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Quasifinite representations of classical Lie subalgebras
of W, p

José |. Garcia® and José . Liberati®)
Famaf-Ciem, Univ. Nac. Cordoba, Ciudad Universitaria, 5000 Cérdoba, Argentina

(Received 10 August 2012; accepted 13 June 2013; published online 2 July 2013)

We show that there are exactly two anti-involutions o 4 of the algebra of differential
operators on the circle that are a multiple of p(#9,) preserving the principal grada-
tion (p € C[x] non-constant). We classify the irreducible quasifinite highest weight
representations of the central extension 5;E of the Lie subalgebra fixed by —o ..

The most important cases are the subalgebras ﬁf of W, that are obtained when p(x)
= x. In these cases, we realize the irreducible quasifinite highest weight modules in
terms of highest weight representation of the central extension of the Lie algebra of
infinite matrices with finitely many nonzero diagonals over the algebra C[u]/(u"*")
and its classical Lie subalgebras of C and D types. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4812556]

. INTRODUCTION

The universal central extension D of the Lie algebra of differential operators on the circle
(described first in Ref. 7) is usually denoted by physicists as Wi1, and it is one of the W-infinity
algebras that naturally arise in various physical theories, such as conformal field theory, the theory
of quantum Hall effect, etc.

The difficulty in understanding the representation theory of a Lie algebra of this kind is that
although it admits a Z-gradation (and thus the associated triangular decomposition), each of the
graded subspaces is still infinite dimensional, and therefore the study of highest weight modules
with the finiteness requirement on the dimensions of their graded subspaces (which we will refer to
as quasifiniteness condition) becomes a non-trivial problem.

The study of quasifinite highest weight modules of D was initiated by Kac and Radul.® They
were able to give a characterization of its irreducible quasifinite highest weight representations and

these modules were constructed in terms of modules of the Lie algebra EI[DIZ] which is the central
extension of the Lie algebra g[g’g] of infinite matrices with finitely many nonzero diagonals taking
values in the truncated polynomial algebra R,, = C[u]/(u"*"). On the basis of this analysis, further
studies were made within the framework of vertex algebra theory for the D algebra,>° and for its
matrix version.® In Ref. 6 a general approach to the theory of quasifinite highest weight modules
over Z-graded Lie algebras was developed, which makes the basic ideas of Ref. 8 much clearer, and
these general results will be applied here. In Refs. 1 and 6, they develop the theory of quasifinite
highest weight representations of the subalgebras D of D, also known in the literature as Weo, ps
where D (p € C[x]) is the central extension of the L1e algebra Dp(t9,) of differential operators on
the 01rcle that are a multiple of p(79,). The most important of these subalgebras is Woo = D that is
obtained by taking p(x) = x. Classical Lie subalgebras of D appear by the study of anti-involutions
on D. The orthogonal subalgebras of D were studied in Ref. 10. The symplectic subalgebra of D
was considered in Ref. 2 in relation to number theory, and the representation theory was developed
in Ref. 4.
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__ Theidea of the present work is to extend some results from Ref. 10 to the family of subalgebras
D,,. More precisely, in Sec. II we show that there are exactly two, up to conjugation, anti-involutions
o 1 of Df preserving the principal gradation. In Sec. III, we classify the irreducible quasifinite

highest weight representations of the central extension ﬁ[f of the Lie subalgebra of ﬁp fixed by
— o 4. In particular, if p = 1, from our results we recover several theorems obtained in Ref. 10. The

other most important cases are the subalgebras Zf)\f of W, that are obtained by taking p(x) = x. For

these cases, in Sec. IV we study the interplay between 5f and some subalgebras of QT[L'Z], and in

Sec. V we realize the irreducible quasifinite highest weight representations in terms of the highest

weight modules of the Lie algebra ;{\[Z}L] and its classical Lie subalgebras of C and D types. Observe
that the symplectic subalgebra of D considered in Refs. 2 and 4 is a particular case of our general
results, in that it corresponds to D}

IIl. ANTIHINVOLUTION OF D} PRESERVING ITS PRINCIPAL GRADATION

Let D“ be the associative algebra of regular differential operators on the circle, i.e., the operators
on C[t, t~'] of the form

E = er(t)dF + e, (1) + -+ eo(t), where ¢;(t) € C[t,17'],

the elements

J =" ez, ke,
form its basis, where 0, denotes %. Another basis of D¢ is

Li=—t*D" (1 eZ,, ke,
where D = t9,. Let D denote the Lie algebra obtained from D¢ by taking the usual bracket, i.e.,

[t" f(D), ' g(D)] = "™ (f(D + s)g(D) — f(D)g(D +r)),
where f, g € C[x] and s, t € Z. Given p € C[x], consider the following family of subalgebras of
D*:
D; := D p(D),
and denote by D, the associated Lie algebra (cf. Ref. 6).
Letting wt t* f(D) = k defines the principal Z-gradation of D¢ and Dy

D4 = @(D4);. where (D%); = {t/ f(D)p(D) : f € Clx]}.
Jj€Z
An anti-involution o of DZ is an involutive anti-automorphism of DZ, i.e., 0 : D; — Df, with
o2=1d, c(bX +Y)=bo(X)+ o), and 6(XY) = o(Y)o(X), where X, Y € Df,, b e C.
The main result of this section is the following theorem with the classification of all anti-
involutions of D} that preserve the principal Z-gradation.

Theorem 2.1. Let p € C[x] be a nonzero polynomial. There exists an anti-involution in D}, that
preserves the principal Z-gradation if and only if there exists ¢ € C such that p(x) = ep(—x + ¢),
where ¢ = (— 1)%8®),

If deg(p) > 1, then c is unique and there exist only two anti-involutions given by

oL (t* f(D)p(D)) = e(£t)* f(=D — k + c)p(D). 2.1

If deg(p) = 0, then c is a free parameter, and there are only two families of anti-involutions
given by (2.1).

Remark 2.2. When deg(p) = 0, we recover the classification obtained in Proposition 2.1.1°

In the last part of this section, we present the proof of Theorem 2.1 throughout several lemmas.
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Let o : D, — D}, be an anti-involution that preserves the principal gradation. Then o induces
amap oy : D* — D as follows:

o(t* f(D)p(D)) = oo(t* £(D)) p(D). (2.2)

It is clear that o preserves the principal gradation and furthermore, the characterization of o is
equivalent to the characterization of 0.

