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Abstract: The analysis of any kinetic process involves the development of a mathematical model with predictive purposes. Generally, 
those models have characteristic parameters that should be estimated experimentally. A typical example is Michaelis-Menten model 
for enzymatic hydrolysis. Even though conventional kinetic models are very useful, they are only valid under certain experimental 
conditions. Besides, frequently large standard errors of estimated parameters are found due to the error of experimental 
determinations and/or insufficient number of assays. In this work, we developed an artificial neural network (ANN) to predict the 
performance of enzyme reactors at various operational conditions. The net was trained with experimental data obtained under 
different hydrolysis conditions of lactose solutions or cheese whey and different initial concentrations of enzymes or substrates. In all 
the experiments, commercial β-galactosidase either free or immobilized in a chitosan support was used. The neural network 
developed in this study had an average absolute relative error of less than 5% even using few experimental data, which suggests that 
this tool provides an accurate prediction method for lactose hydrolysis. 
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1. Introduction 

The disposal of whey permeate, a by-product of 

cheese manufacture, remains a significant 

environmental problem for the dairy industry. Whey 

permeate has high biological oxygen demand (BOD) 

due mainly to its lactose content (3%-5%) and 

determines that it should be treated prior to its 

discharge [1]. The most important cost-effective 

utilizations of cheese, whey is valorization 

technologies, such as recovery of protein and lactose 

from whey or spray drying, and direct utilization of 

whey as animal feed [2-4]. 

Lactose can be recovered alongside the whey 

protein, however, its worldwide demand is much 

lower than the actual lactose availability [5]. Lactose 
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transformation to value added products, such as 

sweetening syrups, galacto-oligosaccharides or 

ethanol, constitutes a feasible strategy to further utilize 

the commodity. The hydrolysis of lactose is a key step 

in any conversion process and it can be accomplished 

chemically or enzymatically using β-galactosidase. 

There are basically two different ways to use 

β-galactosidase. The soluble enzyme is normally used 

in batch processes while the immobilized form is used 

in batch or continuous operation. Despite the high cost 

of enzyme attachment, immobilized β-galactosidase 

systems remain more economically feasible than free 

enzyme systems, as these processes may be performed 

continuously and offer the possibility of reutilizing the 

enzyme [6, 7]. The choice of lactose hydrolysis in 

batch and continuous mode depends primarily on the 

enzymatic characteristics and the economics 

encompassing the production, storage and reusability 

[8]. 
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Various types of supports and techniques have been 

used for β-galactosidase immobilizations but the 

covalent immobilization shows the best industrial 

applications. Recently, the covalently bound of 

β-galactosidase beads prepared from different sources 

(Artemisia seed gum, chitosan, and carrageenan) was 

done in the presence of glutaraldehyde and the effects 

of various preparation conditions on the activity of the 

immobilized β-galactosidase were studied. The results 

of these works showed that this methodology resulted 

in an increase in enzyme stability [9-11]. 

The kinetic and yield characterization of the 

reaction system is very important. The process’s 

conditions should be adequately controlled so that the 

conversion rates and yields are optimized. The effects 

of substrate and enzyme concentrations on the 

conversion efficiency have been extensively studied 

and modeled. Enzyme immobilization has been 

proven to increase the process efficiency and 

inhibition effects have been related to the presence of 

hydrolysis by-products and whey proteins. The 

reaction kinetics of the enzymatic hydrolysis of 

lactose to glucose and galactose has traditionally been 

characterized using the Michaelis-Menten model with 

competitive inhibition by product [12, 13]. 
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where, s (mM) is the residual substrate concentration 

(lactose), s0 the initial substrate concentration, E (mg 

protein/mL) the enzyme concentration as dairy protein, 

k2 specific enzymatic rate constant, km saturation 

constant and ki inhibition constant. 

Although the kinetics parameters of this model, 

namely km, k2 and ki, have physical meaning and can 

be obtained from the experimental data using a 

regression procedure, the ability of this approach to 

simultaneously characterize the effect of several 

factors is limited. Artificial neural networks (ANNs) 

are gaining popularity in food applications as 

powerful and efficient tools to model complex 

processes that exhibit non linear behaviors [14]. 

Because of their learning ability, fault tolerance and 

high computational speed, they can analyze and model 

the effect of several conditions at the same time. The 

suitable control of industrial effluents has become 

very important to solve environmental issues. Better 

control of treatment plants may be achieved by the use 

of a robust model to predict certain key parameters 

based on past observations. Models based on artificial 

neural networks have been successfully used in 

wastewater treatment systems and are very effective at 

capturing the nonlinear relationships existing between 

variables (multi-input/multi-output) in complex 

systems [4]. 

The aim of this study was to use this ability of ANN 

to predict the performance of enzyme reactors at 

various operational conditions using an artificial 

neural network approach. For this purpose, the net 

was trained with experimental data obtained under 

different hydrolysis conditions of lactose solutions or 

whey, and different initial concentrations of enzymes 

or substrates. In all the experiments, the enzyme 

β-galactosidase was used either free or covalently 

immobilized onto chitosan beds using glutaraldehyde 

as activating agent. 

2. Materials and Methods 

2.1 Hydrolysis of Lactose 

Lactose solutions of 2.5%-10.0% (w/v) were 

prepared by dissolving lactose (reagent grade, Merck, 

USA) in a phosphate buffer pH 6.85 and used as 

substrate. The effect of whey proteins on the 

conversion efficiency was assessed by using two 

additional reaction media, whey permeate and whey 

permeate with proteins. 

