
HAL Id: hal-01496266
https://hal.archives-ouvertes.fr/hal-01496266

Submitted on 30 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Impact of Source Code in Software on Power
Consumption

Hayri Acar, Gülfem Alptekin, Jean-Patrick Gelas, Parisa Ghodous

To cite this version:
Hayri Acar, Gülfem Alptekin, Jean-Patrick Gelas, Parisa Ghodous. The Impact of Source Code in
Software on Power Consumption. International Journal of Electronic Business Management, Elec-
tronic Business Management Society, Taiwan, 2016, 14, pp.42-52. �hal-01496266�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/80369044?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01496266
https://hal.archives-ouvertes.fr

 International Journal of Electronic Business Management

THE IMPACT OF SOURCE CODE IN SOFTWARE ON

POWER CONSUMPTION

Hayri Acar, Gülfem I. Alptekin, Jean-Patrick Gelas and Parisa Ghodous
1
LIRIS, University of Lyon, Lyon, France

2
Galatasaray University, Istanbul, Turkey

3
ENS Lyon, LIP, UMR 5668, Lyon, France

{hayri.acar, jean-patrick.gelas, parisa.ghodous}@univ-lyon1.fr, gisiklar@gsu.edu.tr

ABSTRACT

Writing sustainable, power efficient and green software necessitates understanding the

power consumption behavior of a computer program. One of the benefits is the fact that

developers, by improving their source code implementations, can optimize power

consumption of a software. Existing power consumption models need to be improved by

taking into account more components susceptible to consume energy during runtime of an

application. In this paper, we first present a detailed classification of previous works on

power consumption modelization. Then, we introduce TEEC (Tool to Estimate Energy

Consumption) model in order to estimate the power consumed by CPU, memory and disk

due to the execution of an application at runtime. The main goal is to guide developers to

improve their source code for optimizing energy consumption. TEEC enables determining

the part of the code consuming the highest power. This will help to obtain a less energy

consuming software with the same functionalities.

Keywords: Sustainable Software, Green Software, Power Consumption, Energy Efficiency,

Green IT.

1. INTRODUCTION

The 2015 Paris Climate Conference, COP 21

(Conference of the Parties), the conference have

reaffirmed the objective of keeping the rise in

temperature below 2°C before the end of the century,

by controlling the global greenhouse gas emissions

[1]. Information and Communication Technologies

(ICT) represents around 2% of worldwide greenhouse

gas emissions (GGE) [2]. Moreover, the number of

mobile users is increasing due to new technologies,

such as mobile Internet, cloud computing, Internet of

things, etc. Thus, it is predicted, if nothing is done,

that ICT global GGE will be 4% by 2020 [3].

Writing sustainable, power efficient and green

software necessitates understanding the power

consumption behavior of a computer program. One of

the benefits is the fact that developers, by improving

their source code implementations, can optimize

power consumption of a software. Existing power

consumption models need to be improved by taking

into account more components susceptible to

consume energy during runtime of an application.

In this paper, we first present a detailed

classification of previous works on power

consumption modelization. Then, we introduce TEEC

model (Tool to Estimate Energy Consumption) in

order to estimate the power consumed by CPU,

memory and disk due to the execution of an

application at runtime. The main goal is to guide

developers to improve their source code for

optimizing energy consumption. TEEC enables

determining the part of the code consuming the

highest power. This will help to obtain a less energy

consuming software with the same functionalities.

This paper is organized as follows. In Section

2, we present a detailed survey of the related works

on power modeling and measurement. Then, we

describe the modelization of different components in

terms of power consumption in Section 3. In Section

4, we represent our proposed model TEEC, followed

by experiments in Section 5. We validate the accuracy

of TEEC in Section 6. Finally, Section 7 concludes

the work.

2. RELATED WORKS

In related literature, it is possible to find several

online tools [4, 5], which aim to estimate the power

consumption arising from different components like

CPU, memory, disk, network card, etc. However,

these power calculators are not accurate enough and

mailto:jean-patrick.gelas@ens-lyon.fr
mailto:parisa.ghodous%7d@univ-lyon1.fr
mailto:gisiklar@gsu.edu.tr

International Journal of Electronic Business Management

give a global estimation on consumed energy. We

believe that there is a need to have a tool, which can

accurately estimate the power consumption of an

application. For this purpose, researchers have used

different methodologies that we can classify into

three main categories: hardware methodologies,

software methodologies and hybrid methodologies.

2.1 Software Methodology

This type of methodologies estimate the

consumed power based on mathematical formula,

which is established according to the characteristics

of each component susceptible to consume power. We

followed systematic review methodology [6] to

analyze previous works in literature. We respect the

systematic mapping process [7].

2.1.1 Research Type Facet

We summarize research approaches respecting

research type facet in Table 1.

Name Description

Validation Research Investigated techniques

are novel and have not

yet been implemented in

practice.

Evaluation Research Techniques are

implemented in practice

and an evaluation of the

technique is conducted.

