
Development of magnetohydrodynamic modes during sawteeth in tokamak plasmas
M.-C. Firpo, W. Ettoumi, R. Farengo, H. E. Ferrari, P. L. García-Martínez, and A. F. Lifschitz 
 
Citation: Physics of Plasmas 20, 072305 (2013); doi: 10.1063/1.4816025 
View online: http://dx.doi.org/10.1063/1.4816025 
View Table of Contents: http://scitation.aip.org/content/aip/journal/pop/20/7?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
A resistive magnetodynamics analysis of sawtooth driven tearing modes in tokamak plasmas 
Phys. Plasmas 23, 062117 (2016); 10.1063/1.4953900 
 
Conversion of the dominantly ideal perturbations into a tearing mode after a sawtooth crash 
Phys. Plasmas 21, 110702 (2014); 10.1063/1.4902106 
 
Non-linear magnetohydrodynamic simulations of density evolution in Tore Supra sawtoothing plasmas 
Phys. Plasmas 19, 112305 (2012); 10.1063/1.4766893 
 
Diamagnetic thresholds for sawtooth cycling in tokamak plasmas 
Phys. Plasmas 18, 102501 (2011); 10.1063/1.3646305 
 
Three-dimensional modeling of the sawtooth instability in a small tokamaka) 
Phys. Plasmas 14, 056105 (2007); 10.1063/1.2695868 
 
 

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  168.96.251.98 On: Wed, 07 Dec

2016 16:08:22

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CONICET Digital

https://core.ac.uk/display/80365716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1586520871/x01/AIP-PT/PoP_ArticleDL_110216/PTBG_orange_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=M.-C.+Firpo&option1=author
http://scitation.aip.org/search?value1=W.+Ettoumi&option1=author
http://scitation.aip.org/search?value1=R.+Farengo&option1=author
http://scitation.aip.org/search?value1=H.+E.+Ferrari&option1=author
http://scitation.aip.org/search?value1=P.+L.+Garc�a-Mart�nez&option1=author
http://scitation.aip.org/search?value1=A.+F.+Lifschitz&option1=author
http://scitation.aip.org/content/aip/journal/pop?ver=pdfcov
http://dx.doi.org/10.1063/1.4816025
http://scitation.aip.org/content/aip/journal/pop/20/7?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/23/6/10.1063/1.4953900?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/21/11/10.1063/1.4902106?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/19/11/10.1063/1.4766893?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/18/10/10.1063/1.3646305?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pop/14/5/10.1063/1.2695868?ver=pdfcov


Development of magnetohydrodynamic modes during sawteeth
in tokamak plasmas

M.-C. Firpo,1 W. Ettoumi,1 R. Farengo,2 H. E. Ferrari,2,3 P. L. Garc�ıa-Mart�ınez,3

and A. F. Lifschitz4

1Laboratoire de Physique des Plasmas, CNRS-Ecole Polytechnique, 91128 Palaiseau cedex, France
2Centro At�omico Bariloche (CNEA) and Instituto Balseiro (UNC-CNEA), San Carlos de Bariloche, RN 8400,
Argentina
3Consejo Nacional de Investigaciones Cient�ıficas y T�ecnicas (CONICET), Bariloche, Argentina
4Laboratoire d’Optique Appliqu�ee, ENSTA, CNRS, Ecole Polytechnique, 91761 Palaiseau, France

(Received 22 May 2013; accepted 18 June 2013; published online 18 July 2013)

A dynamical analysis applied to a reduced resistive magnetohydrodynamics model is shown to

explain the chronology of the nonlinear destabilization of modes observed in tokamak sawteeth. A

special emphasis is put on the nonlinear self-consistent perturbation of the axisymmetric m¼ n¼ 0

mode that manifests through the q-profile evolution. For the very low fusion-relevant resistivity

values, the q-profile is shown to remain almost unchanged on the early nonlinear timescale within

the central tokamak region, which supports a partial reconnection scenario. Within the resistive

region, indications for a local flattening or even a local reversed-shear of the q-profile are given.

The impact of this ingredient in the occurrence of the sawtooth crash is discussed.
VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4816025]

I. MOTIVATIONS

One still largely open problem in tokamak plasmas is

the generic “sawtooth” phenomenon. Sawteeth manifest,

e.g., with respect to the plasma temperature indicator in the

following fashion: the core plasma temperature suddenly

crashes when attaining some limit value before progressively

increasing further up to the next sawtooth crash on a periodic

basis, so that the resulting time trace of the central tempera-

ture resembles the edge of a saw. Despite an increasing phe-

nomenological and theoretical knowledge, acquired since

their first observation in the early 1970s,1 as well as some

very recent experimental successfully tested procedure to

control their pace,2 aimed at containing their deleterious

effects on the plasma, it is widely admitted by the magnetic

fusion community that the phenomenon of sawteeth is not

fully understood yet.

This issue is of special concern in the perspective of

ITER. Actually, whereas small sawteeth may even be benefi-

cial in preventing the accumulation of impurities and helium

ash in the plasma center, large sawteeth with mixing radii of

50% or more of the plasma minor radius and temperature

drops of one or more keV represent a serious threat to ITER

operation, since these large sawtooth events may couple to

neoclassical tearing modes and to edge-localized modes,

resulting in a serious loss of plasma energy and confinement

degradation.3 Moreover, from a fusion perspective, the cen-

tral temperature in ITER should be as large as possible. The

best performance is just before the plasma crashes.

