The magnetic flow on the manifold of oriented geodesics of a three dimensional space form

Yamile Godoy and Marcos Salvai *

Abstract

Let M be the three dimensional complete simply connected manifold of constant sectional curvature 0,1 or -1 . Let \mathcal{L} be the manifold of all (unparametrized) complete oriented geodesics of M, endowed with its canonical pseudo-Riemannian metric of signature (2,2) and Kähler structure J. A smooth curve in \mathcal{L} determines a ruled surface in M.

We characterize the ruled surfaces of M associated with the magnetic geodesics of \mathcal{L}, that is, those curves σ in \mathcal{L} satisfying $\nabla_{\dot{\sigma}} \dot{\sigma}=J \dot{\sigma}$. More precisely: a time-like (space-like) magnetic geodesic determines the ruled surface in M given by the binormal vector field along a helix with positive (negative) torsion. Null magnetic geodesics describe cones, cylinders or, in the hyperbolic case, also cones with vertices at infinity. This provides a relationship between the geometries of \mathcal{L} and M.

Key words and phrases: ${ }^{1}$ manifold of oriented geodesics, Hermitian symmetric space, magnetic flow, ruled surface, horospherical distribution

1 Introduction

For $\kappa=0,1,-1$, let M_{κ} be the three dimensional complete simply connected manifold of constant sectional curvature κ, that is, $\mathbb{R}^{3}, \mathbb{S}^{3}$ and the hyperbolic space \mathbb{H}^{3}. Let \mathcal{L}_{κ} be the manifold of all (unparametrized) complete oriented geodesics of M_{κ}. We may think of an element c in \mathcal{L}_{κ} as the equivalence class of unit speed geodesics $\gamma: \mathbb{R} \rightarrow M_{\kappa}$ with image c such that $\{\dot{\gamma}(s)\}$ is a positive basis of $T_{\gamma(s)} c$ for all s.

Let γ be a complete unit speed geodesic of M_{κ} and let \mathcal{J}_{γ} be the space of all Jacobi fields along γ which are orthogonal to γ. There exists a well-defined canonical isomorphism

$$
\begin{equation*}
T_{\gamma}: \mathcal{J}_{\gamma} \rightarrow T_{[\gamma]} \mathcal{L}_{\kappa}, \quad T_{\gamma}(J)=\left.\frac{d}{d t}\right|_{0}\left[\gamma_{t}\right], \tag{1}
\end{equation*}
$$

[^0]where γ_{t} is any variation of γ by unit speed geodesics associated with J (see [8]).
A pseudo-Riemannian metric of signature $(2,2)$ can be defined on \mathcal{L}_{κ} as follows [9]: For $X \in T_{[\gamma]} \mathcal{L}_{\kappa}$, the square norm $\|X\|=\langle X, X\rangle$ is well defined by
\[

$$
\begin{equation*}
\|X\|=\left\langle\dot{\gamma} \times J, J^{\prime}\right\rangle \tag{2}
\end{equation*}
$$

\]

where $X=T_{\gamma}(J)$, the cross product \times is induced by a fixed orientation of M_{κ} and J^{\prime} denotes the covariant derivative of J along γ. Indeed, the right hand side of (2) is a constant function. In the following, for any vector X, we will denote $\|X\|=\langle X, X\rangle$ and $|X|=\sqrt{|\langle X, X\rangle|}$. Recall that X is null, time-like or space-like if $\|X\|=0,\|X\|<0$ or $\|X\|>0$, respectively.

Let $[\gamma] \in \mathcal{L}_{\kappa}$ and let R_{γ} be the rotation in M_{κ} fixing γ through an angle of $\pi / 2$. This rotation induces an isometry \widetilde{R}_{γ} of \mathcal{L}_{κ} whose differential at $[\gamma]$ is a linear isometry of $T_{[\gamma]} \mathcal{L}_{\kappa}$ squaring to -id. This yields a complex structure J on \mathcal{L}_{κ}. With the metric defined above, \mathcal{L}_{κ} is Kahler.

A magnetic geodesic σ of \mathcal{L}_{κ} is a curve satisfying $\nabla_{\dot{\sigma}} \dot{\sigma}=J \dot{\sigma}$. These curves have constant speed, so they will be null, time-like or space-like.

A smooth curve in \mathcal{L}_{κ} determines a ruled surface in M_{κ}. For $\kappa=0,-1$, a generic geodesic of \mathcal{L}_{κ} describes a helicoid in $M_{\kappa}[5,4$, respectively]. Our purpose is to characterize the ruled surfaces in M_{κ} associated with the magnetic geodesics of \mathcal{L}_{κ}. For v $\in T M_{\kappa}, \gamma_{v}$ denotes the geodesic of M_{κ} with initial velocity v.

Theorem 1 A generic magnetic geodesic σ of \mathcal{L}_{κ} describes the ruled surface in M_{κ} given by the binormal vector field of a helix. More precisely, σ is a time-like (space-like) magnetic geodesic of \mathcal{L}_{κ} if and only if σ has the form

$$
\begin{equation*}
\sigma(t)=\left[\gamma_{B(t)}\right], \tag{3}
\end{equation*}
$$

where B is the binormal vector field of a helix in M_{κ} with curvature k, speed $1 / k$ and positive (negative) torsion, for some $k>0$.

Now we study null magnetic geodesics in $\mathcal{L}_{-1}=\mathcal{L}\left(\mathbb{H}^{3}\right)$. We recall some concepts related with the hyperbolic space (see for instance [3]).

Two unit speed geodesics γ and α of \mathbb{H}^{3} are said to be asymptotic if there exists a positive constant C such that $d(\gamma(s), \sigma(s)) \leq C, \forall s \geq 0$. Two unit vectors $v, w \in T^{1} \mathbb{H}^{3}$ are said to be asymptotic if the corresponding geodesics γ_{v} and γ_{w} have this property.

A point at infinity for \mathbb{H}^{3} is an equivalence class of asymptotic geodesics of \mathbb{H}^{3}. The set of all points at infinity for \mathbb{H}^{3} is denoted by $\mathbb{H}^{3}(\infty)$ and has a canonical differentiable structure diffeomorphic to the 2 -sphere. The equivalence class represented by a geodesic γ is denoted by $\gamma(\infty)$, and the equivalence class represented by the oppositely oriented geodesic $s \mapsto \gamma(-s)$ is denoted by $\gamma(-\infty)$.

Given $v \in T^{1} \mathbb{H}^{3}$, the horosphere $H(v)$ is the limit of metric spheres $\left\{S_{n}\right\}$ in \mathbb{H}^{3} that pass through the foot point of v as the centers $\left\{p_{n}\right\}$ of $\left\{S_{n}\right\}$ converge to $\gamma_{v}(\infty)$. Below we present a more precise definition.

Let $\psi^{ \pm}: \mathcal{L}\left(\mathbb{H}^{3}\right) \rightarrow \mathbb{H}^{3}(\infty)$ be the smooth functions given by $\psi^{ \pm}([\gamma])=\gamma(\pm \infty)$ and let $\mathcal{D}^{ \pm}$be the distributions on $\mathcal{L}\left(\mathbb{H}^{3}\right)$ given by $\mathcal{D}_{[\gamma]}^{ \pm}=\operatorname{Ker}\left(d \psi_{[\gamma]}^{ \pm}\right)$. These distributions are called the horospherical distributions on $\mathcal{L}\left(\mathbb{H}^{3}\right)$.