Solution Proposal A solution for a problem

is proposed, the solution

can be either novel or a

significant extension of

an existing technique.

The potential benefits

and the applicability of

the solution is shown by

a small example or a

good line of

argumentation.

Table 1: Research Type Facet

2.1.2 Research Nature Facet

In Table 2, related works on component-based

power estimation models are summarized.

Name Description

CPU It consists of the studies, where the

CPU is taken into account in order to

establish a power estimation model of

software.

Memory It consists of the studies, where the

memory is taken into account in order

to establish a power estimation model

of software.

Disk It consists of the studies, where the

disk is taken into account in order to

establish a power estimation model of

software.

Table 2: Research Nature Facet

Therefore, we will use these two criteria

(research work and research type facet) when

classifying the works. The final classification is

represented in Table 3, where we give also related

mathematical equations, together with the brief

description of each study.

Using the information in Table 3, we establish a

diagram in two bubble plots that is represented in

Figure 1.

Figure 1: Systematic map in a bubble plot of research

type and nature facets

So, we observe that the majority of studies for

calculating power consumption of software takes into

account only one component and neglects others.

Moreover, the most remarkable research type facet is

solution proposal.

 International Journal of Electronic Business Management

Study Research

Type Facet

Research

Nature

Facet

Formula Description

Wattch [8] Solution

Proposal

CPU 𝑃𝑑 = 𝐶. 𝑉𝑑𝑑
2 . 𝑎. 𝑓

Pd: dynamic power consumption,

C: load capacitance, Vdd: supply

voltage, f: clock frequency and a:

fraction between 0 and 1.

A framework for

estimating CPU power

consumption at the

architectural level.

Framework

proposed by

Gupta and

Singh [9]

Solution

Proposal

CPU 𝑅𝑎𝑤𝑃𝑜𝑤𝑒𝑟

=
𝑈𝑠𝑒𝑟𝑇𝑖𝑚𝑒 + 𝐾𝑒𝑟𝑛𝑒𝑙𝑇𝑖𝑚𝑒

109

. 𝐶𝑝𝑢𝑈𝑠𝑎𝑔𝑒
RawPower: power consumed by

each process, UserTime: execution

time spent in user mode,

KernelTime: execution time spent

in kernel mode and CpuUsage:

CPU usage of each process in the

process list.

A framework of CPU

power modeling in order

to minimize power

consumption.

PowerAPI

[10]

Solution

Proposal

CPU 𝑃𝑠𝑜𝑓𝑡 = 𝑃𝑐𝑜𝑚𝑝 + 𝑃𝑐𝑜𝑚

Pcomp: CPU power consumed and

Pcom: network card power

consumption.

Tool that estimates the

CPU energy

consumption of running

processes.

Power model

by Bertran

[11]

Solution

Proposal

CPU
𝑃𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐴𝑟𝑖

𝑛𝑢𝑚𝑐𝑜𝑚𝑝

𝑖=1

 . 𝑃𝑖 + 𝑃𝑠𝑡𝑎𝑡𝑖𝑐

Pi: weight of component i, Ari:

activity ratio and Pstatic: static

power consumption of all

components.

Power model that

estimates the power

consumption due to

CPU component.

Span [12] Solution

Proposal

CPU
𝑃(𝑎𝑖, 𝑓𝑖)𝑝𝑟𝑒𝑡𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑃(𝑎𝑖, 𝑓𝑖, 𝑘)𝑝𝑟𝑒𝑡

𝑐𝑜𝑟𝑒𝑠

𝑘=1

+ 𝑃(𝑓𝑖)

aj: target benchmark, P(aj,fi,k)prêt:

generated at per core level and

P(fi): power pilot for frequency fi

Manually, specific code

can be added in order to

locate parts of source

code power consumer.

Simwattch

[13]

Solution

Proposal

CPU 𝑃𝑑 = 𝐶. 𝑉𝑑𝑑
2 . 𝛼. 𝐹

Pd: dynamic power consumption,

C: load capacitance, Vdd: supply

voltage, F: clock frequency and α:

fraction between 0 and 1.

Power simulator that

estimates CPU power

consumption.

CAMP [14] Solution

Proposal

CPU 𝑃𝑑 = 𝐴. 𝐶𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 . 𝑉
2. 𝑓

A: the fraction of cycles a specific

event occurs, Ceffective: effective

capacitance, V: voltage and f: clock

frequency.

Estimates the power

consumption due to

CPU in runtime.

Joulemeter

[15]

Solution

Proposal

CPU 𝐸𝑠𝑦𝑠 = 𝐸𝐶𝑃𝑈 + 𝐸𝑀𝑜𝑛 + 𝐸𝐷𝑖𝑠𝑘

+ 𝐸𝑠𝑡𝑎𝑡𝑖𝑐

CPU, monitor, disk and static

energy.

For a given process,

estimates only CPU

power consumption.

