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Quasifinite representations of classical Lie subalgebras
of W∞, p
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We show that there are exactly two anti-involutions σ ± of the algebra of differential
operators on the circle that are a multiple of p(t∂ t) preserving the principal grada-
tion (p ∈ C[x] non-constant). We classify the irreducible quasifinite highest weight
representations of the central extension D̂±

p of the Lie subalgebra fixed by − σ ± .
The most important cases are the subalgebras D̂±

x of W∞ that are obtained when p(x)
= x. In these cases, we realize the irreducible quasifinite highest weight modules in
terms of highest weight representation of the central extension of the Lie algebra of
infinite matrices with finitely many nonzero diagonals over the algebra C[u]/(um+1)
and its classical Lie subalgebras of C and D types. C© 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4812556]

I. INTRODUCTION

The universal central extension D̂ of the Lie algebra of differential operators on the circle
(described first in Ref. 7) is usually denoted by physicists as W1+∞, and it is one of the W-infinity
algebras that naturally arise in various physical theories, such as conformal field theory, the theory
of quantum Hall effect, etc.

The difficulty in understanding the representation theory of a Lie algebra of this kind is that
although it admits a Z-gradation (and thus the associated triangular decomposition), each of the
graded subspaces is still infinite dimensional, and therefore the study of highest weight modules
with the finiteness requirement on the dimensions of their graded subspaces (which we will refer to
as quasifiniteness condition) becomes a non-trivial problem.

The study of quasifinite highest weight modules of D̂ was initiated by Kac and Radul.8 They
were able to give a characterization of its irreducible quasifinite highest weight representations and

these modules were constructed in terms of modules of the Lie algebra ĝl
[m]
∞ which is the central

extension of the Lie algebra gl
[m]
∞ of infinite matrices with finitely many nonzero diagonals taking

values in the truncated polynomial algebra Rm = C[u]/(um+1). On the basis of this analysis, further
studies were made within the framework of vertex algebra theory for the D̂ algebra,5, 9 and for its
matrix version.3 In Ref. 6 a general approach to the theory of quasifinite highest weight modules
over Z-graded Lie algebras was developed, which makes the basic ideas of Ref. 8 much clearer, and
these general results will be applied here. In Refs. 1 and 6, they develop the theory of quasifinite
highest weight representations of the subalgebras D̂p of D̂, also known in the literature as W∞, p,
where D̂p (p ∈ C[x]) is the central extension of the Lie algebra Dp(t∂t ) of differential operators on
the circle that are a multiple of p(t∂ t). The most important of these subalgebras is W∞ = D̂x that is
obtained by taking p(x) = x. Classical Lie subalgebras of D̂ appear by the study of anti-involutions
on D̂. The orthogonal subalgebras of D̂ were studied in Ref. 10. The symplectic subalgebra of D̂
was considered in Ref. 2 in relation to number theory, and the representation theory was developed
in Ref. 4.
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The idea of the present work is to extend some results from Ref. 10 to the family of subalgebras
D̂p. More precisely, in Sec. II we show that there are exactly two, up to conjugation, anti-involutions
σ ± of Da

p preserving the principal gradation. In Sec. III, we classify the irreducible quasifinite
highest weight representations of the central extension D̂±

p of the Lie subalgebra of D̂p fixed by
− σ ± . In particular, if p = 1, from our results we recover several theorems obtained in Ref. 10. The
other most important cases are the subalgebras D̂±

x of W∞ that are obtained by taking p(x) = x. For

these cases, in Sec. IV we study the interplay between D̂±
x and some subalgebras of ĝl

[m]
∞ , and in

Sec. V we realize the irreducible quasifinite highest weight representations in terms of the highest

weight modules of the Lie algebra ĝl
[m]
∞ and its classical Lie subalgebras of C and D types. Observe

that the symplectic subalgebra of D̂ considered in Refs. 2 and 4 is a particular case of our general
results, in that it corresponds to D̂+

x .

II. ANTI-INVOLUTION OF Da
p PRESERVING ITS PRINCIPAL GRADATION

Let Da be the associative algebra of regular differential operators on the circle, i.e., the operators
on C[t, t−1] of the form

E = ek(t)∂k
t + ek−1(t)∂k−1

t + · · · + e0(t), where ei (t) ∈ C[t, t−1],

the elements

J l
k = −t k+l∂ l

t (l ∈ Z+, k ∈ Z),

form its basis, where ∂ t denotes d
dt . Another basis of Da is

Ll
k = −t k Dl (l ∈ Z+, k ∈ Z),

where D = t∂ t. Let D denote the Lie algebra obtained from Da by taking the usual bracket, i.e.,

[tr f (D), t s g(D)] = tr+s( f (D + s)g(D) − f (D)g(D + r )),

where f, g ∈ C[x] and s, t ∈ Z. Given p ∈ C[x], consider the following family of subalgebras of
Da:

Da
p := Da p(D),

and denote by Dp the associated Lie algebra (cf. Ref. 6).
Letting wt t k f (D) = k defines the principal Z-gradation of Da and Da

p:

Da
p =

⊕
j∈Z

(Da
p) j , where (Da

p) j = {t j f (D)p(D) : f ∈ C[x]}.

An anti-involution σ of Da
p is an involutive anti-automorphism of Da

p, i.e., σ : Da
p → Da

p with
σ 2 = I d, σ (bX + Y ) = bσ (X ) + σ (Y ), and σ (XY ) = σ (Y )σ (X ), where X, Y ∈ Da

p, b ∈ C.

The main result of this section is the following theorem with the classification of all anti-
involutions of Da

p that preserve the principal Z-gradation.

Theorem 2.1. Let p ∈ C[x] be a nonzero polynomial. There exists an anti-involution in Da
p that

preserves the principal Z-gradation if and only if there exists c ∈ C such that p(x) = εp(−x + c),
where ε = ( − 1)deg(p).

If deg(p) ≥ 1, then c is unique and there exist only two anti-involutions given by

σ±(t k f (D)p(D)) = ε(±t)k f (−D − k + c)p(D). (2.1)

If deg(p) = 0, then c is a free parameter, and there are only two families of anti-involutions
given by (2.1).

Remark 2.2. When deg(p) = 0, we recover the classification obtained in Proposition 2.1.10

In the last part of this section, we present the proof of Theorem 2.1 throughout several lemmas.
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Let σ : Da
p → Da

p be an anti-involution that preserves the principal gradation. Then σ induces
a map σ0 : Da → Da as follows:

σ (t k f (D)p(D)) = σ0(t k f (D))p(D). (2.2)

It is clear that σ 0 preserves the principal gradation and furthermore, the characterization of σ is
equivalent to the characterization of σ 0.

Lemma 2.3. Let f, g ∈ C[D] and k, m ∈ Z. Then

(a) σ 0 is C-linear;
(b) σ 2

0 = I d;
(c) σ 0(tk + mf(D + m)p(D + m)g(D)) = σ 0(tmg(D))p(D)σ 0(tkf(D));
(d) σ 0(f(D)g(D)p(D)) = σ 0(f(D))σ 0(g(D))p(D) .

Proof. Using that σ is an anti-involution, (a) and (b) follow immediately. For f, g ∈
C[D], k, m ∈ Z, we have

σ (t k f (D)p(D)tm g(D)p(D)) = σ0(tm g(D))p(D)σ0(t k f (D))p(D) (2.3)

and

σ (t k f (D)p(D)tm g(D)p(D)) = σ0(t k+m f (D + m)p(D + m)g(D))p(D) (2.4)

obtaining (c). Observe that (d) follows from (c) since (Da)0 is an Abelian subalgebra of Da and σ 0

preserves the gradation, finishing the proof. �
We shall need the following notation: σ 0(tk) = tkεk, with εk in C[D].