Understanding the nature of sawteeth should help in finding

a way to delay the time between crashes and therefore sus-

tain the hot temperature and get more fusion from ITER.

Improving solely the modeling of sawteeth would be also

useful for studying many effects occurring in the sawteeth

regime such as the behavior of alpha particles.4,5 In this

respect, relying on a purely numerical approach may not be

the most relevant approach or, at least, should be taken with

care. Indeed, the numerical modeling of sawteeth is well

known to be a considerably difficult task. In particular, MHD

based codes, even the most sophisticated ones, repeatedly

predict a complete reconnection at each sawtooth cycle (in

the absence of ad-hock tricks), whereas experiments have

almost always reported an incomplete reconnection.6

It is widely admitted that the occurrence of sawteeth in

tokamak plasmas is related to the existence of some q¼ 1 in-

ternal magnetic surface and to some magnetohydrodynamic

(MHD) activity triggered by the subsequent destabilization

of m¼ n¼ 1 internal modes. Igochine and ASDEX’s co-

workers7,8 were recently able to extract the dominant MHD

activity during a sawtooth cycle. They observed that the

whole cycle is dominated by an m¼ n¼ 1 mode that sur-

vives the sawtooth crash, that is whose amplitude does not

vanish as a result of the crash, which is consistent with an

incomplete reconnection. During the sawtooth cycle, some

m¼ n¼ 2 mode is also present and grows from an almost

negligible amplitude just after the crash up to one fourth of

the m¼ n¼ 1 amplitude.7 An m¼ n¼ 3 mode is also

detected just before the sawtooth crash at a much lower am-

plitude. The crash phase was then interpreted as a conse-

quence of the stochastization of the magnetic field lines.

One objective of the present article is to propose an ex-

planation for the chronology of the onset of these m¼ n
modes. This is addressed in Sec. II through a reduced MHD

approach. Section III then focuses on the question of the non-

linear development of the axisymmetric m¼ n¼ 0 magnetic

component or, equivalently, of the nonlinear evolution of the

q-profile. Finally, the previous analytical results obtained in

a simplified framework are connected to experimental meas-

urements in Sec. IV. The role played by the local flattening

of the q-profile around the q¼ 1 surface is emphasized.
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II. DEVELOPMENT OF m 5 n MODES INTO THE
NONLINEAR REGIME

A. Principles of the analysis

As it is well known, the toroidal geometry induces a

coupling between all the m-numbers for a given n.

Consequently, in the linear regime, the instability of the in-

ternal m¼ n¼ 1 mode goes along, in particular, that of the

m¼ 2, n¼ 1 secondary mode. In this section, we shall, how-

ever, focus only on the development of the m¼ n modes that

are the dominant modes and, for the description of which,

the cylindrical approach is sufficient.

Let us then study the development of MHD internal

m¼ n modes into the nonlinear regime starting from a line-

arly unstable m¼ n¼ 1 mode. Defining by A the amplitude

of the m¼ n¼ 1 mode, one can address this problem through

an amplitude expansion. Looking back at the literature on

this approach, it happens to have been first considered in fluid

mechanics by Stuart in a seminal study of the nonlinear

mechanics of instabilities in plane Poiseuille flow and Taylor-

Couette flow.9 More recently, Dahlburg applied similar tech-

niques to determine the nonlinear evolution of some linearly

unstable magnetohydrodynamic settings.10 Independently, a

comparable amplitude expansion approach was used later11–13

to study the onset of the nonlinear regime of the internal resis-

tive m¼ n¼ 1 mode including the issue of the generation of

higher harmonics of the disturbance that was left apart in

Refs. 9 and 10. This question will be reconsidered more care-

fully now.

To address the issue of the development into the nonlin-

ear regime of internal m¼ n modes, one shall naturally pro-

ceed through the following steps:

(i) Only the m¼ n¼ 1 mode is linearly unstable. Due to

unavoidable nonideal effects, the plasma domain

divides in two regions: an ideal region away from the

q¼ 1 surface in which nonideal effects are negligible

and a thin current sheet region in the critical layer in

the vicinity of the q¼ 1 surface, in which nonideal

effects deeply modify the local plasma dynamics and

are responsible for the instability. The linear eigen-

function will result then from the matching between

an outer ideal solution and an inner solution valid

inside the critical layer.

(ii) Then one injects this linear solution into MHD equa-

tions and look at the outcome on the various m¼ n
modes. Typically quadratic nonlinear terms may con-

tribute to the m¼ n¼ 0 and m¼ n¼ 2 modes but do

not affect the m¼ n¼ 1 mode that will be only

affected at the next order.

(iii) There are two ways to consider step (ii): one may

assume that the critical layer is fixed or not. If the

position of the critical layer is fixed, or assumed to be

so, one can practically restrict to the critical layer

equations and apply step (ii) within the critical layer.

This would practically correspond to the setting

imposed in many slab numerical MHD simulations

studying the behavior of, e.g., tearing modes into the

nonlinear regime. One may then refer to Stuart’s

approach9 for an analytic method to study the nonlin-

ear evolution of the m¼ n¼ 1 mode. Otherwise, one

has to deal with a free layer problem and take into

account the impact of the motion and possible modifi-

cations of the critical layer as time proceeds. This

becomes an obviously more intricate problem which

is a priori closer to the reality of the internal mode

dynamics in tokamak plasmas. The later case will be

considered in the following. Then nonlinear mode

couplings will be shown to come into play in the first

place due to the terms appearing as a result of the

motion of the layer, whereas the basic linear structure

of the critical layer equations shall be conserved.

