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ABSTRACT
�is work proposes the use of simple closed state models to capture,
analyze and compare the dynamics of multi- and many-objective
evolutionary algorithms. Two- and three-state models represent-
ing the composition of the instantaneous population are described
and learned for representatives of the major approaches to multi-
objective optimization, i.e. dominance, extensions of dominance,
decomposition, and indicator algorithms. �e model parameters
are trained from data obtained running the algorithms with various
population sizes on enumerable MNK-landscapes with 3, 4, 5 and 6
objectives. We show ways to interpret and use the model parame-
ter values in order to analyze the population dynamics according
to selected features. For example, we are interested in knowing
how parameter values change for a given population size with the
increase of the number of objectives. We also show a graphical rep-
resentation capturing in one graph how the parameters magnitude
and sign relate to the connections between states.
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1 INTRODUCTION
In recent years, multi-objective evolutionary algorithms (MOEAs)
have been used to solve complex optimization problems. However,
as the number of objectives increases, a reduction in performance
is becoming an important issue for several classes of MOEAs. �is
is not only due to the dimensionality of the objective space, but also
to the lack of speci�c algorithmic components that can accurately
accommodate the evolutionary search within the speci�c properties
of a many-objective optimization problem. It is for instance well
known that when the number of objectives is two or three, standard
selection and replacement of individuals are usually robust enough
to evolve a population of reasonable size towards an approxima-
tion set of good quality. However, this is obviously not the case
when the number of objectives goes above three, since the number
of mutually non-dominated solution increase drastically, which
makes it more challenging for standard operators, con�gurations
or se�ings to maintain a population at an accurate diversity level,
while ensuring a good convergence towards the high-dimensional
Pareto set [6].

New algorithms and new design components, with possibly ad-
ditional parameters and tuning procedures, are being designed
to overcome the loss of performance experienced when tackling
many-objective problems [8]. �e success of new approaches or
methods to many-objective optimization is then o�en measured by
its ability to reach a be�er approximation set using some quality
indicators. However, there is not much work aiming at understand-
ing the dynamics of the search process implied by particular design
choices, especially how the intrinsic properties of the population
maintained in the course of the search evolve, and what makes
this evolution successful or not. As a result, most of such design
choices could only rely on intuition or problem-speci�c issues. In
this paper, we advocate for a more systematic approach to elicit the
search behavior of many-objective optimization algorithms which
we consider as a complex process that should be modeled using
high-level mathematical tools. �is is actually to be viewed as a
�rst step allowing to gain a fundamental knowledge about the main
issues that one might face when tackling a many-objective optimiza-
tion problem with a particular evolutionary algorithm, which shall
hopefully lead to more robust and more e�cient design choices.
Dynamic modeling using Markov chains have proved useful [7][9]
to advance our understanding of the behaviour and convergence of
canonical evolutionary algorithms on single objective optimization.
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We consequently propose to introduce a simple high-level model
to capture the evolution of the population maintained by the evo-
lutionary multi-objective search, in an a�empt to be�er grasp the
dynamics of the corresponding algorithm and to obtain a be�er
fundamental understanding of their internal operations. More pre-
cisely, inspired by state-space representation in control engineering
and by the modeling of complex system dynamics, we propose a
closed state model and study its accuracy in capturing the evolution
of simple and high-level problem-independent features characteriz-
ing the population at any time of the search process. �e proposed
model can also be viewed as a �nite state automaton that allows to
obtain a compact snapshot of the population, and to estimate the
next state of the search. Hence, it can be used to acquire meaningful
information about the behavior and possible performance of an
algorithm without fully running it. Moreover, the parameters used
by the model can be used to compare di�erent algorithms in the
sense that they allow to map the complex runtime search behavior
of an algorithm to a simple and relatively small set of numerical
values. Our proposed model is studied using a simple se�ing in
which two and three states are used to e�ectively capture the dy-
namics of many-objective optimizers for a set of selected features
in enumerable MNK-landscapes. Our contributions and �ndings
are the by-product of a high-level mathematical modeling e�ort
combined with a throughout empirical analysis requiring the exper-
imentation of di�erent evolutionary optimization algorithms, and
the use of di�erent calibration techniques from machine learning
and statistical analysis.