Lemma 2.4. (a) For all k ∈ Z, we have εk = ± 1.
(b) There exists c ∈ C such that for all k ∈ Z and f ∈ C[D], we have

σ0(t k f (D)) = εk tk f (−D − k + c).

Proof. Using Lemma 2.3(d) with f = g = 1, we have

σ0(p(D)) = ε2
0 p(D) (2.5)

then by Lemma 2.3(b) and (2.5), p(D) = σ0(ε2
0 p(D)) and using again Lemma 2.3(d) with f = 1 and

g = ε2
0, we obtain

p(D) = ε0σ0(ε2
0)p(D). (2.6)

Then from (2.6), 1 = ε0σ0(ε2
0) therefore ε0 is a constant. Moreover, by Lemmas 2.3(a) and (b), we

have 1 = σ 2
0 (1) = ε2

0, obtaining

ε0 = ±1. (2.7)

Now we shall prove that

σ0(t l Di ) = t lεl (ε0σ0(D) − l)i for all l ∈ Z, and i ∈ Z+, (2.8)

by using induction in i. The case i = 0 follows by notation. Now, using Lemma 2.3(c) with tkf(D) =
(D − l), tmg(D) = tlDi, we have

σ0(t l Di+1 p(D + l)) = σ0(t l Di )p(D)σ0(D − l)

= t lεl (ε0σ0(D) − l)i p(D)(σ0(D) − ε0l); (2.9)
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on the other hand, using again Lemma 2.3(c) with tkf(D) = 1, tmg(D) = tlDi + 1, we obtain

σ0(t l Di+1 p(D + l)) = σ0(t l Di+1)p(D)ε0. (2.10)

Comparing (2.9) with (2.10), and using (2.7), we obtain (2.8).
Note that, given f ∈ C[x] and using the linearity of σ 0 together with (2.8), we have

σ0(t k f (D)) = t kεk f (ε0σ0(D) − k). (2.11)

Since σ 0 preserves the Z-gradation, we can assume that σ 0(D) = g(D) for some g ∈ C[x].
Then by Lemma 2.3(b) and (2.11), we have D = σ 2

0 (D) = ε0g(ε0g(D)). Using (2.7), it follows that
deg(g)2 = 1 and therefore deg(g) = 1. Then σ 0(D) = aD + b for some a, b ∈ C with a �= 0. Finally,

D = σ 2
0 (D) = σ0(aD + b) = a2 D + (a + ε0)b,

obtaining

σ0(D) = aD + b with a = ±1, (a + ε0)b = 0. (2.12)

Using Lemma 2.3(b) and (2.11), for all k ∈ Z,

t k = σ 2
0 (t k) = σ0(t kεk) = t kεk(D)εk(ε0σ0(D) − k), (2.13)

then deg(εk) = 0 and furthermore ε2
k = 1, finishing the proof of (a).

Observe that, using (2.11), (2.12), and Lemma 2.4(a), we have

σ0(t k f (D)) = εk tk f (ε0aD − k + c), where c = ε0b.

Hence, in order to finish the proof of (b), it remains to see that ε0a = − 1. But

t k D = σ 2
0 (t k D)

= σ0(εk tk(ε0aD − k + ε0b))

= t k D − (ε0a + 1)ktk

for all k in Z, therefore ε0a + 1 = 0. �
Proof of Theorem 2.1. Let σ : Da

p → Da
p be an anti-involution that preserves the principal

Z-gradation. From (2.2) and Lemma 2.4(b)

σ (t k f (D)p(D)) = εk tk f (−D − k + c)p(D) (2.14)

for some c ∈ C.
Moreover, from (2.5) and Lemma 2.4(a) we obtain σ 0(p(D)) = p(D). Then by Lemma 2.4(b),

we have that p must satisfy

p(D) = ε0 p(−D + c) for some c ∈ C. (2.15)

If n = deg(p) > 0, by considering the coefficients of Dn and Dn − 1 in both sides of (2.15), we

have ε0 = ( − 1)n and c = −2cn−1

ncn
, respectively, where p(x) = ∑n

i=0 ci xi , so c is totally determined

by the coefficients of p.
If deg(p) = 0, using (2.15) we get ε0 = 1 and c is a free parameter.
On the other hand,

σ (t k p(D)tm p(D)) = σ (tm p(D))σ (t k p(D)) (2.16)

with

σ (t k p(D)tm p(D)) = σ (t k+m p(D + m)p(D))

= εk+mtk+m p(−D − k + c)p(D)

= ε0εk+mtk+m p(D + k)p(D) (2.17)
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and

σ (tm p(D))σ (t k p(D)) = εmεk tm p(D)t k p(D)

= εmεk tk+m p(D + k)p(D). (2.18)

From (2.17) and (2.18) we have that (2.16) holds if and only if

εk+m = ε0εkεm, (2.19)

and this is true for all k, m ∈ Z. Then, if we take k = 1 and m = − 1 from (2.19) and Lemma 2.4(a),
we have that ε1 = ε − 1 and by induction

εk = ε0(ε0ε1)k for all k ∈ Z. (2.20)

Since ε0 is totally determined, we could have only two anti-involutions depending on the choice of
ε1. Using (2.14) and (2.20), we have the following cases:

• if ε1 = ε0, then σ (tkf(D)p(D)) = ε0tkf( − D − k + c)p(D);
• if ε1 = − ε0, then σ (tkf(D)p(D)) = ε0( − t)kf( − D − k + c)p(D).

Conversely, it is straightforward to check that if p satisfies (2.15) then the two previous cases
are anti-involutions, finishing the proof.

III. QUASIFINITE HIGHEST-WEIGHT MODULES OVER D̂±
p

Let p ∈ C[x] with n = deg(p) that satisfies Theorem 2.1, i.e., p(x) = ( − 1)np( − x + c) for
some c ∈ C. We denote by D±

p the Lie subalgebra of Dp consisting of its minus σ ± -fixed points,
i.e.,

D±
p = {d ∈ Dp : σ±(d) = −d}.

It inherits a Z-gradation from Dp since σ ± preserves the principal Z-gradation of Dp, then D±
p =⊕

k∈Z(D±
p )k, where

(D±
p )k = {t k f (D)p(D) : f ∈ C[x] and σ±(t k f (D)p(D)) = −t k f (D)p(D)}.

Let us denote by C[x](0) (respectively C[x](1)) the set of all even (respectively odd) polynomials
in C[x]. Also, we let k = 0 if k is an odd integer and k = 1 if k is even. The following lemma gives
a complete description of (D±

p )k .

Lemma 3.1. (a) (D+
p )k =

{
t k f

(
D − c − k

2

)
p(D) : f ∈ C[x](n)

}
;

(b) (D−
p )k =

{
t k f

(
D − c − k

2

)
p(D) : f ∈ C[x](n+k)

}
.

Proof. Let t k f (D)p(D) ∈ (D−
p )k , then by Theorem 2.1

(−1)n+k tk f (−D − k + c)p(D) = σ−(t k f (D)p(D)) = −t k f (D)p(D)

if and only if ( − 1)n + k + 1f(x) = f( − x − k + c). We define g(w) = f

(
w + c − k

2

)
and for x =

w − c − k

2
, we have g(−x) = f (−w − k + c) = (−1)n+k+1 f (w) = (−1)n+k+1 f

(
x + c − k

2

)
=

(−1)n+k+1g(x), therefore g(w) ∈ C[w](n+k) and g

(
x − c − k

2

)
= f (x) finishing (b). The proof of

(a) is similar. �
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Remark 3.2 (Ref. 10).

