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Abstract−− Metaheuristics Algorithms are widely 

recognized as one of most practical approaches for 
Combinatorial Optimization Problems. This paper 
presents a comparison between two metaheuristics to 
solve a problem of Phase Balancing in Low Voltage 
Electric Distribution Systems. Among the most rep-
resentative mono-objective metaheuristics, was se-
lected Simulated Annealing, to compare with a dif-
ferent metaheuristic approach: Evolutionary Par-
ticle Swarm Optimization. In this work, both of them 
are extended to fuzzy domain to modeling a multi-
objective optimization, by mean of a fuzzy fitness 
function. A simulation on a real system is presented, 
and advantages of Swarm approach are evidenced.   

Keywords−− Metaheuristic Algorithm; Swarm In-
telligence; Fuzzy Sets; Electric Distribution; Phase 
Balancing. 

I. INTRODUCTION 
Metaheuristics Algorithms are widely recognized as one 
of more practical and successful approaches to solve 
combinatorial problems. However, the original formula-
tions have been oriented to mono-objective optimiza-
tions. Many proposal of extensions to multi-objective 
domain have been established, but each formulation has 
showed particular advantages and limitations, in gener-
al, over certain kind of problems. Does not exist the 
“best multiobjective metaheuristic algorithm”, but some 
algorithms are more appropriates for certain problems. 
Such is the case of Phase Balancing in Low Voltage 
Electric Distribution Systems (LVEDS), when a classic 
programming approach is not addressed to solve it. The 
balance is referred to the loads in the feeders of a LV 
network in an EDS. The classic approach, has demon-
strated major limitations, as it will be discussed. For this 
reason, a metaheuristic approach is an alternative that 
may produce very good results. 

This work is organized as follows: in the section 
II.A the problem of Phase Balancing is presented. It 
describe the no desired effects that produce an elevate 
unbalance degree in the loads of a low voltage (LV) 
feeder. In section II.B are described the principles of 

two mentioned metaheuristics: Simulated annealing 
(SA) and Evolutionary Particle Swarm Optimization 
(EPSO). In section II.C, an introduction of the static 
fuzzy decision is presented, and the extension of the SA 
and EPSO algorithms to fuzzy domain, by mean of a 
fuzzy fitness function, is proposed for solve multi-
objective optimizations. Two models, designed as FSA 
and FEPSO, specialized to solve the Phase Balancing 
Multi-objective Problem, are obtained. Lastly, in the 
section II.D, a simulation on a real LV feeders system is 
presented and the results, obtained from FSA and 
FEPSO, are compared. The conclusions are presented in 
the section III. 

II. METHODS 
A. The Problem of Phase Balancing 
The most LV networks of an EDS are three-phase sys-
tems, physically defined by feeders with three conduc-
tors, one per phase (feeders system). If all loads of each 
conductor-phase were three-phase (with the same value 
in each phase) then the system would be balanced. 
However, feeders loads in a LV network, for low in-
comes residential areas, are commonly single-phase. 
Original feeders system design, depends on accuracy of 
the given load data and, even maximizing this accuracy, 
there will always be certain unbalance degree, due to 
single-phase loads. A high unbalance degree, produces 
high voltage drops, high power and energy losses and 
low reliability. For this reason, such degree must be as 
low as possible. For the purpose of this paper, LV feed-
ers system will have only single-phase loads. A formu-
lation to the general problem of Phase Balancing, in this 
context, can be expressed as follows: 
Min { LossT ; I(Δu) ;  |I[o]|f }        (1) 
Subject to: 
 |I[R]|f ≤ IMax           (2) 

|I[S]|f ≤ IMax           (3) 
|I[T]|f ≤ IMax           (4) 

where the subindex f, refers to the output of substation 
connected to the principal feeder of the system; LossT 
are the total active power loss of system and I(Δu) is an 
index that depends on voltage drops.  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CONICET Digital

https://core.ac.uk/display/80370546?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


G. A. SCHWEICKARDT, V. MIRANDA, G. WIMAN 

114 

I[o]f (homopolar component) satisfy the equation: 
I[R]f+I[S]f +I[T]f = 3 x I[o]f        (5) 

If the system is balanced, then |I[o]|f = 0. 
The sub index [R], [S] and [T], refers to each phase 

of system. In addition, three constraints are imposed: the 
intensities in each phase at the output, must be less than 
the phase line capacity, IMax, Eq. (2), (3) and (4). The 
problem can be seen as a set of swapping single phase 
loads or a load assignment to lines. For example, a sin-
gle phase load can only be assigned to either phase [R], 
[S] or  [T] (see Fig. 1). This assignment should be ex-
ecuted until the objectives (1) are satisfied. 

In the Fig. 1, the line-dotted rectangles represent 
nodes in which groups of single phase loads are con-
nected (i.e. residential customers). Swaping the phases 
(double-arrow curves), the objectives functions (1) are 
evaluated by mean of a three-phase load flow. Pi is the 
active power and Qi is a reactive power connected at the 
node i. Phase Balancing has several significant benefits, 
such as improving power quality and reliability, and the 
utilization factor. More details are presented in the sec-
tion II.D. 

