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ABSTRACT

Interprotein contact prediction using multiple se-
quence alignments (MSAs) is a useful approach to
help detect protein–protein interfaces. Different com-
putational methods have been developed in recent
years as an approximation to solve this problem.
However, as there are discrepancies in the results
provided by them, there is still no consensus on
which is the best performing methodology. To ad-
dress this problem, I-COMS (interprotein COrrelated
Mutations Server) is presented. I-COMS allows to es-
timate covariation between residues of different pro-
teins by four different covariation methods. It pro-
vides a graphical and interactive output that helps
compare results obtained using different methods. I-
COMS automatically builds the required MSA for the
calculation and produces a rich visualization of either
intraprotein and/or interprotein covariating positions
in a circos representation. Furthermore, comparison
between any two methods is available as well as the
overlap between any or all four methodologies. In ad-
dition, as a complementary source of information, a
matrix visualization of the corresponding scores is
made available and the density plot distribution of
the inter, intra and inter+intra scores are calculated.
Finally, all the results can be downloaded (including
MSAs, scores and graphics) for comparison and vi-
sualization and/or for further analysis.

INTRODUCTION

Recent work has demonstrated the accuracy of coevolution-
based protein contact prediction using several approaches
as mutual information (MI) (1–3), direct couplings (4–
9) and more recently pseudo-likelihood-based approaches
(8,10).

Despite all the work being done in this field, the use
of residue covariation methods, using only sequence-based
data for predicting protein–protein contacts, is still in an
early stage of development. Interprotein coevolutionary
analysis is appealing but is far from being easy. Few suc-
cessful works on protein–protein interaction prediction us-

ing bacterial genomes have recently been reported (11,12).
Nevertheless, setting up the analysis as well as interpreting
the results is complicated and requires further analysis and
discussion. The sole preparation of a suitable multiple se-
quence alignment (MSA) to perform the analysis is limited
to highly expert users. Identifying covarying residue pairs
between two proteins A and B is not a straightforward task;
protein A and protein B for each organism must be properly
paired in each alignment of A and B proteins. The desir-
able feature is to align orthologs proteins, as they are likely
to perform equivalent functions, and even if they have di-
verged since the speciation event, they are more likely to be
functional counterparts in different species than other types
of homologs (12). To approximate the selection of orthologs
for each protein in the presence of multiple paralogs in a sin-
gle genome, Ovchinnikov et al. (11) have used the intergenic
distance as a proxy: i.e. pair of genes with conserved chro-
mosomal locations separated in the genome by fewer than
20 other annotated genes. Hopf et al. (13) apply a criterion
where each concatenated protein pair must be located on
the same genomic contig and must be as close as possible
to each other on the genome, when compared to all other
possible pairings in the same species. Nonetheless, these two
approximations only apply for prokaryotic genomes and it
is known that changes in function might be as common be-
tween orthologs as between paralogs (14).

Orthology assignment is a very active field in which lat-
est achievements are summarized in (15). All-against-all
sequence comparisons can be time consuming and pre-
calculated databases might have confident assignments of
orthologs but with a very low number of sequences as a
general rule. In this work, we use the closest blast E-value
as a proxy of orthology to construct a paired MSA and
to retrieve a high number of sequences in a fast way. The
closest hit is often interpreted to imply that the protein
is the closest homolog (ortholog). Though, for genes with
few homologs, the closest hit may not be the closest ho-
molog (16). We understand that this may be a strong lim-
itation and for this reason, we allow the user to load its
own alignments based on a more accurate orthology assign-
ment and leave this auto-assignment possibility for less ex-
pert users (or when other approach is not possible because
of the low number of sequences). Here we present a server
that allows users to analyze coevolutionary relationships
between groups of proteins with four state of the art co-
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evolution algorithms: precise structural contact prediction
using sparse inverse covariance estimation (PSICOV) (9),
Direct Coupling Analysis with mean-field approximation
(mfDCA) (7,17), corrected MI (3) and the plmDCA im-
plementation used in CCMpred, a pseudo-likelihood max-
imization (PLM-based) contact prediction approach (18).

Strong emphasis is given to the comparability between
methods. Reported results from different methods cannot
be directly compared due to differences in the used data
set, i.e. they differ in the analyzed protein cases, the number
of sequences in the alignments and/or the aligning method
used.

Three key points are addressed in this server. First, the
construction of a concatenated MSA suitable for interpro-
tein coevolution calculation, given two or more UniProt
identifiers, protein sequences or a pdb code as input. Sec-
ond, we provide the user the option to run four algorithms
at once obtaining the covariation between residues both in-
traprotein and interprotein.