B. The reduced MHD framework

Practically, we consider cases relevant to hot tokamak

plasmas operating close to the ideal MHD stability limits so

that the m¼ n¼ 1 internal kink mode is marginally stable

against ideal MHD. Non-ideal effects, such as resistivity,

may, however, turn it unstable. In order to explain the devel-

opment of m¼ n modes into the nonlinear regime, a proto-

typical relevant framework to consider is the reduced MHD

system given by

@U

@t
¼ ½/;U� þ ½J;w�; (1)

@w
@t
¼ ½/;w� þ gðJ � J0Þ; (2)

where the standard definitions have been used. In the cylin-

drical geometry considered, the (1, 1) internal mode is

ideally marginally stable.

In Eqs. (1) and (2), helical symmetry is assumed: The

poloidal and toroidal angles, respectively, h and u, only

come in through the helical angle a ¼ u� h. / and w are

the plasma velocity and helical magnetic field potentials: the

velocity is v ¼ û �r?/ and the magnetic field B¼B0uû
þû�r?ðw� r2=2Þ. U¼r2

?/ is the vorticity and J¼r2
?w

the helical current density, with r2
? � r�1@rr@rþ r�2@2

a .

Poisson brackets are defined by ½/;U� ¼�û � ðr?/�r?UÞ
¼ r�1ð@r/@aU�@rU@a/Þ. Equations (1) and (2) are dimen-

sionless: Time has been normalized to the poloidal Alfv�en

time, the radial variable r to the minor radius, and g is the

inverse of the magnetic Reynolds number S and is given by

the ratio of the poloidal Alv�en time to the resistive one. In

high-temperature fusion plasmas, g is typically much smaller

than one (of the order 10�8). Note that in this section, modes

will be labeled by their sole helical number m, which is

equivalent to the usual notation in terms of poloidal and to-

roidal numbers (m, n) with the restriction jmj ¼ jnj.
Consider equilibria such that, for some internal radius

rs0 < 1; qðrs0Þ ¼ 1, that is w00ðrs0Þ ¼ 0. Then, due to the

Ohm’s law (2), plasma volume divides in two regions. Far

from the q¼ 1 surface (outer domain), plasma behaves

ideally, whereas, in the vicinity of rs0 (inner region), resistiv-

ity plays a crucial, destabilizing, role. Linear theory14 uses as-

ymptotic matching analysis to provide m¼ 1 eigenfunctions
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in the form AðtÞfLðrÞeia valid in the whole domain. In

the outer (ideal) domain, this solution is valid, that is nonlin-

ear effects are negligible, as long as A� 1.12 Injecting the

linear solutions w1ðr; a; tÞ ¼ AðtÞwLðrÞeia and /1ðr; a; tÞ
¼ AðtÞ/LðrÞeia into Eqs. (1) and (2) calls for an amplitude

expansion. The procedure has been given in Refs. 11 and 12.

The particularity of the linear radial eigenfunctions wLðrÞ and

/LðrÞ, that needs a careful consideration, is that they have

strong gradients inside the critical layer. More precisely, their

radial derivatives are of the order of the inverse of the critical

layer width, that is Oðg�1=3Þ.

C. Linear solution

1. Linear solution in the outer domain

In the linear regime, the helical magnetic field in the

outer domain, namely out of the resistive critical layer, reads

woutðr; a; sÞ ¼ w0ðrÞ þ AðsÞwLðrÞeia þ c:c: for r < rs0

w0ðrÞ for rs0 < r � 1;

�
(3)

where the radial part wLðrÞ is a solution of the Newcomb

equation

r2
?f ¼ f 00 þ 1

r
f 0 � f

r2
¼ dJ0

dr

dw0

dr

� ��1

f ; (4)

for r < rs0 with the boundary condition w0Lðr�s0Þ ¼ 1.

Considering the outer MHD equations, the outer solution (3)

is valid as long as nonlinear effects may be neglected,

namely as long as the m¼ 1 mode amplitude A is small com-

pared to 1. This outer linear solution provides then the

matching boundary conditions for the following critical layer

analysis as long as AðsÞ is small (compared to one).

2. Linear solution within the resistive critical layer

The linear theory of the resistive mode was first derived

by Coppi et al. in Ref. 14. A scaling analysis was given in

Ref. 12 and the main results will be summarized below.

Let us define the stretched critical layer coordinate x ¼
g�1=3ðr � rs0Þ and the rescaled time s ¼ g1=3t and denote by

w ¼ g1=3 the (order of) the width of the critical layer. Noting

that J1 	 g�2=3@2w1=@x2 and U1 	 g�2=3@2/1=@x2, one

obtains at leading order the linear system of equations

@

@s
@2/1

@x2
þ w000ðrs0Þ

rs0

x
@3w1

@a@x2
¼ 0; (5)

@w1

@s
þ w000ðrs0Þ

rs0

x
@/1

@a
¼ @

2w1

@x2
; (6)

where we used @w0=@x 	 g2=3xw000ðrs0Þ. We define

j0 �
w000ðrs0Þ

rs0

: (7)

Looking for solutions of the form /1 	 /1ðxÞeia�ixs and

w1 	 w1ðxÞeia�ixs, one unstable solution is found, the m¼ 1

resistive mode, with growth rate

�ix ¼ ĉL ¼ j2=3
0 ¼ w000ðrs0Þ

rs0

� �2=3

¼ q0ðrs0Þ2=3: (8)