This problem is clearly combinatorial: if there are 3 
phases and n loads that can be swapping, then the num-
ber of states of search space for the solution, is 3n. In the 
reference (Zhu et al., 1998) is proposed to solve it a 
model based in Linear Mixed-Integer Programming, but 
it exhibit significant limitations, such as: a) the problem 
is not linear, and the linear formulation is valid if the 
current of each individual load is constant. This situa-
tion does not occurs in practice; b) the model requires a 
convex set of parameters, of summatory 1, as subjective 
weights for each node to weigh the importance of its 
unbalance degrees. This simple formulation to Multi-
Objective Linear Optimization, is a poor approach to 
search a global minimum in the objectives functions (1). 

A metaheuristic approach, perform a better search in 
the solutions space, because it not require to know, es-
sentially, the characteristic of each objective function.  

B. The Metaheuristics SA and EPSO 
B.1. Simulated Annealing (SA) 
The concept of Simulated Annealing in combinatorial 
optimization was introduced by Kirkpatrick et al. 
(1983). SA appears like a flexible metaheuristic that is 
an adequate tool to solve a great number of combina-
torial optimization problems. It is motivated by an anal-
ogy to annealing in solids and the idea comes from a 
paper published by Metropolis et al. (1953). The Metro-
polis algorithm simulated the cooling of material in a 
heat bath. This is the process know as annealing. It con-
sists on two steps: a) the temperature is raised to a state 
of maximum energy and b) the temperature is slowly 
lowered until a minimum energy state, equivalent to 
thermal equilibrium, is reached. The structural proper-
ties of the system, depends on the rate of cooling. If it is 
cooled slowly enough, large crystals will be formed. 
However, if the system is cooled quickly, the crystals 
will contain imperfections. Metropolis’s algorithm si-
mulated the material as a system of particles. 

 
Figure 1 - Single Phase loads and Balance by Phase Swapping 
in some loads 

 In order to more clearly explain the SA metaheuris-
tic, is possible present an analogy between a physical 
system, with a large number of particles, and a combi-
natorial problem. This analogy can be stated as follows: 

• The solutions of combinatorial problem are 
equivalent to the physical system states; 

• The attributes of solutions are equivalent to the 
energy of different states;  

• The control parameter in the combinatorial 
problem is equivalent to the temperature of 
physical system. 

The evolution of the solution algorithm is simulated 
using probabilistic sampling techniques, supported by 
successive generation of states. This process begins with 
an initial state, i, evaluated by an energy function, E(i). 
After generating and analyzing a second state, j,  E(j), it 
is performed an acceptation test. The acceptance of this 
new solution, j, depends on a probability computed by: 

 
⎧⎪
⎨
⎪⎩

≤

≥
E(j)-E(i)

c

1; if E(j) E(i)
p(accept j) = 

e ; if E(j) E(i)
  (6) 

where c is a positive real number, c = kB x T; kB is a 
constant (called Bolzman constant, in Metropolis’s Al-
gorithm) and T is a temperature of system.  

A procedure is defined, in pseudo-code, as follows: 
Minimize f(i) for i ∈S → Search Space 

Begin Procedure SA 
1. set starting point i = i0 
2. set starting temperature T = T0 and cooling rate: 
0 < α  < 1; 
3. set NT (number of trials per temperature); 
4. while stopping condition is not satisfied do 
5.  for k ← 1 to NT do 
6.   generate trial point j from Si using q(i, j); 
7.   accept j with probabylity p(accept j) (eq. 6); 

 8.  end for 
 9. reduce temperature by T ← T x α; 
 10. end while 
End Procedure SA 

Si is a Neighborhood of solution i: is a set of discrete 
points j satisfying j ∈  Si ⇔ i ∈  Sj. The generation 
function of  Si  is q(i, j) defined externally. 

B.2. Evolutionary Particle Swarm Optimization (EPSO) 
The metaheuristic EPSO, is built over the concepts of 
Evolution Strategies (ES) and Swarm Intelligence (SI). 
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Under the name of Evolution Strategies and Evolutio-
nary Programming (EP) a number a models to solve 
combinatorial optimization problems have been devel-
oped, that rely on Darwinist selection to promote pre-
gress towards the (unknown) optimum. This selection 
procedure may rely on pure stochastic basis or have a 
deterministic flavor, but, at the end, the general prin-
ciple of the “survival of the fitness” remains.   
 On the other hand, the Swarm Intelligence is 
adopted by Particle Swarm Optimization metaheuristic, 
(PSO) (Kennedy and Eberthart, 1995) that rely on a 
different concept. Mimicking zoological behavior, im-
itating the collective or social behavior of animals 
swarms, flocks or schools, a set of particles evolves in 
the search space motivated by three factors, called habit, 
memory and cooperation. The first factor impels a par-
ticle to follow a path along its previous movement di-
rection. It is frequently called the inertia factor. The 
second factor, influences the particle to come back on 
its steps (i.e., to tend to go back to the best position it 
found during its life). The third factor (vinculated to 
information exchange), induces the particle to move 
closer to the best point in the space, found by the collec-
tive of all particles in its family group. Analogy between 
Particle Swarm and Combinatorial Problem is easy to 
see, establishing a correspondence between the position 
of particle and a solution in the search space. 
 Before describe the EPSO strategy, a brief review of 
Classical PSO metahuristic is presented. 