�e rest of the paper is organized as follows. Section 2 introduces
the method with an explanation on the features, the proposed
models, and how parameter estimation for them is done. Section 3
describes the experimental setup, which algorithms were selected
and what information was collected when running them. Section
4 covers the experimental analysis performed to �nd parameters
on the models for the collected data on representative algorithms,
veri�cation of these parameters, and how the obtained parameters
can be used to analyze the dynamics of the algorithms. Section 5
summarizes the contributions of this work and discusses further
investigations.

2 METHOD
2.1 Features
In order to study the dynamics of MOEAs, we here focus on fea-
tures that capture the instantaneous composition of the population.
Table 1 gives generational search assessment indices that have been
used before to study the behavior and performance of MOEAs [1].
Most of these indices are calculated with respect to the Pareto Op-
timal Set (POS) and are useful to analyze and verify whether the
algorithms are capable of �nding the optimal set. �us, to use these
indices a problem where the POS is known or can be computed by
enumeration is required.

In this work we use some of these indices as features to keep
track of the algorithms’ dynamics, namely the number of dominated
δt (DOM), non-dominated δ̄t (ND), non-dominated non Pareto
Optimal γ (NDNP), and Pareto Optimal solutions τt (PO).

Although we consider indices requiring the POS to be known,
notice that the proposed models can be used with other features

associated with the population dynamics, as long as they comply
with assumptions described in the Subsection 2.2

2.2 State Model with Linear Relations
To capture the population dynamics of MOEAs, we assume the
following: (i) �e population can be split in two or more non-
overlapping groups using one or various rules, (ii) a group size
variates in a linear way but the population size remains constant,
(iii) the model gives the proportion of population members in each
group at time t , (iv) the aim is to track the size of the groups within
a constant population size, i.e. the change of proportions, and not
the individuals themselves. Based on these assumptions we propose
two- and three-state models.

2.2.1 Two-State Model. �e �rst simple model splits the pop-
ulation into two di�erent groups, or states. At each generation t ,
xt and yt represent the proportion of the population that belongs
in each state. �us, xt + yt = 1. �e di�erential equations that
describe the two-state model in time discrete form are as follows:




xt+1 = (1 − α )xt + βyt
yt+1 = αxt + (1 − β )yt
1 = xt + yt ,

(1)

where α and β are coe�cients that describe the loss in xt and yt ,
respectively. Since the model is closed, a loss in xt becomes a gain
in yt , and vice versa.

Figure 1 illustrates a two-state model that uses the Pareto domi-
nance relation to split the population and to capture the dynamics
of non-dominated (xt ) and dominated (yt ) solutions. Of course, the
two-state model can be applied to other combination of features,
by using an appropriate rule to split the population. For example,
using membership to the POS as a criterion, a two-state model can
capture the dynamics of PO solutions retained within the popula-
tion. In such a model, xt represents the fraction of PO solutions
in the population, and yt the fraction of solutions that are not PO
solutions i.e. non-dominated solutions but not PO solutions plus the
dominated solutions. Using the nomenclature described in Table 1,
xt = PO = τt and yt = NDNP + DOM = γt + δt . �ese two-state
models are summarized in Table 2.

With the two-state model, given the values of each state at gen-
eration t and the parameters α and β for a given algorithm, we can
estimate the values of the states at future generations.

xt
Non Dominated

yt
Dominated

β

α

Figure 1: A two-state model.

2.2.2 Three-State Model. In three-state models, we split the
population into three non-overlapping groups, or states, in order
to analyze the dynamics with more details. Similar to the two-state
model, xt , yt and zt represent the proportion of the population that
belongs to each state at time t . �us, xt + yt + zt = 1.
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Table 1: Generational search assessment indices.
F1: First front. POS : Pareto Optimal Set. t : Current generation. P : whole population including F1.