Lemma 2.3. Let f, g € C[D] and k, m € Z. Then

(a) ogis C-linear;

(b) 0’02 =1d,

(¢) oot "AD + mp(D + m)g(D)) = oo("g(D)p(D)o o(*AD));
(d) oo(fiD)g(D)p(D)) = o o(fiD))oo(8(D)p(D) .

Proof. Using that ¢ is an anti-involution, (a) and (b) follow immediately. For f, g €
C[D], k, m € Z, we have

o (t* f(D)p(D)" g(D)p(D)) = oo(t" g(D)) p(D)ao(t* f(D)) p(D) (2.3)

and
o (¢ f(D)p(D)" g(D)p(D)) = oo(t" ™™ f(D + m)p(D + m)g(D))p(D) 2.4)
obtaining (c). Observe that (d) follows from (c) since (D%), is an Abelian subalgebra of D¢ and o
preserves the gradation, finishing the proof. |

We shall need the following notation: oot = &4, with g, in C[D].

Lemma 2.4. (a) For all k € 7., we have g, = £ 1.
(b) There exists ¢ € C such that for all k € Z and f € C[D], we have

oo(t* f(D)) = ext* f(—=D — k +¢).

Proof. Using Lemma 2.3(d) with f = g = 1, we have

oo(p(D)) = &2 p(D) (2.5)

then by Lemma 2.3(b) and (2.5), p(D) = ao(e(z,p(D)) and using again Lemma 2.3(d) with f= 1 and
g = &}, we obtain

p(D) = egoo(e2) p(D). (2.6)

Then from (2.6), 1 = 5000(5(%) therefore g is a constant. Moreover, by Lemmas 2.3(a) and (b), we
have 1 = 002(1) = 88, obtaining

g = £1. 2.7
Now we shall prove that
oo(t' D) = t'e; (sgo0(D) — 1) foralll € Z, andi € Z,, (2.8)

by using induction in i. The case i = 0 follows by notation. Now, using Lemma 2.3(c) with #AD) =
(D — I),f"g(D) = 1'D', we have

oo(t' D' p(D + 1)) = oo(t' D) p(D)oo(D — 1)
= t'e; (g900(D) — 1) p(D)(00(D) — &ol); 2.9)
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on the other hand, using again Lemma 2.3(c) with tkf(D) =1,"g(D) = D'+ 1 we obtain
oo(t' D™ p(D + 1)) = oo(t' D) p(D)sy. (2.10)

Comparing (2.9) with (2.10), and using (2.7), we obtain (2.8).
Note that, given f € C[x] and using the linearity of o together with (2.8), we have

oo(t* F(D)) = 1*&x f (900(D) — k). @110

Since o preserves the Z-gradation, we can assume that o¢(D) = g(D) for some g € C[x].
Then by Lemma 2.3(b) and (2.11), we have D = O’OZ(D) = g0g(e0g(D)). Using (2.7), it follows that
deg(g)* = 1 and therefore deg(g) = 1. Then o(D) = aD + bforsome a, b € C with a # 0. Finally,

D = 03(D) = og(aD +b) = a*D + (a + &y)b,
obtaining
00(D) = aD + b witha = %1, (a + £9)b = 0. (2.12)
Using Lemma 2.3(b) and (2.11), for all k € Z,
t* = 05 (t") = oo(t*ex) = t*ex(D)er(e0o0(D) — k), (2.13)

then deg(e;) = 0 and furthermore 8]% = 1, finishing the proof of (a).
Observe that, using (2.11), (2.12), and Lemma 2.4(a), we have

oo(t* F(D)) = ext* f(egaD —k +¢), where ¢ = gob.
Hence, in order to finish the proof of (b), it remains to see that ega = — 1. But
t*D = od(t*D)
= oo(ext*(spaD — k + gob))
= t*D — (goa + Dkt*

for all k in Z, therefore ega + 1 =0. O

Proof of Theorem 2.1. Let o : D} — DY be an anti-involution that preserves the principal
Z.-gradation. From (2.2) and Lemma 2.4(b)

o(t* f(D)p(D)) = ext* f(—=D — k + ¢)p(D) (2.14)

for some ¢ € C.
Moreover, from (2.5) and Lemma 2.4(a) we obtain oo(p(D)) = p(D). Then by Lemma 2.4(b),
we have that p must satisfy

p(D) = eop(—D + c) for some ¢ € C. (2.15)
If n = deg(p) > 0, by considering the coefficients of D" and D" ~ ! in both sides of (2.15), we

havegg=( — 1)"andc = — , respectively, where p(x) = Y /_, ¢;x', so cis totally determined

ncy,
by the coefficients of p.
If deg(p) = 0, using (2.15) we get &g = 1 and c is a free parameter.
On the other hand,
a(t* p(D)" p(D)) = o (1" p(D))o (1" p(D)) (2.16)
with

o (t* p(D)t" p(D)) = o ("™ p(D + m)p(D))
= et " p(—=D — k + c)p(D)
= &0ex4mt* " p(D + k) p(D) (2.17)
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and
o (1" p(D)a(t* p(D)) = enext™ p(D)t* p(D)
= enext*™ p(D + k)p(D). (2.18)
From (2.17) and (2.18) we have that (2.16) holds if and only if
Ektm = E0EKEm, (2.19)

and this is true for all k, m € Z. Then, if we take k = 1 and m = — 1 from (2.19) and Lemma 2.4(a),
we have that ¢; = ¢ _; and by induction

er = go(goe)) forall k € Z. (2.20)

Since ¢y is totally determined, we could have only two anti-involutions depending on the choice of
1. Using (2.14) and (2.20), we have the following cases:

o if &1 = g0, then o (FAD)P(D)) = et — D — k + )p(D);
e ife; = — &g, then o (FADP(D)) = eo( — ' — D — k + c)p(D).

Conversely, it is straightforward to check that if p satisfies (2.15) then the two previous cases
are anti-involutions, finishing the proof.

lll. QUASIFINITE HIGHEST-WEIGHT MODULES OVER ﬁ:

Let p € C[x] with n = deg(p) that satisfies Theorem 2.1, i.e., p(x) = ( — 1)"p( — x + c¢) for
some ¢ € C. We denote by ij the Lie subalgebra of D, consisting of its minus o 4 -fixed points,
1.e.,

D;E ={d €D, : 0.(d) = —d}.