Particle Swarm Optimization (PSO) 
In the Classical PSO, one must have, at a given itera-
tion, a set of solutions or alternatives called “particles”. 
From one iteration to the following, each particle, Xi, 
moves according to a rule that depends on the three fac-
tors described (habit, memory and cooperation). In ad-
dition, each particle of swarm keep the record of the 
best point found in its past life, bi, and the record of the 
current global best point found by the swarm, bG. Then, 
the PSO Movement Rule, sates that (X and V are vec-
tors): 

Xi
New = Xi + Vi

New x Δt        (7) 
and if Δt is adopted as 1 (t is a discrete variable that in-
dicates the iteration number, and Δt indicates the itera-
tive incremental step): 

Xi
New = Xi + Vi

New          (8) 
where Vi is called the velocity of particle i, and is de-
fined by the equation: 
Vi

New = δ(t) x wI x Vi + rnd1 x wM x (bi - Xi) + rnd2 x wC 
x (bG - Xi)             (9) 

The dimension of vectors is the number of decision 
variables. The first term of (9), represents the inertia or 
habit of the particle: keeps moving in the direction it 
had previously moved. δ(t) is a function decreasing with 
the progress of iterations, that reduce, progressively, the 
importance of inertia term. The second term represents 
the memory: the particle is attracted to the best point in 
its trajectory-past life. The third term represents the co-
operation or information exchange: the particle is at-
tracted to the best point found by all particles. The pa-

rameters wI, wM and wC  are  weights fixed in the begin-
ning of process;  rnd1 and rnd2 are randoms numbers 
sampled from a uniform distribution U(0, 1). The 
movement of a particle is represented in the Fig. 2. The 
rule is applied iteratively, until there are no changes in 
the bG or the number of iterations reaches a limit.  

There are some striking points in Classical PSO, 
such as: a) it depends of a number of parameters defined 
externally by the user, and most certainly with values 
that are problem-dependent. This is certainly true for the 
definition of weights wI, wM and wC: a delicate work of 
tuning is necessary in the most of practical problems; b) 
the external definition of decreasing function, δ(t), re-
quire some caution, because is intuitive that if inertia 
term is eliminated at an early stage of the process, the 
procedure risks to be trapped at some local minimum; c) 
last, the random factors rdn1, 2, while introducing sto-
chastic flavor, only have a heuristics basis and are not 
sensitive to evolution of the process. Introducing EPSO 
metaheuristic it be intend overcome these limitations. 

The strategy of PSO, as an algorithm, will be de-
scribed in the section II.D, where the multi-objective 
metaheuristic FEPSO, proposed in this work, is ex-
plained. This is because FEPSO is an extension of PSO 
and EPSO. 

Evolutionary/Self-Adapting Particle Swarm Optimiza-
tion (EPSO) 
PSO can be observed as a proto-evolutionary process, 
because exists a mechanism to generate new individuals 
from a previous set (the movement rule). It is not a ex-
plicit selection mechanism in the darwinist sense. How-
ever the algorithm exhibits a positive progress rate (evo-
lution) because the movement rule induces such proper-
ty implicitly. The idea behind EPSO is to grant a PSO 
scheme with an explicit selection procedure and with 
self-adapting properties for its parameters. The self-
adaptative Evolution Strategies (σA-ES) model, al-
though there are many variants, may be represented by 
the following procedure: 
• Each individual of generation is duplicated; 
• The strategic parameters of each individual are 

undergo mutation;  
• The object parameter of each individual are mu-

tated under a procedure commanded by its strateg-
ic parameters (this generates new individuals); 

 
Figure 2 – Movement Rule of PSO in two dimensions 
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• A number of individuals are undergo recombina-
tion (this also generates new individuals); 

• From the set of parents and sons (the original and 
the new individuals), the best fit are selected to 
form a new generation. 

If both strategies (σSA-ES and PSO) are combined, 
it is possible to create such scheme (self-adaptative/ 
evolutionary PSO) (Miranda et al., 2008). At a given 
iteration, consider a set of solutions that can will keep 
calling “particles”. Then, the general scheme for EPSO 
is the following: 
• Replication: each particle is replicated r times; 
• Mutation: each particle has its weights mutated;  
• Reproduction: each mutated particle generates an 

offspring according to the particle movement rule; 
• Evaluation: each offspring has its fitness eva-

luated; 
• Selection: by stochastic tournament, the best par-

ticles survive to form a new generation. 
Then, the Movement Rule of EPSO is not changed 

respect PSO, and is valid the Eq. (8). But the new EPSO 
velocity operator, is expressed by: 

Vi
New = wIi

* x Vi + wMi
* x (bi - Xi) +  wCi

* x (bG
* - Xi) (10) 

The Movement Rule of EPSO, keeps its terms of in-
ertia, memory and cooperation. However, the symbol * 
indicates that the parameters will undergo mutation: 

wIi
*= wIi

 + τ x N(0,1)              (11) 
wMi

*= wMi
 + τ x N(0,1)           (12) 

wCi
*= wCi

 + τ x N(0,1)           (13) 
bG

*= bG + τ’ x N(0,1)                 (14) 
where N(0, 1) is a random variable with Gaussian distri-
bution, mean 0 and variance 1; τ and τ’ are  learning 
parameters (either fixed or treated also as strategic pa-
rameters and therefore also subject to mutation). The 
global best bG is randomly perturbed too.  