Finally, we offer a visual summarization of the results,
allowing a fast and comprehensive comparison between re-
sults that would help to identify the method that suits better
a particular biological question.

To compute the different covariation scores across pro-
teins, individual protein sequences must be aligned and
paired up with the partner that is presumed to interact. Our
approximation is to pair and concatenate proteins that have
identical taxonomic ID (taxID) to ensure that both proteins
belong to the same organism, a minimal condition for a pu-
tative interaction.

A visualization of either intraprotein and/or interprotein
results is provided in a circos representation. Additionally
comparison between any pair of methods is available as well
as the overlap between all four methods. As a complemen-
tary source of information, a matrix visualization of scores
is available and the density plot distribution of inter, intra
and inter+intra scores is shown. Finally, all the results can
be downloaded (including MSAs, scores and graphics) to
further analysis, comparison and visualization.

This website is free and open to all users and there is no
login requirement. URL: http://I-COMS.leloir.org.ar/.

MATERIALS AND METHODS

Covariation scores

Computation of the covariation scores for different meth-
ods is performed using already existing software. Corrected
MI scores (from here MI for simplicity) are calculated be-
tween pairs of columns in the MSA as described in (3) us-
ing the same tools present in the MISTIC web server (19).
Briefly, the frequency for each amino acid pair was calcu-
lated using sequence weighting techniques and low count
corrections and was compared to the expected frequency as-
suming that mutations between amino acids were uncorre-
lated. Next, the MI was calculated as a weighted sum of the
log-ratios between the observed and expected amino acid
pair frequencies. The average product correction (APC)
method of Dunn et al. (2008) (20) was applied to reduce the
background MI signal for each pair of residues and the MI
scores were finally translated into MI z-scores by comparing
the MI values for each pair of position with a distribution

Figure 1. Circos representation. The outer circos’s data track shows the
reference sequence residue type and number. The next track (going inward)
shows the conservation of that position in the MSA (from red to blue to
depict higher to lower conservation respectively). The next track shows to
which protein corresponds that position (colored green and violet). Finally,
the inner part of the circos shows Bezier curves connecting covarying po-
sitions.

of prediction scores obtained from a large set of random-
ized MSAs. The z-score is then calculated as the number of
standard deviations that the observed MI value falls above
the mean value obtained from the randomized MSAs.

mfDCA is a statistical inference framework used to in-
fer direct coevolutionary couplings among residue pairs
in MSAs. mfDCA, in opposite to original mfDCA, pro-
vides the computational power to apply this tool in a high
throughput manner to a number of protein and domain
families.

PSICOV introduces the use of sparse inverse covariance
estimation to the problem of protein contact prediction.
The method builds on work which had previously demon-
strated corrections for phylogenetic and entropic correla-
tion noise and allows accurate discrimination of direct from
indirectly coupled mutation correlations in the MSA. PSI-
COV and mfDCA scores are computed using freecontact
tool (17), which implements fast and memory-efficient al-
gorithms for both methods.

CCMpred (downloaded from https://bitbucket.org/
soedinglab/ccmpred) is a C implementation of a Markov
Random Field PLM for learning protein residue–residue
contacts as made popular by Ekeberg (10) and Balakr-
ishnan (21). While predicting contacts with comparable
accuracy to the referenced methods, CCMpred is written
in C/CUDA C, performance-tuned and therefore much
faster.

All tools compute a score for every pair of columns in
a given MSA. This is computationally expensive and may
take a long time to finish. This is particularly true for MSAs
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with a high number of columns. The number of sequences
in the MSA does not affect the performance significantly.

Paired MSA construction

To build the MSA we blast each protein queried by the user
against Uniprot-KB and retrieve all sequences with an E-
value threshold of 1e-5 and 3 Psi-Blast iterations. We save
only one protein for each NCBI taxID. If there is more
than one protein with identical taxID (i.e. paralogous pro-
teins), the one with the lowest expected value for that query
is used. In the case that the expected value is equal, the
one with the higher bit-score is chosen (more likely or-
thologous to its query). The same methodology was used
to build pairs of MSAs of orthologous proteins to calcu-
late coevolution by Ochoa and Pazos (2010) (22). Then,
to create the mutiprotein MSA, we concatenate the pro-
teins with the same taxID (Supplementary file 1, Figure S1
and S2). To assess whether this simple procedure is accept-
able for covariation calculation compared to GREMLIN
procedure to construct an MSA (23), we built the paired
MSAs using interprotein COrrelated Mutations Server (I-
COMS) procedure for a subset of GREMLIN protein com-
plexes. We ran mfDCA, MI and CCMpred on both the orig-
inal MSAs (downloaded from GREMLIN’s webpage: http:
//openseq.org/cplx.php?mode=pdb) and the I-COMS built
MSAs. The performance of each method on both types of
alignments, measured as the areas under the ROC curve for
interprotein and intraprotein contact prediction as well as
the extent to which the alignments are similar in terms of re-
trieved Uniprots and taxIDs, is provided as supplementary
material (Supplementary file 1, Figure S1). In summary,
GREMLIN’s automatic procedure for alignment construc-
tion may provide a more cared set of interacting proteins
only when they are prokaryotic, while I-COMS procedure
favors a simpler but wider applicable approach using a pro-
cedure already tested for similar purposes (22). We consider
that it is a reasonable trade off between recruiting a wider set
of sequences and species, automatization and performance
(in terms of quality of the results) versus restricting MSA
construction to only prokaryotic sequences for which there
are annotated genomes with intergenic distances (Supple-
mentary file 1, Supplementary Figure S1 and Table S1).