Abbr. It Formula Comment

PO τt {x : x ∈ F1 (t ) ∧ x ∈ POS } PO solutions
POpnew τ +t {x : x ∈ F1 (t ) ∧ x < F1 (t − 1) ∧ x ∈ POS } Possibly new PO solutions
POold τ −t {x : x ∈ F1 (t ) ∧ x ∈ F1 (t − 1) ∧ x ∈ POS } Old PO solutions
POanew τ ∗t {x : x ∈ F1 (t ) ∧ x < ∪t−1

k=1F1 (k ) ∧ x ∈ POS } Absolutely new PO solutions
NDNP γt {x : x ∈ F1 (t ) ∧ x < POS } Non-dominated, not PO sol.
ND δ̄t {x : x ∈ F1 (t ) } Non-dominated sol. (incl. PO sol.)
DOM δt {x : x ∈ P ∧ x < F1 (t ) } Dominated solutions

�e di�erential equations that describe the three-state model in
time discrete form are as follows:




xt+1 = (1 − (α + β ))xt + ᾱyt + β̄zt

yt+1 = αxt + (1 − (ᾱ + γ ))yt + γ̄ zt

zt+1 = βxt + γyt + (1 − (β̄ + γ̄ ))zt

1 = xt + yt + zt ,

(2)

where α and β are coe�cients that describe the loss in xt that
becomes gain for yt and zt , respectively. Likewise, ᾱ and γ are
coe�cients that describe the loss in yt that becomes gain for xt
and zt , respectively. Similarly, β̄ and γ̄ are coe�cients that describe
the loss in zt that becomes gain for xt and yt , respectively.

In the previous section, the dominance relation was used to
split the population into non-dominated and dominated solutions.
Adding membership to the POS as another rule, we can further split
the non-dominated group into PO solutions and non-dominated
non-PO solutions (NDNP). Figure 2 illustrates such a three-state
model. Using the nomenclature described in Table 1, xt = PO = τt ,
yt = NDNP = γt and zt = DOM = δt .

�e three-state model can be applied to other combination of
features as well. For example, adding the not present at time (t − 1)
rule to verify whether a PO solution was also present in the pre-
vious generation, we can have a model with the following states:
PO solutions that are possibly new, i.e. not present in the previous
generation, PO solutions that were present in the previous gen-
eration, and the rest of non-dominated and dominated solutions.
Using the nomenclature described in Table 1, xt = POpnew = τ+t ,
yt = POold = τ−t , and zt = NDNP + DOM = γt + δt . Similar,
adding the not present from time 0 to (t − 1) rule to verify whether a
PO solution was also present in any previous generation, we could
analyze the dynamics of PO solutions that are absolutely new at
time t , i.e. we could study the discovery of PO solutions and relate
dynamics to performance. Accumulating the absolutely new PO
solutions, we can compute the resolution of the approximation [1],
which can be used as a performance measure. �ese three-state
models are summarized in Table 2.

Similar to the two-state model, knowing initial values for the
states and the parameters of the model, we can use the above
equations to estimate the values of each state at future generations.

2.3 Model Parameter Estimation
2.3.1 Model Transformation. In order to estimate the model

parameters based on experimental data, we �rst change the repre-
sentation of the systems of equations that describe the model, since

Table 2: Possiblemodels fromdi�erent combinations of gen-
erational search assessment indices.

Two-state models
xt yt Model No.

ND DOM 2-1
PO NDNP + DOM 2-2

�ree-state models

xt yt zt Model No.

PO NDNP DOM 3-1
POpnew POold NDNP+DOM 3-2
POanew PO - POanew NDNP+DOM 3-3

zt
Dominated

yt
Non Dominated

xt
PO

γ̄

γ

β̄ β ᾱα

Figure 2: A three-state model.

their recursive nature do not allow us to proceed directly. Here, we
use a simple coordinate transformation, by �rst representing the
equations of the two-state model in a matrix form as shown below:

A =

[
(1 − α ) β
α (1 − β )

]
Bt−1 =

[
xt−1
yt−1

]

Xt = ABt−1 (3)

By �nding the eigenvalue decomposition of A, we obtain the eigen-
values λ1 and λ2. By using the constants from the eigenvectors
(k11,k12) and (k21,k22) we can express Bt as:




xt = k11λt1 + k12λt2
yt = k21λt1 + k22λt2.

