200.101 194.748 188.611 184.103 171.463 163.073 214.018

Table 4: Comparison of nondimensional critical buckling loads𝑁crit = 𝑁crit𝑏
2

/𝐷 for a SS-C-SS-C plate.

Load (𝛼) Solution 𝜆 = 𝑎/𝑏

0.4 0.5 0.6 0.7 0.8 0.9 1.0
[A] M = 5 93.3059 75.9452 69.6553 69.1116 72.0966 77.5543 75.9452
[A] M = 10 93.2555 75.9146 69.6351 69.0972 72.0859 77.5460 75.9146

0 [A] M = 15 93.2477 75.9105 69.6323 69.0954 72.0846 77.5450 75.9105
[A] M = 20 93.2476 75.9101 69.6323 69.09531 72.0844 77.5449 75.9101

[B] 93.247 75.910 69.632 69.095 72.084 77.545 75.910
[A] M = 5 174.533 145.286 134.809 134.624 140.981 152.024 145.286
[A] M = 10 174.395 145.215 134.765 134.593 140.958 152.007 145.215

1 [A] M = 15 174.379 145.207 134.760 134.590 140.956 152.005 145.207
[A] M = 20 174.377 145.206 134.760 134.590 140.956 152.005 145.206

[B] 174.4 145.2 134.8 134.6 141.0 152.0 145.2
[A] M = 5 401.518 392.147 412.162 424.140 401.518 392.143 392.147
[A] M = 10 400.478 391.589 411.812 422.594 400.478 391.398 391.589

2 [A] M = 15 400.410 391.548 411.790 422.490 400.410 391.351 391.548
[A] M = 20 400.399 391.548 411.787 422.472 400.399 391.343 391.547

[B] 400.4 391.5 411.8 422.5 400.4 — 391.5
[A]: present approach with different𝑀 = 𝑁 and [B]: [3].

3. Numerical Evaluations

Hearmon [1] has experimented on a fixed-free strip. Admit-
tedly, the problem is analytically simpler in the case of
one-dimensional domains. As an example, let us try with a
pinned-pinned transversely vibrating beam, subjected to an
axial compressive force 𝑃. The expression of the frequency
coefficient is

Ω
𝑛
= √

𝜌𝐴
0

EI
𝐿
2

𝜔
𝑛

= (𝑛𝜋)
2
√[1 −

𝑃𝐿
2

EI(𝑛𝜋)2
]; with 𝑛 = 1, 2, 3, 4 . . . ,

(15)

where 𝜌 is the density of the material,𝐴
0
is the cross-section,

𝐿 is the length, and EI the flexural rigidity of the beam.
All the Euler buckling loads are determined making zero

expression (15). For 𝑛 = 1, the critical buckling load of the
beam, 𝑃crit, is obtained.

Plotting the values Ω
𝑛
= (𝑛𝜋)

2
√(1 − (𝑃/𝑛2𝑃crit)) of the

first three frequency coefficients depending upon the ratio
𝑃/𝑃crit yield regular curves as is shown in Figure 2. The

2 4 6 8

20

40

60

80

𝑃/𝑃crit

Ω1 = 9.87

Ω2 = 39.48

Ω3 = 88.83

Ω

Figure 2: Curves of the frequency coefficients of transverse vibra-
tion for a pinned-pinned beam under axial compressive load 𝑃.

presence of the compressive axial load 𝑃 does not alter the
order of the modal shapes of the beam.

In the case of a plate, in general, and due to the bidi-
mensional behavior induced by the torsional rigidity, the
compressive in-plane loadmay alter both the order and shape
of the modal shapes associated to each natural frequency.
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Table 5: Comparison of the first six natural frequency coefficients for a SS-C-SS-C plate under bending moment in 𝑥-direction (𝛼 = 2).

𝜆 = 𝑎/𝑏 𝑁/𝑁crit Solution Ω
1

Ω
2

Ω
3

Ω
4

Ω
5

Ω
6

0 [A] 13.6858 23.6465 38.6942 42.5871 51.6767 58.647
[B] 13.69 23.65 — 42.59 51.67 —

0.5 0.5 [A] 11.4936 24.152 37.9343 38.8757 52.632 58.7048
[B] 11.49 24.15 37.93 — 52.63 —

0.95 [A] 3.92178 24.906 27.6496 39.3337 52.6657 58.8581
[B] 3.926 24.91 27.65 — 52.66 —

0 [A] 28.9509 54.7433 69.3271 94.5862 102.217 129.096
[B] 28.95 54.74 69.33 94.59 102.2 —

1 0.5 [A] 27.4647 45.9744 69.6407 87.2215 96.6079 129.164
[B] 27.47 45.97 69.65 87.22 96.61 —

0.95 [A] 15.6871 23.3557 46.9793 70.3963 99.624 110.599
[B] 15.70 23.37 46.96 70.41 99.63 110.6

0 [A] 95.2625 115.803 156.357 218.973 254.138 277.308
[B] 95.26 115.8 156.4 — 254.1 277.3

2 0.5 [A] 94.7438 109.859 137.29 183.897 254.214 254.254
[B] 94.76 109.9 137.3 183.9 254.2 —

0.95 [A] 62.7485 77.444 93.4166 93.4229 101.133 187.917
[B] 62.82 77.50 93.46 93.47 — —

[A]: present approach and [B]: [3].