It inherits a Z-gradation from D,, since o 1 preserves the principal Z-gradation of D), then fo =
@keZ(Df)k, where

(D) = {t* F(D)p(D) : f € Clx] and o1.(* f(D)p(D)) = —t* f(D)p(D)}.

Let us denote by @[x](o) (respectively C[x]'V) the set of all even (respectively odd) polynomials
in C[x]. Also, we let k = 0 if k is an odd integer and k = 1 if k is even. The following lemma gives
a complete description of (D,jf)k.

Lemma 3.1. (a) (D) = {f"f (D - %) p(D): f € C[x]@} :

(b) (D) = {tkf (D - %) p(D): f e @[x]<"+k>} .
Proof Let t* f(D)p(D) e (D;)k, then by Theorem 2.1
()" f(=D —k 4+ 0)p(D) = o_(t* f(D)p(D)) = —* f(D)p(D)
ifandonlyif( — 1" * ¥+ 1fix)=f — x — k + ¢). Wedefine g(w) = f (w + %) and for x =

c—k
w—

. we have g(—x) = f(-w —k +¢) = (=1 f(w) = (-1 f (x +2 3 k) -

. —k
(— 1)kt g(x), therefore g(w) € Clw]”* and g (x — CT> = f(x) finishing (b). The proof of

(a) is similar. O
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Remark 3.2 (Ref. 10).
We have the following two-cocycle on D, where f(x), g(x) € C[x]

> fimgm+r) ifr=—-s>0
V(' (D). 1*g(D)) = | ~r<ms-1 ,
0 ifr+s#0orr=s5s=0

and, using skew-symmetry, it is also defined when r = — s < 0. Denote by D the central extension
of D by a one-dimensional center CC, corresponding to the two-cocycle W, i.e., D = D + CC with
the following commutation relation:

[t" (D), 1'g(D)] = 1" (f(D + 5)g(D) — f(D)g(D + 1)) + W(t" f(D), 1'g(D))C.

Denote by ﬁ‘f the central extension of Df by CC corresponding to the restriction of the two-cocycle
v,
Letting wt t* f(D)p(D) = k, wt C = 0 defines the principal gradation of Zf)\;‘t

DE =P Din. where (DE) = (D) + 804 CC. 3.1)
keZ

In order to apply the general results on quasifinite representations of Z-graded Lie algebras
developed in Ref. 6, we need to study the parabolic subalgebras of 5,? Let us recall some general
definition and results from Ref. 6.

Let g = @jez g; be a Z-graded Lie algebra over C, and take g, = @j>0 g;. A Z-graded
subalgebra p of g is called parabolic if

p= @pj, where p; = g; for j > 0and p; # 0 for some j < 0.
JEZ
We assume the following properties of g:
(P1) go is commutative,
P2)ifa € gy (k > 0)and [a, g;] = 0, then a = 0.
Given a € g_; that is nonzero, we define p* = @jez p§, where p = g; forall j > 0 and

P =Y [..lla. gl gol. .. 1. %y = [p%. p%l.

It was proved in Ref. 6 that p“ is the minimal parabolic subalgebra containing a.

Definition 3.3. (a) A parabolic subalgebra p is called nondegenerate if p_ ; has finite codimension
ing_j forall j € N.
(b) An element a € g_, is called nondegenerate if p is nondegenerate.

We will also require the following condition on g:

(P3) If p is a nondegenerate parabolic subalgebra of g, then there exists a nondegenerate element
aep_.

A g-modulo V is called Z-graded if V = @jez Viand g;V; C V;;;. A Z-graded g-module is
called quasifinite if dimV; < oo for all j.

Given A € g, a highest-weight module is a Z-graded g-module V (g, A) generated by a highest-
weight vector v, € V (g, A)o which satisfies

hv, = A(h)v, forh € gand g v, = 0.

A nonzero vector v € V(g, A) is called singular if g, v = 0.
The Verma module over g is defined as usual:

M(g, 2) = U@ Qu (g, @ g,)Cr>

where C; is the one-dimensional (go € g )-module given by h—A(h) if h € g, g+ + 0, and the
action of g is induced by the left multiplication in /(g). Here and further {/(g) stands for the universal
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enveloping algebra of the Lie algebra g. Any highest weight module V (g, A) is a quotient module of
M(g, 1). The irreducible module L(g, A) is the quotient of M (g, A) by the maximal proper graded
submodule.

Consider a parabolic subalgebra p = @jez p; of g and let A € g be such that A |y, Ap.p1= 0.
Then the (go @ g+ )-module C; extends to a p-module by letting p; act as 0 for j < 0, and we may
construct the highest weight module

M(p,g,2) = u(ﬂ)@u(p)ck

called the generalized Verma module. Clearly all these highest weight modules are graded. The
following result gives the characterization of all irreducible quasifinite highest weight modules.

Theorem 3.4 (Ref. 6). Let g:GB].EZ g; be a Z-graded Lie algebra over C
that satisfies conditions (P1), (P2), and (P3). The following conditions on A e gy are
equivalent:

(a) M(g, A) contains a singular vector a.vy in M(g, A)_1, where a is nondegenerate.

(b) There exists a nondegenerate element a € g_, such that M([g;, a]) = 0.

(c) L(g,A) is quasifinite.

(d) There exists a nondegenerate element a € g_, such that L(g, A) is the irreducible quotient of
the generalized Verma module M (g, p°, 1).

Proof. (See Ref. 6). O

Now we will prove that Z’D\Ef satisfies the properties (P1), (P2), (P3) and therefore we can apply

Theorem 3.4. It is obvious that 5; satisfies (P1). In order to prove that 5?,[ satisfies (P2) and (P3),
we shall need the following results.