We have the following two-cocycle on D, where f (x), g(x) ∈ C[x]

�(tr f (D), t s g(D)) =
{ ∑

−r�m�−1
f (m)g(m + r ) if r = −s > 0

0 if r + s �= 0 or r = s = 0
,

and, using skew-symmetry, it is also defined when r = − s < 0. Denote by D̂ the central extension
of D by a one-dimensional center CC , corresponding to the two-cocycle �, i.e., D̂ = D + CC with
the following commutation relation:

[tr f (D), t s g(D)] = tr+s( f (D + s)g(D) − f (D)g(D + r )) + �(tr f (D), t s g(D))C.

Denote by D̂±
p the central extension of D±

p by CC corresponding to the restriction of the two-cocycle
�.

Letting wt t k f (D)p(D) = k, wt C = 0 defines the principal gradation of D̂±
p

D̂±
p =

⊕
k∈Z

(D̂±
p )k, where (D̂±

p )k = (D±
p )k + δ0,kCC. (3.1)

In order to apply the general results on quasifinite representations of Z-graded Lie algebras
developed in Ref. 6, we need to study the parabolic subalgebras of D̂±

p . Let us recall some general
definition and results from Ref. 6.

Let g = ⊕
j∈Z g j be a Z-graded Lie algebra over C, and take g+ = ⊕

j>0 g j . A Z-graded
subalgebra p of g is called parabolic if

p =
⊕
j∈Z

p j , where p j = g j for j ≥ 0 and p j �= 0 for some j < 0.

We assume the following properties of g:
(P1) g0 is commutative,
(P2) if a ∈ g−k (k > 0) and [a, g1] = 0, then a = 0.
Given a ∈ g−1 that is nonzero, we define pa = ⊕

j∈Z pa
j , where pa

j = g j for all j ≥ 0 and

pa
−1 =

∑
[. . . [[a, g0], g0], . . .], pa

−k−1 = [pa
−1, p

a
−k].

It was proved in Ref. 6 that pa is the minimal parabolic subalgebra containing a.

Definition 3.3. (a) A parabolic subalgebra p is called nondegenerate if p− j has finite codimension
in g− j for all j ∈ N.

(b) An element a ∈ g−1 is called nondegenerate if pa is nondegenerate.

We will also require the following condition on g:
(P3) If p is a nondegenerate parabolic subalgebra of g, then there exists a nondegenerate element

a ∈ p−1.
A g-modulo V is called Z-graded if V = ⊕

j∈Z Vj and gi Vj ⊂ Vi+ j . A Z-graded g-module is
called quasifinite if dimVj < ∞ for all j.

Given λ ∈ g∗
0, a highest-weight module is a Z-graded g-module V (g, λ) generated by a highest-

weight vector vλ ∈ V (g, λ)0 which satisfies

hvλ = λ(h)vλ for h ∈ g and g+vλ = 0.

A nonzero vector v ∈ V (g, λ) is called singular if g+v = 0.

The Verma module over g is defined as usual:

M(g, λ) = U(g)
⊗

U(g0
⊕

g+)Cλ,

where Cλ is the one-dimensional (g0
⊕

g+)-module given by h	→λ(h) if h ∈ g0, g+ 	→ 0, and the
action of g is induced by the left multiplication inU(g). Here and further U(g) stands for the universal
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enveloping algebra of the Lie algebra g. Any highest weight module V (g, λ) is a quotient module of
M(g, λ). The irreducible module L(g, λ) is the quotient of M(g, λ) by the maximal proper graded
submodule.

Consider a parabolic subalgebra p = ⊕
j∈Z p j of g and let λ ∈ g∗

0 be such that λ |g0
⋂

[p,p]= 0.
Then the (g0

⊕
g+)-module Cλ extends to a p-module by letting p j act as 0 for j < 0, and we may

construct the highest weight module

M(p, g, λ) = U(g)
⊗

U(p)Cλ

called the generalized Verma module. Clearly all these highest weight modules are graded. The
following result gives the characterization of all irreducible quasifinite highest weight modules.

Theorem 3.4 (Ref. 6). Let g = ⊕
j∈Z g j be a Z-graded Lie algebra over C

that satisfies conditions (P1), (P2), and (P3). The following conditions on λ ∈ g∗
0 are

equivalent:

(a) M(g, λ) contains a singular vector a.vλ in M(g, λ)−1, where a is nondegenerate.
(b) There exists a nondegenerate element a ∈ g−1, such that λ([g1, a]) = 0.
(c) L(g, λ) is quasifinite.
(d) There exists a nondegenerate element a ∈ g−1, such that L(g, λ) is the irreducible quotient of

the generalized Verma module M(g, pa, λ).

Proof. (See Ref. 6). �
Now we will prove that D̂±

p satisfies the properties (P1), (P2), (P3) and therefore we can apply
Theorem 3.4. It is obvious that D̂±

p satisfies (P1). In order to prove that D̂±
p satisfies (P2) and (P3),

we shall need the following results.

Lemma 3.5. Let f, g, h ∈ C[x] be such that deg( fg) > 0 and

[t k f (D), t l g(D)] = t k+l h(D) + �(t k f (D), t l g(D))C, (3.2)

then deg(h) = deg(f) + deg(g) − 1 if and only if deg(f)l �= deg(g)k.

Proof. We suppose f(D) = Di and g(D) = Dj with i + j �= 0, then from (3.2)

hi, j (D) = (D + l)i D j − (D + k) j Di ,

it is clear that deg(hi, j) ≤ i + j − 1, moreover the coefficient of Di + j − 1 is (il − jk), therefore,
for this case the lemma is true. Now, let f (x) = ∑n

i=0 fi x i and g(x) = ∑n
j=0 g j x j be polynomials

such that n + m �= 0, then

[t k f (D), t l g(D)] =
∑
i, j

fi g j [t
k Di , t l D j ] :=

∑
i, j

fi g j t k+l hi, j (D),

with deg(hi, j) ≤ i + j − 1. Therefore, the proof reduces to the case tk + lhn, m(D) := [tkDn, tlDm]
that was previously considered. �

Lemma 3.6. Let p = ⊕
j∈Z p j be a Z-graded subalgebra of D̂±

p with p0 = (D̂±
p )0.

(a) If p j �= 0, then it has finite codimension in (D̂±
p ) j .

(b) If p−1 �= 0, then p− j has finite codimension in (D̂±
p )− j for all j ∈ N.

Proof. In order to prove (a), it is enough to find a family {t j gk(D)p(D)}k�1 ⊂ p j with deg(gk)
= m0 + 2k for some fixed m0 ∈ Z+ (see Lemma 3.1).
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We may assume j �= 0. Let t j f (D)p(D) ∈ p j be nonzero. By hypothesis and Lemma 3.1,

(D − c

2
)2k+n p(D) ∈ p0 for all k ≥ 1, then

[t j f (D)p(D), (D − c

2
)2k+n p(D)] := t j gk(D)p(D) ∈ p j ,

and by Lemma 3.5 we obtain deg(gk) = deg( f ) + n + n − 1 + 2k, finishing (a).
Now, in order to prove (b) we only need to see that p− j �= 0 for all j ≥ 1. By induction, we suppose

p− j �= 0 with j ≥ 1. Then from the above argument, for all k ≥ 1 there exists t− j gk(D)p(D) ∈ p− j

with deg(gk) = m0 + 2k (m0 ∈ Z+ fixed) and by hypothesis there exists t−1 f (D)p(D) ∈ p−1 that
is nonzero. Hence, we can take k0 ∈ N such that (n + deg(f))j �= (n + m0 + 2k0), then by Lemma
3.5, we have that [t−1 f (D)p(D), t− j gk0 (D)p(D)] ∈ p− j−1 is nonzero. �

Corollary 3.7. (a) D̂±
p satisfies (P2).

(b) Any parabolic subalgebra of D̂±
p is nondegenerate.

(c) Any nonzero element of (D̂±
p )−1 is nondegenerate.

(d) D̂±
p satisfies (P3).

