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Corrections to "A Global High-Gain
Finite-Time Observer"

Tomas Ménard, Emmanuel Moulay and Wilfrid Perruquetti

Abstract—This note fix the proof of Theorem 2 in the article
[2].

Equations from the original paper will be denoted with a star
(for example (1∗)) whereas equations of the present corrected
paper will be denoted without a star (for example (1)).

I. THE ERROR

The function Ṽα used in the proof of Theorem 2 in [2], and
derived from Theorem 10 in [3], is not C1 with respect to
(e, α). Indeed, one has

∂
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)
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Hence, when α→ 1, 1
αkq
→ 1 and when one of the component

of e goes to zero, the limit lim(α,e)→(1,e0)
1
αkq
dekc

1
αkq
−1

does not exist. Thus the function Ṽα cannot be used as a
candidate Lyapunov function.

II. THE FIX

Let us first recall Theorem 2 from [2].

Theorem 1. Let us consider system (3∗) with a bounded input
u. Then there exists θ∗ ≥ 1 such that for all θ > θ∗ there
exists ε > 0 such that system (3∗) admits the following global
finite-time observer:

˙̂x1 = x̂2 + k1(de1cα1 + ρe1) +
∑m
j=1 g1,j(x̂1)uj

...
˙̂xn = kn(de1cαn + ρe1) + ϕ(x̂) +

∑m
j=1 gn,j(x̂)uj

for all α ∈]1− ε, 1[, where e1 = x1 − x̂1, the powers αi are

defined by (5∗), the gains ki by (6∗) and ρ =

(
n2θ

2
3 S1+1
2

)
where S1 is defined by (8∗).
In addition, the settling time of the error dynamics is bounded
by T1(e0) + T2(e0) (with e0 = x0 − x̂0), where T1, T2 are
respectively given by (18∗) and (6).

The statement of Theorem 2 in [2] remains correct, except
for the settling time which has to be corrected.

We can define the function V1(e) = eTS∞(1)e, for e ∈ Rn,
where S∞(1) is the solution of (7∗) for θ = 1. This choice

GREYC, UMR-CNRS 6072, Université de Caen, 6 Bd du
Maréchal Juin, BP 5186-14032 Caen Cedex, France. (e-mail:
tomas.menard@unicaen.fr)

Xlim, UMR-CNRS 7252, Université de Poitiers, 11 bd Marie et
Pierre Curie, 86962 Futuroscope Chasseneuil Cedex, France. (e-mail:
emmanuel.moulay@univ-poitiers.fr)

NON-A, INRIA Lille Nord Europe and CRIStAL UMR-CNRS 9189, Ecole
Centrale de Lille, BP 48, 59651 Villeneuve D’Ascq, France. (e-mail:
wilfrid.perruquetti@ec-lille.fr)

corresponds to the linear case, that is α = 1. Proceeding as
in [4], [5], one can construct a candidate Lyapunov function
with properties stated next.

Proposition 1. Let a ∈ C∞(R,R) be such that

a =

{
0 on (−∞, 1]

1 on [2,+∞)
and a′ ≥ 0 on R. (2)

There exists ε > 0 such that for all α ∈]1 − ε, 1 + ε[, the
function V̄α defined as

V̄α(e) =

∫ +∞

0

1

t3
(a ◦ V1)(tr1(α)e1, . . . , t

rn(α)en)dt (3)

if e ∈ Rn\{0} and V̄α(0) = 0 is well defined, radially
unbounded, of class C1(Rn,R), and satisfies

a) V̄α(δ
r(α)
λ e) = λ2V̄α(e), for all e ∈ Rn and λ > 0.

b) 〈∇V̄α(e), Ae−F (S−1∞ (1)CT , e)〉 ≤ −γ(V̄α(e))
1+α
2 , for all

e ∈ Rn, where γ > 0.
where F ,C and δr(α)λ are defined in [2].