The variable x enters the equations through the rescaled vari-

able j1=3
0 x=

ffiffiffi
2
p

. In real space, the perturbed potentials are

w1ðx; a; sÞ ¼ A0expðĉLsÞgL
j1=3

0 xffiffiffi
2
p

 !
cos a; (9)

/1ðx; a; sÞ ¼ �
A0ffiffiffi

2
p expðĉLsÞg0L

j1=3
0 xffiffiffi

2
p

 !
sin a; (10)

where gL is the function

gLðsÞ ¼
s

2
erfcðsÞ � 1

2
ffiffiffi
p
p expð�s2Þ: (11)

This solution was chosen to satisfy the asymptotic matching

conditions, giving g0Lð�1Þ ¼ 1 and g0Lðþ1Þ ¼ 0.

These linear equations (5) and (6) are the dominant

equations provided the nonlinear terms are effectively negli-

gible. The validity of the linear system (5) and (6) breaks

when the amplitude A is no longer small compared to g2=3,

that is when the nonlinear terms, such as ½/1;U1� going like

g�1A2, begin to dominate the linear ones, scaling as

j0g1=3x@aJ1 	 Ag�1=3. Alternatively, the end of validity of

the linear regime for A�g2=3 coincides with the instantane-

ous location of the critical layer rsða; sÞ, or with the width of

the m¼ 1 magnetic island, going out the initial critical layer

centered on rs0.

D. Onset of nonlinearities

In writing down the critical layer equations, the instanta-

neous surface rsða; tÞ, defined as the surface of vanishing

transverse magnetic field by @rw½rsða; tÞ� ¼ 0, is important as

the location where dynamical equations turn singular and

non-ideal (resistive) effects come into play. Let us now esti-

mate the location of the critical region at the end of validity

of the linear stage. Writing rsða; sÞ ¼ rs0 þ rs1ða; sÞ, we get

drw0

�
rs0 þ rs1ða; sÞ

	
þ @rw1

�
rs0 þ rs1ða; sÞ

	
¼ 0 (12)

giving the first order correction rs1ða; sÞ 	 AðsÞ=g1=3cosa.

This relates to the first order shift of the core plasma inside

the q¼ 1 surface as a result of the kink instability.

Mode couplings do not affect the second order m¼ 1

dynamics, so that one can keep the linear m¼ 1 radial struc-

ture but introduce the corrections due to the motion of the

@rw ¼ 0 surface. Mode couplings only affect the m¼ 0 and

m¼ 2 modes. The dynamical equations along the m¼ 0 and

m¼ 2 components were derived in Ref. 12. Let us first focus

on the evolution of the m¼ 2 perturbation and define y
¼ ðr � rsða; sÞÞ=w with w ¼ g1=3. At leading order in w, the

dynamical equations projected on this component are

@

@s
@2/ð2Þ

@y2
þ 2ijð0Þy

@2wð2Þ

@y2
¼ w

@r
ð1Þ
s1

@s
@U
ð1Þ
1

@r
; (13)
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@wð2Þ

@s
þ 2ijð0Þy/ð2Þ � @

2wð2Þ

@y2
¼ w�1 @r

ð1Þ
s1

@s
@wð1Þ1

@r
: (14)

Due to the motion of the critical layer, the linear operators

now involve the m¼ 0 time-dependent average

jð0ÞðsÞ � 1

2p

ð2p

0

w00½rsða; sÞ�
rsða; sÞ

da; (15)

instead of j0. The system (Eqs. (13) and (14)) consists in a

linear kernel forced by convective terms. As the m 6¼ 1 com-

ponents of the perturbations have amplitudes that are

assumed to be initially almost vanishing, it will be valid to

neglect their importance in front of the m¼ 1 mode.

Following Eqs. (13) and (14), the qualitative time behavior

of the forcing term due to the motion of the layer is AdA=ds.

Therefore, the approximation for the time behavior of the

m¼ 2 mode will be qualitatively given by A2
0ĉLsexpð2ĉLsÞ.

Consequently, the m¼ 1 mode is dominant in the early non-

linear regime over the nonlinearly triggered m¼ 2 mode as

long as s� ss with

ĉLss ¼ �ln A0 � lnðĉLssÞ:

This will typically be the case during many e-folding times

provided that the initial perturbation amplitude A0 is low

enough. Let us note that conversely, in the case where the

initial m¼ 1 mode amplitude is not sufficiently small, the

linear regime may not be observed at all.

Once the m¼ 2, and possibly also the m¼ 0, modes are

nonlinearly destabilized, this gives way to the nonlinear cas-

cade of mode couplings: the m¼ 3 mode is nonlinearly trig-

gered through mode couplings involving the m¼ 2 and

m¼ 1 modes as well as cubic m¼ 1 terms, and so on. Let us

now investigate the evolution of the m¼ 0 mode as a result

of nonlinearities.