Lemma 3.5. Let f, g, h € C[x] be such that deg(fg) > 0 and
1" F(D). 1'g(D)] = "' h(D) + W (1" f(D), 1'g(D))C, (3.2)
then deg(h) = deg(f) + deg(g) — 1 if and only if deg(f)l # deg(g)k.
Proof. We suppose fiD) = D' and g(D) = D/ with i + j # 0, then from (3.2)
hij(D) = (D +1)'D) — (D + k)’ D',
it is clear that deg(h; ;) <i + j — 1, moreover the coefficient of D= sl — Jjk), therefore,

for this case the lemma is true. Now, let f(x) =) ", fix' and g(x) = Z;:o g jx«f be polynomials
such that n + m # 0, then

[ f(D), 1'g(D)] =) fig; D', 1'D/):= " fig; t'hy j(D),

iJj iJ

with deg(h; j) <i 4+ j — 1. Therefore, the proof reduces to the case s lh,,, n(D) := [¢*D", D™]
that was previously considered. m|

Lemma 3.6. Let p = @jeZ p; be a Z-graded subalgebra off)\[j,E with py = (l/?\[f)o.

(a) Ifp; #0, then it has finite codimension in (ﬁf)j\.
(b) Ifp_1 #0, then p_; has finite codimension in (D[f)_j forall j € IN.

Proof. In order to prove (a), it is enough to find a family {¢/ gx(D)p(D)}x>1 C p; with deg(gi)
=mg + 2k for some fixed my € Z (see Lemma 3.1).
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We may assume j # 0. Let #/ f(D)p(D) € p; be nonzero. By hypothesis and Lemma 3.1,
(D — %)%Wp(D) € po for all k > 1, then

[t/ f(D)p(D), (D — g)Wp(D)] =t/ g (D)p(D) € pj,

and by Lemma 3.5 we obtain deg(gr) = deg(f) +n +n — 1 + 2k, finishing (a).

Now, in order to prove (b) we only need to see thatp_; # Oforallj > 1. By induction, we suppose
p_; # 0 with j > 1. Then from the above argument, for all k > 1 there exists 1~/ g (D)p(D) € p_;
with deg(gy) = mo + 2k (mo € Z, fixed) and by hypothesis there exists t~' f(D)p(D) € p_, that
is nonzero. Hence, we can take ko € IN such that (n + deg(f))j # (n + my + 2ko), then by Lemma
3.5, we have that [t~ f(D)p(D), t =/ gy, (D) p(D)] € p_;_; is nonzero. O

Corollary 3.7. (a) ﬁ‘f satisfies (P2).

(b) Any parabolic subalgebra of ﬁf is nondegenerate.
(c) @y nonzero element of (5;[),1 is nondegenerate.
(d) Dljf satisfies (P3).

Proof. Let 1% f(D)p(D) € D be nonzero (with k > 0). Now, if we take 1g(D)p(D) € Dy
with nonconstant g, using Lemma 3.5, we obtain that

[t~ f(D)p(D), tg(D)p(D)] # 0,

proving that f)\[jf satisfies (P2).

Now, let p be a parabolic subalgebra of Z’D\f;, by definition there exists j € IN such that p_; # 0
then by (P2), p_; # 0, and the proof of (b) follows from Lemma 3.6(b). Finally, (c) follows from
(b), and (d) follows from (c). O

Let L(ﬁi, A) be an irreducible quasifinite highest weight module over ﬁ[f By Theorem 3.4,
there exists some monic polynomial b(x — %)p(x) such that (z~'b(D — %)p(D))vk = 0 (with
the polynomial b(x) being odd or even depending on 5?5 as described in Lemma 3.1). We shall
call such monic polynomial of minimal degree, uniquely determined by the highest-weight A, the
characteristic polynomial of L(D;E, A).

Letus denote by Z(f) (respectively ZS})) the set all even (respectively odd) non-negative integers.

A functional & € (D¥); is described by its labels A} = —A(D — £)' p(D)), wherel € Z, n =
deg(p) and the central charge A(C) = ¢. We can consider the generating series

)
A=Y )IC—'AI. (3.3)

()
1eZy

Recall that a quasipolynomial is a linear combination of functions of the form g(x)e**, where
q € C[x] and @ € C. Also we have a well-known characterization: a formal power series is a
quasipolynomial (respectively even quasipolynomial) if and only if it is annihilated by the action of
anontrivial linear differential operator with constant coefficients f{d) = 0, where f{x) is a polynomial
(respectively even polynomial).
__ The following theorem characterizes the irreducible quasifinite highest weight modules over
D=,

Theorem 3.8. A ﬁf-module L(l’)\;‘f, A) is quasifinite if and only if

_ d ¢ $:.(x)
[(x)=p (a + E) <2ST1’1(%)) ) (3.4)

where ¢; (x) is an even quasipolynomial such that ¢,(0) = 0.
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Proof. Recall that p satisfies
p(x)=(=1"p(=x +¢) (3.5)

where n = deg(p). We shall use the following identities, for f, ¢ € C[x]and a € C:

f <ii) o = f(da)e™, (3.6)
dx
P f(D) = f ( 24y f) =P @7
dx 2 7 '
+1 d — 4.1 2
i f <dx> gx) = f (dx ¥ 2) e*ig(x). (3.3)

Using (3.5) and (3.7),

80 = =52 (P79 + (— 1y e D) p(D))

1
2
1 d . )

_ x(D—%) _ ,—x(D-%)

= 2A< (dx+2)(e P )) (3.9)

Now, take I'; (x) a solution of

d c
Ay(x)=p <E + 5) (). (3.10)

It follows from Theorem 3.4 that L(ﬁi, A) is quasifinite if and only if there exists t~'b(D —
“hp(D) € (ﬁf),l such that

0= a([1(D — )Zk“p(D) 1'b(D ~ —)p(D)]) (3.11)
for all k € Z and by Lemma 3.1 and (3.1), b € C[x]® where § is given by

(3.12)

_|n, inthe case D+
T ln-1, 1nthecaseD

Taking generating series, (3.11) is equivalent to

0= %M[r(e"(”*% + (=1’ P~ p(D), 1~ h(D — %)p(mn
x (b

b(D— S pD + DpD (T 4 (-1 P

= Dp(D)(e" P T 4 (— 10T

NI'—‘

+b< ) (— 1)p(0)< <”¥'>X+(—1)5e<"¥‘>)f)c).
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Then using the identities (3.5), (3.6), (3.7), (3.8), (3.9), and (3.10)
o= 4 (ol + o =5
e - S (- e )
() (G + 5 )e (G +5)e
(B )
3 (GG + (e - 5
R
R L
e e o e )
e T
G [ e = ol S+ S
(3 + e+ ) eom(((5))e
=0 )G+ e+ 5 (s () ren o (5 )2)e)
It follows that L(D*, 1) is quasifinite if and only if there exists b € C[x]? (see (3.12)) such that
o= b+ I+ ) (e G o (F)e)).

