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Abstract
In this demonstration, we present a system that combines

the use of Single-Board Computer with the lightweight char-
acteristics of container virtualization technologies for the de-
ployment of a Smart Car platform. Our approach allows the
definition of an architecture that exploits the flexibility of
containers in terms of dynamic service allocation even on
embedded systems. The whole is combined with the design
of an inner orchestrator that acts as manager for the schedul-
ing of different virtualized instances according to specific
levels of application priorities. We practically show how
this integrated environment can facilitate the development
of functional and versatile car On Board Units, even on top
of constrained Single-Board Computer with several applica-
tions instantiated.

1 Introduction and Motivation
Modern vehicles are equipped with electronic systems

that are becoming very sophisticated day by day. The func-
tionalities provided by these platforms are several and vary
from engine control, predictive diagnostics, driving assis-
tance, and infotainment. However, with the increasing num-
ber of functionalities, computing and communication re-
sources, that have to be handled by the On Board Unit
(OBU), is constantly growing [2]. OBUs are embedded sys-
tems with limited hardware resources and a critical software
design that makes also a simple update procedure a not trivial
operation. These constraints are combined with the typical
software lifetime, which is much shorter than the lifetime of
mechanical and technological components.

Bearing all these points in mind, we have identified in
the use of lightweight virtualization technologies a suitable
mechanism, which allows to design an OBU that can satisfy
several requirements in terms of efficient software and hard-
ware resources management.

In particular, container-based virtualization technologies
-such as Docker1- can bring the advantage of fast alloca-
tion and flexibility in managing different services. This is
reflected in an easier OBU programmability -also for what
concerns updating process, deployment of new software, and
management of parallel processes- and in a clever way to
deal with the limited OBU hardware resources. This last as-
pect represents the main novelty respect previous works like
Carberry2, in which no applications allocation mechanism
was considered in order to deal with the limited computa-
tional resources of Single-Board Computer.

2 System Design
The architecture of our prototype is depicted in Figure 1.

The platform has been designed to meet specific software
and hardware requirements. Below, we discuss our imple-
mentation choices from the hardware, software, and archi-
tecture point of view.

Hardware and Software setup. We use the Single-
Board Computer Raspberry Pi (RPi) as hardware platform
for the deployment of our system. Two key aspects have led
us to the choice of the RPi platform. First, the possibility to
easily integrate the platform in the vehicle without impact-
ing the car design, thanks to the small RPi size. Second, the
RPi capability on efficiently managing virtualized applica-
tions by means of container technologies. From this point
of view, in [3], authors demonstrated how the introduction
of lightweight virtualization in devices with low computa-
tional resources introduces a negligible impact in terms of
performance overhead. The OBD-II standard [1] interface
is directly connected to the RPi and it is used to read data
coming from the vehicle, allowing to monitor the current op-
erating status of a vehicle, and to identify malfunctioning in
the vehicle itself. OBD interface provides two types of data:
real-time vehicle data and several Diagnostic Trouble Codes
(DTCs). From the software perspective, as base Operating
System, we use the image provided by Hypriot that is run-
ning Raspbian Jessie with Linux kernel 4.4.10. The Hypriot
image provide a lightweight environment optimised for the
execution of Docker container technologies, by also offering
dedicated tools for container orchestration.

Architecture description. At the application level, our
architecture entails three main components: (i) a set of virtu-

1https://www.docker.com
2http://www.carberry.it



Figure 1. Overview of the system components: the RPi 3
supports the software allocation of virtualised instances,
which are in turn characterised by different priority lev-
els defined according to specific requirements.

alized applications tagged with different priority levels; (ii)
an OBD container in charge of receiving and handling data
from the vehicle; and (iii) the Orchestrator that has the task
of monitoring the resources used by the entire system and
by each virtualized application. We defined four applica-
tion/service types: (i) Critical priority applications are char-
acterized by the highest level of priority (e.g., firmware up-
date/restore applications, or demanding control data); (ii)
High priority applications, which include e.g., driver as-
sistance, camera data; (iii) Moderate priority applications
consist e.g., of tools provided by auto insurance compa-
nies, which offer reduced premiums if OBD-II vehicle data
loggers are installed; (iv) Low priority applications include
Entertainment/Multimedia contents streamed by an internal
and/or external device. In defining the priorities, we refer to
the application requirements defined by authors in [2]. A key
role is played by the orchestrator, which instantiates the ex-
ecution of a virtualized application over another in line with
the different priority levels. Furthermore, it deals with the
limited computation capabilities of the RPi, by opportunis-
tically scheduling the running applications also according to
the available hardware resources.

3 Application Scenario
We analyze the case of an anomalous car gas emission de-

tected by the OBD. We suppose that with this particular vehi-
cle issue, the platform has to react with the instantiation of an
application characterised by High priority. We also assume
that, prior to the anomaly detection, two applications charac-
terized by lower priority level, e.g. Moderate and Low, are
simultaneously running in the platform. According to our de-
sign, the platform has to guarantee the execution of a specific
application that can somehow help on solving and/or tracing
the vehicle behaviour during the critical status. This will
be possible thanks to the dynamic allocation of a container
dedicated to this purpose. In practice, as soon as the orches-
trator -which constantly receives data from the OBD- detects
the anomaly, it executes the activation of another virtualized
application dedicated to the execution of a particular task
(Fig. 2). Referring to this example, a database is initialized
in order to record all the parameters associated to the evapo-
rative (EVAP) emission system. Moreover, considering that
the execution of this task has an higher priority compared to
the applications that were already running, the concurrent in-
stances with lower priority will be paused to make available

Figure 2. Example of application scenario. Lower pri-
ority applications are paused once that the orchestrator
detects a critical status in the vehicle. An application with
backup functionalities is launched in order to record spe-
cific vehicle values involved in the anomaly.

all the hardware resources to the application marked by High
priority. This example shows how the versatility given by
the use of containers enlarges the potentialities of the OBU
platform in terms of backup functionality, and capacity of
running-dedicated applications at given times, and efficient
hardware resources management. Another important aspect
coming from the example is the flexibilty of our architecture
in the RPi harware performance optimization. Indeed, the
definition of different priorities, together with the dynamic
management of containers, is also useful to schedule which
application takes priority when the hardware resources are
kept busy -can not be neglected that the number of applica-
tions that can simultaneously run on top of the RPi has an
upper-bound.
4 Demo

The demo will show the details of our proposal, by
demonstrating all the architecture concepts defined in the
previous sections. We show in practice how the orchestra-
tor can cleverly manage the virtualized running instances.
In particular, we refer to specific application scenarios in
which the orchestrator has to deal with potential vehicle is-
sues and it has to adequately respond in order to ensure a fast
and dedicated counter-response to that specific issue. At the
same time, the orchestrator will efficiently deal with the plat-
form performance by providing all the necessary resources to
favourite the higher-priority applications.
5 Conclusions

We have designed and implemented an embedded all-
in-one device for Smart Car applications. We have shown
how emerging virtualization technologies can be employed
to build a flexible and versatile OBU platform and demon-
strated that our architecture can be efficiently embedded in
credit card-sized Single-Board Computers, such as Rasp-
berry Pi.
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