III. THE m 5 n 5 0 MODE: EVOLUTION OF THE
q-PROFILE

A. Critical layer equations for the m 5 n 5 0
perturbation

Following continuously, the linear regime through the

introduction of the instantaneous critical surface rsða; sÞ, we

can now write down the dynamical equations in the corre-

sponding moving critical layer projected on the m¼ 0 com-

ponent as

@

@s
@2d/ð0Þ

@y2
¼ w

@r
ð�1Þ
s1

@s
@U
ð1Þ
1

@r
þ c:c:; (16)

@dwð0Þ

@s
�@

2dwð0Þ

@y2
¼w�1 @r

ð�1Þ
s1

@s
@wð1Þ1

@r
þ i

r

@/ð�1Þ
1

@r
wð1Þ1

 !
þc:c:

(17)

Here, the m¼ 0 fields, d/ð0Þ and dwð0Þ, have to be considered

as second order perturbations to their respective equilibrium

fields. As we are specifically interested into the q-profile

evolution, we shall just consider Eq. (17). One should be

careful that the first order terms w1 and U1 correspond to the

linear solution previously derived and do not have large

derivatives outside the linear critical layer centered on rs0.

The right-hand side of Eq. (17) involves the sum of two

quadratic convective terms, the first one of which being due

to the motion of the critical layer. It is easy to realize that

this one dominates the other one when w�1dA=ds
 A
which is clearly the case in the early nonlinear regime for

which A ’ A0expðĉLsÞ. This ordering legitimates the moving

layer analysis. Equation (17) then reads

@dwð0Þ

@s
� @

2dwð0Þ

@y2
¼ w�2 AðsÞffiffiffi

2
p g0L

j1=3
0 yffiffiffi

2
p

 !
j1=3

0

1

2p

ð2p

0

@rsða; sÞ
@s

� cosada � sðy; sÞ:
(18)

One recognizes a diffusion equation with sources for dwð0Þ.
Putting s¼ 0 would yield a simple diffusion equation with

vanishing boundary conditions yielding an identically van-

ishing dwð0Þ. The a-dependence of the critical radius when

A > g2=3, due to the m¼ 1 perturbation breaking the radial

symmetry, is the main ingredient that triggers nonlinearly

the onset of the m¼ 0 perturbation. Therefore, the moving

critical layer model is consistent enough to avoid any invoca-
tion of some prescribed background turbulence that would

feed m¼ 0 and m¼ 2 components. The only necessary

assumption is the existence at time zero of some infinitesimal

amplitude of the m¼ 1 resistive internal mode.

B. Time evolution of the m 5 n 5 0 perturbation within
the resistive internal layer

Equation (18) is solved for dwð0Þðy; s ¼ 0Þ ¼ 0, with

�1 < y <1, and homogeneous boundary conditions, as

dwð0Þðy; sÞ ¼
ðs
0

ð1
�1

sðz; iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pðs� iÞ

p exp � ðy� zÞ2

4ðs� iÞ

" #
didz: (19)

In Eq. (19), the sources term scales as A2w�2, so that

the m¼ 0 perturbation of the helical magnetic flux within
the moving critical layer becomes of order one for

A 	 w ¼ g1=3. This corresponds to the threshold predicted

for nonlinear saturation in Refs. 11 and 12.

Before turning to the numerical evaluation of the dwð0Þ

evolution, it is important to note that dwð0Þ is not the m¼ 0

perturbation of the magnetic helical flux in the cylinder vari-

ables. It is so relative to the instantaneous critical layer and

with respect to the reduced coordinate y that depends on a.

This would have to be taken into account for the final

evaluation.

The right plot of Figure 1 presents the numerical evalua-

tion of the perturbation of wð0Þ for some special case. It has

been estimated by plugging for w1 the linear eigenfunction

inside the critical layer, so that the result remains correct as

long as A is not too large but overestimates the true result in

the late times. Initial conditions are the same as in
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Aydemir’s paper.15 The chosen q-profile is qRðrÞ

¼ q0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ qa

q0


 �2
� 1

� �
r4

s
, with q0 ¼ 0:9 and qa ¼ 3.

Correspondingly, the radius of the location of the q¼ 1 sur-

face is initially rs0 ¼ 0:39. The magnetic Reynolds number

is S ¼ g�1 ¼ 107. The initial m¼ 1 mode amplitude is

1:2� 10�5.

The left side of Figure 1 displays for reference the solu-

tion for the m¼ 1 amplitude of the generalized critical layer

dynamical equations projected on the m¼ 1 component,

namely the solution of

1

jð0ÞðsÞ
1

A

dA

ds
¼ cL

j0

¼ j�1=3
0 ; (20)

with the instantaneous critical layer average

jð0ÞðsÞ ¼ 1

2p

ð2p

0

w000ðrsða; sÞÞ
rsða; sÞ

da: (21)

From the computations of the m¼ 0 helical magnetic pertur-

bation in the inner resistive layer displayed in Figure 1, it is

then possible to derive the early nonlinear modification of the

q-profile. This is indicated in Figure 2. We have here used the

following definition for the instantaneous q-profile given by

dw0=dr ¼ rð1=qðr; sÞ � 1Þ, with w0 ¼ w0R þ dwð0Þðr; sÞ and

dw0R=dr � rð1=qRðrÞ � 1Þ. The q-profile then just translates

the fate of the axisymmetric magnetic component. From this

follows that the plateau associated to the intrinsically non-

axisymmetric m¼ n¼ 1 magnetic island in Figure 2 is associ-

ated to a value of q (slightly) smaller than one and not equal

to one.