Cones with vertices at infinity: Let $x \in \mathbb{H}^{3}(\infty)$ and let $v_{o} \in T^{1} \mathbb{H}^{3}$ such that $\gamma_{v_{o}}(\pm \infty) \in$ x. Let $t \mapsto v(t)$ be a curve in $T^{1} \mathbb{H}^{3}$ such that $v(0)= \pm v_{o}, v(t)$ is asymptotic to $\pm v_{o}$ for all $t \in \mathbb{R}$ and the foot points of $v(t)$ lie on a circle of geodesic curvature $\pm k$ (with $k>0)$ and speed $1 / k$ in the horosphere determined by $\pm v_{o}$. Under these conditions we say that the curve in $\mathcal{L}\left(\mathbb{H}^{3}\right)$ given by $t \mapsto\left[\gamma_{ \pm v(t)}\right]$ describes a forward cone with vertex at $x($ for +$)$ or a backward cone with vertex at $x(f o r-)$. These cones can be better visualized in the upper half space model of \mathbb{H}^{3} (in particular $\left.\mathbb{H}^{3}(\infty)=\{z=0\} \cup\{\infty\}\right)$: Let $\gamma_{t}^{ \pm}(s)=\left(\frac{1}{k} \cos (t), \pm \frac{1}{k} \sin (t), e^{ \pm s}\right)$. A curve σ in $\mathcal{L}\left(\mathbb{H}^{3}\right)$ describes a cone with forward (respectively, backward) vertex at ∞ if it is $S l(2, \mathbb{C})$-congruent to $t \mapsto\left[\gamma_{t}^{+}\right]$ (respectively, to $t \mapsto\left[\gamma_{t}^{-}\right]$).

Theorem 2 A null magnetic geodesic of $\mathcal{L}\left(\mathbb{H}^{3}\right)$ describes in \mathbb{H}^{3} a cylinder, a cone with vertex at $p \in \mathbb{H}^{3}$ or a cone with vertex at infinity. More precisely, if σ is a curve in $\mathcal{L}\left(\mathbb{H}^{3}\right)$, then
a) σ is a null magnetic geodesic with $\dot{\sigma}(0) \in \mathcal{D}_{\sigma(0)}^{ \pm}$if and only if σ describes a cone with vertex at $\sigma(0)(\pm \infty)$ (forward for + and backward for -);
b) σ is a null magnetic geodesic with $\dot{\sigma}(0) \notin \mathcal{D}_{\sigma(0)}^{ \pm}$if and only if σ either has the form

$$
\begin{equation*}
\sigma(t)=\left[\gamma_{B(t)}\right], \tag{4}
\end{equation*}
$$

where B is the binormal vector field of a helix h in \mathbb{H}^{3} with curvature k, speed $1 / k$ and zero torsion (in particular, h is contained in a totally geodesic surface S and B is normal to S and parallel along h), or σ has the form

$$
\begin{equation*}
\sigma(t)=\left[\gamma_{v(t)}\right] \tag{5}
\end{equation*}
$$

where v is a curve with geodesic curvature k and speed $1 / k$ in $T_{p}^{1} \mathbb{H}^{3}$, for some $p \in \mathbb{H}^{3}$, for certain $k>0$.

Theorem 3 The ruled surfaces associated with null magnetic geodesics of \mathcal{L}_{κ} for $\kappa=$ 0,1 are described in an analogous manner as in the previous theorem, except that case a) is empty. Besides, for $\kappa=1$, a null magnetic geodesic has simultaneously the forms (4) and (5).

2 Preliminaries

For the simultaneous analysis of the three cases $\kappa=0,1,-1$, we consider the standard presentation of M_{κ} as a submanifold of \mathbb{R}^{4}. That is, $\mathbb{R}^{3}=\left\{(1, x) \in \mathbb{R}^{4} \mid x \in \mathbb{R}^{3}\right\}$, $\mathbb{S}^{3}=\left\{\left.x \in \mathbb{R}^{4}| | x\right|^{2}=1\right\}$ and $\mathbb{H}^{3}=\left\{x \in \mathbb{R}^{4} \mid-x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=-1\right.$ and $\left.x_{0}>0\right\}$.

Let G_{κ} be the identity component of the isometry group of M_{κ}, that is, $G_{0}=$ $S O_{3} \ltimes \mathbb{R}^{3}, G_{1}=S O_{4}$ and $G_{-1}=O_{o}(1,3)$. We consider the usual presentation of G_{0} as a subgroup of $G l_{4}(\mathbb{R})$. The group G_{κ} acts on \mathcal{L}_{κ} as follows: $g \cdot[\gamma]=[g \circ \gamma]$. This action is transitive and smooth.

If we denote by \mathfrak{g}_{κ} the Lie algebra of G_{κ} we have that

$$
\mathfrak{g}_{\kappa}=\left\{\left.\left(\begin{array}{cc}
0 & -\kappa x^{t} \\
x & B
\end{array}\right) \right\rvert\, x \in \mathbb{R}^{3}, B \in s o_{3}\right\} .
$$

Let γ_{o} be the geodesic in M_{κ} with $\gamma_{o}(0)=e_{0}$ and initial velocity $e_{1} \in T_{e_{0}} M_{\kappa}$, where $\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}$ is the canonical basis of \mathbb{R}^{4}. For $A, B \in \mathbb{R}^{2 \times 2}$, let $\operatorname{diag}(A, B)=$ $\left(\begin{array}{cc}A & 0_{2} \\ 0_{2} & B\end{array}\right)$, where 0_{2} denotes the 2×2 zero matrix. Then the isotropy subgroup of G_{κ} at $\left[\gamma_{0}\right]$ is

$$
H_{\kappa}=\left\{\operatorname{diag}\left(R_{\kappa}(t), B\right) \mid t \in \mathbb{R}, B \in S O_{2}\right\},
$$

where

$$
R_{0}(t)=\left(\begin{array}{ll}
1 & 0 \tag{6}\\
t & 1
\end{array}\right), \quad R_{1}(t)=\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right), \quad R_{-1}(t)=\left(\begin{array}{cc}
\cosh t & \sinh t \\
\sinh t & \cosh t
\end{array}\right)
$$

Let $j=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. The Lie algebra of H_{κ} is

$$
\mathfrak{h}_{\kappa}=\left\{\operatorname{diag}\left(r_{\kappa}(t), s j\right) \mid s, t \in \mathbb{R}\right\},
$$

where $r_{\kappa}(t)=\left(\begin{array}{cc}0 & -\kappa t \\ t & 0\end{array}\right)$. We may identify \mathcal{L}_{κ} with G_{κ} / H_{κ} via the diffeomorphism

$$
\begin{equation*}
\phi: G_{\kappa} / H_{\kappa} \rightarrow \mathcal{L}_{\kappa}, \quad \phi\left(g H_{\kappa}\right)=g \cdot\left[\gamma_{o}\right] . \tag{7}
\end{equation*}
$$

For $x, y \in \mathbb{R}^{2}$ we denote $Z(x, y)=\left(\begin{array}{cc}0_{2} & (-\kappa x,-y)^{t} \\ (x, y) & 0_{2}\end{array}\right)$. Let

$$
\mathfrak{p}_{\kappa}=\left\{Z(x, y) \in \mathfrak{g}_{\kappa} \mid x, y \in \mathbb{R}^{2}\right\}
$$

which is an $\operatorname{Ad}\left(H_{\kappa}\right)$-invariant complement of \mathfrak{h}_{κ}.
For $\kappa=0,1$, we consider on \mathfrak{g}_{κ} the inner product such that $\mathfrak{h}_{\kappa} \perp \mathfrak{p}_{\kappa},\|Z(x, y)\|=$ $\operatorname{det}(x, y)$ and

$$
\left\|\operatorname{diag}\left(r_{\kappa}(t), s j\right)\right\|=-t s
$$

(for $\kappa=0$, we have learnt of this inner product from [6, page 499]). On \mathfrak{g}_{-1} we consider the Killing form ($\mathfrak{h}_{\kappa} \perp \mathfrak{p}_{\kappa}$ also holds). For $\kappa=0,1,-1$, this inner product on \mathfrak{g}_{κ} induces on G_{κ} a bi-invariant metric. Thus, there exists an unique pseudo-Riemannian metric on $\mathcal{L}_{\kappa} \simeq G_{\kappa} / H_{\kappa}$ such that $\pi: G_{\kappa} \rightarrow G_{\kappa} / H_{\kappa}$ is a pseudo-Riemannian submersion. For $\kappa=0,1$, this metric on \mathcal{L}_{κ} coincides with the given in (2), see Lemma 5 b). For $\kappa=-1$, the metric on \mathcal{L}_{-1} associated with the Killing form is different from the one in (2).