Proof of proposition 1. Let, α ∈]1 − 1
n ,+∞[, proceeding as

in [4], one directly shows that V̄α is well defined, radially
unbounded, C1 on Rn, and homogeneous of degree 2 with
respect to the weights r(α). Then, only point b) remains to
prove.
Following the same lines as in [4], there exists l, L > 0 such
that for all e ∈

{
e ∈ Rn | V̄α(e) = 1

}
, one has

〈∇V̄α(e), Ae−F (S−1∞ (1)CT , e)〉 =

∫ L

l

1
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, Aδ
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t e− F

(
S−1∞ (1)CT , δ

r(α)
t e

)〉
dt

Consider the function g(e, t, α) =〈
∇V1

(
δ
r(α)
t e

)
, Aδ

r(α)
t e− F

(
S−1∞ (1)CT , δ

r(α)
t e

)〉
, where

(e, t, α) ∈ {e ∈ Rn, V̄α(e) = 1} × {t ∈ [l, L]}×]1− 1
n ,+∞[.

The function g is continuous, (e, t) belongs to a compact set
and there exists γ1 > 0 such that the image of g is included
in ]−∞,−γ1[ for (e, t) ∈ {e ∈ Rn, V̄α(e) = 1}×{t ∈ [l, L]}
and α = 1 (since it corresponds to the linear case).
We can then apply Lemma 26.8 in [1] (tube lemma)
which gives the existence of ε > 0 such that for all
(e, t, α) ∈ {e ∈ Rn, V̄α(e) = 1} × {t ∈ [l, L]}×]1− ε, 1 + ε[,
g(e, t, α) ≤ −γ1.
Then we have

〈∇V̄α(e), Ae− F (S−1∞ (1)CT , e)〉

≤ −γ1
∫ L

l

1

tα+2
a′
(
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(
δ
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dt ≤ −γ

(
V̄α(e)

) 2+α−1
2

(4)

where γ > 0 is a lower bound of
γ1
∫ L
l

1
tα+2 a

′
(
V1

(
δ
r(α)
t e

))
dt for (e, α) ∈ {e ∈ Rn, V̄α(e) =

1}×]1− ε, 1 + ε[. Since V̄α is homogeneous of degree 2 with
respect to the weights r(α), inequality (4) is valid for all
e ∈ Rn.

Now that a new candidate Lyapunov function has been
defined, we explain how it will be used to correct the proof
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of Theorem 2 in [2]. Please note that part 1 of the proof is
correct, then it has already been proved that every trajectory
starting from e0 ∈ Rn enter the ball B‖.‖S∞(θ)

(1) after time
T1(e0) = log(1/V (e0))/κ(θ) (see equation (18∗)).
Denote ē = ∆θe, where ∆θ = diag

[
1 1

θ . . . 1
θn−1

]
, in the

remaining, we will show that for every θ ≥ θ2
4
= 2

γ (M1 + 2),
there exists ε > 0 such that the following inequality

˙̄Vα(ē) ≤ −
(γ

2
θ − 1

) (
V̄α(ē)

) 2+α−1
2 +M1V̄α(ē) (5)

holds for every ē ∈ B‖.‖S∞(1)
(1), α ∈]1 − ε, 1[ , where

M1 > 0 is a constant independent of θ. This inequality
replaces inequality (19∗). Inequality (5) directly implies that
the error system (11*) is finite time stable on B‖.‖S∞(θ)

(1).
Thus, after time T1(e0), the error enters B‖.‖S∞(θ)

(1) and after
time T1(e0) + T2(e0) the error reaches the origin, where the
settling time T2(e0) is bounded as follows

T2(e0) ≤
ln
(

1− M1
γ
2 θ−1

V̄α(e0)1−
2+α−1

2

)
M1( 2+α−1

2 − 1)
. (6)

The remaining of the corrected proof is very similar to the
original one. The dynamics of ē is given by

˙̄e = θ
(
Aē− F

(
S−1∞ (1)CT , ē

)
− ρS−1∞ (1)CTCē

)
+∆θD(x, x̂, u).

One has
˙̄Vα(ē)

4
= θW̄1 + W̄2 (7)

with W̄1 = 〈∇V̄α(ē), Aē−F (S−1∞ (1)CT , ē)−ρS−1∞ (1)CTCē〉
and W̄2 = 〈∇V̄α(ē),∆θD(x, x̂, u)〉.
Following the same lines as in [2], one can show that there
exists θ2 ≥ 0 such that for every θ ≥ θ2, there exists ε > 0
such that for all α ∈]1− ε, 1[ inequality (5) holds true.
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