SoftWatt [16] Solution

Proposal

CPU,

Memory,

Disk

𝑃 = 𝑃𝐶𝑃𝑈 + 𝑃𝑚𝑒𝑚𝑜𝑟𝑦 + 𝑃𝑑𝑖𝑠𝑘

CPU, memory and disk power

Just estimates power

consumption without

give information about

source code.

vEC [17] Solution

Proposal

Memory 𝐸 = 𝐸𝑏𝑢𝑠 + 𝐸𝑐𝑒𝑙𝑙 + 𝐸𝑝𝑎𝑑 + 𝐸𝑚𝑎𝑖𝑛

Ebus: data and address bus energy,

Ecell: cache energy, Epad: data and

Virtual Energy Counters,

to estimate the energy

consumption of

International Journal of Electronic Business Management

address pad energy, Emain: main

memory energy.

software.

CACTI-D

[18]

Solution

Proposal

Memory A comprehensive

memory modeling tool.

Proposed by

Vogelsang

[19]

Solution

Proposal

Memory 𝑃 = ∑ 0.5. 𝐶𝑖 . 𝑉𝑖². 𝑓𝑖

𝑖

C: capacitance, V: voltage, f:

frequence and i: all charging and

discharging events.

Power model based on

DRAM architecture in

order to operate power

usage.

DRAMsim

[20]

Solution

Proposal

Memory Memory system

simulator.

Memory

System

Power [21]

Solution

Proposal

Memory 𝑃(𝑇𝑂𝑇) = 𝑃(𝑃𝑅𝐸𝑃𝐷𝑁)

+ 𝑃(𝑃𝑅𝐸𝑆𝑇𝐵𝑌)

+ 𝑃(𝐴𝐶𝑇𝑃𝐷𝑁)
+ 𝑃(𝐴𝐶𝑇𝑆𝑇𝐵𝑌)
+ 𝑃(𝑊𝑅)
+ 𝑃(𝑅𝐷)
+ 𝑃(𝑅𝐸𝐹)
+ 𝑃(𝑡𝑒𝑟𝑚𝑊)
+ 𝑃(𝑡𝑒𝑟𝑚𝑅𝑜𝑡ℎ)
+ 𝑃(𝑡𝑒𝑟𝑚𝑊𝑜𝑡ℎ)

A detailed study on

DDR3 SDRAM power

consumption.

SimplePower

[22]

Solution

Proposal

Memory Framework to evaluate

the memory system.

Proposed by

Bisson [23]

Solution

Proposal

Disk Reduce hybrid disks

power consumption.

Proposed by

Benjamin

[24]

Solution

Proposal

Disk 𝐹𝑖𝑟𝑠𝑡𝐿𝐵𝐴𝐶𝑦𝑐𝑙 = 𝑁ℎ𝑒𝑎𝑑𝑠 . ∑ 𝐿𝑖

𝑖

FirstLBACyl: function for the first

LBA on that cylinder and Nheads:

constant number of heads in the

drive.

Simulator based on

mathematical hard disk

timing model.

Hylick tool

[25]

Solution

Proposal

Disk 𝐸𝑛𝑒𝑟𝑔𝑦 ≈ 𝐿𝐵𝑁3

Estimates power

consumption due to hard

drives to find runtime

power profile.

Engel

Proposition

[26]

Solution

Proposal

Disk
𝑃 =

2𝜎

𝑚. 𝑉𝑥

. 𝑃 = 𝛽. 𝑃. (2𝜎)²

β: inverse temperature, m: mass,

Vx: velocity along one axis, P:

pressure and σ: radius.

Examines different

phases of hard disks.

MIND [27] Solution

Proposal

Disk 𝐸𝑅𝑎𝑖𝑑

= ∑ 𝑃𝑅𝑎𝑖𝑑,𝑖 . 𝑡𝑖𝑛𝑖 + ∑ 𝐸𝑎𝑐𝑡𝑖𝑜𝑛,𝑗 . 𝑐𝑜𝑢𝑛𝑡𝑠𝑗

Measure power

consumption of different

phases.

Dempsey

[28]

Solution

Proposal

Disk 𝑃𝐷𝑟𝑖𝑣𝑒 = 𝑉𝐷𝑟𝑖𝑣𝑒 . 𝐼𝐷𝑟𝑖𝑣𝑒

= 𝑉𝐷𝑟𝑖𝑣𝑒 .
𝑉𝑅𝑒𝑠𝑖𝑠𝑡𝑜𝑟

𝑅𝑅𝑒𝑠𝑖𝑠𝑡𝑜𝑟

Vdrive: voltage of the power

supply to the disk drive and Idrive:

current.

Disk power consumption

simulator.

Vesper [29] Solution

Proposal

Disk 𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑠𝑒𝑒𝑘 + 𝑇𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 + 𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

Ttotal: total time of a disk

operation, Tseek: seek time,

Trotation: rotation delay and

Ttransfer: transfer time

Disk power simulator

based on the different

time passed on each

stage.