In the Fig. 3, a new Movement Rule of EPSO, with 
the perturbed global best, is represented. Notice that the 
vector associated with the cooperation factor does not 
point to the global optimum, bG, but to a mutated loca-
tion, bG

*.  
An option about ramdomly disturbed best global, is 

set by the expression: 
bG

*= bG + wGi
* x N(0,1)                (15) 

 
Figure 3 – Movement Rule of EPSO in two dimensions 

where wGi
* is the forth strategic parameter, associated 

with the particle i. It control the size of neighborhood of 
bG where is more likely to find the real global best solu-
tion. Another difference respect to the velocity operator 
of PSO, is that the weights are defined for each particle 
of swarm (subindex i). 

C. Static Fuzzy Decision and Fuzzy Fintness Func-
tion 
C.1. Fuzzy Decision 
The metheuristics SA and PSO were designed, original-
ly, to mono-objective optimizations problems. There are 
many approachs proposed to extend them to multi-
objective optimizations (Smith et al., 2008). In this pa-
per, a new extension capable to treat with no stochastic 
uncertainties of value is proposed. This kind of uncer-
tainties is present in the preferences between the crite-
rias of multi-objective optimization, and in the satisfac-
tion degree that certain value of a single objective, pro-
duce in the decision-maker. 
 To represent and introduce such uncertainties in the 
model, the static decision-making in fuzzy environ-
ments principle (Bellmand and Zadeh, 1970) is pro-
posed. It is expressed as follows: 

Consider a set of fuzzy objectives (whose uncertain-
ties of value are represented by mean of fuzzy sets) {O} 
= {O1, O2, … , On} whose membership functions are μOj, 
with j=1..n, and a set of fuzzy constraints  (whose un-
certainties of value in the upper and lower limits, are 
represented by mean of fuzzy sets) {R} ={R1, R2,…, Rh} 
whose membership functions are μRi, with i=1..h. The 
the Decision fuzzy set, results: 

D = O1 <C> O2 <C>…<C> On <C> R1  <C> R2 <C> 
…<C>  Rh               (16) 

where <C> is a fuzzy sets operator called “confluence”. 
The most common confuence, is the intersection. Then, 
the membership function of D is expressed as: 

μD = μO1 C μO2 C…C μOn C μR1 C μR2 C …C  μRh     (17) 

where C is an opertator (called, in general, t-norm) be-
tween values of membership functions. For example, if 
the confluence is <C> ≡ ∩ (intersection), then C is the 
t-norm ≡ min (minimum value, for certain instance, of 
all membership function in eq. (17)). Then, the Max-
imizing Decision over a set of alternatives, [X], is: 

μD
Max = MAX[X] {μO1 C μO2 C…C μOn C μR1 C μR2 C …C  

μRh}                     (18) 

A t-norm is defined as follows: 
If t: [0, 1] → [0, 1] is a t-norm, then: a) t(0,0) = 0; 
t(x,1) = x; b) t(x,y) = t(y,x); c) if x ≤ α e y ≤ β ⇒  t(x,y) 
≤ t(α,β); and d) t((t(x,y),z) = t(x,t(y,z)). 

Notice that all fuzzy sets (Objectives and Con-
straints) are “mapping” in the same fuzzy set of deci-
sion, D, and are treated the same way.  
 This type of fuzzy decision is static. It is evaluated 
in certain instance of occurrences of values correspond-
ing to membership’s functions. 

Inertia 
Memory 

  Cooperation 

Xi 

Xi
New 

bi 

bG bG
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C.2. Fuzzy Sets of Optimization Criteria in the Phase 
Balancing Problem 
To define a multi-objective fuzzy function, will be used 
these concepts. The development of expressions will be 
oriented to the objectives and constraints (criteria) of the 
Phase Balancing problem, but it could be extended to 
any set of criteria’s, represented by fuzzy sets. 

Will be assume that the LV feeders system is under 
operation and exhibit a significant unbalance degree. 
Four criteria/objectives are introduced in the optimiza-
tion, and all of them must be minimized: LossT, I(Δu), 
|I[o]|f, from model in the eq. (1), and NC that represent 
the number of phase changes (swapping) respect to the 
reference or existing system A change has associated a 
cost (and it can disturbe the normal service). The con-
straints will be considered as crisp sets, and any solution 
that no satisfies Eq. (2)-(4), will be discarded. 

All membership functions of fuzzy sets will be con-
struct as linear functions and, then, will be affected by 
exponentials weights, that represent the importance be-
tween the preferences of criteria.  