C. Outer q-profile evolution

Outside the critical resistive layer, in the approximately

ideal domain, the Ohm’s law projected on the m¼ 0 mode

amounts to the diffusion equation @dwð0Þ=@t ¼ gdJð0Þ, namely

@dwð0Þ

@s
¼ w2

r

@

@r
r
@dwð0Þ

@r

� �� �
: (22)

This equation has to be solved in both radial domains I�
� ½0; r�s ðsÞ� and Iþ � ½rþs ðsÞ; 1�. In I�, the solution should

satisfy limr!0 jdwð0Þðr; sÞj <1 and should match the criti-

cal layer solution through dwð0Þðr�s ðsÞ; sÞ ¼ limy!�1

dwð0Þin ðsÞ � g�ðsÞ. In Iþ, the boundary conditions are

dwð0Þðrþs ðsÞ; sÞ ¼ limy!þ1 dwð0Þin ðsÞ � gþðsÞ and dwð0Þðr
¼ 1; sÞ ¼ 0. In both cases, the initial condition is

dwð0Þðr; 0Þ ¼ 0. Therefore, the present problem to solve is

that of a diffusion equation in cylindrical coordinates with

time dependent boundary conditions in which one of the

boundaries is moving. The latter requirement makes the

problem clearly non-standard. In order to get a physical

insight of the solution, one can however neglect in the first

place the motion of the boundaries and retain solely in the

inner domain dwð0Þðr�s0; sÞ ¼ g�ðsÞ.
The features of the solution of Eq. (22) are easy to

derive. Compared to the timescale of the critical layer dy-

namics, the timescale of the diffusion of dwð0Þ is typically

much larger, so that, provided g is small enough, dwð0Þ

should remain vanishingly small except in the vicinity of the

inner border of the critical layer boundary where it decreases

to match the inner solution.

Let us now solve Eq. (22) and denote by dŵ
ð0Þðr; sÞ the

Laplace transform of the function dwð0Þðr; tÞ. Proceeding to

the Laplace transform of the diffusion equation Eq. (22) and

boundary conditions yields

FIG. 1. (left panel) Time evolution of the amplitude A of the m¼ 1 resistive mode derived from the nonlinear model;11–13 the dashed line indicates the thresh-

old for the onset of cubic nonlinearities (A 	 g1=2), and (central panel) corresponding time evolution of the perturbation of the axisymmetric toroidal magnetic

flux obtained from the solution (19) of the critical layer diffusion equation with (right panel) a zoom on the early evolution.

FIG. 2. Prediction for the early q-profile modification within the resistive

critical layer obtained from Eq. (19) for the same parameters as in Fig. 1.

The plain curve represents the initial reference equilibrium q-profile and the

bold curve the q-profile computed at time cLt ¼ 1.
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w2

r

@

@r
r
@dŵ

ð0Þ

@r

 !" #
� sdŵ

ð0Þðr; sÞ ¼ 0; (23)

for 0 � r < r�s0, with

lim
r!0
jdŵð0Þðr; sÞj <1; (24)

and

dŵ
ð0Þðr�s0; sÞ ¼ ĝ�ðsÞ: (25)

It is obviously very important that the physical condition

(24) be satisfied, a fact that may not be fulfilled by some

(bad) parabolic partial differential equation solvers.

The solution to this boundary-value problem in cylindri-

cal geometry is (see, e.g., Ref. 16)

dŵ
ð0Þðr; sÞ ¼ ĝ�ðsÞ

I0
r
ffiffi
s
p

w


 �
I0

r�
s0

ffiffi
s
p

w


 � : (26)

Then it remains to proceed to the inverse Laplace transform

of dŵ
ð0Þðr; sÞ given in Eq. (26) to obtain dwð0Þðr; sÞ and the

associated q-profile.

Figure 3 shows the predicted early time evolution of

the q-profile corresponding to the numerical integration of

the diffusion equation (22) for a moderate value of the

Lundquist number, namely S 	 4� 104, similar to the one

used in Ref. 17. Inverse Laplace transforms of Eq. (26) were

numerically computed using a Gaver-Wynn-Rho algo-

rithm.18 As expected from Sec. III B, the overestimation of

the boundary value g�ðsÞ in the late second order regime

may explain the overestimation of the q-profile close to the

critical layer border. Moreover, one should not forget that, in

order to simplify the problem, we have solved here the diffu-

sion equation in the inner core plasma by assuming a fixed

boundary at r ¼ rs0 which is certainly not valid as time

increases due to the growth of the magnetic island. The

effect of this growth of the magnetic island will be to lower

the effective boundary r�s ðsÞ as time increases so that, at

time s, one may discard the results in the computational zone

½r�s ðsÞ; rs0� in which the obtained q values are typically larger

than one.

Having said that, one can now interpret this computation

of the q-profile evolution. This is important because this

gives in particular the time evolution of the central value, q0,

of the q-profile, the behavior of which being a well-known

indicator of the complete or incomplete character of the

magnetic reconnection. Only for moderate S values possibly

relevant to describe sawteeth in small tokamaks does one

observe the slow progressive growth of q0 as in Figure 3. It

is interesting to mention that in Ref. 17, Watanabe et al.
observed the progressive, and eventually complete, flattening

of the core current profile in the course of the nonlinear de-

velopment of the resistive kink mode for the resistivity value

considered in this figure. However, for the realistically large

values of S expected in fusion-relevant tokamak plasmas,

one predicts on the basis of the solution (26) that q0 should

remain practically unchanged and equal to its initial equilib-

rium value in the early nonlinear regime. This favors an

incomplete reconnection.

