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Abstract We study the copointed Hopf algebras attached to the Nichols al-
gebra of the affine rack Aff(F4,w), also known as tetrahedron rack, and the
2-cocycle —1. We investigate the so-called Verma modules and classify all the
simple modules. We conclude that these algebras are of wild representation
type and not quasitriangular, also we analyze when these are spherical.

1 Introduction

We work over an algebraically closed field k of characteristic zero. Let G be
a finite non-abelian group and let k& denote the algebra of functions on G. A
Hopf algebra with coradical isomorphic to k& for some G is called copointed.
Nicolas Andruskiewitsch and the second author began the study of the co-
pointed Hopf algebras by classifying those finite-dimensional with G = S3 in
[AV1] and by analyzing the representation theory of them in [AV2].

Since k¢ is a commutative semisimple algebra, the representation theory
of a copointed Hopf algebra over k¢ is studied in [AV2] by analogy with
the representation theory of semisimple Lie algebras, with k¢ playing the
role of the Cartan subalgebra and the induced modules from the simple one-
dimensional k¥-modules as Verma modules.
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There are few examples of Nichols algebras of finite-dimension over non-
abelian groups, see for instance [G2,HLV]. In particular, those arising from
affine racks are only seven, including the tetrahedron rack. If X is one of these
affine racks, then all the liftings of the Nichols algebra B(—1, X) over k¢ were
classified in [GIV], where G is any group admitting a principal YD-realization
of X with constant 2-cocycle —1. Also the liftings of B(X, —1) over the group
algebra kG were classified in [GIV].

The notation used in the following is explained in Section 3. Let G be a
finite group and V € ﬁﬁy@ a faithful principal YD-realization of the tetrahe-
dron rack with constant 2-cocycle —1. The Nichols algebra B(V') has dimension
72. The ideal of relations of B(V') is generated by four quadratic elements and
only one of degree six called z. By [GIV], the liftings of B(V') over k¢ are the
copointed Hopf algebras {Ag x}rek, in which the quadratic relations of B(V)
still hold and the 6-degree relation z = 0 deforms to z = A(1 — x;!) € k.

The goal of this paper is to investigate the representation theory of the
family {Ag »}rex following the strategy of [AV2]. We conclude that there are
essentially two kinds of Verma modules. Here is an account of our main results
which apply to any group G admitting a faithful principal YD-realization of
the tetrahedron rack with constant 2-cocycle —1:

o Let g € G. If the element z = \(1 — x; 1) annihilates the generator of the
Verma modules M, then M, inherits a structure of B(V)-module such that
it is a free B(V)-module of rank 1, see Lemma 14. Hence M, has a unique
simple quotient of dimension 1 called k.

o Otherwise M, is the direct sum of siz 12-dimensional non isomorphic
simple projective modules LY, see Lemma 15. Tables 1-6 in the Appendiz de-
scribe the simple modules LY.

o We prove that Ag,x is of wild representation type, Proposition 17.

o We give a necessary condition for a copointed Hopf algebra to be quasitri-
angular, Lemma 8. As a consequence Ag. x is not quasitriangular, Proposition
12.

o We characterize those Ac x which are spherical Hopf algebras, see Propo-
sition 18.

The other copointed Hopf algebras classified in [GIV] are defined by similar
relations to Ag,x, roughly speaking a set of quadratic ones and other single
relation of bigger degree, but their dimension are much bigger than dim Ag =
72|G|. To extend this work to the other copointed Hopf algebras in [GIV], a
better understanding of the corresponding Nichols algebras is needed. We hope
that our work will be useful for this purpose.

The paper is organized as follows. In Section 2 we analyze the representa-
tion theory of copointed Hopf algebras with emphasis in the weight spaces of
the modules, we characterize the one-dimensional modules and describe the
subalgebra corresponding to the homogeneous elements of degree e € G. In
Section 3, we present our main object of study: the algebras B(V) and Ag x.
In Section 4 we concentrate our attention on representations of the algebras
{Ac.a}rek. A description of the simple A x-modules is in the Appendix.
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1.1 Conventions and notation

We set k* =k \ {0}. If X is a set, kX denotes the free vector space over X.
Let A be a Hopf algebra. Then A, e, S denote respectively the comultipli-
cation, the counit and the antipode. The group of group-like elements is G(A).
Let 4D be the category of Yetter-Drinfeld modules over A. The Nichols al-
gebra B(V) of V € 4YD is the graded quotient T'(V)/J where J(V) is the
largest Hopf ideal of T (V') generated as an ideal by homogeneous elements of
degree > 2 [AS, 2.1].

Let {Ap,)}n>0 denote the coradical filtration of A. Assume A = H is
a Hopf subalgebra. Let grA be the graded Hopf algebra associated to the
coradical filtration. Then grA ~ R#H where R € £YD is called the diagram
of Aand V = Ry € HYD is the infinitesimal braiding [AS, Definition 1.15].
If R = B(V), then A is said to be a lifting of B(V') (over H).

Recall that two idempotents e,e € A are orthogonal if ee = 0 = €e.
An idempotent is primitive if it is not possible to express it as the sum of two
nonzero orthogonal idempotents. A set {e; };er of idempotents of A is complete
ifl1= Zie[ €;.

Agsume dim A < oco. Then A is a Frobenius algebra, see e. g¢. [FMoS,
Lemma 1.5]. Let e be a primitive idempotent of A. Then top(Ae) = Ae/rad(Ae)
and the socle soc(Ae) of Ae are simple modules [CR, Theorems 54.11 and
58.12]. Moreover, Ae is the injective hull of soc(Ae) and the projective cover
of top(Ae), see e. g. [CR, page 400 and Theorem 58.14]. We denote by Irr A
a set of representative of simple A-modules.