Proof. Let t−k f (D)p(D) ∈ D̂±
p be nonzero (with k > 0). Now, if we take tg(D)p(D) ∈ D̂±

p
with nonconstant g, using Lemma 3.5, we obtain that

[t−k f (D)p(D), tg(D)p(D)] �= 0,

proving that D̂±
p satisfies (P2).

Now, let p be a parabolic subalgebra of D̂±
p , by definition there exists j ∈ N such that p− j �= 0

then by (P2), p−1 �= 0, and the proof of (b) follows from Lemma 3.6(b). Finally, (c) follows from
(b), and (d) follows from (c). �

Let L(D̂±
p , λ) be an irreducible quasifinite highest weight module over D̂±

p . By Theorem 3.4,
there exists some monic polynomial b(x − c+1

2 )p(x) such that (t−1b(D − 1+c
2 )p(D))vλ = 0 (with

the polynomial b(x) being odd or even depending on D̂±
p as described in Lemma 3.1). We shall

call such monic polynomial of minimal degree, uniquely determined by the highest-weight λ, the
characteristic polynomial of L(D̂±

p , λ).

Let us denote byZ(0)
+ (respectivelyZ(1)

+ ) the set all even (respectively odd) non-negative integers.
A functional λ ∈ (D̂±

p )∗0 is described by its labels �l = −λ((D − c
2 )l p(D)), where l ∈ Z

(n)
+ , n =

deg(p) and the central charge λ(C) = c̄. We can consider the generating series

�λ(x) =
∑

l∈Z(n)
+

xl

l!
�l . (3.3)

Recall that a quasipolynomial is a linear combination of functions of the form q(x)eαx, where
q ∈ C[x] and α ∈ C. Also we have a well-known characterization: a formal power series is a
quasipolynomial (respectively even quasipolynomial) if and only if it is annihilated by the action of
a nontrivial linear differential operator with constant coefficients f(∂) = 0, where f(x) is a polynomial
(respectively even polynomial).

The following theorem characterizes the irreducible quasifinite highest weight modules over
D̂±

p .

Theorem 3.8. A D̂±
p -module L(D̂±

p , λ) is quasifinite if and only if

�λ(x) = p

(
d

dx
+ c

2

) (
φλ(x)

2 sinh
(

x
2

))
, (3.4)

where φλ(x) is an even quasipolynomial such that φλ(0) = 0.
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Proof. Recall that p satisfies

p(x) = (−1)n p(−x + c) (3.5)

where n = deg(p). We shall use the following identities, for f, g ∈ C[x] and a ∈ C:

f

(
± d

dx

)
eax = f (±a)eax , (3.6)

e±x(D− c
2 ) f (D) = f

(
± d

dx
+ c

2

)
e±x(D− c

2 ), (3.7)

e± x
2 f

(
d

dx

)
g(x) = f

(
d

dx
∓ 1

2

)
e± x

2 g(x). (3.8)

Using (3.5) and (3.7),

�λ(x) = −1

2
λ

((
ex(D− c

2 ) + (−1)n+1e−x(D− c
2 )
)

p(D)
)

= −1

2
λ

(
p

(
d

dx
+ c

2

)(
ex(D− c

2 ) − e−x(D− c
2 )
))

. (3.9)

Now, take �λ(x) a solution of

�λ(x) = p

(
d

dx
+ c

2

)
�λ(x). (3.10)

It follows from Theorem 3.4 that L(D̂±
p , λ) is quasifinite if and only if there exists t−1b(D −

c+1
2 )p(D) ∈ (D̂±

p )−1 such that

0 = λ([t(D − c − 1

2
)2k+δ p(D), t−1b(D − c + 1

2
)p(D)]) (3.11)

for all k ∈ Z and by Lemma 3.1 and (3.1), b ∈ C[x](δ) where δ is given by

δ =
{

n, in the case D̂+
p

n − 1, in the case D̂−
p

. (3.12)

Taking generating series, (3.11) is equivalent to

0 = 1

2
λ([t(ex(D− c−1

2 ) + (−1)δe−x(D− c−1
2 ))p(D), t−1b(D − c + 1

2
)p(D)])

= 1

2
λ

(
b
(

D − c + 1

2

)
p(D − 1)p(D)

(
ex(D− c+1

2 ) + (−1)δe−x(D− c+1
2 )

)

−b
(

D − c − 1

2

)
p(D + 1)p(D)

(
ex(D− c−1

2 ) + (−1)δe−x(D− c−1
2 )

)

+b
(

− c + 1

2

)
p(−1)p(0)

(
e−( c+1

2 )x + (−1)δe( c+1
2 )x

)
C

)
.
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Then using the identities (3.5), (3.6), (3.7), (3.8), (3.9), and (3.10)

0 = 1

2
λ

(
b
( d

dx

)
p
( d

dx
+ c − 1

2

)
e− x

2 p
( d

dx
+ c

2

)
ex(D− c

2 )

+(−1)δb
(

− d

dx

)
p
(

− d

dx
+ c − 1

2

)
e

x
2 p

(
− d

dx
+ c

2
+ 1

)
e−x(D− c

2 )

−b
( d

dx

)
p
( d

dx
+ c + 1

2

)
e

x
2 p

( d

dx
+ c

2

)
ex(D− c

2 )

−(−1)δb
(

− d

dx

)
p
(

− d

dx
+ c + 1

2

)
e− x

2 p
(

− d

dx
+ c

2
− 1

)
e−x(D− c

2 )

)
+1

2

(
b
( d

dx

)
p
( d

dx
+ c − 1

2

)
p
( d

dx
+ c + 1

2

)
e−( c+1

2 )x

+(−1)δb
(

− d

dx

)
p
(

− d

dx
+ c − 1

2

)
p
(

− d

dx
+ c + 1

2

)
e( c+1

2 )x

)
c̄

= 1

2
λ

(
b
( d

dx

) [
p
( d

dx
+ c − 1

2

)
e− x

2 − p
( d

dx
+ c + 1

2

)
e

x
2

]
p
( d

dx
+ c

2

)
ex(D− c

2 )+

b
( d

dx

) [
p
( d

dx
+ c + 1

2

)
e

x
2 − p

( d

dx
+ c − 1

2

)
e− x

2

]
p
( d

dx
+ c

2

)
e−x(D− c

2 )

)
+1

2
b
( d

dx

)
p
( d

dx
+ c − 1

2

)
p
( d

dx
+ c + 1

2

)
(e−( c+1

2 )x + e( c+1
2 )x )c̄

= b
( d

dx

) [
p
( d

dx
+ c + 1

2

)
e

x
2 − p

( d

dx
+ c − 1

2

)
e− x

2

]
p
( d

dx
+ c

2

)
�λ(x)

+b
( d

dx

)
p
( d

dx
+ c − 1

2

)
p
( d

dx
+ c + 1

2

)
cosh

((c + 1

2

)
x
)

c̄

= b
( d

dx

)
p
( d

dx
+ c + 1

2

)
p
( d

dx
+ c − 1

2

) (
2 sinh

( x

2

)
�λ(x) + cosh

((c + 1

2

)
x
)

c̄

)
.

It follows that L(D̂±
p , λ) is quasifinite if and only if there exists b ∈ C[x]δ (see (3.12)) such that

0 = b
( d

dx

)
p
( d

dx
+ c + 1

2

)
p
( d

dx
+ c − 1

2

)(
2 sinh

( x

2

)
�λ(x) + cosh

((c + 1

2

)
x
)

c̄

)
. (3.13)

Therefore, if L(D̂±
p , λ) is quasifinite, then 2 sinh

(
x
2

)
�λ(x) + cosh

((
c+1

2

)
x
)

c̄ is a quasipolynomial.