Therefore, if L(ﬁ[jf, M) is quasifinite, then 2 sinh (%‘) ', (x) + cosh ((%)x)é is a quasipolynomial.

But, using (3.9) and (3.10), we get that I'; (x) is an odd function. Hence,

N

[SIEY

) X
$,(x) = 2sinh (5)1")\()0 (3.14)
is an even quasipolynomial such that ¢,(0) = 0, and using (3.10), we have
d ¢ ¢ (x)
A = —+ - )= 3.15
) =p (dx + 2) <2$inh(%‘)> (3.15)

Conversely, if (3.15) holds for some even quasipolynomial ¢, with ¢, (0) =0, then F(x) = ¢, (x) +

cosh ((%)x)é is an even quasipolynomial and it satisfies g <%> F(x) = 0 for some ¢ € C[x]°. In

particular, we have

(et S S0 =0

and therefore L(ﬁff, M) is quasifinite, finishing the proof. O
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The even quasipolynomial ¢, (x) + cosh ((%)x)é, where ¢, (x) is from (3.4) and ¢ is the
central charge, can be written in the form

c+1

¢, (x) + cosh (( )x)E = 3" gi@)cosh(ef x) + 3 r;(x) sinh(e; x), (3.16)
i J

where ¢;(x) (respectively r;(x)) are nonzero even (respectively odd) polynomials and e;" (respectively
e;) are distinct complex numbers. Note that ) . ¢;(0) = ¢.

The expression (3.16) is unique up to a sign of e;" or a simultaneous change of signs of e; and
rj(x). We call e/ (respectively e;) the even type (respectively odd type) exponents of L(D%, 1) with
multiplicities q;(x) (respectively rj(x)). We denote by e™ the set of even type exponents e;” with
multiplicity g;(x) and by e~ the set of odd type exponents e with multiplicity r;(x). Then the pair
(e™, e ) determines L(ﬁi, A) uniquely, and we shall also denote it as L(ﬁi; et,e).

Corollary 3.9. Let L(ﬁi, M) be an irreducible quasifinite highest weight module over ﬁpi,
b(x — %)p(x) be its characteristic polynomial with b(x) € C[x]? (see (3.12)), I'x(x) be a solution
of (3.10), and let F(x) = 2sinh(5)[",(x) + cosh((%)x)é. Then

d d c+1 d c—1
b\ — — — Fx)=0
<dx)p<dx+ 2 )p(dx+ 2 ) )
is the minimal order homogeneous linear differential equation with constant coefficients of the form
d d c+1 d c—1
— — — ith f € C[x]°,
f(dx>p<dx+ 2 >p<dx+ 2 )w’ f e ]

satisfied by F(x). Moreover, the exponents appearing in (3.16) are all roots of the polynomial
b)p(x + FHplx + Sh).

IV. INTERPLAY BETWEEN DY"* AND gil™, ¢l™, g™, AND ™

Denote by R,, the quotient algebra C[«]/(u"*+") and by 1 the identity element of R,,,. We let g[([)"g]
the Lie algebra of all matrices (a;;);, jez With finitely many nonzero diagonals with entries in Ry,.
Also denote by Ej; the infinite matrix with 1 at (7, j) place and O elsewhere. Letting wt E;; = j — i
defines the principal Z.-gradation of g[ggl. There is a standard automorphism v of g[gg] given by

V(E; ;) =Eiq1,j41- 4.1
Consider the following two-cocycle on g[gg] with values in Ry,

C(A, B) =1tr([J, AlB), 4.2)

where J = ); - oEj;, and denote by gT[ZZ] = g[gg] @ Ry, the corresponding central extension. The
Z.-gradation of this Lie algebra extends from g[L’Z] by letting wt Ry, = 0.

Given A € (a[gg])(’;, we let
cj = Mu’),
%’ = M B, (4.3)

ap = a9 a3 10

where i € Z and j = 0, ..., m. The superscript a corresponds to the type A Lie algebra QT[[;Z] Let

L(gl,, , 1) be the irreducible highest weight g[z]—module with highest weight A. The a)\ﬁf ) are called
the labels and c; are the central charges of L(aZZ], ).
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Consider the vector space Ry, [#, ¢~ '] and take its basis v; = ' (i € Z) over Ry,. Let us consider
the following C-bilinear forms on this space:

C"v;, u"v;) = u™(—u)"(—1)'8;1—;,
D™ v, u"v;j) = u"(—u)"8; 1—;.

Denote by E[o’g] and d " the Lie subalgebras of g[[m] which preserve the bilinear forms C and D,
respectively. We have,

! = (A e gl A ) = (=D)AL L),

[m] m
de =1{A e gl A j(u) = —A1_j1—i(—uw)}.

Denote by ¢! = @R, and d! = d e R,, the central extension of ¢ and Egg], respectively,

given by the restriction of the two-cocycle (4.2). These subalgebras 1nher1t from Elgz] the principal
Z.-gradation.

Let g stand for ¢! or d!1. Given 1 € (g);, denote by L(g, 1) the irreducible highest weight
module over g with highest weight 1. We let

cj = Aul),
8,\(,” = Mu/Ej; — (—u) Ei1_i 1-),
gh(l) g)\(ﬁ _g )‘({21’ 4.4)
$hi’ =90 4+ ¢; (j even),

where i € Z,j=0, ..., mand the superscript g represents ¢ or d depending on whether g is ¢! or
d™. The A\ are called the labels and ¢; are the central charges of L(g, 1.
We define

LM = (A e g™ | A ) = —(FI T A_; _i(—u)ifij >0 v i=j=0;

Apj) = (FOM A Li(—u)ifij < 0; Ajou) = (F1) uAoi(—u);

Aio) = —(F1)'uAg_i(—u) fori € N},

subalgebras of g[gg]. Denote by ET = ZT@R,H the central extension of ZT], given by the restriction

of the two-cocycle (4.2). These subalgebras inherit from az] the principal Z-gradation.
Given A € (EE{E"])Z‘), we let

D = MW Ei; — (—u) E_; ), 4.5)
) =20 £ 4 80¢),

wherei € Zandj=0,...,m. The superscript & corresponds to the Lie algebras Ei” I Let L(KE'E” 1)
be the irreducible highest weight gl-. -module with highest weight 1. The £/ are called the labels
and c; are the central charges of L(EE’E"], 2.