Proposed by

Zhu [30]

Solution

Proposal

Disk 𝐸𝑖(𝑡) = 𝑃𝑖(𝑡 − 𝑇𝑖) + 𝐶𝑖
Pi: power dissipation in mode I, Ti

Disk power management

to save energy.

H. Acar et al.: The Impact of Source Code of Software on Power Consumption

and Ci: time and energy required to

spin-down and spin-up from power

mode i to 0.

Lewis

Proposition

[31]

Solution

Proposal

Disk 𝐸ℎ𝑑𝑑

= 𝑃𝑠𝑝𝑖𝑛𝑢𝑝. 𝑡𝑠𝑢

+ 𝑃𝑟𝑒𝑎𝑑 . ∑ 𝑁𝑟. 𝑡𝑟

+ 𝑃𝑤𝑟𝑖𝑡𝑒 . ∑ 𝑁𝑤. 𝑡𝑤 + ∑ 𝑃𝑖𝑑𝑙𝑒. 𝑡𝑖𝑑𝑙𝑒

Real-time energy

estimation model that

gives server energy

consumption.

SODA [32] Solution

Proposal

Disk 𝑃𝑠𝑝𝑚 = 𝑛. 𝑏. 𝑤𝑠𝑝𝑚2.8

n: number of platters and b:

viscous friction coefficient.

Sensitivity based

optimization of disk

architecture.

Tempo [33] Solution

Proposal

Disk Measure Power

consumption of the disk

during data transfers and

disk head seeks

Table 3: Research works classification

2.2 Hardware Methodology

Research works, using hardware methodologies

in order to measure the power consumed by

components, can be grouped in two categories. First

[34, 35], power meters are used to measure directly

the voltages and currents in devices to obtain the

power. Second way [36] consists to connect power

sensors directly into the component that we want to

measure the power consumption. This approach is

particularly used by high performance servers.

Hardware methodologies are more accurate

than software methodologies. However, it is

impossible to measure the power consumed by

programs on process and virtual machines. Moreover,

this method is expansive and circuits consume also

power.

2.3 Hybrid Methodology

Hybrid methodology [37, 38] is also a research

area, since it enables taking the accuracy of hardware

methodologies and the simplicity of software

methodologies. However, this way of measurement

methodology is more difficult to establish, in practice.

3. POWER MODEL

The power consumption of the software is

composed of two parts: static and dynamic. Static

power consumption is due to the manufacturer

component’s features. Therefore, we cannot modify

this part. Hence, we are interested only in dynamic

power consumption, which depends on source code

of software. In order to model the power consumption

of different components, we take into account only

dynamic part of power consumption.

3.1 Power Model of CPU

As shown in Table 3, the power consumption

equation of CPU is, in the majority of cases, the

multiplication of frequency, square of voltage and a

constant. So, we propose our formula (1) that is

distinguished from others concerning the constant

part:

𝑃𝐶𝑃𝑈 = 𝛽 . 𝑓 . 𝑉𝑑𝑑
2 (1)

where 𝛽 = 𝐶𝐿 . 𝑁 . 𝛼 , the constant, 𝐶𝐿 is the

capacitance, N represents the number of gates and α <

1 as the average fraction of gates that commute at

each cycle, f is the frequency and 𝑉𝑑𝑑
 corresponds to

voltage.

The difference of the proposed equation is in

the constant part. In order to obtain the power

consumed by a specific process, we multiply (1) by

the percentage of the process id Nid (2):

𝑃𝐶𝑃𝑈, 𝑖𝑑 = 𝑃𝐶𝑃𝑈 . 𝑁𝑖𝑑 (2)

3.2 Power Model of Memory

Dynamic DRAM power is composed of four

states: activate, precharge, read and write. So, power

consumption can be expressed as (3):

𝑃𝐷𝑅𝐴𝑀 = 𝑃𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑒 + 𝑃𝑃𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒 + 𝑃𝑅𝑒𝑎𝑑

+ 𝑃𝑊𝑟𝑖𝑡𝑒

(3)

We multiply previous equation (3) by the usage

percent Mid of the process id to obtain Eq. (4):

𝑃𝐷𝑅𝐴𝑀, 𝑖𝑑 = 𝑃𝐷𝑅𝐴𝑀 . 𝑀𝑖𝑑 (4)

3.3 Power Model of Disk

A disk executing a sequence of requests is

composed of four mode: active, idle, standby and

sleep.

The dynamic disk power consumption is

obtained when the disk is in active mode. Thus, we

can deduce the following equation (5):

𝑃𝐷𝑖𝑠𝑘 = 𝑃𝐴𝑐𝑡𝑖𝑣𝑒 = 𝑃𝑅𝑒𝑎𝑑 + 𝑃𝑊𝑟𝑖𝑡𝑒 (5)

International Journal of Electronic Business Management

where 𝑃𝑅𝑒𝑎𝑑 is the read power and 𝑃𝑊𝑟𝑖𝑡𝑒 is

the write power.