(4)
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A similar transformation process can be applied to the three-state
model, which gives us the following system:




xt = k11λt1 + k12λt2 + k13λt3
yt = k21λt1 + k22λt2 + k23λt3
zt = k31λt1 + k32λt2 + k33λt3.

(5)

To obtain back the original parameters, we use the obtained values
for k and λ, and we express them in a matrix form as K and L. �en
we need to solve Eq. (6).

Two-States

K =

[
k11 k12
k21 k22

]
L =

[
λ1 0
0 λ2

]

�ree-States

K =



k11 k12 k13
k21 k22 k23
k31 k32 k33


L =



λ1 0 0
0 λ2 0
0 0 λ3



KLK−1 = A (6)

2.3.2 Model Fi�ing. �e �t of data to a two-state model is per-
formed by taking the system of Eq. (4), and by numerically solving
each equation following the process illustrated in Figure 3. Here we
de�ne the problem of �nding a good set of parameters that gives
an optimal �t for the model as an optimization problem, where we
minimize the mean square error (mse) or 1

n
∑n
i=1 (X̄ −X )2, between

the data of the state corresponding to the equation we are ��ing X
and the values produced by the model X̄ .

To do so, we use the Covariance Matrix Adaptation Evolutionary
Strategy (CMA-ES) [5], a single-objective numerical optimizer, and
set the mse between X̄ and X as the function to be minimized. To
improve the results, we run CMA-ES several times using as initial
values the ones obtained previously, and using the R2 of the ��ing
to stop the process, when it reaches a value of 0.95 or larger, or
when no further improvement is seen.

xt = k11λt1 + k12λt2 Data

mse (X ,X )
CMA-ES

XX

params (λ1, λ2,k11,k12)

Figure 3: Fitting a two-state model.

For the three-state model, we use the system of Eq. (5) following
the two step process illustrated in Figure 4. In the �rst step we
select one equation of the system and �t all parameters λi and ki j .
In step two, we reuse the common parameters λi previously ��ed,
and �t only the parameters ki j . We decided to proceed in this way
because when all parameters λi and ki j were ��ed separately for
each equation we observed small di�erences in the obtained λi

yt = k21λt1 + k22λt2 + k23λt3 Data

mse (Y ,Y )
CMA-ES

params (λ1, λ2, λ3,k21,k22,k23)

Y Y

setParams(λ1, λ2, λ3)

xt = k11λt1 + k12λt2 + k13λt3
Data

mse (X ,X )
CMA-ES

params (k11,k12,k13)

X X

Figure 4: Fitting a three-state model.

values, which produced inconsistencies on the model parameters
once changed back into the original representation.

3 EXPERIMENTAL SETUP
�e test problems used are MNK-landscapes [3], a multi-objective
problem generator, where the parameter K controls the ruggedness
of the landscape, M is the number of objectives, and N the number
of variables. In this study, we randomly generate instances with K
= 1 bit, N = 20 bits and M = 3,4,5,6 objectives.

Models are created over data collected from �ve di�erent rep-
resentative multi- and many-objective optimization algorithms,
selected from conventional approaches such as Pareto dominance,
relaxation of Pareto dominance, performance indicators, and decom-
position. More concretely, we consider the following algorithms
in their out-of-the-box implementation: Non-dominated Sorting
Genetic Algorithm-II (NSGA-II) [4], Adaptive ϵ-Sampling ϵ-Hood
(AϵSϵH) [2], Indicator Based EA (IBEA) with the ϵ-indicator and hy-
pervolume (HV) indicator [11], and MOEA based on Decomposition
(MOEA/D) [10].

Each algorithm was run 30 times se�ing the number of genera-
tions to 100. �e number of dominated (DOM), non dominated (ND),
non dominated non PO (NDNP) and PO individuals at each gener-
ation were collected, including the initial population. During the
model parameter estimation, the average value over the 30 runs
were computed. For each number of objectives, we also consider
various population sizes, as indicated in Table 3. We build a model,
per con�guration, for each algorithm.