2 Representations of copointed Hopf algebras

Let G be a finite group, kG the group algebra and k& the algebra of functions
on G. Let {g: g € G} and {6, : g € G} be the dual basis of kG and k¢,
respectively; e denotes the identity element of G.

If M is a k%-module, then M[g] = &, - M is the isotypic component of
weight g € G. We denote by k, the one-dimensional k%-module of weight g.
We define

M* =@g2.M[g] and SuppM = {g € G: M|g] # 0}.

Let A be a finite-dimensional copointed Hopf algebra over k©, i. e. its
coradical is isomorphic to k&. We consider A as a left k-module via the left
adjoint action

addy(a) = Y _6.ad-, VtE G, ac A
seG

By [AV1, Lemma 3.1], A = @4ccAlg| is a G-graded algebra and

0tas = as0g-14 Yas € Als], s, t € G. (1)
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If M is an A-module, then M is a k®-module by restriction. Hence
Alg] - M[h] € M|gh] Vg,h € G by (1).  (2)

That is, M is a G-graded A-module.

We denote by Age = A as right k“-module via the right multiplication.
Its isotypic components are (Ayc)[g] = Ad, for all g € G. Note that A is a
k%-bimodule with the above actions since k& C Ale].

Let R € Hig VD be the diagram of A. Then the multiplication in A induces
an isomorphism Rk — A of k%-bimodules [AAGMYV, Lemma 4.1]. Hence
we can think of R as a left k¢-submodule of A and therefore

Alg] = Rlg]k and (Aye)[g] = R, VgeG.  (3)

As in [AV2], we define the Verma module of A of weight ¢ € G as the
induced module

M, = Indic k, = A®yckd,.

Then M, is projective, being induced from a module over a semisimple algebra,
and hence injective, because A is Frobenius. By (1) and (3), the weight spaces
satisfy M,y[h] = R[hg '], for all h € G. Also, M, = Ad; = RS, and A =
DgecMy.

Notice that if L is a simple A-module and 0 # v € L]g], then L is a quotient
of My via g +— 04 - v =v.

Let e € A be an idempotent. We say that e is a g-idempotent if e € R[e]d,.
A set {e;}ies of g-idempotents is called complete if 6, = ), ; ;. Next lemma
ensures that there always exists a complete set of orthogonal primitive g-
idempotents.

Lemma 1. Let g € G, e be a g-idempotent and £, = {e;}icr be a set of

orthogonal idempotents of A such that o, =3, ;e;.

(a) &, is a complete set of g-idempotents.

(b) e is primitive if and only if it is not possible to express e as a sum of
orthogonal g-idempotents.

(c) There is a complete sel of orthogonal primitive g-idempotents in A.

(d) e-M =e- M[g] C Mlg] for any A-module M.

(e) If #E, = dim Rle], then e; is primitive for all i € I. Moreover, if e is
primitive, then e = e; for some i € I.

(f) If #&, = dim Rle], then Ae; # Ae; if i # j.

Proof (a) Fix i € [ and set a = e; and 8=}, ,..;e;. If t € G and t # g,
then 0 = 640, = ady + BJ;. Since o and 3 are orthogonal, ad; = 0. Hence
a = adg because 1 = 3 - dy. Similarly o = dya. Let a5 € R[s] such that
@ = cqtsdy. Then o = dga = Y 5040505 = > 051405 = Al
That is, a = e; is a g-idempotent.
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(b) The first implication is obvious. For the second implication, we proceed
as in (a). (c) follows from (a) and (b). (d) holds because e € R[e]d,.

(e) is a consequence of the fact that &, is a basis of R[e]d,. Indeed, pick
a =e; € & and suppose a = a + b with a and b orthogonal g-idempotents of
A. Then (Aa)le] & (Ab)le] = (Aa)le] = (k&y)o = ka and therefore a = 0 or
b = 0. For the second statement, we write e = ZieI a;e; with a; € k, i € I.
Since e? = e, a; =0or 1 for all i € I and hence e = e; for some ¢ € [.

(f) (Aez)[e] = ke; 7’5 (Aej)[e} = ]kej if 4 ?é j Hence Aei ¢ Aej.

Given a set of idempotents £ and an A-module M, we write
Suppe M ={e€ &:e- M #0}.
By [CR, Theorem 54.16] if L is a simple A-module and e € Suppg L, then
top(Ae) ~ L.

This allows us to analyze the dimension of the weight spaces of the simple
A-modules using g-idempotents.

Lemma 2. Let g € G and & = {e;}icr be a complete set of orthogonal
primitive g-idempotents. Let L be a simple A-module.

(a) dim L{g] = # Suppg, L.

(b) If #&; = dim R[e] or 1, then dim Lg| =1 or 0.

(¢) €5 =Uperm a Suppe, L is a partition.

(d) dlmR[e] 2 Z:LEINA(d‘irnL[g])2 = ZLEIrrA(# Suppfg L)2 > #59

Proof (a) By [CR, Theorem 54.16], dime; - L = 1 for all e; € Suppg, L. Pick
w; € e; - L — {0} for each ¢ € I. Then {w; : ¢ € I} is a basis of L[g] since
v=104-v= EeiESuppgg € -vforall ve Ligl

(b) If #&;, = 1, then dimL[g] = 1 or 0 by (a). If #&, = dim Rle], the
statement follows from (a) and Lemma 1 (f).

(c) is clear. (d) follows from (a) and (c) since

Rle]éy = ®icrRlele; = ©renr a De; esupp;, L Rle]e;.

In some cases, the simple A-modules can be distinguished by their weight
spaces.