However, the magnetic geodesics of either metric on \mathcal{L}_{-1} are the same. This follows since the geodesics are the same (see [8]), so the Levi-Civita connections coincide.

Let us call $A=\operatorname{diag}\left(0_{2}, j\right)$, which is in the center of \mathfrak{h}_{κ}. We have that ad A_{A} is orthogonal and $\operatorname{ad}_{A}^{2}=-\mathrm{id}$ in \mathfrak{p}_{κ}. Hence, ad_{A} induces a complex structure on G_{κ} / H_{κ}. A straightforward computation shows that it coincides, via ϕ in (7), with the complex structure given in the introduction. With the metric above and this complex structure, \mathcal{L}_{κ} is a Hermitian symmetric space.

As a direct application of a result by Adachi, Maeda and Udagawa in [1] (see also [2], Remark 1) we have

Theorem 4 Let σ be a magnetic geodesic of G_{κ} / H_{κ} with initial conditions $\sigma(0)=H_{\kappa}$ and $\dot{\sigma}(0)=X \in \mathfrak{p}_{\kappa}$. Then $\sigma(t)=\pi(\exp t(X+A))$.

As we saw in (1), $\mathcal{J}_{\gamma_{o}}$ is isomorphic to $T_{\left[\gamma_{0}\right]} \mathcal{L}_{\kappa} \cong \mathfrak{p}_{\kappa}$. In the next Lemma we relate \mathfrak{p}_{κ} and $\mathcal{J}_{\gamma_{o}}$ explicitly, involving the matrix A.

Lemma 5 Let $Z=Z(x, y) \in \mathfrak{p}_{\kappa}$.
a) The Jacobi field $J(s)=\left.\frac{d}{d t}\right|_{0} \exp t(Z+A) \cdot \gamma_{o}(s)$ in $\mathcal{J}_{\gamma_{o}}$ is the unique one that satisfies $J(0)=(0,0, x)^{t}$ and $J^{\prime}(0)=(0,0, y)^{t}$.
b) $T_{\gamma_{o}}(J)=d(\phi \circ \pi) Z$ and its norm is $\|d(\phi \circ \pi) Z\|=\operatorname{det}(x, y)$.

Proof. For each κ, we consider the following parameterization of γ_{o} :

$$
\begin{array}{ll}
\gamma_{o}(s)=(1, s, 0,0), & \text { if } \kappa=0 \\
\gamma_{o}(s)=(\cos s, \sin s, 0,0), & \text { if } \kappa=1 ; \\
\gamma_{o}(s)=(\cosh s, \sinh s, 0,0), & \text { if } \kappa=-1 .
\end{array}
$$

Given $Z=Z(x, y) \in \mathfrak{p}_{k}$, the Jacobi field along γ_{o} defined by $J(s)=\left.\frac{d}{d t}\right|_{0} \exp t(Z+$ A) $\cdot \gamma_{o}(s)$ belongs to $\mathcal{J}_{\gamma_{0}}$, because for all $s \in \mathbb{R}$,

$$
\left\langle J(s), \dot{\gamma}_{o}(s)\right\rangle=\left\langle(Z+A)\left(\gamma_{o}(s)\right), \dot{\gamma}_{o}(s)\right\rangle=0,
$$

since $(Z+A)\left(\gamma_{o}(s)\right)$ is orthogonal to e_{0} and e_{1}, while $\dot{\gamma}_{o}(s)$ has non zero components only in these two directions.

One verifies easily that $J(0)=(Z+A)\left(e_{0}\right)=(0,0, x)^{t}$. On the other hand,

$$
\begin{aligned}
J^{\prime}(0) & =\left.\left.\frac{D}{\partial s}\right|_{0} \frac{\partial}{\partial t}\right|_{0} \exp t(Z+A) \cdot \gamma_{o}(s) \\
& =\left.\frac{D}{\partial t}\right|_{0} \exp t(Z+A)\left(e_{1}\right)=(Z+A)\left(e_{1}\right)=(0,0, y)^{t} .
\end{aligned}
$$

Besides,

$$
\begin{aligned}
T_{\gamma_{o}}(J) & =\left.\frac{d}{d t}\right|_{0}\left[\exp t(Z+A) \cdot \gamma_{o}\right]=\left.\frac{d}{d t}\right|_{0} \phi\left(\exp t(Z+A) H_{\kappa}\right) \\
& =\left.\frac{d}{d t}\right|_{0} \phi(\pi(\exp t(Z+A)))=d \phi \circ d \pi Z,
\end{aligned}
$$

where the last equality holds since $A \in \mathfrak{h}_{\kappa}$. Finally, the norm (2) of $d(\phi \circ \pi) Z$ equals

$$
\|d(\phi \circ \pi) Z\|=\left\langle\dot{\gamma}_{o}(0) \times J(0), J^{\prime}(0)\right\rangle=\operatorname{det}(x, y)
$$

and the assertions of b) are verified.
Let $Z(x, y) \in \mathfrak{p}_{\kappa}$ and let $h=\operatorname{diag}\left(R_{\kappa}(t), B\right) \in H_{\kappa}$, where $B \in S O_{2}$ and

$$
R_{\kappa}(t)=\left(\begin{array}{cc}
c_{\kappa}(t) & -\kappa s_{\kappa}(t) \\
s_{\kappa}(t) & c_{\kappa}(t)
\end{array}\right)
$$

is as in (6). Then $\operatorname{Ad}(h) Z(x, y)=Z\left(B x_{t}, B y_{t}\right)$, where

$$
x_{t}=c_{\kappa}(t) x-s_{\kappa}(t) y, \quad y_{t}=\kappa s_{\kappa}(t) x+c_{\kappa}(t) y .
$$

We denote by ϵ_{1} and ϵ_{2} the vectors of the canonical basis of \mathbb{R}^{2}.
Lemma 6 Let $Z(x, y) \neq 0$ in \mathfrak{p}_{κ}.
a) If $\{x, y\}$ is a linearly independent set of \mathbb{R}^{2}, then there exists $h \in H_{\kappa}$ such that $\operatorname{Ad}(h) Z(x, y)=Z\left(a \epsilon_{1}, b \epsilon_{2}\right)$, with $a>0$ and $b \neq 0$, for $\kappa=0, \pm 1$.
b) If $\kappa=0,1$ and $\{x, y\}$ is a linearly dependent set of \mathbb{R}^{2}, then there exists $h \in H_{\kappa}$ such that either $\operatorname{Ad}(h) Z(x, y)=Z\left(0, b \epsilon_{2}\right)$, with $b \neq 0$, or $\operatorname{Ad}(h) Z(x, y)=Z\left(a \epsilon_{1}, 0\right)$, with $a>0$. This is true for $\kappa=-1$ if in addition $|x| \neq|y|$.
c) For $\kappa=1$, there exists $h \in H_{\kappa}$ such that $\operatorname{Ad}(h) Z\left(\epsilon_{1}, 0\right)=Z\left(0, \epsilon_{2}\right)$.