4 EXPERIMENTAL ANALYSIS
4.1 Goodness of Fit
We performed the parameter estimation according to the method
detailed in Section 2 for all models. Due to space restrictions, in
this section we report results only for population size 200 and
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Table 3: Population sizes for each number of objectives.

Objectives Population Sizes (Pop)

3 50, 100, 200
4 50, 100, 200, 500, 1000
5 50, 100, 200, 2000, 4000
6 50, 100, 200, 2000, 5600, 11200

3 objectives. �e coe�cient of determination (R2) is reported in
Table 4 for each ��ing. In the two-state model case, we omit the
R2 for the feature dominated DOM since the values are the same as
for non-dominated ones ND.

�e R2 measures the “goodness” of the �t. It can be interpreted
as the proportion of variability of the response variable explained
by the regression model. �e closer R2 to 1.0, the be�er the ��ing.
Actually, an R2-value of 1.0 indicates that the regression model
perfectly �ts the experimental data. We must note however that R2

cannot determine whether the estimate and predictions are biased.
In this case, we are comparing the values produced by the model
against the mean of the data, for which we have high values in
all algorithms. A visual comparison is pictured in Figures 5 and 6,
which show a good �t between the model (red line) and the mean
of the runs (black line).

Table 4: R2 on average indice-values for M=3, Pop=200.

Two States �ree States

Alg. R2 ND R2 PO R2 NDNP R2 DOM

NSGA-II 0.99059 0.99418 0.98381 0.99182
AϵSϵH 0.99624 0.99612 0.98670 0.99292
IBEAhv 0.98756 0.99427 0.96424 0.99465
IBEAϵ 0.99091 0.99009 0.95336 0.98749

MOEA/D 0.96994 0.98858 0.95963 0.97246
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Figure 5: Fitting two-state models to mean ND data.
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Figure 6: Fitting three-state models to mean PO data.

4.2 Model Veri�cation
For a simple veri�cation of the models, we set the initial states
(t = 0) with the data from the initial population (generation 0),
for each run of each con�guration, and use the model to generate
estimates for all generations (t = 1, . . . , 100), using the values
estimated at time t as input to estimate the values at t + 1. We
plot in red the estimates of the 30 runs generated by the model
and in black the data of the 30 runs obtained from the algorithms.
Figure 7 shows the result for non-dominated ND feature of the
two-state model, and Figure 8 shows the result for the PO feature
of the three-state model.

Visually, from these �gures we can see that the estimates ob-
tained using the two- and three-state models follow the trend of
the experimental data. Note that the estimates by the model go
through the middle of the dataset, since the model parameters were
trained based on the mean. Table 5 reports the average R2 obtained
from the estimated data for each run against the real data. �e
high R2 values match the previous results, showing that the model
produces a good-quality estimation, even though it was fed only
with the data from the initial population for each run.

Table 5: Average R2 of individuals runs for M=3, Pop=200.

Two States �ree States

Alg. R2 ND R2 PO R2 NDNP R2 DOM

NSGA-II 0.96343 0.96312 0.65107 0.96353
AϵSϵH 0.97240 0.97370 0.85654 0.96794
IBEAhv 0.95669 0.97257 0.79520 0.97011
IBEAϵ 0.96299 0.95750 0.69450 0.96241

MOEA/D 0.64085 0.79477 0.35883 0.64463

In addition, we performed cross-validation using the repeated
random sub-sampling validation. �e input data was split with a
proportion of 80/20. �us, from the 30 runs performed for each
algorithm, data from 24 runs where used as training data for model
��ing while the data of the remaining 6 runs were used for the val-
idation step. We repeated this process 30 times, each time selecting
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Figure 7: Two-state model estimation vs real ND data.
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Figure 8: �ree-state model estimation vs real PO data.

di�erent runs for model ��ing and validation. Similar to Table 4
and Table 5, Table 6 reports the R2 of the model ��ings using the
training data and Table 7 the R2 between the estimation produced
by the models and the validation data. For validation, the models
use the parameters learned with the training data and its initial
states are set with the values of the features present in the initial
population of the unseen data.