Lemma 3. Let g € G and £, = {e;}icr be a complete set of orthogonal primi-
tive g-idempotents and assume that top(Ae;) and top(Ae;) are not isomorphic
as k& -modules for all i # j. Let L be a simple A-module. Then L ~ top(Ae;)
as A-modules if and only if L ~ top(Ae;) as k&-modules.

Proof If L ~ top(Ae;) as k%-modules, then g € Supp L. Hence L ~ top(Ae;)
for some j. Then i = j because top(Ae;) and top(Ae;) are not isomorphic as
k&-modules for i # j. The other implication is obvious.



6 Barbara Pogorelsky, Cristian Vay

For each g € G, let £ be a complete set of orthogonal primitive g-
idempotents. If e,e € &, and eAe # 0, it is said that e and € are linked.
This is an equivalence relatlon [CR, Deﬁmtlon 55.1]. Let & = U,¢,, Bi be
the corresponding partition. The subalgebra Ale] = R[e]k® can be used to
compute the simple A-modules, see for instance [NaVO, Theorem 2.7.2].

Lemma 4. Let &g = J;c;, Bi be as above. Then P, Alele is a subalgebra

such that
{L[g] :LelrrA and B; NSuppg, L # @}

is a set of representative simple modules. Moreover as algebras

Ald= ][] P Alde

geG,i€l, e€B;

Proof By (1), ee = 0 = ée if either e € £; and € € &, with g # h or e, € €
&y but are not linked. Clearly, B; is a complete set of orthogonal primitive
idempotents of P, Alele. Also top(Alele) = Llg] since L[g] = top(Ae)[g] =
Alele for all e € &,.

For g € G, we define the linear map x4 : A — k by
Xg(rf) =e(r)f(g) VrfeA=RK". (4)

If x4 is an algebra map, then k, is also an A-module. Notice that Nichols
algebras satisfy the hypothesis of the next lemma by [AV1, Lemma 3.1 (f)].

Lemma 5. Let G be a finite group, A a finite-dimensional copointed Hopf
algebra over k& with diagram R € ﬁgyl? and x : A — k an algebra map. If R
is generated by R™ as an algebra, then x = x4 for some g € G and G(A*) is
a subgroup of G via x4 — g.

Proof Let g € G such that x(f) = f(g) for all f € k. By (1), x(R*) = 0 and
then x = xg4. Since X4 * Xn, is an algebra map and x4 * xn(f) = f(gh) for all
f € k©, the proposition follows.

Ezample 1 Let V € ﬂig YD with finite-dimensional Nichols algebra B(V'). Then
{8, : g € G} is a complete set of orthogonal primitive idempotents of B(V)#k%
and therefore {k, : g € G} are its simple modules.

Let [} (resp. fi) denote the space of right (resp. left) integrals, see for
example [Mol. If ¢ € [}, then a € G(A*) is said to be distinguished whether
at = a(a)t for all a € A.

Lemma 6. Let G be a finite group, A a finite-dimensional copointed Hopf
algebra over k¢ and o = x, € G(A*) the distinguished group-like element. If
e is a primitive idempotent, then

Supp(top(Ae)) = g~ Supp(soc(4e)).

In particular, fi = soc(Aey-1) C R ]eg 1 where e,-1 is the primitive g~'-

lg
idempotent such that top(Ae,—1) ~ kg1



Representations of copointed Hopf algebras arising from the tetrahedron rack 7

Proof Let n: A — A be the Nakayama automorphism. If M is an A-module,
then M denotes the vector space M with action a-m = n~'(a)m for all a € A,
m € M. Since 71 (a) = (a71,5%(a)1)S%(a)z for all a € A, see e. g. [FMoS,

Lemma 1.5], M[g~'h] = M]h] for all h € G. Finally, top(Ae) = soc(Ae), see
e. g¢. [NeSc, Lemma 2|, and the lemma follows.

We include the next lemma for completeness.

Lemma 7. Let A be an algebra and ay, ..., a, be idempotents of A such that
a;a; = aja; for alli,j=1,...,n. Set

i—1
§ 4 § :

e, =a; +a; (—].) ajl ---aje.
=1 1<ji1<<je<i—1

Then e;e; = d;,e; for alli,j=1,...,n.

Proof For j < i, we write

i—1
§ J4 E
e, =a; +a; (—1) aj, - ag,
=1 1<j1 < <gpe<i—1
Js#J
i—1
14
+a; E (*1) E gy * v Qg -
=1 1<ji<-<ge<i—1

Js=] for some s
Then aje; = 0 and hence eje; = §; je; for all 4,5 =1, ..., n.

The order of the set {a;} alters the result of the above lemma. Moreover,
it can produce e; = 0 for some i. For example: {1,a} and {a,1} with a an
idempotent.

2.1 Quasitriangular copointed Hopf algebras

Let G be a non-abelian group and A be a quasitriangular finite-dimensional
copointed Hopf algebra over k¢ with R-matrix R € A®A. Let (Ag, R) be its
unique minimal subquasitriangular Hoptf algebra [R]. Then Ar = HB with
H,B C A Hopf subalgebras such that B ~ H*®°P by [R, Proposition 2 and
Theorem 1].

Lemma 8. H, B and Agr are pointed Hopf algebras over abelian groups.

Moreover, Ag is neither a group algebra nor the bosonization of its diagram
by G(AR).

Proof Since Hygy = H N Ajo) and Byg) = BN Ajg}, there are group epimorphisms
G — Gy and G — Gp such that Hjg = k&7 and B = k&5, Then there is

an epimorphism of Hopf algebras B =5 H*°P — kGpy. By [Mo, Corollary
5.3.5], the restriction By = k&5 — kG is surjective. Thus G is an abelian
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group. Mutatis mutandi, we see that G p is also an abelian group. Hence H and
B are generated by skew-primitives and group-likes elements by [An, Theorem
2] and therefore also is Arp = HB. Then Agp = HB, H and B are pointed
Hopf algebras over abelian groups. Set I' = G(AR).