Let O denote the algebra of all holomorphic function on C with the topology of uniform conver-
gence on compact sets and OV (respectively O©) the set of odd (respectively even) holomorphic
function. We consider the vector space D? spanned by the differential operators (of infinite order) of
the form tkf(D), where f € O. The bracket in D naturally extends to DO. Similarly, we define a com-
pletion Df?’ - (respectively Df?’ *) of D} (respectively D) consisting of all differential operators
of the form t* f(D + 4)D where f € O (respectively f € O0).

Then the two- cocycle W on D (respectively D¥) extends to a two-cocycle on DO (respectively
DO *). We denote the corresponding central extension by DO = DPaCC (respectively DO =

Df? *@CC).
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Given s € C, we will consider a family of homomorphisms of Lie algebras ¢l * : DY % —
g[{;g] defined by

., k ok .
o™ E (% £(D + D) = ng:f(—] + st s

-y i (f(=j+k/24 =]+,
= u'E

i!

j—k.j
jeZ i=0

fOith+s ;
= Zzl—'2((—] +S)+M)M Ejfk,j,
JEZ i=0 ’

(4.6)

[m], £ §

where £ denotes the ith derivative. Note that ¢ £ is the restriction to DY * of the homomorphism

(3.2.1) in Ref. 8.

Remark 4.1. The principal Z--gradations on Df' * and g[gg] are compatible under the homo-

morphisms @™ *.
Let
"= =(fe0®: fO(—jtk/2+s)=0forall j € Z, 0<i<m),
M ={fe0®: fO(—j+k/2+s)=0forall j € Z, 0<i<m},
and let

Jm = = QDU FD +k/2): f e 17,

keZ

JmMt = Pt fD+k/2): f e 1.

keZ

Proposition 4.2. Given s € (C — Z/2) and m € Z we have the following exact sequence of
Lie algebras:

R M )

[m], £ _ J[m] + [m]. £ 4

Proof. 1t is clear that ker g, . We only need to prove that ¢ is surjective. We
recall the following well-known fact: for every discrete sequence of points in C and a non-negative
integer m there exists a(x) € O having the prescribed values of its first m derivatives at these points.

Case ¢!~ (respectively ¢! T): since s ¢ Z/2 the sequence {—j + k/2 + s};cz and {j —
k/2 — s}z are disjoint. We fix 0 < iy < mand jo, k € Z, then there exists a(x) € O such that

o ifkiseven, a®(—j +k/2+s) =a®(j — k/2 —8) =200/, jo/2,
o ifkisodd, a(—j +k/2+5) =288 jo, @D —k/2—15)=238:i; iy

(respectively a(—j +k/2 +5) = aV(j —k/2 —s) = 8; 1,8}, j,/2), and let
g(x) = ip!(a(x) + (= Dfa(—x))
(respectively g(x) = ip!(a(x) + a( — x))). Then
" E (1 g(D 4+ k/2)D) = (u + (s = jo)u" Ejo—_jy»

[m], %+ ;

and since {(# + (s — jo))u' }'" o 1s a basis of Ry, then ¢} is surjective, finishing the proof. O
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Proposition 4.3. For s = %, we have the following exact sequence of Lie algebras:
0— Jg"] - DY%* 5§, -0,

where g, :=c and §_ = EL’Z].

Proof. The homomorphism ¢! : DO — g("! defined by

" PO B
oM f(D)D) = ,%f(” + 5= Dt S = DEjk;

m )1 .

PG -pn 1 ;

= ZZ i—'((z —DHwuE;
J€Z i=0 ’

is surjective and the anti-involution o 1 is transferred through this homomorphism to an anti-

involution w. in gl that satisfies

1 o 1
W ((u +t5- ])f(u)Ei,j) = (D)™ (~u+ 5 ~DfEWE -,
with f € C[x], from which it is easy to see that

o 1. |
we(f@)E; ;) = (ED)™ (—u + 5 T DUt o =) "f—wE 1. 4.7
Then, the Lie algebra of — o 4 -fixed points in DY (namely DY *) maps surjectively to the Lie
algebra of —w_-fixed points in g[gg].
Now, we define the automorphism 7' : gl — gil”l by
Jj—1 1
TWE,; ;) = k]j (u — (k+ 5)) WE;; ifi < j,
TW'Ei;) = u'E;;,
i-1 1\
TWE )= ]_[ (u —(k+ 5)) WE;; ifi>j.

k=j

On the other hand, let p 4+ (Au)E; ;) = (F1)' * /A — u)E; _ ;1 _ ; be the anti-involution in gl that
define g, then using (4.7) we have that

Toxligum, @i, @@y, = WxT lgim) , @i, @), - (4.8)

Then, since g[L'g' is generated by (g[L’g')_l @(g[!,';’])o @(g[{,’g')l and using (4.8), we obtain that
p+ = T~ 'w.T. As before, the Lie algebra of —w..-fixed points in g[gg] maps surjectively via T~

[o”.f], namely g,. So 77! (p[lm] maps surjectively D>+
2

to the Lie algebra of — p 4 -fixed points in gl

in g, and since 7' is an automorphism it is clear that kerT~' @U""* = J"»* finishing the
2 2
proof.

Proposition 4.4. For s = 0, we have the following exact sequence of Lie algebras:

0— JO['"] — Df?’i — ZT] — 0.
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Proof. We consider the following morphisms of Lie algebras: <p[m| asin (4.6)and T : g[[o'g] —
gl defined by

j—1
TWE; )= H (w—ku'E; ifi < j,
k=i
k#0
TW'E;;))=uE;,
i—1
TWE; )= H w—k WE; ifi>j,
k=i
k#0

note that T(u'E; j) = u' T(E; ;). Then, To"! : DO+ — Z[m] is surjective and since 7 is an automor-

phism, it is clear that ker Tgo[m] Jy Im)- % finishing the proof. O

Remark 4.5. (a) For s =0and s = by an abuse the notation we will denote again ¢!™* the
surjective homomorphism of Propositzons 4.3 and 4.4.