Proof. For the proof of a), as $\{x, y\}$ is a linearly independent set, then for $\kappa=0, \pm 1$ there exists $t \in \mathbb{R}$ such that $\left\langle x_{t}, y_{t}\right\rangle=0$. Indeed, for each κ, this is equivalent to fact that the equation

$$
\begin{array}{ccc}
c_{3}-c_{2} t=0 & \text { if } & \kappa=0 ; \\
\frac{1}{2}\left(c_{1}-c_{2}\right) \sin (2 t)+c_{3} \cos (2 t)=0 & \text { if } & \kappa=1 ; \\
-\frac{1}{2}\left(c_{1}+c_{2}\right) \sinh (2 t)+c_{3} \cosh (2 t)=0 & \text { if } & \kappa=-1
\end{array}
$$

has a real solution, where $c_{1}=\langle x, x\rangle, c_{2}=\langle y, y\rangle$ and $c_{3}=\langle x, y\rangle$. But the linear independence of x and y determines the existence of the solution in each case. Then, we can take $B \in S O_{2}$ such that $B x_{t}=a \epsilon_{1}$, with $a>0$ and $B y_{t}=b \epsilon_{2}$, with $b \neq 0$. Therefore the isometry $h=\operatorname{diag}\left(R_{\kappa}(t), B\right) \in H_{\kappa}$ satisfies $\operatorname{Ad}(h) Z(x, y)=Z\left(a \epsilon_{1}, b \epsilon_{2}\right)$.

For the proof of b), first we suppose that $x=0$ or $y=0$ (but not both zero since $Z(x, y) \neq 0)$. Let $B \in S O_{2}$ such that $B x=a \epsilon_{1}$ with $a>0$, if $x \neq 0$, and in the case that $y \neq 0$, let $B \in S O_{2}$ such that $B y=b \epsilon_{2}$, with $b \neq 0$. Then we can take $h=\operatorname{diag}(I, B) \in H_{k}$.

Now, let $x \neq 0$ and $y \neq 0$. So $x=\lambda y$ or $y=\lambda x$, with $\lambda \neq 0$. We suppose that $y=\lambda x$ (for $x=\lambda y$ the argument is similar). In the cases $\kappa=0,1$ there exists $t \in \mathbb{R}$ such that $x_{t}=0$. In fact, from the hypothesis and some computations, $t \in \mathbb{R}$ is obtained by solving

$$
1-\lambda t=0, \quad \text { if } \kappa=0 \quad \text { and } \quad \cos t-\lambda \sin t=0, \quad \text { if } \kappa=1
$$

Thus, taking $B \in S O_{2}$ such that $B y_{t}=b \epsilon_{2}\left(\right.$ with $b \neq 0$ as $\left.y_{t} \neq 0\right)$, we have that $h=\operatorname{diag}\left(R_{\kappa}(t), B\right) \in H_{\kappa}$ satisfies $\operatorname{Ad}(h) Z(x, y)=Z\left(0, b \epsilon_{2}\right)$.

For $\kappa=-1$, as in the cases $\kappa=0,1$, we find $t \in \mathbb{R}$ such that either $x_{t}=0$ or $y_{t}=0$ by solving

$$
\cosh t-\lambda \sinh t=0, \quad \text { and } \quad-\sinh t+\lambda \cosh t=0,
$$

respectively. But these equations have a solution if and only if $\lambda \neq \pm 1$. That is, if and only if $|x| \neq|y|$. Hence, taking $B \in S O_{2}$ such that either $B y_{t}=b \epsilon_{2}$ or $B x_{t}=a \epsilon_{1}$ (with $a>0$; here again we have that $x_{t} \neq 0$), as appropriate. Then $h=\operatorname{diag}\left(R_{-1}(t), B\right) \in$ H_{-1} is as desired in this case.

For part c), we observe that $h=\operatorname{diag}\left(R_{1}(\pi / 2), B\right) \in H_{1}$, where $B \in S O_{2}$ takes ϵ_{1} to ϵ_{2}, satisfies $\operatorname{Ad}(h) Z\left(\epsilon_{1}, 0\right)=Z\left(0, \epsilon_{2}\right)$.

Remark. The previous lemma corresponds, geometrically, with the fact of finding $s \in \mathbb{R}$ at which the Jacobi field associated with $Z(x, y)$ (given by Lemma 5) and its covariant derivative are orthogonal.

Recall that if h is a regular curve in M_{κ} of constant speed a, then the Frenet frame of h is

$$
\begin{equation*}
T(t)=\frac{1}{a} \dot{h}(t), \quad N(t)=\dot{h}^{\prime}(t) /\left|\dot{h}^{\prime}(t)\right|, \quad B(t)=T(t) \times N(t) \tag{8}
\end{equation*}
$$

(here the prime denotes the covariant derivative along h), and its curvature and torsion are given by

$$
\begin{equation*}
k(t)=\frac{1}{a^{2}}\left|\dot{h}^{\prime}(t)\right|, \quad \tau(t)=-\frac{1}{a}\left\langle B^{\prime}(t), N(t)\right\rangle . \tag{9}
\end{equation*}
$$

For each $g \in G_{\kappa}$ we have that g is an isometry of \mathcal{L}_{κ} and preserves the Hermitian structure. Hence, g takes magnetic geodesics to magnetic geodesics.

3 Time- and space-like magnetic geodesics

Proof of Theorem 1. Let $Z \in \mathfrak{p}_{\kappa}$ be the initial velocity of σ, with $\|Z\| \neq 0$. First, we consider the case $Z=Z\left(a \epsilon_{1}, b \epsilon_{2}\right)$, with $a>0$ and $b \neq 0$.

For each $t \in \mathbb{R}$, let $\alpha(t)=\exp t(Z+A)$. By Theorem 4 and the diffeomorphism ϕ in (7), we know that $\sigma(t)=\alpha(t) \cdot\left[\gamma_{o}\right]$, that is, $\sigma(t)=\left[\alpha(t) \cdot \gamma_{o}\right]$.

Let h be the curve in M_{κ} given by $h(t)=\alpha(t)\left(e_{0}\right)$. As α is a one-parameter subgroup of isometries of M_{κ}, we have that h is a curve with constant curvature and torsion, thus h is a helix in M_{κ}.

Let us see that $\sigma(t)=\left[\gamma_{B(t)}\right]$, where $B(t)$ is the binormal field of h. For each $t \in \mathbb{R}$, the initial velocity of the geodesic $\alpha(t) \cdot \gamma_{o}$ is $d(\alpha(t))\left(e_{1}\right)$, hence $\sigma(t)=\left[\gamma_{d(\alpha(t))\left(e_{1}\right)}\right]$. Then, we have to verify that $B(t)=d(\alpha(t))\left(e_{1}\right)$, for all $t \in \mathbb{R}$. Since $\alpha(t)$ is an isometry that preserves the helix and takes the Frenet frame at $t=0$ to the Frenet frame at t, is suffices to show that $B(0)=e_{1}$.