Now we assume Agr = kI and let ¢, € k% \ kI'. By a property of the
R-matrix, it must hold RA(6,) = A°P(d,)R. However, this is not possible
since R is invertible and k¢ is commutative but not cocommutative. Then
Agr #KkI.

Finally, we assume that Ar = B(V)#kI[" where B(V) is the diagram of
Ap which is a Nichols algebra by [An, Theorem 2]. Let Ry € kI'®@kI" and
Rt € B(V)T#kI'QkI" +kI'@B(V)T#KkI such that R = Ry+ R™. Then Ry is
invertible since R is so and B(V)T is nilpotent. If §, € k% \ kI", then it must
hold RyA(dy) = A®P(d4)Ry by a property of the R-matrix. As above, this is
not possible. Therefore Ar # B(V)#kI.

3 The affine rack Aff(FF4,w) and their associated algebras

Let F4 be the finite field of four elements and w € Fy4 such that w?+w+1 = 0.
The affine rack Aff(F4,w) is the set F, with operation a > b = wb + w?a.

Let (-, 9, x¢) be a faithful principal YD-realization of (Aff(Fy,w), —1) over

a finite group G [AG3, Definition 3.2], that is

— - is an action of G over Fy,

— g:F4 — G is an injective function such that gj.; = hg;h ™' and ¢;-j = i>j
foralli,5 € Fy, he G

— x¢ : G — k* is a multiplicative character such that xg(g;) = —1 for all
i € Fy; we can consider such a x¢ by [AG3, Lemma 3.3(d)].

These data define a structure on V' = k{z;};cr, of Yetter-Drinfeld module
over k€ via

oty =0, 1wy and  A(z;) = ZXG(t_l)(St@.’I}tfl,i VieG,ieX. (5)
teG

We obtain (5) using the fact that the categories ]ﬁigyD and fSYD are braided
equivalent [AG1, Proposition 2.2.1], see [GIV, Subsection 3.2] for details.

We denote by G’ the subgroup of G generated by {g; }ier,- Then G’ is a
quotient of the enveloping group of Aff(Fy,w) |EG,J]:

GasFaw) = (9i | 995 = Gis39i» 1,7 € Fa).

Let m € N. We denote by C,,, = (t) the cyclic group of order m. The
semidirect product group Fy x, Cg, is given by t - i = wi for all i € Fy.

Examples 9. (1) Let k,m € N, 0 < k < m. The (m, k)-affine realization of
(Aff(F4,w), —1) over Fy x,, Cop, |GIV, Proposition 2.6| is defined by

-9 F4 — IF4 Hw Oﬁ’m,a (s gi = (i,t6k+1);
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— i1 Fy %y Cop, — Fyis h-i =3, if hg;h™' = g;;
— XFixyCom - Fa X Com — k*, (j, ts) — (—1)5, Vi,j € A, s eN.

(2) The next example gives a nontrivial lifting of B(V), see the next sub-
section. Suppose that m | 6k+1. Let G1 be a finite group with a multiplicative
character xg, : G1 — k* such that x&, # 1. Then the (m, k)-affine realization
is extended to a principal YD-realization over G = Fy %, Cg,, X G setting
Gy i =14 and Xg = XF,x.,Cen X XG,- Note that z € T(V)[e] and x& # 1,
where z is defined in (7).

(3) Let (-, 9, xc) be a faithful principal YD-realization of (Aff(F4,w), —1)
over a finite group G. If G’ < G < G are subgroups, then (-, g, (xc)|a,) is
a faithful principal YD-realization of (Aff(F4,w), —1) over G1. For instance,
Gy = ker x%.

3.1 A Nichols algebra over Aff(IFy,w)

From now on, we fix a faithful principal YD-realization (-, g, xg) over a finite
group G of (Aff(Fy,w), —1) . Let V € K, VD be as in (5).

In [GIV, Subsection 2.2] it was discussed how braided functors modify the
Nichols algebras. As a consequence the defining relations of the Nichols algebra
B(V') were calculated [GIV, Proposition 2.10 (b)| using previous results of [G1]
for the pointed case.

Namely, B(V) is the quotient of T'(V') by the ideal J (V') generated by

:c% TjTi+ X3 T(wt1)itwj T L(wt1)itws Tj Vi,j € Fy and (6)

z = (xwx0x1)2 + (xlmwxg)Q + (Z0$1$w)2. (7

We are specially interested in the case where z € T'(V)[e], since otherwise
the liftings of B(V) are trivial, see Theorem 11 (b). In Example 9 (2) this
condition is satisfied.

Let B be the basis of B(V') consisting of all possible words mimamsmyms
such that m; is an element in the ith row of the next list

1,1‘0,

1,21, x170,
1, zyz021,
17$w7 Lo,

1, z,2.

By (5) the weight of a monomial z;, ---z;, € T(V) is gi_l1 -'-gi_el. Set
Gtop = ga1gf1gglgglgalgflgglgalg;21. An integral of B(V) is

Miop = TOT1LOLwTOT1LwT0Tw2 € Blgiop]-
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Lemma 10. Let G be a finite group with a faithful principal YD-realization
(,9,xc) of (Aff(Fy,w),—1). Hence

(a) SuppB(V) = SuppB C G'.

(b) G — Fy %y, Cq, g; — (i,t) is an epimorphism of groups.

(c) If z€ T(V)[e], then Ble] = {1, b1, b2, b3, by, b5} where

b1 = Tox1T0TLToTw2, ba = TOTLTOT1THTL2, b3 = T1ToTLToT1T,2

by = T1x,Tox1TLTy, b = TOT1THToT1 Ty -

ety => ..p Tian =k{xg —x1,20 — 2y, x0 — xo2}. Then ky an
d) L iCFy dU =k Then k dU
are simple k& -comodules such that V =ky @ U.