D. Summary and comments on the results

In the present case, only the m¼ n¼ 1 mode has been

considered to be linearly unstable. In the linear regime, its

amplitude is of the form AðtÞ ¼ A0ecLt. This is obviously

valid as long as A is small enough. Injecting this linear solu-

tion into the full (nonlinear) resistive MHD equations, it can

be seen that the first dominant nonlinear terms obtained are

quadratic in A and affect the modes m¼ 1 6 1, namely the

modes m¼ 0 and m¼ 2. Later the cubic terms will affect the

modes 0 6 1 and 2 6 1, namely the modes m¼ 1 and m¼ 3.

At small enough amplitudes (here for A� 1), the outer

plasma can be treated linearly. This means that nonlinearities

will at first only affect the critical layer in which resistive

effects are important, driving the dynamics of the whole

plasma by providing the boundary conditions that must be

satisfied by the outer fields. This has been exemplified in

Sec. III C through the computation of the time evolution of

the q-profile in the plasma center.

We expect the scenario of the successive nonlinear

switching-on of modes as A increases to be very general.

Here, the mode cascade proceeds as A crosses thresholds in

the resistivity g. This can be viewed as the entrance door into

the later turbulent regime where a large number of modes

have been activated. The limitation of the present perturba-

tive approach lies in the fact that the nonlinear width of the

critical layer is assumed to be equal to w, namely the linear

one. This continuity argument is fine to describe the early

nonlinear regime. Later, the derived critical layer equations

should remain valid only in some a domain close to the x-

point of the m¼ 1 island. Practically, as long as the m¼ 1

island width is not much larger than w, the assumption is cor-

rect. This is the case in the computation of the q-profile non-

linear modification within the resistive layer presented in

Fig. 2.

FIG. 3. Predicted q-profile time evolution in the core plasma given by the

numerical solution of the diffusion equation (22) for a fixed maximal bound-

ary and a moderate Lundquist number, namely S � g�1 ¼ 4:104. The plain

curve represents the initial equilibrium q-profile, the dashed curve the q-pro-

file computed at time cLt ¼ 7, and the bold curve the q-profile computed at

time cLt ¼ 14. The parts of the q-profile above one may be irrelevant since,

correspondingly to the growth of the magnetic island width, the boundary

r�s ðsÞ diminishes and shifts towards the axis.
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IV. IMPLICATIONS

A. Connection to the experimental measurements
during a sawtooth cycle

The mode amplitude analysis predicts that, at later

times, when the magnitude of the m¼ n¼ 1 mode amplitude

becomes larger than g1=3, cubic nonlinearities will become

no longer negligible. In the cylindrical approach considered

here, the cubic nonlinearities will destabilize the m¼ 3 mode

and affect the dynamics of the m¼ 1 component but will

affect the evolution equations for the m¼ 0 and m¼ 2 modes

only through boundary conditions.

Let us observe that this is fully consistent with the pic-

ture of the sawtooth cycles reported, e.g., in Refs. 7 and 8.

Their experimental diagnostics reveal that a cycle begins

with a non-negligible (m, n)¼ (1, 1) mode. As the amplitude

of this mode grows, the (m, n)¼ (2, 2) mode starts to appear.

Just before the crash, the (m, n)¼ (3, 3) mode is also

observed although at a very small amplitude. Just after the

very abrupt crash, the (m, n)¼ (1, 1) mode is detected, which

suggests an incomplete reconnection, and the cycle repeats.

This phenomenology is consistent with the previous mode

amplitude analysis of the onset of the nonlinear regime that

does predict the same chronology in the mode appearance.

Igochine et al. only report the existence of m¼ n inter-

nal modes,19 as would be predicted by a purely cylindrical

approach. However, in toroidal geometry, the linear regime

is more complex. In particular, the m¼ 2, n¼ 1 and m¼ 0,

n¼ 1 sideband modes are also linearly unstable but their am-

plitude may remain small in front of the m¼ n¼ 1 one. One

would then expect the generic realistic toroidal picture of the

onset into the nonlinear regime to be more complex with the

emergence of modes nonlinearly triggered due to mode cou-

plings between the linearly unstable modes. Yet, the contri-

bution from m¼ n modes should remain dominant.

Nevertheless, in order for the magnetic field lines to be

stochastic, let us observe that it is necessary that modes hav-

ing m 6¼ n, i.e., modes with different helicities, be present as

exposed in the Appendix.

B. Impact of the q-profile evolution on sawteeth

The previous analysis (see Sec. III B) gives indication

that the nonlinear development of the m¼ 1 mode should be

accompanied by a self-consistent perturbation of the q-pro-

file inside the q¼ 1 surface, so that the q-profile is no longer

a strictly monotonous function but locally flattens or

becomes reversed-shear. Such an indication is consistent

with experimental observations. In particular, recent Alcator

C-Mod experiments focusing on Alfv�en eigenmodes in the

current flattop phase of the discharge have discovered

reversed shear Alfv�en eigenmodes (RSAEs) near the q¼ 1

surface between sawtooth crashes.20 RSAEs are known to

exist near the minimum of the q profile in a reversed shear

equilibrium and are driven unstable by the spatial gradient of

the fast ion density from neutral beams, fusion born alpha

particles, or in the case of Alcator C-Mod, an ICRH driven

minority ion species.

It happens that the impact of the q-profile time variation

has been neglected in most theoretical models of sawteeth.

This may, however, be an important ingredient to explain the

onset of the sawtooth crash, as will be briefly discussed

below.