But, using (3.9) and (3.10), we get that �λ(x) is an odd function. Hence,

φλ(x) = 2 sinh
( x

2

)
�λ(x) (3.14)

is an even quasipolynomial such that φλ(0) = 0, and using (3.10), we have

�λ(x) = p

(
d

dx
+ c

2

)(
φλ(x)

2 sinh( x
2 )

)
. (3.15)

Conversely, if (3.15) holds for some even quasipolynomial φλ with φλ(0) = 0, then F(x) = φλ(x) +
cosh

((
c+1

2

)
x
)

c̄ is an even quasipolynomial and it satisfies q
(

d
dx

)
F(x) = 0 for some q ∈ C[x]δ . In

particular, we have

p
( d

dx
+ c + 1

2

)
p
( d

dx
+ c − 1

2

)
q
( d

dx

)
F(x) = 0,

and therefore L(D̂±
p , λ) is quasifinite, finishing the proof. �



073502-11 J. I. Garcı́a and J. I. Liberati J. Math. Phys. 54, 073502 (2013)

The even quasipolynomial φλ(x) + cosh
((

c+1
2

)
x
)

c̄, where φλ(x) is from (3.4) and c̄ is the

central charge, can be written in the form

φλ(x) + cosh
((c + 1

2

)
x
)

c̄ =
∑

i

qi (x) cosh(e+
i x) +

∑
j

r j (x) sinh(e−
j x), (3.16)

where qi(x) (respectively rj(x)) are nonzero even (respectively odd) polynomials and e+
i (respectively

e−
j ) are distinct complex numbers. Note that

∑
i qi (0) = c̄.

The expression (3.16) is unique up to a sign of e+
i or a simultaneous change of signs of e−

j and

rj(x). We call e+
i (respectively e−

j ) the even type (respectively odd type) exponents of L(D̂±
p , λ) with

multiplicities qi(x) (respectively rj(x)). We denote by e+ the set of even type exponents e+
i with

multiplicity qi(x) and by e− the set of odd type exponents e−
j with multiplicity rj(x). Then the pair

(e+ , e− ) determines L(D̂±
p , λ) uniquely, and we shall also denote it as L(D̂±

p ; e+, e−).

Corollary 3.9. Let L(D̂±
p , λ) be an irreducible quasifinite highest weight module over D̂±

p ,
b(x − c+1

2 )p(x) be its characteristic polynomial with b(x) ∈ C[x]δ (see (3.12)), �λ(x) be a solution
of (3.10), and let F(x) = 2 sinh( x

2 )�λ(x) + cosh(( c+1
2 )x)c̄. Then

b

(
d

dx

)
p

(
d

dx
+ c + 1

2

)
p

(
d

dx
+ c − 1

2

)
F(x) = 0

is the minimal order homogeneous linear differential equation with constant coefficients of the form

f

(
d

dx

)
p

(
d

dx
+ c + 1

2

)
p

(
d

dx
+ c − 1

2

)
wi th f ∈ C[x]δ,

satisfied by F(x). Moreover, the exponents appearing in (3.16) are all roots of the polynomial
b(x)p(x + c+1

2 )p(x + c−1
2 ).

IV. INTERPLAY BETWEEN D̂O, ±
x AND ĝl

[m]
∞ , c[m]

∞ , d[m]
∞ , AND L[m]

±

Denote by Rm the quotient algebra C[u]/(um+1) and by 1 the identity element of Rm. We let gl
[m]
∞

the Lie algebra of all matrices (ai j )i, j∈Z with finitely many nonzero diagonals with entries in Rm.
Also denote by Eij the infinite matrix with 1 at (i, j) place and 0 elsewhere. Letting wt Ei j = j − i
defines the principal Z-gradation of gl

[m]
∞ . There is a standard automorphism ν of gl

[m]
∞ given by

ν(Ei, j ) = Ei+1, j+1. (4.1)

Consider the following two-cocycle on gl
[m]
∞ with values in Rm:

C(A, B) = tr ([J, A]B), (4.2)

where J = ∑
j ≤ 0Ejj, and denote by ĝl

[m]
∞ = gl

[m]
∞ ⊕ Rm the corresponding central extension. The

Z-gradation of this Lie algebra extends from gl
[m]
∞ by letting wt Rm = 0.

Given λ ∈ (ĝl
[m]
∞ )∗0, we let

c j = λ(u j ),

aλ
( j)
i = λ(u j Eii ), (4.3)

ah( j)
i = aλ

( j)
i −a λ

( j)
i+1 + δi,0 c j ,

where i ∈ Z and j = 0, . . . , m. The superscript a corresponds to the type A Lie algebra ĝl
[m]
∞ . Let

L(ĝl
[m]
∞ , λ) be the irreducible highest weight ĝl

[m]
∞ -module with highest weight λ. The aλ

( j)
i are called

the labels and cj are the central charges of L(ĝl
[m]
∞ , λ).
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Consider the vector space Rm[t, t− 1] and take its basis vi = t i (i ∈ Z) over Rm. Let us consider
the following C-bilinear forms on this space:

C(umvi , unv j ) = um(−u)n(−1)iδi,1− j ,

D(umvi , unv j ) = um(−u)nδi,1− j .

Denote by c[m]
∞ and d

[m]
∞ the Lie subalgebras of gl

[m]
∞ which preserve the bilinear forms C and D,

respectively. We have,

c[m]
∞ = {A ∈ gl

[m]
∞ | Ai, j (u) = (−1)i+ j+1 A1− j,1−i (−u)},

d
[m]
∞ = {A ∈ gl

[m]
∞ | Ai, j (u) = −A1− j,1−i (−u)}.

Denote by c[m]
∞ = c[m]

∞ ⊕Rm and d [m]
∞ = d

[m]
∞ ⊕ Rm the central extension of c[m]

∞ and d
[m]
∞ , respectively,

given by the restriction of the two-cocycle (4.2). These subalgebras inherit from ĝl
[m]
∞ the principal

Z-gradation.
Let g stand for c[m]

∞ or d [m]
∞ . Given λ ∈ (g)∗0, denote by L(g, λ) the irreducible highest weight

module over g with highest weight λ. We let

c j = λ(u j ),

gλ
( j)
i = λ(u j Eii − (−u) j E1−i,1−i ),

gh( j)
i = gλ

( j)
i −g λ

( j)
i+1, (4.4)

gh( j)
0 = gλ

( j)
1 + c j ( j even),

where i ∈ Z, j = 0, . . . , m and the superscript g represents c or d depending on whether g is c[m]
∞ or

d [m]
∞ . The gλ

( j)
i are called the labels and cj are the central charges of L(g, λ).

We define

L[m]
± = {A ∈ gl

[m]
∞ | Ai, j (u) = −(∓1)i+ j A− j,−i (−u) if i j > 0 ∨ i = j = 0;

Ai, j (u) = (∓1)i+ j A− j,−i (−u) if i j < 0; A−i,0(u) = (∓1)i u A0,i (−u);

Ai,0(u) = −(∓1)i u A0,−i (−u) for i ∈ N},
subalgebras of gl

[m]
∞ . Denote byL[m]

± = L[m]
± ⊕Rm the central extension ofL[m]

± , given by the restriction

of the two-cocycle (4.2). These subalgebras inherit from ĝl
[m]
∞ the principal Z-gradation.

Given λ ∈ (L[m]
± )∗0, we let

c j = λ(u j ),

±λ
( j)
i = λ(u j Ei,i − (−u) j E−i,−i ), (4.5)

±h( j)
i = ±λ

( j)
i −± λ

( j)
i+1 + δi,0 c j ,

where i ∈ Z and j = 0, . . . , m. The superscript ± corresponds to the Lie algebrasL[m]
± . Let L(L[m]

± , λ)

be the irreducible highest weight ĝl
[m]
∞ -module with highest weight λ. The ±λ

( j)
i are called the labels

and cj are the central charges of L(L[m]
± , λ).