Proof (a) holds since the elements of B are k“-homogeneous and B(V) is a
k%-module algebra.

(b) By [AG2, Lemma 1.9 (1)], the quotient of G’ by its center Z(G’)
is isomorphic to Inng Aff(Fy,w) = Fy %, Cs via g; — (4,t), i € Fy. Then
G'/(Z(G") Nker xg) ~ Fy X, C3 x Cy = Fy %, Cs.

(c) If z € Ble], then {1,b1,b2,b3,bs,b5} C Ble] since ¢;9; = girj9i- The
other inclusion follows using (b).

(d) is equivalent to prove that ky and U are simple kG-modules via the
action g - x; = x¢(g9) xg.i, © € F4. Clearly, ky and U are kG-submodules and
ky is kG-simple. Moreover, it is an straightforward computation to show that
U is kG'-simple and therefore kG-simple.

3.2 Copointed Hopf algebras over Aff(Fy,w)

The copointed Hopf algebras over k¢ whose infinitesimal braiding arises
from a principal YD-realization of the affine rack Aff(F,,w) with the constant
2-cocycle —1 are classified in [GIV] as follows.

By (5) the smash product Hopf algebra T'(V)#k is defined by
5,5:87; = xiégit and
A(xl) =z;,®01+ ZXG(t)(St*l@xti VteG,ie X. (8)
teG

Definition 1 Let A € k and assume z € T(V)[e]. The Hopf algebra Ag » is
the quotient of T(V)#k by the ideal generated by (6) and z — f where

f=A1- Xgl) and y, = X?;-
Notice that if either A = 0 or x, = 1, then Ag » = B(V)#kC.

The next theorem is [GIV, Main theorem 2 and Theorem 4.5].

Theorem 11. Let H be a copointed Hopf algebra over k& whose infinitesimal
braiding arises from a principal YD-realization of the affine rack Aff(Fy,w)
with the constant 2-cocycle —1.
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(a) If G = G', then H ~ B(V)#kC.

(b) If € T(V)*, then H ~ B(V)#kC.

(c) If z € T(V)[e], then H ~ Ag x for some A € k.

(d) A is a cocycle deformation of Ag ., for all \, N € k.

(e) Ac.x is a lifting of B(V)) over kK¢ for all \, \' € k.

(f) Acr~Ag1 # Ao for all X € k*. O

We think of A » as an algebra presented by generators {z;,d, : 1 € F4, g €
G} and relations:

2
Sgwi = 30,9, 7 =0, 80 = 6g(h)Sg, 1= Jy,
geG
ToTw + TooT1 + 2120 = 0 = ToT 2 + T2 Ty, + T To, (9)
T1T 2 + X1 + T2t =0 =2x,2,2 + 12, + 2221 and

TuTOT1TwToT1 + T1T0wT0T1TwT0 + ToT1T0wT0T1Tw = f,
for all i € Fy and g € G. Since x.(g;) = 1, it holds that

A basis for Ag x is A = {zd4|z € B, g € G} and a basis for the Verma module
Mg is M = {x;, --- ;04 € Bdg}.

Proposition 12. Ag \ is not quasitriangular.

Proof Let A be a pointed Hopf subalgebra of Ag x with abelian group of
group-like elements. Then A is generated by skew-primitives and group-likes
elements by [An, Theorem 2].

Let y = > cp, ¥i- The space of skew-primitives of Ag,\ is kG(Ag ») &
kykG(Ag,») by Lemma 10 (d). Then A is generated by y and G(A). By (9),
y? = 0 and hence A C (k[y]/(y?))#kG(A). Therefore Ag » is not quasitrian-
gular by Lemma 8.

4 Representation theory of Ag x

Let (-, g, xa) be a faithful principal YD-realization of (Aff(Fy4,w), —1) over
a fixed finite group G. Let V € Ko VD be as in (5).
Also we fix A € k* and assume z € T(V)[e] and x. # 1. In this section we
study the Hopf algebra Ag », Definition 1.

For g € G \ ker ., we define

1 1 1
el = ———bf,, e = ———byd,, el = bs3d,,
g T 9 Tl
1 1
el = ——(by — b3)d,, el = ——(bs+01)0 and
4 fg)(4 3) g 5 f(g)(5 1) g
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eg :5g+ (bg —b4—b5)5g,

1
f9)
where b1, b2, b3, b4,b5 € Ag » are as in Lemma 10 (c).

Lemma 13. A complete set of orthogonal primitive idempotents of Ag x is

E:={bn, ef, e} e e el el|hckerx., g€ G\kery.}.

Proof By Lemma 10 (c), {b;idq|1 < i < 6} is a basis of B(V)[e]d, for all g € G.
By (9) and (10), it holds that:

b2 = —bif, biby =0, bibs =0,  biby=0,  bibs=byf,
byby =0, b2 = —bof, bobs =0,  boby =0,  bybs =0,
bsby = 0, baby = 0, b2 =bsf, bsby =Dbsf, bsbs =0, (11)
byby = 0, byby = 0, bybs = bsf, b3 =byf, bybs =0,
bsby = bif,  bsby =0, bsbs =0,  bsby =0, b2 = bsf.

Therefore &, = {0} is a complete set of orthogonal primitive h-idempo-
tent for all h € kerx,. If g € G\ ker x,, we apply Lemma 7 to the ordered
set

1 1 1 1 1
——byd,, — by o b3d 1) b5d,, O
{ F@) 0 o) 2 fle) T ) 0 flg) Y }

and hence £, = {€J|1 < i < 6} is a complete set of orthogonal primitive

g-idempotent. Then £ = Ugec&y.