3.4 Total Power Consumption

Based on previous equation, it is possible to

define the global power consumption due to software

by adding Eq. (2), (4), and (5) in order to obtain the

following expression (6):

𝑃𝑆𝑜𝑓𝑡 = 𝑃𝐶𝑃𝑈,𝑖𝑑 + 𝑃𝐷𝑅𝐴𝑀,𝑖𝑑 + 𝑃𝐷𝑖𝑠𝑘 (16)

4. TEEC (TOOL TO ESTIMATE

ENERGY CONSUMPTION)

4.1 Green Process

All development processes of a computer

program requires following a specific sequence in

order to complete the project. In addition, after each

phase, a green analysis step can be involved in order

to check if the considered step has respected all

criteria that allow reducing energy consumption. If

the criteria of a phase are not validated by the green

analysis, depending uncommitted specifications, a

return to the previous step or even return until the

requirement analysis step can be performed.

The process described in [10] presents a

comprehensive progress of a development project.

Thus, we offer our descriptive diagram in Figure 2.

Figure 2: Green Software Engineering Process

Requirements: It is the first step in order to

build a software product. This stage corresponds to

the descriptions of the tasks that will be performed by

the product. The aim is to meet customer demands.

Design: The defined requirements are

considered in order to create system architecture. The

classes and the relationships among them are defined

at this stage.

Implementation: In this step, the program is

implemented in respect to its design. Developers

should choose the most appropriate programming

language.

Tests: This step allows checking if the software

meets its requirements, to discover faults or defects.

The tests will be defined at the end of requirements

phase (QCHP) before design and implementation

step, to show that the specifications have been

understood. Use of different tests will allow

developers to see if the requirements are correct and

consistent.

The proposed energy consumption

measurement tool (TEEC) will be used in order to

know whether the program can be improved.

Usage: This step defines how the software

product can be used by the user in a green manner.

The responsibility belongs to the user, but also to the

engineers themselves. The user should be trained to

use the software, because the fact that improper

handling can cause errors in the program.

Maintenance: Newer versions or enhancements

usually involve changes. The developers need to

handle them. Furthermore, developers need to know

the cost is proportional to the energy waste. Several

types of errors in the program can cause the return to

the implementation phase, but sometimes even more

complicated errors can cause the developer to return

to the first step of requirement analysis. The

maintenance process must be carried out in the most

energy efficient manner.

Disposal: Software and hardware must be

replaced when it is not profitable to up to date them,

or when it is no longer used, or when it has become

obsolete. This step considers both the software and

the hardware running the code. Disposal of old

hardware also causes energy consumption.

Green analysis: This step can be added at the

end of each one in order to improve energy efficiency.

This stage will evaluate the greenness of the software.

4.2 Design and Implementation

According to [10], Java programming language

is stated as the language with the least energy

consumption during compilation and execution

stages. Thus, Java is chosen as the development

language.

Sigar library [40] allows getting information

about the CPU usage, including the percentage of

usage of each process and the number of cores used.

Thus, the id of the ongoing process can be identified

and retrieved. Moreover, the form of global variable

data providers is formed that allows estimating the

energy and assigning a corresponding value.

Java agents are utilized, which are software

components that provide with the instrumentation

capabilities to an application, such as re-defining the

content of class that is loaded at run-time.

Our proposed model TEEC, with whom we can

provide an estimation of power consumption of each

component is illustrated in Figure 3.

Figure 3: TEEC

So, using this model, an estimation of power

consumption due to each component during runtime

of software can be provided.

5. EXPERIMENTS

We carry out our tests on a notebook ASUS

N751JK-T7238H, running Windows 8.

Thus, using TEEC, different tests have been

executed with unoptimized and optimized methods in

order to observe the variation of the power

consumption due to the CPU, the memory and the

disk and compare them

5.1 Tests Description

Loops have an important effect on the

performance of a program and provide efficient way

for repeating a piece of code as many times as

required. Java has three types of loop control

structures which are: while, do-while and for. If we

do not know the number of required iterations, then

while loop can be used. The do-while loop is always

executed at least once and then the condition is

checked at the end of the loop. If we know how many

iterations are required, then we for loop

Therefore, it is interesting to study some

methods that are used during a development of a

program in order to examine possible improvement.

5.1.1 Array copy

It is better to use an int data type than byte or

short data types for a loop index variable, because of

its efficiency. The fact to use byte or short data type

as the loop index variable involves implicit type cast

to int data type.

It is always efficient to copy arrays using

System.arraycopy() than using a loop. Table 4 shows

the difference between optimized and unoptimized

source code.

Unoptimized Optimized

for (int j = 0; j <

a.length; j++) b[j] =

a[j];

System.arraycopy(a,

0, b, 0, b.length);

Table 4: Array copy

5.1.2 Locality of Reference

Elements close to each other in memory are

faster to access. We can observe this principle with

the programs described in Table 5. Locality of

reference in an array is used.