Consider two limits values in a given criteria m: 
vMax and vMin, and let pμm the exponential weigth asso-
ciated to corresponding fuzzy set on vm. Then the mem-
bership function to criteria m, is expressed by: 

=m 1μ  ; if  vMinm  ≥ vm          (19) 

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

m
μ

m
m

m m

p
vMax - vm

vMax vMin
μ ; if  vMinm  ≤ vm ≤  vMaxm  

(pμm  > 1 → more importance;  pμm < 1→ less impor-
tance)                    (20) 

=m 0μ  ; if  vMaxm  ≤ vm          (21) 
In this work, such limits values are obtained as fol-

lows: a) the vMinm will be the result of a PSO mono-
objective simulation (that minimize the criteria which 
variable is vm) with a deterministic fitness function; b) 
vMaxm is a value depending on the criteria under analy-
sis, as is explained below. 

The following calculation of limits values, will cor-
respond to the four criterias considered in the especific 
Phase Balancing problem.  

1) Total Active Power Loss (LossT) 
In this case, a mono-objective PSO is simulated to ob-
tain the minimal power loss of LV feeders system, 
vMinLoss.  
 The value vMaxLoss is obtained by a simulation of a 
three-phase load flow on reference feeders system. 

2) Drop Voltage Index (I(Δu) 
A LV feeders system is the radial operation. This mean 
that one option to  evaluate the maximum voltage drop, 
is from  voltages  in  the terminal nodes of each feeder 
of system. Then, setting two parameters: uint (voltage in 
tolerance) and uoutt (voltage out of tolerance) applied to 
the terminal nodes (worse situation of voltage drops), 
and assigning pertinent values per unit of nominal vol-
tage (for example: uint = 0.95 [pu]and uoutt = 0.92), is 
possible to define the limits as follows: vMinu = 1/uint 

and vMaxu = 1/uout. For each terminal node of LV 
feeders system, is considered a memberschip function 
(19)-(21), with this limits. Then, if nt is the number of 
terminal nodes, it will be 1μ(vu) , 2μ(vu) , … 

ntμ(vu) membership functions vinculated to the voltage 
drops in the feeders system. From this, it proposal the 
index (I(Δu) expressed by the geometric mean: 

I(Δu  )= ∏ i

nt
nt

i=1
μ(vu) = μ(vu)               (22) 

The voltages at terminal nodes, in a given instance, 
results of a three-phase load flow simulation. 

3) Homopolar Component Current |I[o]|f 
In this case, a mono-objetive PSO is simulated to obtain 
the mimimal |I[o]|f  in LV feeders system, vMin|I[0]|f.  
 The value vMax|I[0]|f is obtained by a simulation of a 
three-phase load flow in the reference system. 

4) Number of Phase Changes (Swapping) NC 
To determine vMaxNC, is proposed the expression: 

vMaxNC = MAX { NCPSO LossT; NCPSO I(Δu); NCPSO |I[0]|f }  
                  (23) 
that is the maximum obtained in each PSO simulation. 
By analogy, to determine vMinNC is proposed: 

vMinNC = MIN { NCPSO LossT; NCPSO I(Δu); NCPSO |I[0]|f }-
NC0                 (24) 
where NC0 is a number externally fixed (it can be 0). 

C.2. Fuzzy Fitness Function 
The t-norm proposed in this work, is the Einstein Prod-
uct, defined as: 

=PE
x× y

t
2 - (x + y - x× y)

          (25) 

where x and y are two generic membership functions. 
 From the properties of a t-norm, presented in section 
C.1, is possible to construct the membership function of 
Decision fuzzy set, D, as follows: 
μD =tPE { μLossT ; I(Δu); μ|I[0]|f ; μNC} = Fff               (26) 

where Fff  is the Fuzzy Fitness Function to evaluate the 
fitness of each individual in the metaheuristic algorithm. 
 The set of alternatives, [X], for the static fuzzy deci-
sion in the Eq. (18), is the set of particles in the swarm 
of PSO/EPSO, while in SA is each energy state. 
 This multio-objective approach is valid to the fitness 
function of any metaheuristic. From this, in the frame-
work of this paper, the metaheuristic SA is extended to 
FSA an EPSO to FEPSO. 

D. Simulation on Real LV Fedeers System 
The simulation of the two metaheuristics, FSA and 
FEPSO, is applied on the same real LV feeders system, 
represented in the Fig. 4, existing in the city of Bari-
loche, province of Río Negro, Argentina. It corresponds 
to one of the six output of a Medium Voltage (MV)-
Low Voltage (LV) substation, located in a low-incomes 
suburban area. For this reason there are only single 
phase loads in the feeders. This system is adopted as 
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reference. It can observe the connection of loads to 
phases [R], [S] and [T]. The conductors of feeders have 
the followings parameters: Pr: 3x95 [mm2], (r = 0.372 
+ j xl = 0.0891) [Ω]/[km]; SI, SII, SIII, SIV, SV, SVI, 
TI, TII, TIII and TIV: 3x35 [mm2], (r = 1.39 + j xl = 
0.0973) [Ω]/[km]. The number of loads is nL = 115. 