Let M be an Ag y-module. Since Ag, is a quotient of T(V)#k%, M also
is a T(V)#k%-module. Moreover, M is a T(V)#k*e" X=_module if Supp M C
ker . since T(V)#k " X= is a subalgebra of T(V)#k®, cf. Example 9 (3).

Lemma 14. Let h € ker .

(a) If M is an Ag x-module with Supp M C ker x,, then M is a module over
B(V)gtkkerx-

(b) My, is a free B(V)-module of rank 1 generated by 0y,.

(c) xn: Ac.x — k is an algebra map.

(d) top(Mp) ~ky, and soc(My) ~ kg, n-

e) [ =soc(M -1) and x is the distinguished group-like element.
Ag.a g, Jtop
=, op

Proof (a) Since M is a T'(V)#kke* X=_module, we have to see that the elements
in (6) and z act by zero over M. This is true for the first elements because they
are zero in Ag x. If h € ker x,, then fd§, = 0 and hence z-M[h] = f-(6p-M) = 0.
(b) follows from (a). (c) is clear. (d) and (e) follows from (b) and Lemma 6.

g 9 _ 9
For each e € £, we set L] = Ag re].

Lemma 15. (a) LY is an injective and projective simple module of dimension
12 for all e] € €.
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(b) There exist k& -submodules Ly, ..., Ls C B(V) such that B(V) =L, ®---®
Ls and LY = L;b, for alli=1,...,6 and g € G.

(¢) Supp L; # Supp L; and Supp LY = (Supp L;)g for all 1 < 4,5 < 6 and
ge@qG.

(d) LY ~ L;? if and only if (Supp L;)g = (Supp L, )h.

Proof (a) Let v = €7 € top(LY). Since f(g)v = z-v = (z,x021)% - v + by - v +
bs - v # 0, there are x;,, ...,x;, € Ag, such that x;,---x;, - v # 0 for all
0=1,...6.

We claim that dim¢top(L{) > 11. In fact, if 1 < ¢ < 6, then by (6)

x’ig+1$ig .. 'xil =

“Lip T(w41)igtwiegrr " Liy "V~ T(w+1)igtwiers Tiepr " Liy "V #0
and hence Z(y41)i,twip., " Tiy -V #F 00r z,,, -2, - v # 0. Therefore using
Lemma 10 (b), we see that # Supp top(LY) > 11.

Now, we show that LY = soc(LY) = top(L) and (a) follows. Otherwise,
dim LY > 22 since dimtop(LY) = dim soc(L?) by [CR, Lemma 58.4]. But the
above claim holds for all 7 and hence 72 = dim M, > 22+45-11, a contradiction.

(b) follows from Tables 1-6 in Appendix. (¢) Supp LY = (Supp L;)g follows
from (b). If G’ = F4 x Cs, then Supp L; # Supp L; by Table 7 in Appendix
and therefore for any G’ by Lemma 10 (b). (d) follows from (c) and Lemma 3.

We consider the product set {1,2,3,4,5,6} x G with the equivalence rela-
tion i x g ~ j x h if and only if (Supp L;)g = (Supp L;)h. Let X be the set of
equivalence classes of ~. We denote by [i, g] the equivalence class of i X g. By
Lemma 15 (d), we can define Lj; ;) = L.

K2

Theorem 16. Every simple Ag x-module is isomorphic to either

ky for a unique g€ kery, or

L g for a unique [i,g] € X.

In particular, (up to isomorphism) there are |ker x| one-dimensional simple

Ag x-modules and W

12-dimensional simple Ag x-modules.
Proof Tt follows from Lemmata 13, 14 and 15.

Ezample 2 Assume G’ = Fy;xCg and let g € G\ker .. The set X is completely
defined by the equivalence class [1, g] which is

{1 x 9,2 x (1,t%)g, (3,tg),4 x (w,t*)g, 5 X (1,t)g, 6 x (w,1)g, 1 x (0,t%)g
2 x (1,£°)g, 3% (0,t*)g, 4 x (w,1%)g, 5 x (1,1*)g, 6 x (wyt‘g)g}-

Hence

1,62 0,): w,t%)s 1,t); w,1);
Lpg =L = L9 o L0909 o [01)9 o [[WD9 o [ 019 o
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0,t3 1,6° 0,t* w,t° 1,64 w,t3
Lg )9 ~ Lg )9 ~ Lé )9 ~ L‘(1 )g ~ L( )g ~ Lé )g.

Note that i x g ~ i x (0,t%)g for all i, then LY ~ L(O )9,

In fact, (Supp L2)(1,t?) = Supp L1, see Tables 1 and 2. Then L{ ~ L;l’t2)g
by Lemma 15 (d). The other isomorphisms are obtained in the same way.

4.1 Decomposition of the category of Ag y-modules

Fix A € k* and assume z € T(V)[e] and x, # 1. Let I C {1,2,3,4,5,6} x G
be a set of representative of the equivalence classes of ~. Let M be an Ag x-
module.

Ifixgel, then dM 9= = dim(e - M) is the number of composition factors
of M which are 1somorph1c to Li; g [CR, Theorem 54.16]. The number d[Z gl
can be calculated keeping in mind Lemma 1 (d). Since Lj; 4 is projective and
injective by Lemma 15, there is a submodule N C M such that Supp N C

ker x, and
M =N & @P(L;)%s.
jeI

Moreover, N is a B(V)#k**X=-module by Lemma 14 (a).

4.2 Representation type of Ag x

Now, we do not make any assumptions on z and A can be zero. Let k,
and kj, be one-dimensional Ag y-modules such that g = g; 'h € kery, for
some ¢ € Fy. We define the Ag x-module My, = k{wn, wy} by kwy ~ k, as
Ag y-modules, wy, € M[h] and z;w;, = 6 ,w, for all j € Fy.