(b) For s € Z (respectively s € 7. + 2) the image ofDO * under the homomorphism ¢!
[m] + s [m] +

Iml, + ;
(D(9 +) (respectively " (Df? +)), where v was defined in (4.1) ands = s ( respectlvely
S=5—3 L). Therefore, we will only consider s = 0, + throughout the article.

(c) Observe that Proposition 4.4 is the corrected version of Proposition 5.3 in Ref. 4.

Now we want to extend the homomorphism ¢! * to a homomorphism between the central
extensions of the corresponding Lie algebras. Define

e(sfl/Z)x + (_l)ief(sfl/Z)x xi
2 i!

ni(x,s) = (ieZy, seC).

The functions 7;(x, s) satisfy

ni(x, —s) = (=Dn;i(x, s + 1), (4.9)
no(x, s + 1/2) = cosh(sx).

Proposition 4.6. The homomorphism @™+ lifts to a Lie algebra homomorphism @™ * of the
corresponding central extensions as follows:

@m] i| Y)j — [m]il(Di)j fOV] 750)
. 1 & ni(x,s —j+ 1D —mx,s—j) ;

3" £ (sinh(x D)) = — iE. .

¢~ (sinh(x D) 2ZZ sinh(x/2) HE
i=0 jeZ
1 & 7 4 1 cosh(x /2

——Z ni(x,s) lo+ cos (x/) 4.10)

2 = sinh(x/2) smh(x/2)

pmEC) = 1.

. RPfrc;of Note that (ﬁj)o = (5;)0 and therefore @\ *| 5+, = @I""7| 5., . See Proposition 5.2
in Ref. 4. O
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Letm = (my,...,my) € ZY and 5 = (s, ..., sy) € CV be such that s; € Z implies s5; = 0,
si €2+ % implies s; = % and s; # £s5; mod Z for i # j, combining Propositions 4.2, 4.3, 4.4, and
4.6 we obtain the following result.

Proposition 4.7. Given m and s as above, we have the following exact sequence of Lie algebras:

N
0— m Js[im"]’i DO SN g:l: — 0,
i=1

where o' = @Y o1 = and " = @), o' with
gl ifsi#0, 1
9[+m]= cmil,if s :%
£ ifsi=0
and
gl if s #£0, 1
gt =Ram,  ifs =1
£l if s =0

V. REALIZATION OF QUASIFINITE HEIGHT MODULES OF D¢"*

Let g™! stand for E[gg] or ¢l or d or £, The proof of the following proposition is standard.

Proposition 5.1. The g™ -module L(g"™, \) is quasifinite if and only if all but finitely many of
the *hi’) are zero, where * represents a or ¢ or d or £ depending g'™ is g[[org] or c™ or di™ or /JEL"].

Letm = (my, ... mN) € Z% and 5 = (s, ..., sy) € CV be such that s; € Z implies 5; = 0,
s; € Z+ % implies s; = § and s; # +s; mod Z. forz # j, take a quasifinite A; € (g" ])0 foreachi =

1, , N and let L(g[m il A;) be the corresponding irreducible g[m _module. Let % = (A, .ey AN).
Then the tensor product

Lg% Q@L@W] (5.1)

is an irreducible g; -module, with g; = @l ! gi Vasin Proposition 4.7. The module L(g"!, 1)
can be regarded as a Di-module via the homomorphism @ "= "and will be denoted by L%j (1). We
shall need the followmg proposition. Its proof is analogous to that of Proposition 4.3.3

Proposition 5.2. Let V be a quasifinite Di—module Then the action of Di on V naturally
extends to the action of (DO ) on'V forany k # 0.

Theorem 5.3. Let V be a quastﬁmte g[m]-module, which is regarded as a ﬁf-module via
the homomorphism @ Am = Then any Df-submodule of V is also a gT 1_submodule. In particular,
the Df-modules Lg ](A) are irreducible if s = (s1, ..., sy) € CV is such that s; € Z implies s; =

0, s;ieZ+ % implies s; = %,andsi;zé £ s;mod Z fori #j.

Proof. Let U be a Di-submodule of V, then U is a quasifinite Di-module as well, hence
by Proposition 5.2 it can be extended to (DO +); for any k # 0. By Proposition 4.7, the map
@m] *. (Df? ), — (g )k is surjective for any k 7% 0. Therefore, U is invariant with respect to all
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graded subspaces (g[m])k (k#0) of gf]. Using that gf] coincides with its derived algebra, we finish
the proof. m|

Given an irreducible highest weight ﬁf -module L(ﬁf, A), using Theorem 3.8, we have that it
is quasifinite if and only if

d $1(x)
Ay (x —], 5.2
{0 =05 <2sinh(§)> 62
where ¢, (x) is an even quasipolynomial such that ¢, Q)) =0

On the other hand, observe that a functional A € (D)} is also characterizedby I'; = — A(D' + 1),

where [ € Z(}r, and the central charge A(C) = ¢, cf. (3.3). Consider the new generating series:

sl

T(x) = Z mrl = —A(sinh(x D)), (5.3)

1eZ’,
observe that I'; (x) satisfies (3.10), then using (3.14) we obtain

_ ¢
) = 2sinh (3)

We will show that in fact all the quasifinite Di -module can be realized as some L[m](g[m] A),
and this is done by the study of exponents and multlphcmes using the computation of the generating
series I, ;. (x) of the highest weight DO *_module LU(g!", ).

Proposition 5.4. For s € (C — Z,/2), consider the embedding o™ : ﬁf — QTIL'Z] Then the a[lorzl_

module L(E[[O'ZI, M) regarded as a ﬁf-module via @”‘] is isomorphic to L(ﬁf; et,e ) wheree™,e”
consist of exponents (s — j — %) with j € 7. and multiplicities

ah(f‘)xi ah(f)xi
IR S
i! i!
0<i<m, 0<i<m,
i even i odd

respectively.