Let O denote the algebra of all holomorphic function on C with the topology of uniform conver-
gence on compact sets and O(1) (respectively O(0)) the set of odd (respectively even) holomorphic
function. We consider the vector space DO spanned by the differential operators (of infinite order) of
the form tkf(D), where f ∈ O. The bracket in D naturally extends to DO. Similarly, we define a com-
pletion DO,−

x (respectively DO,+
x ) of D−

x (respectively D+
x ) consisting of all differential operators

of the form t k f (D + k
2 )D where f ∈ O(k) (respectively f ∈ O(0)).

Then the two-cocycle � on D (respectively D±
x ) extends to a two-cocycle on DO (respectively

DO,±
x ). We denote the corresponding central extension by D̂O = DO⊕CC (respectively D̂O,±

x =
DO,±

x ⊕CC).
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Given s ∈ C, we will consider a family of homomorphisms of Lie algebras ϕ[m], ±
s : DO,±

x →
gl

[m]
∞ defined by

ϕ[m], ±
s (t k f (D + k

2
)D) =

∑
j∈Z

f (− j + k

2
+ s + u)(− j + s + u)E j−k, j

=
∑
j∈Z

m∑
i=0

( f (− j + k/2 + s)(− j + s))(i)

i!
ui E j−k, j

=
∑
j∈Z

m∑
i=0

f (i)(− j + k
2 + s)

i!
((− j + s) + u)ui E j−k, j ,

(4.6)

where f (i) denotes the ith derivative. Note that ϕ[m], ±
s is the restriction to DO,±

x of the homomorphism
(3.2.1) in Ref. 8.

Remark 4.1. The principal Z-gradations on DO,±
x and gl

[m]
∞ are compatible under the homo-

morphisms ϕ[m], ±
s .

Let

I [m], −
s, k = { f ∈ O(k) : f (i)(− j + k/2 + s) = 0 for all j ∈ Z, 0 � i � m},

I [m], +
s, k = { f ∈ O(0) : f (i)(− j + k/2 + s) = 0 for all j ∈ Z, 0 � i � m},

and let

J [m], −
s =

⊕
k∈Z

{t k f (D + k/2) : f ∈ I [m], −
s, k },

J [m], +
s =

⊕
k∈Z

{t k f (D + k/2) : f ∈ I [m], +
s, k }.

Proposition 4.2. Given s ∈ (C − Z/2) and m ∈ Z+ we have the following exact sequence of
Lie algebras:

0 → J [m], ±
s → DO,±

x

ϕ[m],±
s−−−→ gl

[m]
∞ → 0.

Proof. It is clear that kerϕ[m], ±
s = J [m], ±

s . We only need to prove that ϕ[m],±
s is surjective. We

recall the following well-known fact: for every discrete sequence of points in C and a non-negative
integer m there exists a(x) ∈ O having the prescribed values of its first m derivatives at these points.

Case ϕ[m],−
s (respectively ϕ[m],+

s ): since s �∈ Z/2 the sequence {− j + k/2 + s} j∈Z and { j −
k/2 − s} j∈Z are disjoint. We fix 0 ≤ i0 ≤ m and j0, k ∈ Z, then there exists a(x) ∈ O such that

• if k is even, a(i)(− j + k/2 + s) = a(i)( j − k/2 − s) = δi, i0δ j, j0/2,
• if k is odd, a(i)(− j + k/2 + s) = 2δi, i0δ j, j0 , a(i)( j − k/2 − s) = δi, i0δ j, j0

(respectively a(i)(− j + k/2 + s) = a(i)( j − k/2 − s) = δi, i0δ j, j0/2), and let

g(x) = i0!(a(x) + (−1)ka(−x))

(respectively g(x) = i0!(a(x) + a( − x))). Then

ϕ[m],±
s (t k g(D + k/2)D) = (u + (s − j0))ui0 E j0−k, j0 ,

and since {(u + (s − j0))ui }m
i=0 is a basis of Rm, then ϕ[m],±

s is surjective, finishing the proof. �
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Proposition 4.3. For s = 1
2 , we have the following exact sequence of Lie algebras:

0 → J [m]
1
2

→ DO,±
x → g± → 0,

where g+ := c[m]
∞ and g− := d

[m]
∞ .

Proof. The homomorphism ϕ
[m]
1
2

: DO
x → gl

[m]
∞ defined by

ϕ
[m]
1
2

(t k f (D)D) =
∑
j∈Z

f (u + 1

2
− j)(u + 1

2
− j)E j−k, j

=
∑
j∈Z

m∑
i=0

f (i)( 1
2 − j)

i!
((

1

2
− j) + u)ui E j−k, j

is surjective and the anti-involution σ ± is transferred through this homomorphism to an anti-
involution w± in gl

[m]
∞ that satisfies

w±

(
(u + 1

2
− j) f (u)Ei, j

)
= (±1)i+ j (−u + 1

2
− i) f (−u)E1− j,1−i ,

with f ∈ C[x], from which it is easy to see that

w±( f (u)Ei, j ) = (±1)i+ j (−u + 1

2
− i)(−u + 1

2
− j)−1 f (−u)E1− j,1−i . (4.7)

Then, the Lie algebra of − σ ± -fixed points in DO
x (namely DO,±

x ) maps surjectively to the Lie
algebra of −w±-fixed points in gl

[m]
∞ .

Now, we define the automorphism T : gl
[m]
∞ −→ gl

[m]
∞ by

T (ul Ei, j ) =
j−1∏
k=i

(
u − (k + 1

2
)

)
ul Ei, j if i < j,

T (ul Ei,i ) = ul Ei,i ,

T (ul Ei, j ) =
i−1∏
k= j

(
u − (k + 1

2
)

)−1

ul Ei, j if i > j .

On the other hand, let ρ ± (f(u)Ei, j) = (∓1)i + jf( − u)E1 − j, 1 − i be the anti-involution in gl
[m]
∞ that

define g±, then using (4.7) we have that

Tρ±|(gl
[m]
∞ )−1

⊕
(gl

[m]
∞ )0

⊕
(gl

[m]
∞ )1

= w±T |(gl
[m]
∞ )−1

⊕
(gl

[m]
∞ )0

⊕
(gl

[m]
∞ )1

. (4.8)

Then, since gl
[m]
∞ is generated by (gl

[m]
∞ )−1

⊕
(gl

[m]
∞ )0

⊕
(gl

[m]
∞ )1 and using (4.8), we obtain that

ρ± = T −1w±T . As before, the Lie algebra of −w±-fixed points in gl
[m]
∞ maps surjectively via T− 1

to the Lie algebra of − ρ ± -fixed points in gl
[m]
∞ , namely g±. So T −1 ϕ

[m]
1
2

maps surjectively DO,±
x

in g± and since T− 1 is an automorphism it is clear that kerT −1 ϕ
[m], ±
1
2

= J [m], ±
1
2

, finishing the

proof.

Proposition 4.4. For s = 0, we have the following exact sequence of Lie algebras:

0 → J [m]
0 → DO,±

x → L[m]
± → 0.
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Proof. We consider the following morphisms of Lie algebras: ϕ
[m]
0 as in (4.6) and T : gl

[m]
∞ −→

gl
[m]
∞ defined by

T (ul Ei, j ) =
j−1∏

k = i
k �= 0

(u − k) ul Ei, j if i < j,

T (ul Ei,i ) = ul Ei,i ,

T (ul Ei, j ) =
i−1∏

k = i
k �= 0

(u − k)−1ul Ei, j if i > j,

note that T(ulEi, j) = ul T(Ei, j). Then, T ϕ
[m]
0 : DO,±

x → L[m]
± is surjective and since T is an automor-

phism, it is clear that kerT ϕ
[m]
0 = J [m], ±

0 , finishing the proof. �
Remark 4.5. (a) For s = 0 and s = 1

2 , by an abuse the notation we will denote again ϕ[m], ±
s the

surjective homomorphism of Propositions 4.3 and 4.4.
(b) For s ∈ Z (respectively s ∈ Z + 1

2 ) the image of DO,±
x under the homomorphism ϕ[m], ±

s is

ν s̃ϕ
[m], ±
0 (DO,±

x ) (respectively ν s̃ϕ
[m], ±
1
2

(DO,±
x )), where ν was defined in (4.1) and s̃ = s (respectively

s̃ = s − 1
2 ). Therefore, we will only consider s = 0, 1

2 throughout the article.
(c) Observe that Proposition 4.4 is the corrected version of Proposition 5.3 in Ref. 4.