Proposition 17. The extensions of one-dimensional Ag x-modules are either
trivial or isomorphic to My for some g,h € kerx,. Hence Ag x is of wild
representation type.

Proof Let M be an extension of kj, by k,. Then M = M[g] ® M[h] as k-
modules and M[g] ~ k, as Ag r-modules. Since z; - M[h] C M([g; *h], the first
part follows.

For the second part we can easily see that Exti‘G.A(kg, ky,) is either 1 or 0
for all g, h € ker x.. Then the separated quiver of Ag » is wild. The details for
this proof are similar to [AV2, Proposition 26].

4.3 Is Ag,» spherical?

A Hopf algebra H is spherical [BaW1] if there is w € G(H) such that
S*(r) =wrw™' Va € H and (12)
try(w) = try(w™!) VV €lirH by [AAGTV, Proposition 2.1].  (13)
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Proposition 18. B(V)#k® is spherical iff X% = 1. Moreover, (Ag .\, XG)
with X # 0 is spherical iff (Xg|xery.)? = 1.

Proof 1t is a straightforward computation to see that ¢ satisfies (12) using
(8). Let V € Iir Ag . If dimV = 12, then V is projective and therefore
try (x5') = 0 [BaW2, Proposition 6.10]. If V = k;, with h € ker x,, then (13)
holds iff xg(h) = £1.

Ezample 8 Let (-, 9, xc) be the faithful principal YD-realization in Example
9 (2). Then (Ag,x, X¢) is a spherical Hopf algebra with non involutory pivot.

Any spherical Hopf algebra H has an associated tensor category Rep(H)
which is a quotient of Rep(H), see [AAGMV,BaW1,BaW2] for the background
of this subject. Moreover, Rep(H) is semisimple but rarely is a fusion category
in the sense of [ENO], i. e. Rep(H) rarely has a finite number of irreducibles.
One hopes to find new examples of fusion categories as tensor subcategories
of Rep(H) for a suitable H. However, this is not possible for H = Ag », see
below.

Remark 19. Assume that (Ag,x, X@) is spherical. Then only the one-dimensi-
onal simple modules survive in Rep(Ag ) since the other simple modules are
projective. Then Rep(Ag,) is equivalent to Rep(B(V)#k"*" X=) by Subsection
4.1, where the pivot Xg|kery, 18 involutory. Hence any fusion subcategory of
Rep(Ag.») is equivalent to Rep(K), with K a semisimple quasi-Hopf algebra,
by [AAGTV, Proposition 2.12].

Appendix
The next tables describe the structure of the 12-dimensional simple modules

of Ag, . These were used in Lemma 15.

Table 1 Action of the generators z; on LY = Ag ref

Linear basis of L{ zo- | x1- T z,2
€1 = TOT1LTOTwLOL1TwLOL,20g 0 0 | —f(9)es | —f(g)cio
C2 = TOT1TOTwTOT,,20g = —f(g)e] 0 0 —c5 —c9
€3 = TOT1TWwTOT1TWwTOT,,204 0 c1 f(g)ciz 0

C4 = TOT1TwLOT,,20g 0 [ c11 0

C5 = TOTWTOL1TWTOT,,204 0 cr 0 —c3
€6 = TOTWTOT,,20g 0 cs 0 —cy
C7 = T1TOTwTOT1LwTOT,2 dg c1 0 0 —f(g)ciz2
cg = leoxwonwzég Cc2 0 0 C11

€9 = T1TLTOL1TWTOL,,20g cs 0 —c7 0

€10 = T1TwT0T,20g c4 0 —cg 0

€11 = TwTOT1LWwLOT,20g cs cg 0 0

C12 = TwT0x,,20g c6 c10 0 0
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Table 2 Action of the generators z; on L§ = A reJ

Linear basis of L x0- 1+ ZTe T2
Cl = TOT1TOLWw LT Tw T2 0g 0 0 cg —f(g9)cio
C2 = TOT1TOTwT,20g 0 0 —cs5 —cg
€3 = TOT1TwTOT1TwT,20g 0 c1 —c12 0
C4 = TOT1TwWT,,20g 0 co c11 0
C5 = TOTWwTOT1TwWT,20g = f(g)eg 0 cr 0 —c3
C6 = TOT1LOLWLOT]LwTOT ,20g 0 —f(g)cs 0 f(g)eca
—TOTwT,20g
€7 = T1X0TwTOT1TwT,20g c1 0 0 —c12
€8 = T1TOTwT,,20g c2 0 0 c11
€9 = T1TWwTOT1TwT,,204 c3 0 —c7 0
c10 = xlzwxwﬂsg Cq 0 —Cg 0
Cl1 = TwTOT1TwT,20g cs c9 0 0
€12 = T1L0TwTOL1LwTOL,20g — Tw,20g ce —f(g)cio 0 0
Table 3 Action of the generators x; on L = A ref
Linear basis of L§ z0- z1- Te T2
€1 = TOT1TOTWTOTIT,2 59 0 0 c6 —c10
Cco = onlxoxwzag 0 0 —C5 —C9
€3 = TOT1TwTOT1L 204 0 c1 c12 0
c4 = ToT1%,20g 0 co c11 0
€5 = TOTWLOT1T,20g 0 cr 0 —c3
C6 = TOT1TwTOT1TwLOT,,20g 0 cg 0 f(g)ca
7f(g)x0xw259
C7 = T1TOTLTOT1T 20 = f(g)eg c1 0 0 c12
€8 = TOT1TOLwLOT1LwTOEL,20g —f(g)c2 0 0 —f(g)cin
~f(g)e120%,,26
€9 = T1TwTOT1T,20g c3 0 —c7 0
€10 = TOT1TOTWTOL1Tw T 204 —f(g)ca 0 cs 0
_f(g)xleZ(sg
€11 = TwToT1Z,,204 cs c9 0 0
C12 = T1TWwTOT1TwTOT,,20g —cg —c10 0 0
+TOT1TWwTOT1TwT 20 — f(g)T,204
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Table 4 Action of the generators z; on L = Ag ref