The FSA algorithm follows the procedure described 
in section B.1, by replacing the Energy function E to 
Fff. 

The FEPSO algorithm, is described in the flow-chart 
of Fig. 5. NIterMax is the maximum number of itera-
tions externally defined. It possible to observe the 
scheme corresponding to PSO, by eliminating the 
processes called Evolutive Operators and MultiObjetive. 
By eliminating only the process called MultiObjective, 
it observe the scheme corresponding to EPSO. 

The parameters used in FSA, are listed below: 
a) Initial Temperature: T0 = 1.0; 
b) Number of Iteration to the same Temperature: 

NT=100; 
c) Maximum Number of Iterations without improve-

ment of fitness function (stopping condition): 
nMaxI = 300; 

d) Cooling Rate: α = 0.8; 
e) Function of Generation of Neighborhood, q(i, j): 

this identification is making by selection, randomly, 
of one single phase load, and connecting it in a 
changed phase. 

f) kB Constant (to eq. (6)): kB = 0.00025. 
The Fuzzy fitness function, Fff, is evaluated from 

the results of a three-phase load flow.  

 

 
Figure 4 – Real LV Feeders System to Simulation 

The Table 1 shows the results corresponding to ap-
plication of two metaheuristics (FSA y FEPSO). Table 
2 shows the complete results of swapping Phase Balanc-
ing for mono-objective PSOs and FEPSO. [S] is the 
loads power vector [kVA] and [d] the nodes distance 
vector, respect to substation output [km]. The power 
factor is 0.85. 

The model for this application (phase balancing), is 
static. This implies that the feeders system is analyzed 
for the worse scenario of the grow load planning, cor-
responding to the peak of demand for certain period of 
time (one year, typically). System evolution is not re-  
 

 
Figure 5 – Flow Chart of FEPSO in Phase Balancing 

Table 1: Results of Metaheuristics FEPSO-FSA-PSO 

 

Reference System Results:  
LossT[kW] =13.02   |I[0]f|[A] = 47.6     I(Δu) = 0     NC = 0 

PSO Size  Time[min] LossT] |I[0]f|  I(Δu) NC 
LossT 150   45  6.94  18.93 0.32  81 
|I[0]f|  150   37  10.16 0.100 0.00  79 
I(Δu) 150   43  7.02  13.80 0.34  85  
 
FSA Size  Time[min] LossT] |I[0]f|  I(Δu) NC 
tPE  -----   63  9.35  1.73  0.11  72 
 
FEPSO Size  Time[min] LossT] |I[0]f|  I(Δu) NC 
tPE  200   48  7.21  0.4  0.27  59 

Begin Range of va-
riables CV={1, 

2, 3} and FEPSO 
Parameters

Initialize Con-
nection Vector 

(Swarm-P) 
CV={R=1, S=2, 
T=3}; [b] and bG 

ramdomly 

k = 0

For each CV(1, 
2, 3), i = 1..P 

Evaluate Fff(i, k) 

Update b(i, k), bG
* 

Update velocity(i, k) 

Update CV(i, k) – 
Movement Rule 

µD improve in 
NiterMax? 

End 

k =k+1; 
i=1

Evolutive 
Operators: 
Replication 
and Muta-

tion

Evolutive 
Operators: 
Selection

Three-
Phase Load 

Flow: 
(LossT, 

I(Δu), |I[0]f,  
NC)

MultiOb-
jective: 

Evaluation 
of Fuzzy 

Sets: 
µ(LossT), 

I(Δu), 
µ(|I[0]f), 

µ(NC)→tPE 

= Fff(i,k)= 
µD 

2

1
2 

1

Yes 

No 
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Table 2: Complete Swaping Phase Balancing Results of Meta-
heuristics PSO (three simulations) and FEPSO 

 

quired, because is not a control model. For this propose 
(static planning) is introduced, in the studies of the elec-
trical distribution systems, a parameter called simultane-
ity factor of loads. It represents the simultaneous load in 
the peak of demand. It was considered, in the example, 
as fs = 0.6. This mean that each value |P + j x Q| (com-
plex power) in [S] vector, Table 2, was multiplied for fs. 

The exponential weights can be obtained from the 
preference matrix between the optimization criteria 
(Schweickardt and Miranda, 2009). These preferences 
are certainly subjective, and are expressed in order to 
Analytical Hierarchy Processes method, proposed by 
Saaty (1977). Alternatively, these weights can be de-
fined without any previous process, satisfying or not the 
condition of summatory equal to number of criterias. 
Follows this way, with an arbitrary choice to emphasize 
the uncertainties of value, the exponential weights re-
sulting in: pμ(LossT)=pμ(|I[0]|f)=pμ(NC)=3; pμ(vu)=4. 