By the usual identifications, since $\alpha(t)$ is a linear transformation, we can write $d(\alpha(t))\left(e_{1}\right)=\alpha(t)\left(e_{1}\right)$, so

$$
\dot{h}(t)=\alpha(t)\left((Z+A) e_{0}\right) \quad \text { and } \quad \dot{h}^{\prime}(t)=\left[\alpha(t)\left((Z+A)^{2} e_{0}\right)\right]^{\mathrm{T}}
$$

where T denotes the tangent projection. Since

$$
\begin{gathered}
\dot{h}(0)=(Z+A) e_{0}=a e_{2} \\
\dot{h}^{\prime}(0)=\left[(Z+A)^{2} e_{0}\right]^{T}=\left[-\kappa a^{2} e_{0}+a e_{3}\right]^{T}=a e_{3}
\end{gathered}
$$

and $\alpha(t)$ is an isometry, we have $|\dot{h}(t)|=a=\left|\dot{h}^{\prime}(t)\right|$. By the computation before and (8) we obtain

$$
B(0)=\frac{1}{a^{2}} \dot{h}(0) \times \dot{h}^{\prime}(0)=e_{1}
$$

Since $B^{\prime}(t)=\left[\alpha(t)\left((Z+A) e_{1}\right)\right]^{T}$ (recall that we have just proven that $B(t)=$ $\left.\alpha(t)\left(e_{1}\right)\right)$, then $B^{\prime}(0)=b e_{3}$. Besides, using (8) and the previous computations it follows that $N(0)=e_{3}$. Therefore, by (9) we have that the curvature and torsion of h are equal to

$$
\begin{equation*}
k=1 / a, \quad \tau=-b / a \tag{10}
\end{equation*}
$$

The assertion regarding the sign of the torsion is immediate from Lemma 5 b) and (10). Thus, the theorem is proved in this particular case.

Now, let σ be a magnetic geodesic with $\sigma(0)=[\gamma]$ and initial velocity with non zero norm. Since G_{κ} acts transitively on \mathcal{L}_{κ}, there is an isometry g such that $g \cdot[\gamma]=$ $\left[\gamma_{o}\right]$. So, the magnetic geodesic $g \cdot \sigma$ also has initial velocity with non zero norm and $g \cdot \sigma(0)=\left[\gamma_{o}\right]$. By Lemma 5 b), if $d(\phi \circ \pi) Z(x, y)$ is the initial velocity of $g \cdot \sigma$, we have that the vectors $\{x, y\}$ are linearly independent. Then, by Lemma 6 a), there exists $h \in H_{\kappa}$ such that $\operatorname{Ad}(h) Z(x, y)=Z\left(a \epsilon_{1}, b \epsilon_{2}\right)$, with $a>0$ and $b \neq 0$. Since $((h \circ g) \cdot \sigma)^{\prime}(0)=d(\phi \circ \pi)(\operatorname{Ad}(h) Z(x, y))$, the curve $(h \circ g) \cdot \sigma$ is a magnetic geodesic of the type studied above. Therefore, σ has the form (3).

Conversely, let h be a helix in M_{κ} with curvature $k>0$, non zero torsion τ and speed $1 / k$. Let $\{T, B, N\}$ be the Frenet frame of h. As M_{κ} is a simply connected manifold of constant curvature, we have that there exists an isometry g of M_{κ} preserving the orientation such that $g(h(0))=e_{0}$ and its differential at $h(0)$ takes $B(0)$ to $e_{1}, T(0)$ to e_{2} and $N(0)$ to e_{3}.

Let $a=1 / k$ and $b=-\tau / k$. Let $Z=Z\left(a \epsilon_{1}, b \epsilon_{2}\right) \in \mathfrak{p}_{\kappa}$. We consider, for each $t \in \mathbb{R}$, $\alpha(t)=\exp t(Z+A)$. According to computations from the first part of the proof, both helices have initial position e_{0}, curvature k, torsion τ, speed $1 / k$ and the same Frenet frame at $t=0$. Hence $(g \circ h)(t)=\alpha(t) e_{0}$. So, if we call \bar{B} the binormal field of $g \circ h$, we have that $\bar{B}(t)=d(\alpha(t)) e_{1}$, for all t. Finally, since the curve $\left[\gamma_{\bar{B}(t)}\right]$ is a magnetic geodesic in \mathcal{L}_{κ} and

$$
\left[\gamma_{B(t)}\right]=\left[\gamma_{d g^{-1} \bar{B}(t)}\right]=g^{-1} \cdot\left[\gamma_{\bar{B}(t)}\right]
$$

we obtain that $\left[\gamma_{B(t)}\right]$ is a magnetic geodesic.

4 Null magnetic geodesics

We deal first with the hyperbolic case. We use the notation given in the introduction and we recall from [3] certain properties of horospheres and related concepts. To simplify the notation we omit the subindex $\kappa=-1$.

Let γ be a geodesic of \mathbb{H}^{3}. Then, for each $p \in \mathbb{H}^{3}$ there exists a unique unit speed geodesic α of \mathbb{H}^{3} such that $\alpha(0)=p$ and α is asymptotic to γ. Let $v \in T^{1} \mathbb{H}^{3}$. If p is any point of \mathbb{H}^{3}, then $v(p)$ denotes the unique unit tangent vector at p that is asymptotic to v. The Busemann function $f_{v}: \mathbb{H}^{3} \rightarrow \mathbb{R}$ is defined by

$$
f_{v}(p)=\lim _{t \rightarrow+\infty} d\left(p, \gamma_{v}(t)\right)-t
$$

and satisfies $\operatorname{grad}_{p}\left(f_{v}\right)=-v(p)$. The horosphere determined by v is given by

$$
H(v)=\left\{q \in M: f_{v}(q)=0\right\} .
$$

The Jacobi vector fields orthogonal to $\dot{\gamma}_{o}$ have the form

$$
\begin{equation*}
J(s)=e^{s} U(s)+e^{-s} V(s), \tag{11}
\end{equation*}
$$

where U and V are parallel vector fields along γ_{o} and orthogonal to $\dot{\gamma}_{o}$.
A Jacobi vector field Y along a geodesic γ of \mathbb{H}^{3} is said to be stable (unstable) if there exists a constant $c>0$ such that

$$
|Y(s)| \leq c \quad \forall s \geq 0 \quad(\forall s \leq 0)
$$

In what follows we shall denote by $\hat{\pi}$ the canonical projection from $T \mathbb{H}^{3}$ onto \mathbb{H}^{3}. We recall that in the introduction we have defined the smooth maps $\psi^{ \pm}: \mathcal{L}\left(\mathbb{H}^{3}\right) \rightarrow \mathbb{H}^{3}(\infty)$ by $\psi^{ \pm}[\gamma]=\gamma(\pm \infty)$ and the distributions $\mathcal{D}^{ \pm}$in $\mathcal{L}\left(\mathbb{H}^{3}\right)$ given by $\mathcal{D}_{[\gamma]}^{ \pm}=\operatorname{Ker}\left(d \psi_{\gamma \gamma]}^{ \pm}\right)$. We need to relate the distributions $\mathcal{D}^{ \pm}$with distributions $\overline{\mathcal{E}}^{ \pm}$and $\mathcal{E}^{ \pm}$on G and $T^{1} \mathbb{H}^{3}$, respectively.

Let $\overline{\mathcal{E}}^{ \pm}$be the left invariant distribution on G defined at $I \in G$ by

$$
\overline{\mathcal{E}}_{I}^{ \pm}=\left\{Z(u, \mp u) \in \mathfrak{p} \mid u \in \mathbb{R}^{2}\right\} .
$$

As the canonical action of G on $T^{1} \mathbb{H}^{3}$ is transitive, the projection $\bar{p}: G \rightarrow T^{1} \mathbb{H}^{3}$ given by $\bar{p}(g)=d g_{e_{0}} e_{1}$ is a submersion. Since given $v \in T^{1} \mathbb{H} \mathbb{H}^{3}$ there exists $g \in G$ such that $\bar{p}(g)=v$, we define:

$$
\mathcal{E}^{ \pm}(v)=\left(d \bar{p} \overline{\mathcal{E}}^{ \pm}\right)(\bar{p}(g))=d \bar{p}_{g}\left(\overline{\mathcal{E}}_{g}^{ \pm}\right) .
$$

We have that $\mathcal{E}^{ \pm}$determines a well defined distribution on $T^{1} \mathbb{H}^{3}$, which is called the horospherical distribution on $T^{1} \mathbb{H}^{3}$. This distribution has the following property: if $t \mapsto v(t)$ is a curve in $T^{1} \mathbb{H}^{3}$ tangent to the distribution $\mathcal{E}^{ \pm}$, then $\hat{\pi}(v(t))$ is in the horosphere $H(\pm v(0))$.