Now we want to extend the homomorphism ϕ[m], ±
s to a homomorphism between the central

extensions of the corresponding Lie algebras. Define

ηi (x, s) = e(s−1/2)x + (−1)i e−(s−1/2)x

2

xi

i!
(i ∈ Z+, s ∈ C).

The functions ηi(x, s) satisfy

ηi (x,−s) = (−1)iηi (x, s + 1), (4.9)

η0(x, s + 1/2) = cosh(sx).

Proposition 4.6. The homomorphism ϕ[m],±
s lifts to a Lie algebra homomorphism ϕ̂[m], ±

s of the
corresponding central extensions as follows:

ϕ̂[m], ±
s |(D̂±

x ) j
= ϕ[m],±

s |(D±
x ) j

( f or j �= 0),

ϕ̂[m], ±
s (sinh(x D)) = 1

2

m∑
i=0

∑
j∈Z

ηi (x, s − j + 1) − ηi (x, s − j)

sinh(x/2)
ui E j, j

−1

2

m∑
i=0

ηi (x, s)

sinh(x/2)
ui c0 + 1

2

cosh(x/2)

sinh(x/2)
c0, (4.10)

ϕ̂[m], ±
s (C) = 1.

Proof. Note that (D̂+
x )0 = (D̂−

x )0 and therefore ϕ̂[m],+
s |(D̂+

x )0
= ϕ̂[m],−

s |(D̂−
x )0

. See Proposition 5.2
in Ref. 4. �
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Let m = (m1, . . . , m N ) ∈ ZN
+ and s = (s1, . . . , sN ) ∈ CN be such that si ∈ Z implies si = 0,

si ∈ Z + 1
2 implies si = 1

2 and si �= ±s j mod Z for i �= j, combining Propositions 4.2, 4.3, 4.4, and
4.6 we obtain the following result.

Proposition 4.7. Given m and s as above, we have the following exact sequence of Lie algebras:

0 →
N⋂

i=1

J [mi ],±
si

→ D̂O,±
x

ϕ̂
[m],±
s−−−→ g

[m]
± → 0,

where ϕ̂
[m], ±
s = ⊕N

i=0 ϕ̂[mi ], ±
si

and g
[m]
± = ⊕N

i=0 g
[mi ]± with

g
[mi ]+ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ĝl

[mi ]
∞ , i f si �= 0, 1

2

c[mi ]∞ , i f si = 1
2

L[mi ]+ , i f si = 0

and

g
[mi ]− =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ĝl

[mi ]
∞ , i f si �= 0, 1

2

d [m]
∞ , i f si = 1

2

L[mi ]− , i f si = 0

.

V. REALIZATION OF QUASIFINITE HEIGHT MODULES OF D̂O,±
x

Let g[m] stand for ĝl
[m]
∞ or c[m]

∞ or d [m]
∞ or L[m]

± . The proof of the following proposition is standard.

Proposition 5.1. The g[m]-module L(g[m], λ) is quasifinite if and only if all but finitely many of

the ∗h(i)
k are zero, where * represents a or c or d or ± depending g[m] is ĝl

[m]
∞ or c[m]

∞ or d [m]
∞ or L[m]

± .

Let m = (m1, . . . , m N ) ∈ ZN
+ and s = (s1, . . . , sN ) ∈ CN be such that si ∈ Z implies si = 0,

si ∈ Z + 1
2 implies si = 1

2 and si �= ±s j mod Z for i �= j, take a quasifinite λi ∈ (g[mi ]± )∗0 for each i =
1, . . . , N and let L(g[mi ]± , λi ) be the corresponding irreducible g

[mi ]± -module. Let λ = (λ1, . . . , λN ).
Then the tensor product

L(g[m]
± , λ) =

N⊗
i=1

L(g[mi ]± , λi ) (5.1)

is an irreducible g
[m]
± -module, with g

[m]
± = ⊕N

i=1 g
[mi ]± as in Proposition 4.7. The module L(g[m], λ)

can be regarded as a D̂±
x -module via the homomorphism ϕ̂

[m],±
s , and will be denoted by L [m]

s (λ). We
shall need the following proposition. Its proof is analogous to that of Proposition 4.3.8

Proposition 5.2. Let V be a quasifinite D̂±
x -module. Then the action of D̂±

x on V naturally
extends to the action of (D̂O,±

x )k on V for any k �= 0.

Theorem 5.3. Let V be a quasifinite g
[m]
± -module, which is regarded as a D̂±

x -module via
the homomorphism ϕ̂

[m],±
s . Then any D̂±

x -submodule of V is also a g
[m]
± -submodule. In particular,

the D̂±
x -modules L [m]

s (λ) are irreducible if s = (s1, . . . , sN ) ∈ CN is such that si ∈ Z implies si =
0, si ∈ Z + 1

2 implies si = 1
2 , and si �= ± sj mod Z for i �= j.

Proof. Let U be a D̂±
x -submodule of V , then U is a quasifinite D̂±

x -module as well, hence
by Proposition 5.2 it can be extended to (D̂O,±

x )k for any k �= 0. By Proposition 4.7, the map
ϕ̂

[m],±
s : (D̂O,±

x )k → (g[m]
± )k is surjective for any k �= 0. Therefore, U is invariant with respect to all
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graded subspaces (g[m]
± )k (k �= 0) of g

[m]
± . Using that g

[m]
± coincides with its derived algebra, we finish

the proof. �
Given an irreducible highest weight D̂±

x -module L(D̂±
x , λ), using Theorem 3.8, we have that it

is quasifinite if and only if

�λ(x) = d

dx

(
φλ(x)

2 sinh
(

x
2

))
, (5.2)

where φλ(x) is an even quasipolynomial such that φλ(0) = 0.
On the other hand, observe that a functional λ ∈ (D̂±

x )∗0 is also characterized by �l = − λ(Dl + 1),
where l ∈ Z0

+, and the central charge λ(C) = c̄, cf. (3.3). Consider the new generating series:

�λ(x) =
∑
l∈Z0+

xl+1

(l + 1)!
�l = −λ(sinh(x D)), (5.3)

observe that �λ(x) satisfies (3.10), then using (3.14) we obtain

�λ(x) = φλ(x)

2 sinh
(

x
2

) .

We will show that in fact all the quasifinite D̂±
x -module can be realized as some L [m]

s (g[m]
± , λ),

and this is done by the study of exponents and multiplicities using the computation of the generating
series �m, s, λ(x) of the highest weight D̂O,±

x -module L [m]
s (g[m]

± , λ).

Proposition 5.4. For s ∈ (C − Z/2), consider the embedding ϕ̂[m]
s : D̂±

x → ĝl
[m]
∞ . Then the ĝl

[m]
∞ -

module L(ĝl
[m]
∞ , λ) regarded as a D̂±

x -module via ϕ̂[m]
s is isomorphic to L(D̂±

x ; e+, e−) where e+ , e−

consist of exponents (s − j − 1
2 ) with j ∈ Z and multiplicities

∑
0 � i � m,

i even

ah(i)
j x i

i!
and

∑
0 � i � m,

i odd

ah(i)
j x i

i!
,

respectively.