Table 6: R2 on average values of training runs for M=3,
Pop=200.

Two States �ree States

Alg. R2 ND R2 PO R2 NDNP R2 DOM

NSGA-II 0.99052 0.99415 0.98253 0.99172
AϵSϵH 0.99594 0.99612 0.98614 0.99275
IBEAhv 0.98721 0.99415 0.96331 0.99452
IBEAϵ 0.99077 0.98999 0.95334 0.98741

MOEA/D 0.96659 0.98709 0.95334 0.96899

Table 7: average R2 on validation runs for M=3, Pop=200.

Two States �ree States

Alg. R2 ND R2 PO R2 NDNP R2 DOM

NSGA-II 0.96337 0.95966 0.59491 0.96015
AϵSϵH 0.97195 0.97358 0.84680 0.96841
IBEAhv 0.95726 0.97218 0.78932 0.96957
IBEAϵ 0.96340 0.95627 0.67900 0.96155

MOEA/D 0.64381 0.78746 0.35177 0.64307

For the training set, from the results of Table 6, we notice that
we have similar satisfying results to the ones obtained when we
used all the runs as training data. As for the validation set, from
Table 7 we see equally good results for the two-state model, but
somehow low R2 for some algorithms in the three-state models, in
particular MOEA/D, for which the variability of the data a�ects the
R2, as can be visually appreciated in Figures 7 and 8.

4.3 Parameter Analysis
�e parameters, obtained from ��ing the models to the data, en-
capsulate the dynamics of the population composition in a small
set of values and provide us with a valuable tool for analysis.

A parameter relates two states within the model. To interpret
them, we need to know what they encapsulate according to the
equations of the model. For example, α in the three-state model
relates the number of PO and NDNP solutions. Expanding the �rst
two equations of system (2) and focusing on α we get the following

POt+1 = POt − αPOt + · · ·

NDNPt+1 = NDNPt + αPOt + · · · .

Note that the values of PO and NDNP at time t+1 change in opposite
directions, both proportionally to PO at time t by αPOt . Hence, a
loss in one state becomes a gain in the other. However, α can take
positive or negative values. �us, when α > 0, the model tell us
that the number of PO solutions reduces with time proportionally
to its previous value and the same amount increases in NDNP. On
the other hand, when α < 0, the model says that the number of
PO solutions increases proportionally to its previous value and the
same amount reduces in NDNP. In the above example, α > 0 can
be interpreted as a negative feedback of PO on PO, whereas α < 0
a positive feedback of PO on PO.

We should emphasize that changes in the number of individuals
in each state do not imply transition of individuals between states.
We do not track whether an individual make a transition from one
state to another, we just count at each generation how many are
present in each state. However, it remains true that a loss (decrease
in number) in one state is correlated to an equal gain (increase in
number) in another state by the corresponding parameter of the
model.

4.3.1 Graph Representation. One way to employ the parameters
is to construct a graph to visualize the changes in each state and
their relationships. In such a graph, each state Si is represented with
a node, and each parameter is represented with a link that shows
the relationship between two states according to the model equa-
tions. We use solid and dashed links with the following notation
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Figure 9: Two states, 3 objectives, population 200.

(parameter α is used as example)

S1
α>0
→ S2, implies




S2 gains |αS1 |

S1 looses |αS1 |

S1
α<0
d S2, implies




S1 gains |αS1 |

S2 looses |αS1 |

Figures 9 and 10 show examples of a graph representation for
two- and three-state models according to the above notation, cor-
responding to the parameters learned for the con�guration with 3
objectives and a population of size 200. Figure 11 shows a similar ex-
ample of three-state models learned for 5 objectives and population
of size 200.

From Figure 9, we can remark that all parameters are positive.
Here, the quotient β/α between the states’ rates of change are
2.85, 2.89,1.62, and 0.33 for NSGA-II, AϵSϵH, IBEAhv and MOEA/D,
respectively. �is suggests that the number of ND solutions (and
DOM) vary and accumulate similarly in NSGA-II and AϵSϵH, whereas
in IBEAhv the accumulation is smaller and in MOEA/D is the small-
est, as can be seen in Figure 7.