Software implementation

The web server was developed on Ubuntu 12.04 linux OS
and is running on an Apache 2 server and PHP 5.3 as server-
side scripting language. The server pipeline was written in
perl 5 and interacts with scripts written in python 2.7, Java
7 and C/C++. This is mostly due to the different natures of
the code used by each algorithm. The interactive graphical
output in the client-side was written in Javascript. Its exe-
cution relies entirely on the web browser and was tested on
the latest versions of Firefox and Chrome.

Inputs

The MSAs can be generated by the server or loaded by the
user. The input for automatic MSA construction are (i) the
UniProt primary accession numbers or (ii) a PDB file (iii)

the protein sequences in one letter code, of the two or more
(up to six) proteins to be analyzed.

When loading each protein, the server will display the
Pfam domains in order to choose whether to work with a
specific domain or with the whole length protein. These se-
quences are used as seed to build the MSAs.

The server allows loading two or more (up to six) pro-
tein families MSA in fasta format. Those MSA should meet
some requirements: they must have the same number of se-
quences, and sequences at the same position in each MSA
must belong to the same genome or species (same taxID).

The first sequence of each MSA is assumed to be the ref-
erence sequence; all results shown are based on these se-
quences. In all cases MSAs were gap trimmed to remove
positions with gaps in a reference sequence. In addition se-
quences covering <50% of the reference sequence length are
removed.

The construction of these alignments may be difficult and
time consuming to inexperienced users; therefore we offer a
tool to build them automatically.

The user can choose which methods to run, including
corrected MI, mfDCA, CCMpred and PSICOV. All meth-
ods are set with default parameters, but by opening the ‘ad-
vanced options’ menu, the parameters for each method can
be customized by the user.

The server limitations are: six proteins at a time; 2000
residues are allowed as the sum of all proteins length and
there is no limit on the number of protein sequences in the
MSAs.

Outputs

The server builds an MSA for each individual protein (if
not provided by the user) and also a concatenated (paired)
MSAs for every combination of two MSAs.

After calculation, the number of columns, the number
and clusters of sequences at the selected identity value of
each alignment is informed. The number of clusters is com-
puted using Hobohm-1 algorithm (24). Note that some of
the methods may require a certain number of sequences to
give an accurate covariation score. All the alignments and
the covariation raw data are downloadable as plain text for
further analysis.

Graphical displays

A circos representation of the covariation scores of each of
the selected methods and protein pairs are displayed.

The circos representation is a rich piece of information:
the outer circle shows the residue type and number of the
reference sequence. The next circle shows the position con-
servation (as calculated in (25)) of each position colored
from light blue (less conserved) to red (most conserved).
The last circle shows which protein the residues belong to
as a violet or green square (protein A and B, respectively).
At last, the covariation scores between pair of positions are
displayed as lines in the inner part of the circle (Figure 1).

When moving on top of each line, the covarying positions
are displayed in the upper left corner.

If more than one method is run, two circos panels can
be displayed at once. The user can load the circos for each

 by guest on D
ecem

ber 27, 2016
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://openseq.org/cplx.php?mode=pdb
http://nar.oxfordjournals.org/


Nucleic Acids Research, 2015, Vol. 43, Web Server issue W323

Figure 2. Snapshot of the single method representation. Right panel: MI method. Left panel: mfDCA method. The shown pairs are the set (selected by the
user) of top scoring covarying pairs. The color of the Bezier lines represents the origin of the connected residues. If the curves are green, they both belong
to the first protein, if they are violet they both belong to the second protein and if the curves are red then those covarying positions belong to different
proteins.