Lemma 7 Let $Z \in \overline{\mathcal{E}}_{I}^{ \pm}$. For each $t \in \mathbb{R}$, let $\gamma_{t}^{ \pm}(s)=\exp t(Z+A) \cdot \gamma_{o}(\pm s)$. Then the geodesics $\gamma_{t}^{ \pm}$are asymptotic to each other for all $t \in \mathbb{R}$.

Proof. Let J be the Jacobi vector field associated with the variation by geodesics $t \mapsto \gamma_{t}^{ \pm}$. By Lemma 5 a), $J(0)=-J^{\prime}(0)$. Hence, by (11) we have that $J(s)=e^{-s} U(s)$, where U is a parallel vector field along γ_{o} orthogonal to $\dot{\gamma}_{o}$. Thus, J is a stable vector field, that is, there exists $c>0$ such that $|J(s)| \leq c \forall s \geq 0$.

We have to show that given $t_{0}, t_{1} \in \mathbb{R}$ with $t_{0}<t_{1}$, there exists $N>0$ such that

$$
d\left(\gamma_{t_{0}}^{ \pm}(s), \gamma_{t_{1}}^{ \pm}(s)\right) \leq N \quad \forall s \geq 0
$$

For fixed s,

$$
d\left(\gamma_{t_{0}}^{ \pm}(s), \gamma_{t_{1}}^{ \pm}(s)\right) \leq \operatorname{length}\left(\left[t_{0}, t_{1}\right] \ni t \longmapsto \gamma_{t}^{ \pm}(s)\right)=\int_{t_{0}}^{t_{1}}\left|\frac{d}{d t} \gamma_{t}^{ \pm}(s)\right| d t
$$

For each $t \in \mathbb{R}$, let $J_{t}(s)=\frac{d}{d t} \gamma_{t}^{ \pm}(s)$. We observe that $J_{t^{\prime}+t}(s)=d \exp \left(t^{\prime} Z\right) J_{t}(s)$ for all t, t^{\prime}. Since $\exp \left(t^{\prime} Z\right)$ is an isometry, we have $\left|J_{t}(s)\right|=|J(s)|$. Therefore,

$$
\int_{t_{0}}^{t_{1}}\left|J_{t}(s)\right| d t=\int_{t_{0}}^{t_{1}}|J(s)| d t \leq c\left(t_{1}-t_{0}\right)
$$

for all $s \geq 0$. Then, we may take $N=c\left(t_{1}-t_{0}\right)>0$.
We consider the projection $p: T^{1} \mathbb{H}^{3} \rightarrow \mathcal{L}\left(\mathbb{H}^{3}\right), p(v)=\left[\gamma_{v}\right]$. We call $\overline{\mathcal{D}}^{ \pm}$the distribution on $\mathcal{L}\left(\mathbb{H}^{3}\right) p$-related with $\mathcal{E}^{ \pm}$(well defined). More specifically, given $[\gamma] \in$ $\mathcal{L}\left(\mathbb{H}^{3}\right)$ and $v \in T^{1} \mathbb{H}^{3}$ such that $p(v)=[\gamma]$,

$$
\overline{\mathcal{D}}^{ \pm}([\gamma])=d p_{v} \mathcal{E}_{v}^{ \pm} .
$$

Proposition 8 Let $\mathcal{D}^{ \pm}$and $\overline{\mathcal{D}}^{ \pm}$be the distributions on $\mathcal{L}\left(\mathbb{H}^{3}\right)$ defined above. Then $\mathcal{D}^{ \pm}=\overline{\mathcal{D}}^{ \pm}$.

Proof. Since $\mathcal{D}^{ \pm}$and $\overline{\mathcal{D}}^{ \pm}$are G-invariant, it is enough to show $\mathcal{D}_{\left[\gamma_{0}\right]}^{ \pm}=d p_{\left(e_{0}, e_{1}\right)}\left(\mathcal{E}_{\left(e_{0}, e_{1}\right)}^{ \pm}\right)$ (we observe that $\bar{p}(I)=\left(e_{0}, e_{1}\right)$ and $p\left(e_{0}, e_{1}\right)=\left[\gamma_{o}\right]$).

Let $Z \in \overline{\mathcal{E}}_{I}^{ \pm}$. We take the curve in $\mathcal{L}\left(\mathbb{H}^{3}\right)$ given by $\alpha(t)=\exp t Z \cdot\left[\gamma_{o}\right]$. As $\alpha(t)=$ $p \circ \bar{p}(\exp t Z)$, we have that $\alpha(0)=\left[\gamma_{o}\right]$ and $\dot{\alpha}(0)=d(p \circ \bar{p})_{I} Z$. That is, $\dot{\alpha}(0) \in$ $d p_{\left(e_{0}, e_{1}\right)}\left(\mathcal{E}_{\left(e_{0}, e_{1}\right)}^{ \pm}\right)$. Besides,

$$
\begin{equation*}
\left.\frac{d}{d t}\right|_{0} \exp t Z \cdot \gamma_{o}(s)=\left.\frac{d}{d t}\right|_{0} \exp t(Z+A) \cdot \gamma_{o}(s) \tag{12}
\end{equation*}
$$

since both Jacobi fields have the same initial conditions. Hence, Lemma 7 applies to the geodesics $\gamma_{t}^{ \pm}(s)=\exp t Z \cdot \gamma_{o}(\pm s)$. Thus, $\psi^{ \pm} \circ \alpha$ is constant. Then $\left(d \psi^{ \pm}\right)_{\left[\gamma_{o}\right]}(\dot{\alpha}(0))=0$, that is, $\dot{\alpha}(0) \in \mathcal{D}_{\left[\gamma_{0}\right]}^{ \pm}$.

On the other hand, let $\varphi: T_{e_{0}}^{1} \mathbb{H}^{3} \rightarrow \mathcal{L}\left(\mathbb{H}^{3}\right), \varphi(v)=\left[\gamma_{v}\right]$, be the submanifold whose image $\mathcal{L}_{e_{0}}\left(\mathbb{H}^{3}\right)$ consists of all the oriented geodesics passing through e_{0}. Besides, $H(\infty)$ is a manifold with the differentiable structure (well defined) such that $F_{e_{0}}: T_{e_{0}}^{1} \mathbb{H}^{3} \rightarrow$
$H(\infty)$ given by $F_{e_{0}}(v)=\gamma_{v}(\infty)$ is a diffeomorphism. Then, since $\left.\psi^{+}\right|_{\mathcal{L}_{e_{0}\left(\mathbb{H}^{3}\right)}} \circ \varphi=$ $F_{e_{0}}$, we have that $\left(d \psi^{+}\right)_{\left[\gamma_{0}\right]}$ is surjective. Now, $\left(d \psi^{-}\right)_{\left[\gamma_{0}\right]}$ is also surjective because ψ^{-} is the composition of ψ^{+}with the diffeomorphism of $\mathcal{L}\left(\mathbb{H}^{3}\right)$ assigning $\left[\gamma^{-1}\right]$ to $[\gamma]$. Therefore, $\operatorname{dim} \mathcal{D}_{\left[\gamma_{0}\right]}^{ \pm}=\operatorname{dim} \overline{\mathcal{D}}_{\left[\gamma_{0}\right]}^{ \pm}$and equality follows.