From Figure 10 note that all parameters of NSGA-II, AϵSϵH,
IBEAhv have the same signs, while MOEA/D di�ers in the signs of
γ and β . Focusing on the PO solutions state, we can see that in these
three algorithms PO gains come from three sources, i.e βPO, αPO
and ᾱNDNP, and loses β̄DOM. In MOEA/D the di�erence is that
it loses βPO instead of gaining them. �is suggests that MOEA/D
accumulates less PO solutions compared to the other algorithms,
as can be seen in Figure 8.

When we increase the number of objectives, the dynamics of
the algorithms change. For example, from Figure 11 note that
ᾱNDNP is the only source of gain for PO in NSGA-II, AϵSϵH and
MOEA/D, whereas IBEAhv also gains αPO. Another di�erence is
that MOEA/D loses γNDNP in favor of DOM, whereas the other
algorithms gain the same amount in favor of NDNP. Looking at
the relationship between DOM and NDNP, this means that in the
�rst three algorithms NDNP only have gains with respect to DOM,
whereas in MOEA/D NDNP loses in favor of DOM and vice versa.

4.3.2 Parameters vs Number of Objectives. Another way to ex-
ploit the model parameters is to use them to analyze the scalability
of algorithms. As an example, Figure 12 plots the six parameters of
our three-state model for the 5 algorithms set with population of
size 200, varying the number of objectives from 3 to 6. As a visual
aid, on top of each plot we include the states related by a given
parameter following the notation described before.

Looking at parameters α , β , γ and β̄ , we see that, for some
algorithms, the sign of the parameter changes when the number

of objectives increases. For example, NSGA-II and AϵSϵH have a
negative α for 3 objectives, and MOEA/D for 3 and 4 objectives.
�is means that with fewer objectives these algorithms gain PO
solutions in proportion to αPO and NDNP loses an equal number
of solutions. In other words, the size of PO correlates to an increase
of solutions in PO at the expense of NDNP. In 5 objectives α is
positive for all the algorithms, except IBEAhv . �at is, the size of
NDNP increases at the expense of PO.

Looking at parameter β , it is interesting to notice that, in the case
of MOEA/D, β remains positive up to six objectives and therefore
PO always loses in favor of DOM. However, the value of β reduces
with the number of objectives, dropping approximately by 0.09 from
3 to 4, 0.05 from 4 to 5, and 0.0258 from 5 to 6. In the other three
algorithms, PO increases with PO in three objectives. However, β is
very close to 0 for four or more objectives. So, very few solutions are
lost in PO in favor of DOM. �ere are other interesting observations
about the parameters and algorithms. However, we do not include
them due to space restriction.

5 CONCLUSION
We proposed simple closed state models that capture the population
dynamics of evolutionary algorithms. As an example we showed
a two-state model that uses Pareto dominance as a rule to split
the population into non-dominated and dominated solutions, and a
three-state model that extends it by addingmembership to the POS as
another rule, spli�ing the non-dominated group into Pareto optimal,
non-dominated non-PO solutions. Using this models, we tested
the methodology to �nd the parameters on data obtained from
representative MOEAs ran on MNK-landscapes as a test problem.
�e results of the parameter ��ing, veri�cation of the model against
the data and cross-validation suggest that our models are able to
follow the trend of the data, and provide a good estimation for
future states when feeding real data of a previous state.

We also proposed a graphical representation of the model and
its parameters, that allows us to see how parameters determine the
gain/loss relationship between states and its ratio.

Finally, we showed how parameters can be used to analyze the
scalability of algorithms, varying the number of objectives from 3 to
6. We observed that the increase in the number of objectives in some
algorithms a�ects the signs and magnitude of our model parameters,
which in turn a�ect the relationship between the states related
by the parameters. �is type of analysis shows the power and
usefulness of the models to encapsulate the underlying complexity
of population dynamics.

In a future work, we would like to test the models on the unused
features mentioned here, on new features not related to the POS,
and also on features that are related to other performance measures.
It would also be of interest to experiment with the models proposed
here on other relevant multi- and many-objective optimization
problems.
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