Figure 3. Top 15 interprotein scores overlapped between the four methods. Structure of the E. coli F1-ATP synthase (pdb: 3OAA), chain H (green) and G
(violet). The distance of the top scoring pairs is depicted with red lines (C� distance < 12 Å) and yellow lines (otherwise).
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method in the left and right panels (Figure 2). A novel fea-
ture of this type of visualization is that the user can chose
to display either the ‘intra’, ‘inter’ or ‘intra + inter’ protein
covariation scores by clicking in the box below the circos.
Another interesting feature is that the user can control the
observed number (and%) of links to be shown by a scroll
bar below the representation.

Hence, the user is always in control of the visualization.
As an example, the top 100 intraprotein links, the top 100
interprotein links or the top 100 intra+interprotein links
could be observed. In the example in Figure 2, to observe
100 interprotein links using MI score, which are the 0.05%
of the total links (220 116 total links), the first 565 top
scored pairs should be inspected. Similarly, for mfDCA cal-
culation, the 816 top scored pairs should be inspected in or-
der to see 100 interprotein links.

This information is useful in order to take decisions about
how well ranked are the interprotein covariation scores (for
example, to suggest interaction) when compared to the in-
traprotein score of each of the single proteins. For this same
reason, the server informs the score density plot of each
method where the distribution of the interprotein and in-
traprotein scores can be observed (Supplementary Figure
S3).

A foremost feature is that the overlap of the methods can
be analyzed. In that section the user can visualize the over-
lap between any methods including between the four meth-
ods together. In the same fashion as with one method, either
the intraprotein, interprotein or both types of links can be
observed.

At last, a covariation matrix for each of the methods can
be displayed. The square box in the miniature on top of the
panel is a navigator panel, it shows which part of the ma-
trix is visualized and permits easy navigation through the
entire matrix. Pair covariation scores are shown as points
in the matrix colored upon the score rank (dark red top 100
scores, orange top 500 scores and yellow top 2500 scores)
(Supplementary Figure S4). The matrix is symmetric and
only the upper triangular matrix is displayed.

Finally, both the circos and the matrix images can be
downloaded as Portable Network Graphics, Scalable Vec-
tor Graphics or Portable Document Format files.

Case example

The H and G chains of the Escherichia coli ATP synthase
complex (26) is automatically loaded into the server as an
illustrative example of use. We chose this example as it was
shown to be a false-negative case of complex prediction with
the EVcomplex score (13). The authors propose that it may
be the cause of the transience of their interaction or it may
reflect a lack of conservation of this interaction across the
aligned proteins from different species. We analyzed the top
15 interprotein score coincidence between the four methods
(MI, mfDCA, PSICOV and CCMpred) from the 90 525 to-
tal of pairs (i.e. the number of interprotein and intraprotein
links with higher scores than the lowest score of the inter-
protein selected threshold).

Surprisingly, 10 out of 15 of the scored pairs that result
from overlapping the four methods are at contact distance
in the protein structure (Figure 3). These 15 overlapped in-

terprotein pairs are comprised in the top 347 pairs. In this
particular case, for such number of observations the over-
lap of the four methods strongly benefits obtaining the truly
contacting pairs between the proteins. We do not know if
it holds true for other cases, to test that hypothesis a large
benchmark should be assayed which is out of the scope of
this paper.

We show an example of prioritization between docking
models in an attempt to find a biological complex between
Rab (RAB7A HUMAN) and Ubiquitin (UBC HUMAN)
in the supplementary file. Rab proteins are small GT-
Pases of the Ras oncoprotein family involved in the reg-
ulation of intracellular membrane traffic in mammalian
cells and Ubiquitin is a regulatory protein that makes post-
translational modifications that affects the proteins fate
in many ways. The structure of each individual protein is
known, there is evidence of interaction but no complex
structural information is available (Supplementary Figure
S5).

CONCLUSIONS

Covariation analysis between proteins is an active field of
work. Several computational tools have been developed in
the last years. However, comparison of the results between
methods is not an easy task. The web server presented here
is aimed to help computing and comparing covariation be-
tween proteins using three relevant methods. To make this
task easier, we focus in showing the results in a graphi-
cal and interactive way, therefore users can dynamically ex-
plore data without any additional software other than a web
browser.

The server goal is to provide an environment for meth-
ods comparison. Results might be used to prioritize protein
positions in a mutation analysis based on their inter and
intra (if part of a complex) coevolutionary role. It might
also provide a guide for docking experiments and to gain
insights into protein–protein interaction when a structure
of the complex is not available.

This web server generates intuitive and informative
graphical representations for this type of data. For differ-
ent user needs, we allow users to download raw covariation
data and alignments for further analysis. Also, we provide a
form to ask for new features or propose new methods, which
allows any user to suggest new ways of representing results
or analysis to be included in the server.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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