As it is well-known, because the magnetic field is glob-

ally divergence-free, its field lines can be identified with the

phase-space trajectories produced by a magnetic field line

Hamiltonian,21 the derivation of which is sketched in the

Appendix. The stochastic theory of the sawtooth crash pro-

posed by Lichtenberg et al.22,23 relies on this formulation.

As time proceeds, the magnetic islands associated to some

modes with different helicities overlap and the magnetic

phase space dynamics turns chaotic. In this picture, the

FIG. 4. Poincar�e plots obtained for a moderate amplitude, A, of the (1, 1) mode and with the retained following mode amplitudes Að2;1Þ ¼ 0:2A; Að3;2Þ ¼
0:05A; Að4;3Þ ¼ 0:02A and Að2;2Þ ¼ 0:3A for two different q-profiles: (left) monotonously increasing q-profile; (right) same q-profile but flattened around the

q¼ 1 surface as depicted in the text.
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sawtooth crash phase is associated to the sudden emergence

of large scale chaos in the magnetic structure. In Refs. 24

and 25, it was shown that the local vanishing of the magnetic

shear, namely due to a local flattening or reversed-shear q-

profile, may have deleterious impact on the magnetic con-

finement if it takes place for a q value in the vicinity of a

small rational. Indeed, this creates a double separatrix con-

figuration24 that possesses a lower resilience to chaos than

the ordinary single separatrix case: the emergence of chaos

is facilitated by the merging of the two stochastic layers

associated to the separatrices. We shall conclude this article

by briefly illustrating this point.

Figure 4 shows two Poincar�e plots of the magnetic field

lines in a “pre-crash,” low chaotic, situation for the same mag-

netic perturbations but two different q-profiles. In the left plot,

the q-profile is a strictly monotonously increasing function

with q0 ¼ 0:8 and qðw ¼ 0:25Þ ¼ 1. In the right plot, the q-

profile is identical except that it is taken to be flat in a w region

of width 0.1 around w ¼ 0:25 for which it is taken equal to

one. The resulting q-profile is made continuous and derivable.

For simplicity, the radial dependence of the modes were cho-

sen to correspond to the ideal MHD eigenmodes except for the

nonlinearly triggered (2, 2) mode for which a phenomenologi-

cal form was retained as in Refs. 4 and 5. The comparison

between the left and right Poincar�e plots of Figure 4 shows the

impact of the local flattening of the q-profile in the q¼ 1

region. In the case of the flattening at right, a slightly stochastic

double separatrix configuration is discernable: a small crescent

shaped island is visible in the outer vicinity of the traditional

m¼ 1 magnetic island which is absent in the left case of the

strictly monotonously growing q-profile. This is the seed for

the facilitation of chaos at larger mode amplitudes in the right

case. This will be studied more closely in a forthcoming paper.
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APPENDIX: HAMILTONIAN REPRESENTATION OF
MAGNETIC FIELD LINES

An arbitrary magnetic field in a toroidal device can be

written in the canonical representation

B ¼ rwt �rhþru�rWp;

in which Wpðwt; h;uÞ is the poloidal flux function.26 The

magnetic field lines are defined by

dwt

du
¼ B:rwt

B:ru
¼ � @Wp

@h
; (A1)

dh
du
¼ B:rh

B:ru
¼ @Wp

@wt

: (A2)

In this representation, the poloidal flux plays the role of a

generically one-and-a-half Hamiltonian system and the toroi-

dal angle u plays the role of time. Due to the double perio-

dicity in h and u, any function Wp can be written as

Wpðwt;h;uÞ ¼Wp00
ðwtÞþ

X
m;n

Wpmn
ðwtÞcosðmh� nuþ vmnÞ;

where the equilibrium axisymmetric poloidal flux component

Wp00
ðwtÞ relates to the safety profile qðwtÞ or to its inverse,

the winding profile wðwtÞ, through

dwp00
ðwtÞ

dwt

¼ 1

qðwtÞ
¼ wðwtÞ:

In order to connect to the previous helical description, let us

now introduce the helical angle a ¼ u� h and proceed to a

canonical change of variables with the generating function

F2ðw0; h;uÞ ¼ ðh� uÞw0:

This yields @F2=@h ¼ wt ¼ w0 and @F2=@w ¼ �a ¼ h� u.

The new Hamiltonian reads

Hðwt; a;uÞ ¼ Wp00
ðwtÞ � wt þ

X
m¼n

Wpmn
ðwtÞcosðma� vmnÞ

þ
X
m 6¼n

Wpmn
ðwtÞcos½maþ ðn� mÞu� vmn�:

(A3)

In Eq. (A3), we made use of the fact that the new action

coordinate, w0, is equal to wt. One recovers the equilibrium

component of the helical magnetic flux w0 through

w0ðwtÞ � Wp00
ðwtÞ � wt ¼

ðwt 1

qðsÞ � 1

� �
ds;

so that, coming back to the radial coordinate through the cy-

lindrical relation wt ¼ r2=2, one obtains the relation used in

Sec. II B

dw0

dr
¼ r

1

qðrÞ � 1

� �
:

From Eq. (A3), one directly checks that the Hamiltonian of the

magnetic field lines would be integrable in the absence of

modes with different helicities. In this way, one may say that

toroidal effects, together with non-ideal effects, are responsible

for the generic non-integrability of magnetic field lines in toka-

mak plasmas. This representation is valid at any given time.
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