Linear basis of L zo- | 1 ZTeo- T2
€1 = TOT1T0TwT0lg 0 0 —cg —c10
€2 = TOT1TOTwTOT1LwT00g 0 0 —f(9)es —cg
€3 = TOT1TwT00g — TOT1LOT,,20g 0 c1 c12 0
€4 = TOT1TWLOT1TwL00g — LOL1LOLWwLOL1L,,20g 0 co c11 0
¢5 = TTwTodg 0 c7 0 —c3
€6 = TOTWLOT1TwLolg 0 cs 0 —cy4
€7 = T1T0TwT0odg c1 0 0 —c12
€8 = T1TOTwWwLOT1TwLolg co 0 0 —c11
€9 = T1TwT0lg — T1T0L,,20g c3 0 —c7 0
€10 = T1TwTOT1TwT00g — T1TOTWLTOL1T,,20g c4 0 —cs 0
= f(9)e]
Cl1 = TOT1TWwTOT1TwTOT,20g — f(g)ToT 204 cs cg 0 0
+f(9)zwmody
Cl12 = —TOTLTOT1T,,20g + TwTOT1TwT0dg 6 €10 0 0
Table 5 Action of the generators z; on L = Ag red
Linear basis of L xo- z1- Te T2
€1 = TOT1T0Twlg 0 0 —cg c10
C2 = TOT1TOTWLOT1TwIg 0 0 —cs5 )
€3 = TOT1LTOLTwWLOL1Tw LOL,20g 0 | flg)er | —f(g)ci2 0
+f(9)z0T1200g
C4 = TOT1TWwTOT1Twlg — TOT1TOTwTOT,20g 0 co c11 0
= f(9)ed
€5 = TOT1TOTwTOT1TwL00g + f(9)T0Twly 0 | f(g)er 0 c3
€6 = TOTWLLOT1Zwg — f(g)ToT 204 0 cg 0 ca
7 = T1T0Twlyg c1 0 0 c12
€8 = T1TOTwLOT1Twlg [ 0 0 c11
€9 = T1LOTWwTOT1LWwLOZ,20g + f(g)z120,dg c3 0 —f(g)er 0
€10 = T1TwTOT1Twlg — T1LOTwTOL,20g c4 0 —cs 0
€11 = LOTwTOT1TwTOL,20g cs cg 0 0
+2120TwT0T1TwT00g + f(9)Twdg
€12 = TwTOT1Twlg — LOTwTOL,,20g cg c10 0 0
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Table 6 Action of the generators z; on L] = Ag red

Linear basis of L x0- 1 Tw' | T2
€1 = Tox1%0dy 0 0 —cg —c10
C2 = TOT1XT0T,,220%10g 0 0 —cs5 c9
€3 = TOT1TOTwTOT1TwT,20g + f(g9)T0T1dg 0 flg)er | ci2 0
€4 = TOT1TwTOT10g — TOT1TOLwWEL,,20g 0 () c11 0
C5 = —TOT1TwTOT1TwZ0dg + f(g)T0dg 0 cr 0 c3
C6 = TOTwToT10g 0 cg 0 —cy4
€7 = —TOT1TOLWTOT1TwZ00g + f(g)T1200, f(g)er 0 0 c12
€8 = T1T0TwToT10g co 0 0 c11
€9 = T1TOTWwTOT1LwL0lg cs 0 —c7 0
—ZOT1TOTWwTOT1Twlg + f(g)T1dg
€10 = T1TwZ0x10g — T1TOLwT,,20g cq 0 —cs 0
Cl11 = TOTWwTOT1TwT,20g — T1TwTOL1LwT0lg cs cg 0 0
—L0T1TwToT1Zw0g + f(9)0g = f(g)ed
C12 = —TOT1TOTWwTOL1TwTOT,,204 f(g)cs c10 0 0
+f(9)zwror1dy — f(9)T0TWwT,204
Table 7 Weight of the vectors c¢; in the case G’ = F4 x Cg
Ly L L L L L
er | (0,8%)g | (wtYg | (0,8%)g | (Wt)g | (W t2)g | (w,t)g
Cc2 g (wvt)g (07 t2)g (w27t4)g (wzvts)g (UJ, 1)g
es | (L,tYg | (w,tP)g | (L,Dg | (0,8%)g | (0,t%)g | (w,t!)g
e | (Lg | (wtP)g | (LtY)g | (0,t%)g g (w,t)g
Cs5 (17t5)g g (lvt)g (w27t3)g (w27t4)g (Ovts)g
e | (L,t)g | (0,8%)g | (LithYg | (W 1)g | (Wi t)g | (0,t%)g
cr (07t4)g (w27t5)g g (Ltz)g (17t3)g (w27t4)g
c8 (07 t)g (w27t2)g (07 tS)g (1,t5)g (17 1)9 (w27t)g
C9 (wats)g (LUQ, 1)9 (w7t)g (Ozt?’)g (07 t4)g (w27t5)g
C10 (w7t2)g (w27t3)g (w7t4)g g9 (Ovt)g (w27t2)g
ein | (g | Ot)g | (W t)g | (1,tYg | (L,t)g g
ciz | (@, t)g | (0,¢Y)g | (w,t%)g | (L,it)g | (1,t*)g | (0,t%)g
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