The reference values to form the membership func-
tions to each fuzzy optimization criteria, were results:  

[LossTMin=6.94 [kW] ; LossTMax=13.02 [kW] ]; 
[ I[0]fMin=0.1 [A] ; I[0]fMax=47.6 [A] ];  
[NCMin=45 ; NCMax =85], with NC0 = 34; 

The parameters used in FPSO, are listed below: 
a) Initial Weigths: wI =0.5; wM = wC =2. In PSO are 
constants; 
b) τ and τ’ =0.2; 
c) Number of Replication for each particle: r = 5; 
d) Maximum Number of Iterations without improvement 
of fitness function (stopping condition): nIterMax =400; 

It can observe in the Table 1, the best results reached 
for the metaheuristic FEPSO, respect to FSA. There are 
some reason for this: a) FSA exhibit a poor ability to 
“escape” from local optimal (worse that PSO), when the 
search space is discrete and the good solutions are very 
dispersed. In fact, a bootstrapping procedure was neces-
sary to change the membership function of I(Δu) be-
cause this index is strict, and the algorithm FSA reached 
the stopping condition with Fff = 0. The bootstrap, be-
gins with another more flexible membership function, 
expressed as  I(Δu)= μ(vu)# =e-[ξ x Nnot];  0 < ξ ≤1, where 
Nnot is the number of terminal nodes with out of toler-
ance voltage. If, in certain iteration, some solution that 
satisfy the Eq. (22) is reached, then I(Δu)= μ(vu) (Eq. 
22); b) It is no necessary in EPSO, because the self-
adaptation introduced by the evaluative operators, al-
lows a self-tuning of weights in the velocity operator. 
Consequently, this avoid that algorithm to be trapped at 
some local minimum, or, even worse, at fitness 0; c) In 
the FSA, even when a bootstrap procedure was intro-
duced, after several simulations, always was reached a 
local minimum. The solution FSA shown in Table 2, is 
the best reached in 22 executions of algorithm. 

As an example of the evolution of minimized va-
riables (objectives, in the optimization problem), in the 
Fig. 6 a plot of LossT vs. time computing, t, for both 
Metaheuristics, FEPSO and FSA, is presented. LossT is 
the most important parameter to optimize in the classic 
formulation of phase balancing problem. 

Feeder Pr [All elements follows the index order from Fig. 4] 

[S] = [1.8 1.15 1.15 1.95 1.15 1.15 1.13 1.14 1.15 1.15 1.14 1.15 2.93 1.12 
1.13 1 1.15 1.15 1.15 1.15 1.15 1.17 1.16 1.15 1.13 1.13 1.12 1.13 1.15 
1.15 1.15 1.18 1.16 1.15 1.15 1.17 1.15 1.18 1.36 1.36 1.36 1.36] 
[d] = [0.035 0.035 0.035 0.035 0.035 0.035 0.045 0.045 0.045 0.045 0.045 
0.045 0.065 0.065 0.065 0.065 0.065 0.065 0.095 0.095 0.095 0.095 0.095 
0.095 0.16 0.16 0.16 0.16 0.16 0.16 0.45 0.45 0.45 0.45 0.45 0.45 0.7 0.7 
0.7 0.7 0.7 0.7] 
[PSO(LossT)] = [T S R S S S S T T S R S R S S S S T S T T R T T T S 
T R T T T S T R T T R S R R R S]  
[PSO(|I[0]f|)] = [S S S T S S S R T R R R S R S T T S S R S S S R T R S 
T S R T R S T T T R S R R T R] 
[PSO(I(Δu)] = [R S R T R R T R R S R R R S R R R T T T R R S T T 
R T S T T S T T R R T R S S S S S] 
[FEPSO] = [R R S T R R T R R S R R R S R R R T R R R R T S R R T S 
T T R T S R R T S S T T S S] 

Feeder SI  [All e elements follows the index order from Fig. 4] 

[S] = [1 1.15 1 1.15 1.155 1 1.15 1.17 1.15 1.15 1.18 1.125 1.125] 
[d] = [0.1 0.1 0.1 0.1 0.1 0.1 0.25 0.25 0.25 0.3 0.3 0.3 0.3] 
[PSO(LossT)] = [T R R T S R R T R T S T R] -- [PSO(|I[0]f|)] = [T T T 
T S R S R T S R S R] 
[PSO(I(Δu)] = [T T S S R R T S T S S T S] -- [FEPSO] = [T S T R S R 
T S T R S T T] 

Feeder SII  [All the elements follows the index order from Fig. 4] 

[S] = [1.15 1.158 1.125 1.125 1.118 1.125 1 1.15 1.15 1.18]  
[d] = [0.15 0.15 0.15 0.15 0.3 0.3 0.3 0.3 0.3 0.3] 
[PSO(LossT)] = [T T R T T R R T R R] --[PSO(|I[0]f|)] = [T T T R S T 
R R S T] -- [PSO(I(Δu)] = [S T T T S S S R T R] -- [FEPSO] = [R T T 
T S S S R T R] 

Feeder SIII  [All the elements follows the index order from Fig. 4] 

[S] = [1 1.15 1 1.155 1.155 1.18 1.15 1.155 1.15] -- [d] = [0.25 0.25 0.25 
0.25 0.25 0.35 0.35 0.35 0.35] 
[PSO(LossT)] = [T S R S S T R T R] --[PSO(|I[0]f|)] = [T T S T T S R T 
R] -- [PSO(I(Δu)] = [R R R S T T T S S] -- [FEPSO] = [R S R R T T S S 
T] 