The word cylinder in the statement of Theorem 2 refers to a ruled surface determined by a parallel vector field along a curve c of constant geodesic curvature k contained in a totally geodesic surface in M_{κ} (and normal to it), as explained. For $\kappa=-1$, this ruled surface is diffeomorphic to $S^{1} \times \mathbb{R}$ if $|k|>1$; otherwise it is diffeomorphic to a plane.

Proof of Theorem 2 a). By Lemma 5 b), we have that every element of $\mathcal{D}_{[\gamma]}^{ \pm}$is null. As G acts transitively on $\mathcal{L}\left(\mathbb{H}^{3}\right)$ and by the G-invariance of the horospherical distributions, we may suppose without loss of generality that $\sigma(0)=\left[\gamma_{o}\right]$, hence $\dot{\sigma}(0) \in \mathcal{D}_{\left[\gamma_{0}\right]}^{ \pm}$. By Proposition 8 , there exists $Z \in \overline{\mathcal{E}}_{I}^{ \pm}$such that $\dot{\sigma}(0)=(d p)_{\left(e_{0}, e_{1}\right)}(d \bar{p})_{I} Z$. Thus, by Theorem 4, $\sigma(t)=\left[\exp t(Z+A) \cdot \gamma_{o}\right]$.

We assume that $Z \in \overline{\mathcal{E}}_{I}^{+}$. Let us show that σ describes a forward cone with vertex at $\gamma_{o}(+\infty)$. In a similar way, if $Z \in \overline{\mathcal{E}}_{I}^{-}$, then σ describes a backward cone with vertex at $\gamma_{o}(-\infty)$.

We consider the geodesics $\gamma_{t}(s)=\exp t(Z+A) \cdot \gamma_{o}(s)$ of \mathbb{H}^{3}. As $Z \in \overline{\mathcal{E}}_{I}^{+}$, by Lemma 7 , we have that the geodesics γ_{t} are asymptotic to each other for all t. Hence, $z(t)=\dot{\gamma}_{t}(0)$ is a curve in $T^{1} \mathbb{H}^{3}$ of asymptotic vectors to e_{1}.

Let $c(t)=\hat{\pi}(z(t))=\exp t(Z+A)\left(e_{0}\right)$. In order to see that $c(t) \in H\left(e_{1}\right)$ for all t, we observe that

$$
\begin{equation*}
\frac{d}{d t} f_{e_{1}}(c(t))=\left(d f_{e_{1}}\right)_{c(t)} \dot{c}(t)=\left\langle\operatorname{grad}_{c(t)}\left(f_{e_{1}}\right), \dot{c}(t)\right\rangle \tag{13}
\end{equation*}
$$

Since $\operatorname{grad}_{p}\left(f_{v}\right)=-v(p)$ we have that

$$
\operatorname{grad}_{c(t)}\left(f_{e_{1}}\right)=-z(t)=-d(\exp t(Z+A)) e_{1}
$$

On the other hand,

$$
\dot{c}(t)=d(\exp t(Z+A))(Z+A) e_{0} .
$$

Since $\exp t(Z+A)$ is an isometry and observing that $(Z+A) e_{0}$ and e_{1} are perpendicular $\left(Z \in \overline{\mathcal{E}}_{I}^{+}\right)$, it follows that the expression in (13) is equal to $-\left\langle e_{1},(Z+A)\left(e_{0}\right)\right\rangle=0$. Then, $f_{e_{1}}(c(t))=f_{e_{1}}\left(e_{0}\right)=0$ for all t, that is, $c(t) \in H\left(e_{1}\right)$ for all t.

Now, as c is the orbit through e_{0} of a one-parameter subgroup of isometries of G preserving $H\left(e_{1}\right)$, its geodesic curvature and speed are constant. If $Z=Z(u,-u)$ for certain $0 \neq u \in \mathbb{R}^{2}$, we obtain that the speed of c is $|u|$. For each $v \in T^{1} H^{3}$ we consider on $H(v)$ the orientation given by $-\operatorname{grad} f_{v}$. The geodesic curvature of c is then

$$
k=\left\langle-\operatorname{grad}_{e_{0}}\left(f_{e_{1}}\right), \dot{c}(0) \times \dot{c}^{\prime}(0)\right\rangle /|u|^{3}=1 /|u|,
$$

since $\dot{c}(0)=(Z+A) e_{0}$ and $\dot{c}^{\prime}(0)=\left((Z+A)^{2} e_{0}\right)^{\mathrm{T}}$. As for each $v \in T^{1} \mathbb{H}^{3}, H(v)$, with the induced metric of \mathbb{H}^{3}, is isometric to \mathbb{R}^{2}, we have that $c(t)$ runs along a circle on $H\left(e_{1}\right)$ of geodesic curvature $k=1 /|u|>0$ and speed $1 / k=|u|$.

Besides, $\sigma(t)=\left[\gamma_{z(t)}\right]$. Thus we have that all conditions are satisfied in order to assert that σ describes a forward cone with vertex at $\gamma_{o}(+\infty)$.

Conversely, let σ be a curve in $\mathcal{L}\left(\mathbb{H}^{3}\right)$ that describes a forward cone with vertex at infinity. As G acts transitively on the positively oriented frame bundle, and also each element of G takes horospheres to horospheres, preserving their orientation, we may suppose that $\sigma(t)=\left[\gamma_{v(t)}\right]$, where $v(t)$ is a curve in $T^{1} \mathbb{H}^{3}$ of asymptotic vectors to $v(0)=e_{1}$ and $c(t)=\hat{\pi}(v(t))$ is a curve of geodesic curvature k and speed $1 / k$ in $H\left(e_{1}\right)$ with $\dot{c}(0)=\frac{1}{k} e_{2}$, for some $k>0$. Let $Z=Z\left(\frac{1}{k} \epsilon_{1},-\frac{1}{k} \epsilon_{1}\right) \in \overline{\mathcal{E}}_{I}^{+}$. We define

$$
\bar{c}(t)=\exp t(Z+A)\left(e_{0}\right) \quad \text { and } \quad \bar{v}(t)=d(\exp t(Z+A))\left(e_{1}\right) .
$$

We showed above that $\bar{c}(t)$ is a curve of geodesic curvature k and speed $\frac{1}{k}$ in $H\left(e_{1}\right)$. Moreover, $\bar{c}(0)=e_{0}$ and the initial velocity of \bar{c} is $\frac{1}{k} e_{2}$. So, we obtain that $\bar{c}=c$. This implies, together with the identities $\hat{\pi} \circ \bar{v}=\bar{c}$ and $\hat{\pi} \circ v=c$, that $\hat{\pi} \circ \bar{v}=\hat{\pi} \circ v$.

According to the first part of the proof, \bar{v} and v are curves of asymptotic vectors to e_{1}. Hence, $-\bar{v}(t)=\operatorname{grad}_{\bar{c}(t)}\left(f_{e_{1}}\right)=-v(t)$. Therefore, $\left[\gamma_{\bar{v}(t)}\right]=\left[\gamma_{v(t)}\right]$, which is a null magnetic geodesic with initial velocity in the horospherical distribution since $\left[\gamma_{v(t)}\right]=$ $\left[\exp t(Z+A) \cdot \gamma_{o}\right]$.

Proof of Theorem 2 b). We suppose first that σ is a null magnetic geodesic such that $\sigma(0)=\left[\gamma_{o}\right]$ and $\dot{\sigma}(0)=d(\phi \circ \pi) Z\left(a \epsilon_{1}, 0\right)$, with $a>0$. The expression (4) and the relation between the speed and curvature of h are obtained as in the prove of Theorem 1. By (10) we know that the torsion of h is $\tau=-b / a=0$ (since $b=0$). Thus h is contained in a totally geodesic surface S of \mathbb{H}^{3} and B is normal to S.