𝑁/𝑁crit = 0 𝑁/𝑁crit = 0.1

Ω1 = 27.0542 Ω2 = 60.5387 Ω1 = 25.7489 Ω2 = 58.4465

Ω3 = 60.7863 Ω4 = 92.8371 Ω3 = 60.1238 Ω4 = 91.4269

Ω5 = 114.557 Ω6 = 114.704 Ω5 = 112.082 Ω6 = 114.35

Figure 3: Normal modes of vibration of a square C-C-SS-SS plate under uniform𝑁
𝑥
loading (𝜆 = 𝑎/𝑏 = 1,𝑁crit = 61.4151).

This situation has an important technological significa-
tion from the point of view of vibration control.

Certainly, the modal shape of a natural resonant fre-
quency must be known in order to suppress it. In the case
of in-plane loading, this shape can be different from the
expected one.

Due to the quantity and variability of the parameters
involved in the description of the behaviour of these kinds of
structures, just a few representative cases will be considered
to demonstrate the convenience of the procedure and the
importance of the situation.

All the values are determined taking𝑀 = 𝑁 = 15 in (8).

Table 1 shows the values of the first natural frequency
coefficients for a CCFF plate subjected to a general in-plane
loading: linear load in𝑥direction (𝛼 = 2)—bendingmoment,
constant load in y direction (𝛽 = 0), and constant shear force
𝑁
𝑥𝑦
= 𝑁
1
= 𝑁
2
= 𝑁).

In order to show the influence of the in-plane loading, the
next two examples are presented.

Table 2 shows the natural frequency coefficients for a C-
C-SS-SS square plate under uniform compression in the 𝑥
direction (𝑁

𝑥
= 𝑁, 𝛼 = 0, and𝑁

𝑦
= 𝑁
𝑥𝑦
= 0).

Figure 3 shows that a minimal presence of in-plane
loading (10% of the critical value) dramatically modifies the
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Ω3 = 122.548 Ω4 = 126.129 Ω3 = 121.465 Ω4 = 122.871

Ω5 = 153.68 Ω6 = 194.748 Ω5 = 155.033 Ω6 = 188.611

Ω1 = 43.7991 Ω2 = 74.3165 Ω1 = 42.407 Ω2 = 70.7817

𝑁/𝑁crit = 0.25 𝑁/𝑁crit = 0.4

Figure 4: Normal modes of vibration of a rectangular C-C-SS-SS plate under uniform𝑁
𝑥𝑦

loading (𝜆 = 𝑎/𝑏 = 1.5,𝑁crit = 89.8137).
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0 0.2 0.4 0.6 0.8 1 1.2
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Figure 5: The first six natural frequency coefficients Ω
𝑖
for a C-C-

SS-SS plate under uniform shear𝑁
𝑥𝑦
loading (𝜆 = 𝑎/𝑏 = 1.5,𝑁crit =

89.8137).

mode shapes, while changes in the values of frequencies may
not be noticed (0.3% in the sixth frequency). It is important
to point out that the small load can be originated by thermal
variations and restrictions on plane displacements imposed
by the external supports.

Finally, Table 3 shows the results for a rectangular C-C-
SS-SS plate subjected to shear in-plane forces.

Figure 4 shows that the third and fourth natural frequen-
cies interchange their normal modes as 𝑁

𝑥𝑦
increases. This

situation is noticeable from Figure 5.
This means that for a given value of 𝑁

𝑥𝑦
, between 0.25

and 0.4 of the critical value, there are two normal modes for
the same natural frequency (repeated frequency). This is an
important point in vibration control, sincewhen repeated fre-
quencies arise in a system, the related vibration mode shape

cannot be uniquely determined. Any linear combination of
the modes is still valid for the repeated frequency.

In order to evaluate the accuracy of the expounded
procedure, comparison is made with the results obtained in
[3] for a SS-C-SS-C plate loaded at its simply supported edges
by linearly varying in-plane stresses (Tables 4 and 5).

In Table 4, values of𝑁crit are compared for three different
cases of the𝑥 direction load: constant (𝛼 = 0), linear with null
value at one extreme (𝛼 = 1), and bending moment (𝛼 = 2),
and different aspect radii of the plate. A convergence study is
also made. As it can be seen, taking𝑀 = 𝑁 = 15 provides an
excellent accuracy from an engineering viewpoint.

4. Conclusions

Theclassical, variationalmethod of Ritz has been successfully
used in the present study to obtain an approximate, yet quite
accurate, solution to a difficult elastodynamics problem.

Natural frequencies andmode shapes of transverse vibra-
tion are obtained for a meaningful combination of the
boundary conditions of a thin plate subjected to general in-
plane loads. The critical values of the in-plane forces which
cause instability of the plates are also obtained.

The obtained values are the outcome of an algorithm,
relatively simple to implement, [11] which allows studying
these with only the assistance of a PC.

Additional complexities like orthotropic material charac-
teristics can be taken into account [12].

The agreement with results available in the literature is
excellent. Nevertheless, it is also possible to increase the
number of terms in the summation on (8) to increase the
accuracy.

No claim of originality is made, but it is hoped that the
present work draws the attention to the effect that the pres-
ence of plane stress state may have on the effectiveness of
vibration control on plates.
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