In the unoptimized version, the loop reads the

values of 100 elements in an array. In the optimized

version, the loop loads 100 elements, but they are

spaced 100 elements apart from each other.

Unoptimized Optimized

for (int i = 0; i < 1000000;

i++) {

 int sum = 0;

 for (int x = 0; x <

50000; x +=

100) {

 sum += values[x];

 }

}

for (int i = 0; i <

1000000; i++) {

 int sum = 0;

 for (int x = 0; x <

500; x++) {

 sum += values[x];

 }

}

Table 5: Locality of Reference

5.1.3 Array and array list

Arrays are harder to use than ArrayLists, but

they have a speed advantage, even on simple element

accesses. In Table 6, we represent a sum of two

100-element collections: an array and an ArrayList.

Unoptimized Optimized

for (int i=0; i <

1000000; i++)

{

 int sum = 0;

 for (int v = 0; v <

list.size(); v++)

 sum += list.get(v);

}

for (int i = 0; i<

1000000; i++)

{

 int sum = 0;

 for (int v = 0; v

< array.length; v++)

 sum +=

array[v];

}

Table 6: Array and array list

5.1.4 Integer list loop

International Journal of Electronic Business Management

There are several ways to iterate elements of an

integer list. In Table 7, we compare two different

ways.

Unoptimized Optimized

for (Integer i : list)

 count++;

int size = list.size();

for (int i = 0; i <

size; i++)

 count++;

Table 7: Integer list loop

5.1.5 Char array and StringBuilder

We can replace a StringBuilder with a char

array in some programs as in Table 8.

Unoptimized Optimized

for (int i = 0; i <

1000000; i++) {

 StringBuilder

builder = new

StringBuilder();

 for (int v = 0; v <

1000; v++)

 builder.append('?

');

 String result =

builder.toString();

}

for (int i = 0; i <

1000000; i++)

{

 char[] array =

new char[1000];

 for (int v = 0; v <

1000; v++)

 array[v] = '?';

String result = new

String(array);

}

Table 8: Char array and StringBuilder

5.1.6 Binary search

As showed in Table 9, the BinarySearch

method searches an integer in a sorted array of

integers. This is more practical to use compare to a

for loop.

Unoptimized Optimized

for (int i = 0; i <

10000000; i++) {

 int index = -1;

 for (int j = 0; j <

values.length; j++)

 {

 if (values[j] == 80)

 {

 index = j;

 break;

 }

 }

}

for (int i = 0; i <

10000000; i++)

 {

 int index =

Arrays.binarySearc

h(values, 80);

 }

Table 9: Binary search

5.2 Results

We develop two JAVA projects in order to

regroup all the optimized and unoptimized methods

previously defined. We obtain the following power

and energy related relationships (Figure 4, 5, 6 and

7).

Figure 4: Power consumption of an unoptimized code

Figure 5: Energy consumption of an unoptimized

code

Figure 6: Power consumption of an optimized code

Figure 7: Energy consumption of an optimized code

Therefore, we observe that globally the power

consumption of CPU dominates memory or disk

consumption. If we examine the results obtained each

50 ms, we can note that the power consumption of

disk can be neglected for these cases, but in some

cases power consumption of memory must be taken

into account. In addition, we can note that the power

consumption of the unoptimized code is higher than

the one of the optimized code and the total execution

time of optimized code is less than the one of the

unoptimized code. Consequently, it is a great interest

to develop optimized parts of code in order to obtain

green, sustainable and efficient software.

So, going more in details, for each method

code, we measure the time elapsed during the

execution of the tests and results are represented in

Table 10.

Functions Unoptimized Optimized

 Time (ms)

Array copy 359 312

Locality of

reference
18140 17219

Compare array to

array list
22047 17297

Compare integer

list loop
7734 7391

Char array

StringBuilder
11235 2421

Binary search 2250 438

Table 10: Functions time execution

Hence, optimized codes are found faster than

unoptimized codes. Particularly, we can remark a

faster execution of the following optimized methods:

“Locality of reference”, “Compare array to array

list”, “Char array StringBuilder” and “Binary search”.

6. VALIDATION

To validate our experiments, we use a

powermeter ‘wattsup ?PRO’ as shown in Figure 8.

We connect this powermeter to the notebook via USB

port. This device saves in his memory the power

consumed by all process in runtime. So, we connect

WattsUp to the notebook and then we wait until the

power reach a stationary state. Then, we execute the

unoptimized code, followed by the optimized code.

We then transfer the results using the application

WattsUpUSB and the results are depicted in Figure 9.

Figure 8: wattsup?PRO

Comparing to the results obtain with TEEC,

even if we make a measurement in each second, we

can say that in all of the case, optimized code test is

faster and reveals less power than unoptimized code

test. Each optimized and unoptimized curves present

some increase of power as we observed with TEEC.