Feeder SIV   [All the elements follows the index order from Fig. 4] 

[S] = [1.15 1.148 1.125 1.125 1.15 1.18 1.125 1 1.15] - [d] = [0.1 0.1 0.1 
0.1 0.1 0.2 0.2 0.2 0.2] 
[PSO(LossT)] = [S R R T R T R T T] -- [PSO(|I[0]f|)] = [S R T R R T S 
T R] -- [PSO(I(Δu)] = [T T S S T S T S T] -- [FEPSO] = [T S R R T R S 
S T] 

Feeder SV  [All the elements follows the index order from Fig. 4] 

[S] = [1 1.15 1 1.12 1.125 1 1.18 1.12 1.155 1.15 1.128 1.125 1.125] 
[d] = [0.1 0.1 0.1 0.1 0.1 0.15 0.15 0.15 0.15 0.2 0.2 0.2 0.2] 
[PSO(LossT)] = [S R T T T R S R R R S S R] -- [PSO(|I[0]f|)] = [R T R 
R S T T S R S S R R] -- [PSO(I(Δu)] = [R S T T R S T R R S S S S] -- 
[FEPSO] = [R S T T R S T R T S S S S] 

Feeder TI   [All the elements follows the index order from Fig. 4] 

[S] = [1 1.15 1 1.128 1.125] - [d] = [0.15 0.15 0.15 0.15 0.15] 
[PSO(LossT)] = [R T T S R] -- [PSO(|I[0]f|)] = [T S R S T] --  
[PSO(I(Δu)] = [S T T S S] -- [FEPSO] = [T T S S T] 

Feeder TII  [All the elements follows the index order from Fig. 4] 

[S] = [1 1.122 1 1.124 1.15] - [d] = [0.095 0.095 0.095 0.095 0.095] 
[PSO(LossT)] = [R T R T R] --[PSO(|I[0]f|)] = [S T S R T] -- [fUft] = [T 
T S S T] -- [FEPSO] = [T S S S T] 

Feeder TIII   [All the elements follows the index order from Fig. 4] 

[S] = [1 1.152 1.123 1.725] - [d] = [0.135 0.135 0.135 0.135] 
[PSO(LossT)] = [R S S R] -- [PSO(|I[0]f|)] = [R T R R] --  [PSO(I(Δu)] = 
[T R S S] -- [FEPSO] = [S R S T] 

Feeder TIV  [All the elements follows the index order from Fig. 4] 

[S] = [1.12 1.15 1 1.8] - [d] = [0.125 0.125 0.125 0.125] 
[PSO(LossT)] = [S R R R ]-- [PSO(|I[0]f|)] = [T S R S] --  [PSO(I(Δu)] = 
[T S R S] -- [FEPSO] = [T S S S] 



G. A. SCHWEICKARDT, V. MIRANDA, G. WIMAN 

120 

 
Figure 6 – Time and Iterations in FEPSO and FSA Simmula-
tions for Loss Optimization 

Additionally, the iterations numbers ItFEPSO and 
ItFSA are shown at the observation times in the interval 
[10, 70] [min], until the convergence of two correspond-
ing algorithms is reached. Very similar plots, can be 
obtained for the other three objectives: |I[0]f|, I(Δu) and 
NC.  

The number of iterations for both metaheuristics, has 
not significance in a comparative context, because the 
algorithms’s structures are very different.  

No "pathological" cases were observed,  in which 
the convergence of both metaheuristics algorithms 
might be impossible for this application. 

As computational cost, (see Table 1) the time com-
puting, t=T, to reach the convergence, is the most repre-
sentative parameter. 

Respect of inherent uncertainties in the loads, the 
model has considered only the worse scenario of grow 
demand. But a collection of scenarios of grow demand 
in a given planning horizon, can be integrated in the 
analysis of the distribution system, with the aim to de-
fine different networks topologies in the LV feeders 
system. Then, a deterministic simulation for each scena-
rio of grow demand-network topology, is performed. 
Another way to treat with this kind of uncertainties, can 
be made by mean of fuzzy sets, considering, as sepa-
rated fuzzy-variables, the active and reactive power in 
each load connected to the feeders system (Schweick-
ardt and Miranda, 2007).  

III. CONCLUSIONS 
The paper offers the following contributions: 
• A different meaheuristic approach, based in a va-

riant of PSO Metaheuristics, called FEPSO, that 
produce very good results in multi-objective com-
binatorial optimization problems, such as Phase Ba-
lancing with only single phase loads in a LV feed-
ers system (and four objectives). It is not possible 
to solve this problem with mathematical program-
ming techniques. 

• A comparison FEPSO vs FSA methaheuristics: this 
allow to observe the advantages of swarm self-
adaptative approach. The swarm intelligence prin-

ciples, such as cooperation, combined with evolu-
tion strategies, seem like and address of metaheu-
ristics toward solution for any combinatorial opti-
mization problem. 

• A method to capture and model the uncertainties of 
value in the optimization criteria, at the same time 
that are extends to multi-objective decision making, 
introducing the fuzzy sets modeling, and fuzzy 
function fitness. 
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