Proof. By Proposition 5.1 and Theorem 5.3, the Di-module L(g A) is an irreducible quasifi-
nite highest weight module. Using (4.10), the central charge ¢ = . Using the explicit expression of

the homomorphism @ : ﬁf — 3[([:2] given in Proposition 4.6, and the formulas (5.3), (4.10), and
(4.3), we have that

Tps0(x) = =A@ (sinh(x D)))

ZZ nl(x s — J)a (l) 1 COSh(x/Z)
sinh(x /2) hj 2 sinh(x /2)
Now the proposition follows from the definition of exponents and their multiplicities. m|
Proposition 5.5. Consider gE’rn] = clml, g[_m] =d" and the embedding g’zf[lm]’i : ﬁj[ — g[im]
2
Then the gi Limodule L(g[m] ) regarded as a D¥-module via gﬁﬁm]' *is isomorphic to L(D¥; e, e7)
2

where e™ e consist of exponents j € Z., and multiplicities

gh(f)xi gh(f)xi
> e xR
i! i!
0<i<m, 0<i<m,
i even i odd

respectively, where & h(ji) = 0 for i odd and g represents c or d depending on g[f 1
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Proof. We will only need to compute I', 5 (x). The rest of the statement is clear, cf. the proof of
Proposition 5.4. Recall Remark 4.5(a) and consider the explicit computation of the homomorphism
aﬁm] * . D* - g given in Proposition 4.6. Using (5.3), (4.9), (4.10), and (4.4), we have that

Cpsr(x) = A(A[”” *(sinh(x D)))

_ _ZZ nilx, j+1/2), gp
- < sinh(x/2) J

1 i(x,1/2 »  1cosh(x/2

4o Z 71.( /)ghg)) (/)

2 Nt sinh(x /2) 2 smh(x/Z)
Teven

which proves the proposition. O

Proposition 5.6. Consider the embedding g’ﬁ([)m]’ . ﬁxi — E[j["]. Then the E[f]-module L(ET], A)
regarded as a Df-module via (oﬁ(l)"ll’i is isomorphic to L(Df;e*, e”) where e™,e” consist of
exponents —j — % with j € 7.4 and multiplicities

ih;’)x’ ihy)xz
E - and E —
i! i!
0<i<m, 0<i<m,
i even i odd

respectively.

Proof. Recall Remark 4.5(a) and consider the explicit computation of the homomorphism
<p0 m]. & DﬁE — Elm' obtained in Proposition 4.6. Using (5.3), (4.9), (4.10), and (4.5), we have that

Cos(x) = =A@ *(sinh(x D)))

_iz MO =) 4y 1oosh(x/2)

=% sinh(x /2) hj 2smh(x/2) 0

which proves the proposition. m|

Take an irreducible quasifinite highest weight ﬁf—module L(ﬁf, A) with central charge ¢ and

. (x)

Mx) = ZST()C/Z)’

where ¢, (x) an even quasipolynomial with ¢, (0) = 0. We will write

$a.(x) + cosh(x/2)c = > > ag mi(x, 5), (54)
seC i=l
where a;; € C and a, ; # 0 for only finitely many s € C. Since, by definition of 7;, we have that
ni(x, —s) = ( — 1)ni(x, s + 1), to avoid ambiguities in the expression of ¢; (x) above, we will
choose the parameter s following these rules: when s € Z we require s < 0; when s € Z + %, we
ask s < %; when s ¢ Z,/2, we require that Ims > O if Ims £ 0 or s — [s] < % if s € R, where Im s
is the imaginary part of s, and [s] denotes the biggest integer smaller than s, respectively.
Decompose the set {s € C|a,; # 0 for some i} into a disjoint union of equivalence classes
under the equivalence relation s ~ s/ if and only if s = 45’ (mod Z). Pick a representative s in an
equivalence class S such that s = 0 if the equivalence class isin Z and s = % if the equivalence class
isin Z + % LetS={s,s — k1,5 — ka, ...} be such an equivalence class and take m = max; ¢ s m;.
Put ky = 0. It is easy to see that if s = 0 or l , then k; € IN.
We associate with S the g/'-module L[m](g[m] As) in the following way: if s ¢ 7Z./2, let "h,(c’;) =

Asik, i Withi=0,...,myandr=0, 1, 2, .... We associate with S the az]-modules L[Sm](a[[otz], As)
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with central charges and labels
¢ = Zah(l,)7 a)“(jl) — Z(ahg) _ ak,,O ).
k, ko>
If s = %, let gh;fy) =dai with i =0, .. S,y and r = 0,1,2, .... We associate with S the

g[j[" L_module L[Sm](gg'[" ], As) with central charges and labels

ci =Y ¢h) (i even),c; =0 (i odd), £A% =) £y,

e k>j
where gE’r"J = c[o’g], g[l"] = dgg'] and g represents ¢ or d depending on g[i"”, jeN,i=0,..., mi.
Similarly if s = 0, *A) = a; ;, with i = 0, ..., mg and r = 0,1,2, .... We associate with S the

r

LZ‘ _module L[Sm]([lz" I s) with central charges and labels

= Y, 90 = YR — 50 .
k,

ke2j

Denote by {si,s2, ..., sy} a set of representative of equivalence classes in the set {s € Cla,; #
0 for some i}. By Theorem 5.3, the Dxi-module Léﬂ (g, ) is irreducible for s = (sy, .. ., sy) such
thats; € Z implies s; =0, s; € Z + % implies s; = % and s; # =£s; (mod Z) for i # j. Then we have

Drsi@) = Topsa, ), c=Y cf).

Using Theorem 5.3 and Propositions 5.4, 5.5, and 5.6, we have proved the following result.

Theorem 5.7. Let V be an irreducible quasifinite highest weight ﬁf—module with highest weight
X, central charge ¢, and

_ dx)
L) = 5 inhGe2)

with ¢, (x) an even quasipolynomial such that ¢,(0) = 0, which is written in the form (5.4). Then V
is isomorphic to the tensor product of the modules Lgm](g[’"], As) with distinct equivalence classes S.

Remark 5.8. A different choice of the representative s ¢ Z./2 has the effect of shifting E[EZ] via
the automorphism Vi for some i. It is easy to see that any irreducible quasifinite highest weight
module L(Df?’i, A) can be obtained as above as a unique way up to the shift v.
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