Proof. By Proposition 5.1 and Theorem 5.3, the D̂±
x -module L(ĝl

[m]
∞ , λ) is an irreducible quasifi-

nite highest weight module. Using (4.10), the central charge c = c̄. Using the explicit expression of

the homomorphism ϕ̂[m]
s : D̂±

x → ĝl
[m]
∞ given in Proposition 4.6, and the formulas (5.3), (4.10), and

(4.3), we have that

�m,s,λ(x) = −λ(ϕ̂[m]
s (sinh(x D)))

= 1

2

m∑
i=0

∑
j∈Z

ηi (x, s − j)

sinh(x/2)
ah(i)

j − 1

2

cosh(x/2)

sinh(x/2)
c0.

Now the proposition follows from the definition of exponents and their multiplicities. �
Proposition 5.5. Consider g

[m]
+ = c[m]

∞ , g
[m]
− = d [m]

∞ and the embedding ϕ̂
[m], ±
1
2

: D̂±
x → g

[m]
± .

Then the g
[m]
± -module L(g[m]

± , λ) regarded as a D̂±
x -module via ϕ̂

[m], ±
1
2

is isomorphic to L(D̂±
x ; e+, e−)

where e+ , e− consist of exponents j ∈ Z+ and multiplicities

∑
0 � i � m,

i even

gh(i)
j x i

i!
and

∑
0 � i � m,

i odd

gh(i)
j x i

i!
,

respectively, where gh(i)
j = 0 for i odd and g represents c or d depending on g

[m]
± .
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Proof. We will only need to compute �m, s, λ(x). The rest of the statement is clear, cf. the proof of
Proposition 5.4. Recall Remark 4.5(a) and consider the explicit computation of the homomorphism
ϕ̂

[m], ±
1
2

: D̂±
x → g

[m]
± given in Proposition 4.6. Using (5.3), (4.9), (4.10), and (4.4), we have that

�m,s,λ(x) = −λ(ϕ̂[m], ±
1
2

(sinh(x D)))

= 1

2

m∑
i=0

∑
j>0

ηi (x, j + 1/2)

sinh(x/2)
gh(i)

j

+1

2

∑
0 � i � m

i even

ηi (x, 1/2)

sinh(x/2)
gh(i)

0 − 1

2

cosh(x/2)

sinh(x/2)
c0,

which proves the proposition. �
Proposition 5.6. Consider the embedding ϕ̂

[m], ±
0 : D̂±

x → L[m]
± . Then theL[m]

± -module L(L[m]
± , λ)

regarded as a D̂±
x -module via ϕ̂

[m], ±
0 is isomorphic to L(D̂±

x ; e+, e−) where e+ , e− consist of
exponents − j − 1

2 with j ∈ Z+ and multiplicities

∑
0 � i � m,

i even

±h(i)
j x i

i!
and

∑
0 � i � m,

i odd

±h(i)
j x i

i!
,

respectively.

Proof. Recall Remark 4.5(a) and consider the explicit computation of the homomorphism
ϕ̂

[m], ±
0 : D̂±

x → L[m]
± obtained in Proposition 4.6. Using (5.3), (4.9), (4.10), and (4.5), we have that

�m,s,λ(x) = −λ(ϕ̂[m], ±
0 (sinh(x D)))

= 1

2

m∑
i=0

∑
j�0

ηi (x,− j)

sinh(x/2)
±h(i)

j − 1

2

cosh(x/2)

sinh(x/2)
c0,

which proves the proposition. �
Take an irreducible quasifinite highest weight D̂±

x -module L(D̂±
x , λ) with central charge c̄ and

�λ(x) = φλ(x)

2 sinh(x/2)
,

where φλ(x) an even quasipolynomial with φλ(0) = 0. We will write

φλ(x) + cosh(x/2)c̄ =
∑
s∈C

ms∑
i=1

as,i ηi (x, s), (5.4)

where as,i ∈ C and as, i �= 0 for only finitely many s ∈ C. Since, by definition of ηi, we have that
ηi(x, − s) = ( − 1)iηi(x, s + 1), to avoid ambiguities in the expression of φλ(x) above, we will
choose the parameter s following these rules: when s ∈ Z we require s ≤ 0; when s ∈ Z + 1

2 , we
ask s � 1

2 ; when s /∈ Z/2, we require that Im s > 0 if Im s �= 0 or s − [s] < 1
2 if s ∈ R, where Im s

is the imaginary part of s, and [s] denotes the biggest integer smaller than s, respectively.
Decompose the set {s ∈ C|as,i �= 0 for some i} into a disjoint union of equivalence classes

under the equivalence relation s ∼ s′ if and only if s = ±s ′ (mod Z). Pick a representative s in an
equivalence class S such that s = 0 if the equivalence class is in Z and s = 1

2 if the equivalence class
is in Z + 1

2 . Let S = {s, s − k1, s − k2, . . . } be such an equivalence class and take m = maxs ∈ S ms.
Put k0 = 0. It is easy to see that if s = 0 or 1

2 , then ki ∈ N.

We associate with S the g
[m]
± -module L [m]

S (g[m]
± , λS) in the following way: if s /∈ Z/2, let ah(i)

kr
=

as+kr ,i with i = 0, . . . , ms and r = 0, 1, 2, . . . . We associate with S the ĝl
[m]
∞ -modules L [m]

S (ĝl
[m]
∞ , λS)
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with central charges and labels

ci =
∑

kr

ah(i)
kr

, aλ
(i)
j =

∑
kr � j

(ah(i)
kr

− δkr ,0 ci ).

If s = 1
2 , let gh(i)

kr
= a 1

2 +kr ,i , with i = 0, . . . , m 1
2

and r = 0, 1, 2, . . . . We associate with S the

g
[m]
± -module L [m]

S (g[m]
± , λS) with central charges and labels

ci =
∑

kr

gh(i)
kr

(i even), ci = 0 (i odd), gλ
(i)
j =

∑
kr � j

gh(i)
kr

,

where g
[m]
+ = c[m]

∞ , g
[m]
− = d [m]

∞ and g represents c or d depending on g
[m]
± , j ∈ N, i = 0, . . . , m 1

2
.

Similarly if s = 0, ±h(i)
kr

= akr ,i , with i = 0, . . . , m0 and r = 0, 1, 2, . . . . We associate with S the

L[m]
± -module L [m]

S (L[m]
± , λS) with central charges and labels

ci =
∑

kr

±h(i)
kr

, ±λ
(i)
j =

∑
kr � j

(±h(i)
kr

− δkr ,0 ci ).

Denote by {s1, s2, . . . , sN} a set of representative of equivalence classes in the set {s ∈ C|as,i �=
0 for some i}. By Theorem 5.3, the D̂±

x -module L [m]
s (g[m], λ) is irreducible for s = (s1, . . . , sN ) such

that si ∈ Z implies si = 0, si ∈ Z + 1
2 implies si = 1

2 and si �= ±s j (mod Z) for i �= j. Then we have

�m,s,λ(x) =
∑

i

�mi ,si ,λi (x), c =
∑

i

c(i)
0 .

Using Theorem 5.3 and Propositions 5.4, 5.5, and 5.6, we have proved the following result.

Theorem 5.7. Let V be an irreducible quasifinite highest weight D̂±
x -module with highest weight

λ, central charge c̄, and

�λ(x) = φλ(x)

2 sinh(x/2)

with φλ(x) an even quasipolynomial such that φλ(0) = 0, which is written in the form (5.4). Then V
is isomorphic to the tensor product of the modules L [m]

S (g[m], λS) with distinct equivalence classes S.

Remark 5.8. A different choice of the representative s /∈ Z/2 has the effect of shifting ĝl
[m]
∞ via

the automorphism ν i for some i. It is easy to see that any irreducible quasifinite highest weight
module L(D̂O,±

x , λ) can be obtained as above as a unique way up to the shift ν.
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