Figure 9: unoptimized and optimized functions power

consumption

7. CONCLUSION

In addition to the CPU, a modelization of

memory and hard disk have been made to describe the

consumption behavior of each component. The

proposed tool, named TEEC, takes into account all

these three components. Mathematical expressions

have been established in order to calculate the power

consumption of each component.

The accuracy of TEEC has been tested over

several optimized and unoptimized functions and

validated against a real powermeter.

The results revealed that the power consumption

of memory should not always be neglected when

compared to the CPU power consumption, whereas

power consumption of hard disk can be neglected. We

observed that the optimization of source code is

required in order to contribute to the reduction of the

greenhouse gas emissions.

Going further, we will extend the capability of

TEEC by integrating other components power

consumption (such as network interface cards, etc.).

Then, we will use the output of TEEC to guide

developers in order to build greener software in real

time and analyze the results.

International Journal of Electronic Business Management

REFERENCES

1. COP 21, 2015, “Adoption of the Paris

Agreement,” Paris. URL:

https://unfccc.int/resource/docs/2015/cop21/eng

/l09.pdf

2. Gartner, 2007, “Green IT: The New Industry

Shock Wave, Gartner,” Presentation at

Symposium/ITXPO Conference.

3. Green Touch, “ICT Industry Combats Climate

Change”. URL:

http://www.greentouch.org/?page=how-the-ict-i

ndustries-can-help-the-world-combat-climate-c

hange.

4. Power Supply Calculator, 2015, URL:

http://powersupplycalculator.net/

5. eXtreme Power Supply Calculator, 2016, URL:

http://outervision.com/power-supply-calculator

6. Kitchenham, B., 2013, “A systematic review of

systematic review process research in software

engineering,” Information and Software

Technology, Vol. 55, pp. 2049-2075.

7. Petersen, K., Feldt, R., Mujtaba, S. and

Mattsson, M., 2008, “Systematic Mapping

Studies in Software Engineering,” the 12th

international conference on Evaluation and

Assessment in Software Engineering, pp. 68-77.

8. Brooks, D., Tiwari, V. and Martonosi, M., 2000,

“Wattch: A Framework for Architectural-Level

Power Analysis and Optimizations,”

Proceedings of the 27
th

 International

Symposium on Computer Architecture, pp.

83-94.

9. Gupta, P.K. and Singh, G., 2011, “A

Framework of Creating Intelligent Power

Profiles in Operating Systems to Minimize

Power Consumption and Greenhouse Effect

Caused by Computer Systems,” Journal of

Green Engineering, Vol. 01, No. 2, pp.

145-163.

10. Noureddine, A., Bourdon, A., Rouvoy, R and

Seinturier, L., 2012, “A Preliminary Study of

the Impact of Software Engineering on

GreenIT”, First International Workshop on

Green and Sustainable Software, pp. 21-27.

11. Bertran, R, Gonzales, M., Martorell, X.,

Navarro, N. and Ayguadé, E., 2010,

“Decomposable and Responsive Power Models

for Multicore Processors using Performance

Counters,” Proceedings of the 24th ACM

International Conference on Supercomputing,

pp. 147-158.

12. Wang, S., Chen, H. and Shi, W., 2011, “SPAN:

A software power analyzer for multicore

computer systems,” Journal of Sustainable

Computing: Informatics and Systems, Vol. 01,

No. 1, pp. 23-34.

13. Chen, J., Dubois, M. and Stenstrom, P., 2003,

“Integrating complete-system and user-level

performance and power simulators,” IEEE

International Symposium on Performance

Analysis and Software, pp. 1-10.

14. Powell, .D., Biswas, A., Emer, J.S. and

Mukherjee, S.S., 2009, “CAMP: atechnique to

estimate per-structure power at run-time using a

few simpleparameters,” IEEE 15
th

 International

Symposium on High Performance Computer

Architecture, pp. 289-300.

15. Kansal, A., Zhao, F., Liu, J, Kothari, N. and

Bhattacharya, A.A., 2010, “Virtual Machine

Power Metering and Provisioning,”

Proceedings of the 1
st
 ACM symposium on

Cloud Computing, pp. 39-50.

16. Gurumurthi, S. et al., 2002, “Using Complete

Machine Simulation for Software Power

Estimation: The SoftWatt Approach,”

Proceedings of the 8th International

Symposium on High-Performance Computer

Architecture, pp. 141.

17. Kadayif, I. et al., 2001, “vEC: Virtual Energy

Counters,” Proceedings of the 2001 ACM

SIGPLAN-SIGSOFT workshop on Program

analysis for software tools and engineering, pp.

28-31.

18. Thoziyoor, S. et al., 2008, “A Comprehensive

Memory Modeling Tool and Its Application to

the Design and Analysis of Future Memory

Hierarchies,” 35th International Symposium on

Computer Architecture, pp. 51-62.

19. Vogelsang, T., 2010, “Understanding the

Energy Consumption of Dynamic Random

Access Memories,” 43
rd

 Annual IEEE/ACM

International Symposium on Microarchitecture,

pp. 363-374.