Now, we suppose that $\dot{\sigma}(0)=d(\phi \circ \pi) Z$, where $Z=Z\left(0, b \epsilon_{2}\right)$ with $b \neq 0$. By Theorem 4 we have that $\sigma(t)=\left[\alpha(t) \cdot \gamma_{o}\right]$, where $\alpha(t)=\exp t(Z+A)$. Since $Z+A$ is in the Lie algebra of the isotropy subgroup H of G at $e_{0} \in \mathbb{H}^{3}$, we get that $\alpha(t)$ fixes e_{0}. Moreover, if v is the curve in $T_{e_{0}}^{1} \mathbb{H}^{3}$ given by $v(t)=d(\alpha(t)) e_{1}$, then

$$
\sigma(t)=\left[\alpha(t) \cdot \gamma_{o}\right]=\left[\gamma_{v(t)}\right],
$$

since the initial velocity of the geodesic $\alpha(t) \cdot \gamma_{o}$ is $v(t)$, for each $t \in \mathbb{R}$.
Furthermore, as v is the orbit through e_{1} of a one-parameter subgroup of H (the canonical differential action of G on $T_{e_{0}}^{1} \mathbb{H}^{3}$), then v has constant speed and constant geodesic curvature in $T_{e_{0}}^{1} \mathbb{H}^{3} \cong \mathbb{S}^{2}$. Easy computations yield

$$
\dot{v}(0)=(0,0, b)^{t} \quad \text { and } \quad \ddot{v}(0)=\left(-b^{2},-b, 0\right)^{t} .
$$

So, the speed of v is $|b|$ and its geodesic curvature is

$$
k=\langle v(0), \dot{v}(0) \times \ddot{v}(0)\rangle /|b|^{3}=1 /|b|
$$

(we consider the orientation of the sphere given by the unit normal field pointing outwards). Thus, v is a curve in $T_{e_{0}}^{1} \mathbb{H}^{3}$ of geodesic curvature $k>0$ and speed $1 / k$. Consequently, σ has the form (5).

Now, let σ be a null magnetic geodesic such that $\sigma(0)=[\gamma]$ and $\dot{\sigma}(0) \notin \mathcal{D}_{[\gamma]}^{ \pm}$. As G acts transitively on $\mathcal{L}\left(\mathbb{H}^{3}\right)$ and by the G-invariance of the horospherical distributions, we may suppose that $\sigma(0)=\left[\gamma_{o}\right]$ and $\dot{\sigma}(0) \notin \mathcal{D}_{\left[\gamma_{0}\right]}^{ \pm}$. Let $Z=Z(x, y) \in \mathfrak{p}$ such that $\dot{\sigma}(0)=d(\phi \circ \pi) Z$. By Lemma 5 b$)$, as the norm of the initial velocity of σ is zero, we have that x and y are linearly dependent, and since $d(\phi \circ \pi) Z \notin \mathcal{D}_{\left[\gamma_{0}\right]}^{ \pm}$, we also have $|x| \neq|y|$. Now, the isometries in Lemma 6 b) take σ to magnetic geodesics of the particular types studied above. Therefore, σ has the form (4) or has the form (5), as desired.

Conversely, given a helix h in \mathbb{H}^{3} with curvature k, speed $1 / k$ and torsion $\tau=0$, the proof that the expression (4) is a magnetic geodesic is identical to the proof of the converse of Theorem 1. As h has zero torsion, the initial velocity of the magnetic geodesic in (4) is not in the distributions $\mathcal{D}^{ \pm}$.

Let v be a curve in $T_{p}^{1} \mathbb{H}^{3}$ with geodesic curvature $k>0$ and speed $1 / k$. Let g be the isometry of \mathbb{H}^{3} preserving the orientation such that $g(p)=e_{0}, d g(v(0))=e_{1}$ and $d g(\dot{v}(0))=b e_{3}$, for certain $b>0$. Hence, $g \cdot v$ is a curve in $T_{e_{0}}^{1} \mathbb{H}^{3}$ having the same geodesic curvature and the same speed as v, and also $b=1 / k$. As we showed above, \bar{v} is a curve in $T_{e_{0}}^{1} \mathbb{H}^{3}$ with $\bar{v}(0)=g \cdot v(0)$ and with the same initial velocity and geodesic curvature that $g \cdot v$. By uniqueness, we have that $\bar{v}=g \cdot v$. To complete the proof we observe that $g \cdot\left[\gamma_{v(t)}\right]=\left[\gamma_{g \cdot v(t)}\right]=\left[\gamma_{\bar{v}(t)}\right]$.

Proof of Theorem 3. Lemma 6 b) implies that the analogue of Theorem 2 a) is empty for the cases $\kappa=0,1$. The proof of the fact that every curve σ in \mathcal{L}_{κ} is a null magnetic geodesic if and only if σ has the form (4) or (5) is similar to that of Theorem 2 b).

We check the last statement of the theorem. Without lost of generality, we consider only null magnetic geodesics passing through $\left[\gamma_{o}\right]$ at $t=0$. We observe that if, in particular, σ is a magnetic geodesic with initial velocity $d(\phi \circ \pi) Z\left(a \epsilon_{1}, 0\right)$, with $a>0$, (that is, σ has the form (4)), then by Lemma 6 c) there exists $h \in H_{1}$ such that $\operatorname{Ad}(h) Z\left(a \epsilon_{1}, 0\right)=Z\left(0, a \epsilon_{2}\right)$. Hence, $h \cdot \sigma$ is a null magnetic geodesic with initial velocity $d(\phi \circ \pi) Z\left(0, a \epsilon_{2}\right)$, and then it has the form (5). So, σ also has this form.

References

[1] T. Adachi, S. Maeda, S. Udagawa: Simpleness and closedness of circles in compact Hermitian symmetric spaces, Tsukuba J. Math. 24 (2000), 1-13.
[2] A. Bolsinov and B. Jovanovic: Magnetic flows on homogeneous spaces, Comment. Math. Helv. 83 (2008), 679-700.
[3] P. Eberlein: Geometry of nonpositively curved manifolds, Chicago Lectures in Mathematics, 1996.
[4] N. Georgiou and B. Guilfoyle: On the space of oriented geodesics of hyperbolic 3-space, Rocky Mountain J. Math. 40 (2010), 1183-1219.
[5] B. Guilfoyle and W. Klingenberg: An indefinite Kähler metric on the space of oriented lines, J. London Math. Soc. 72 (2005), 497-509.
[6] M. Kapovich and J. Millson: The symplectic geometry of polygons in Euclidean space, J. Diff. Geom. 44 (1996), 479-513.
[7] M. Salvai: On the geometry of the space of oriented lines of Euclidean space, Manuscr. Math. 118 (2005), 181-189.
[8] M. Salvai: On the geometry of the space of oriented lines of the hyperbolic space, Glasgow Math. J. 49 (2007), 357-366.
[9] M. Salvai: Global smooth fibrations of \mathbb{R}^{3} by oriented lines, Bull. London Math. Soc. 41 (2009), 155-163.

FaMAF - CIEM, Ciudad Universitaria, 5000 Córdoba, Argentina ygodoy@famaf.unc.edu.ar, salvai@famaf.unc.edu.ar

[^0]: *Partially supported by CONICET, FONCyT, SECyT (UNC).
 ${ }^{1}$ Mathematics Subject Classification: 53C22, 53C35, 53C55; 53B30, 53C50.