20. Wang, D. et al., 2005, “DRAMsim: A Memory

System Simulator,” ACM SIGARCH Computer

Architecture News, Vol. 33, No. 4, pp. 100-107.

21. Janzen, J., 2008, “Calculating Memory System

Power for DDR3”, designline, vol. 10, No. 2.

22. Ye, W. et al., 2000, “The Design and Use of

SimplePower: A Cycle-Accurate Energy

Estimation Tool,” Design Automation

Conference, pp. 340-345.

23. Bisson, T. et al., 2007, “A Hybrid Disk-Aware

Spin-Down Algorithm with I/O Subsystem

Support,” IEEE International Performance,

Computing and Commutating Conference, pp.

236-245.

24. Parsons, B.S. and Pai, V.S., 2013, “A

mathematical hard disk timing model for full

system simulation,” IEEE International

Symposium on Performance Analysis of

Systems and Software, pp. 143-153.

25. Hylick, A. et al., 2008, “An Analysis of Hard

Drive Energy Consumption,” IEEE

International Symposium on Modeling,

Analysis and Simulation of Computers and

Telecommunication Systems, pp. 1-10.

26. Engel, M. et al., 2013, “Hard-disk equation of

state: First-order liquid-hexatic transition in two

https://unfccc.int/resource/docs/2015/cop21/eng/l09.pdf
https://unfccc.int/resource/docs/2015/cop21/eng/l09.pdf
http://www.greentouch.org/?page=how-the-ict-industries-can-help-the-world-combat-climate-change
http://www.greentouch.org/?page=how-the-ict-industries-can-help-the-world-combat-climate-change
http://www.greentouch.org/?page=how-the-ict-industries-can-help-the-world-combat-climate-change
http://powersupplycalculator.net/
http://outervision.com/power-supply-calculator
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4556699
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4556699
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4556699

dimensions with three simulation methods,”

Physical Review E 87, Vol. 87, No. 4.

27. Liu, Z. et al., 2011, “MIND: A Black-Box

Energy Consumption Model for Disk Arrays,”

International Green Computing Conference and

Workshops, pp. 1-6.

28. Zedlewski, J. et al., 2003, “Modeling

Hard-Disk Power Consumption,” Proceedings

of the 2nd USENIX Conference on File and

Storage Technologies, pp. 217-230.

29. DeRosa, P. et al., 2006, “Realism and simplicity:

disk simulation for instructional OS

performance evaluation,” Proceedings of the

37
th

 SIGCSE technical symposium on Computer

Science Education, pp. 308-312.

30. Zhu, Q. et al. 2004, “Reducing Energy

Consumption of Disk Storage Using

Power-Aware Cache Management,”

Proceedings of the 10th International

Symposium on High Performance Computer

Architecture, pp. 118.

31. Lewis, A., Ghosh, S. and Tzeng, N.F., 2008,

“Run-time Energy Consumption Estimation

Based on Workload in Server Systems,”

Proceedings of the 2008 conference on Power

aware computing and systems, pp. 4.

32. Zhang, Y, Gurumurthi, S. and Stan, R.M., 2007,

“SODA: Sensitivity Based Optimization of

Disk Architecture,” Proceedings of the 44th

annual Design Automation Conference, pp.

865-870.

33. Molaro, D., Payer, H. and Le Moal, D., 2009,

“Tempo: Disk Drive Power Consumption

Characterization and Modeling,” IEEE 13
th

International Symposium on Consumer

Electronics, pp. 246-250.

34. Hu, C., Jimenez, D.A. and Kremer, U., 2005,

“Toward an evaluation infrastructure for power

and energy optimizations,” Proceedings of 19
th

IEEE International Parallel and Distributed

Processing Symposium, pp. 230.

35. Kamil, S., Shalf, J. and Strohmaier, E., 2008,

“Power efficiency in high performance

computing,” IEEE International Symposium on

Parallel and Distributed Processing, pp. 1-8.

36. Giri, R.A. and Vanchi, A., 2010, “Increasing

data center efficiency with server power

measurements,” Intel Information Technology.

37. Ge, R. et al., 2009, “Powerpack energy

profiling and analysis of high-performance

systems and applications,” IEEE Transactions

on Parallel and Distributed Systems, Vol. 21,

No. 5, pp. 658-671.

38. Isci, C. and Martonosi, M., 2006, “Phase

characterization for power: evaluating

controlflow-based and event-counter-based

techniques,” The Twelfth International

Symposium on High-Performance Computer

Architecture, pp. 121-132.

39. Sara S., M. and Imtiaz, A., 2013, “A Green

Model for Sustainable Software Engineering,”

International Journal of Software Engineering

and Its Applications, Vol. 7, No. 4, pp. 55-74.

40. Morgan, R. and MacEachern, D., 2010, URL:

https://support.hyperic.com/display/SIGAR/Ho

me.

https://support.hyperic.com/display/SIGAR/Home
https://support.hyperic.com/display/SIGAR/Home