The enzyme -galactosidase from Kluyveromyces 

fragilis (Lactozym 3,000 L, Novo Nordisk A/S, 

Denmark) with an initial activity of 3,000 LAU/mL 

was used in this study. A microbial lactase unit (LAU) 

is defined as the quantity of enzyme that will liberate 

1 mol of glucose/min at 37 °C and pH 6.7, using 
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lactose 4.7% (w/w) as substrate. The enzyme was used 

either free or covalently bound to chitosan beads. The 

beads were prepared by dissolving crab shell chitosan 

(Sigma Co., USA) in an aqueous solution of acetic 

acid (2.5% w/v). The chitosan solution was added 

using a peristaltic pump into a stirred coagulation 

solution of NaOH (1 M) and sodium tri-polyphosphate 

(1.5 w/v). The resulting beads, which had an 

average diameter of 2.1 mm, were held in the 

coagulating solution for 30 min. Once the chitosan 

spheres were produced, the cross linking was carried 

out in a glutaraldehyde solution (2% w/v) for 12 h. In 

order to achieve the covalent immobilization of the 

enzyme, the activated beads were placed in a 

-galactosidase solution (2% w/v) also for another 12 

h [15]. 

The enzyme (free or immobilized) and the substrate 

(or the reaction media) were placed in a batch reactor. 

The lactose conversion was followed by monitoring 

the glucose concentration using a kit for enzymatic 

glucose determination (Wiener Lab, Rosario, Santa Fe, 

Argentina) followed by absorbance measurement at 

505 nm in a spectrophotometer (Spectronic Genesys 5, 

Milton Roy, Rochester, NY, USA). All experiments 

were carried out in triplicate. 

280 experimental data sets were obtained using 

different combinations of the following conditions 

(Table 1) 

2.2 Artificial Neural Network 

ANN models were constructed by interconnecting 

many nonlinear computational elements, known as 

neurons or nodes, operating in parallel, ordering into 

different layers and interconnected respect to a given 

topology. This arranging in patterns is similar to 

biological networks [16]. ANN has the ability to learn 

the solution of the problem from a set of examples, 

and to provide a smooth and accurate interpolation for 

new data [17]. For model identification, it is necessary 

to select real data coming from the process. Those data 

must include 

Table 1  Assay conditions used for obtaining the 
experimental data. 

Conditions  Ranges 

Substrate conc. (mM) 0.07, 0.15, 0.22 and 0.24 

Enzyme conc. (mg/L) 0.8-3 

Enzyme condition Free or immobilized 

Reaction media 
Lactose sn, whey permeate, whey 
permeate with proteins 

Protein concentration 
0-protein free; 1-with protein 
0.5% (w/v) 

 

enough information to represent the different normal 

operation conditions of the process. 

Artificial neural networks are mathematical model 

predicting certain key parameters based on past 

observations in complex systems [4]. There are many 

types of artificial neural network and in this study, a 

cascade-forward back-propagation model using three 

layers was adopted to model the performance of 

enzyme reactors. 

Once the experimental data was obtained, a back 

propagation three-layer neural network model was 

developed. The input layer had six elements (Fig. 1). 

The optimal number of neurons (n) in the hidden layer 

was determined following a trial and error procedure. 

Neurons were progressively added to the hidden layer 

until a good correlation between the experimental and 

output values were attained, based on the R2 value. 

The output layer had only one element, the residual 

lactose concentration. 

All the tested networks used hyperbolic tangent 

transfer functions in the hidden layers and a linear 

transfer function in the output layer. 

After the neural network, configuration was 

optimized, the training was carried out in batch mode 

during at most 200 epochs, using the 

Levenberg-Marquardt optimization procedure. 

The experimental dataset was divided into two 

groups by random selection, the first group (150 

observations) was used for network training and the 

remaining data (130 observations) were used for 

validation. 

The minimum number of training data required to 

obtain an adequate estimation of the network (150 
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Fig 1  Schematic view of the artificial network used in this work (w: connection weights, b: threshold values). 
 

observations) was determined using as a selection 

measure the mean or average error. Values below 10% 

ensured that enough data was used during the learning 

period (Fig. 2). The network architecture as well as its 

training, validation and simulation were programmed 

using MatLab® 6.1 (Mathworks, Inc., Natick, 

Massachusetts, USA). 

3. Results and Discussion 

3.1 Hydrolysis of Lactose 

The enzyme b-galactosidase from Kluyveromyces 

fragilis was used either free or covalently bound to 

chitosan beads to obtain the experimental data sets A 

and B, respectively (Table 2). To immobilize the 

enzyme, previously spheres chitosan activated with 

glutaraldehyde were used. The immobilization process 

allowed obtaining biocatalysts with high activity, 

stability and strength. The enzyme b-galactosidase 

from Kluyveromyces fragilis was used either free or 

covalently bound to chitosan beads to obtain the 

experimental results set. Previously spheres chitosan 

activated with glutaraldehyde were used to immobilize 

the enzyme [18, 19]. 

Compared to other techniques, this method have the 

following advantages: enzymes does not leak or 

detach from the carrier, the biocatalyst can easily 

interact with the substrate, since being on the surface 

of the carrier [20]. 

The use  of  immobilization  technology  is of 

significant importance from economic point of view 

 

Fig. 2  Selection of the number of training data. 
 

Table 2  Predictive ability of the optimized neural 
network. 

Initial 
lactose 
conc. 

Enzyme 
conc. 

Enzyme 
condition 

Time 
(min) 

Residual lactose 
conc. (mM) 

Observed Predicted

0.146 
mM 

2.5 
mg/L 

Immobilized 

0 0.146 0.147 

2 0.137 0.137 

4 0.132 0.128 

6 0.124 0.122 

8 0.117 0.118 

10 0.111 0.113 

0.219 0.16 Free 

0.5 0.213 0.212 

1 0.207 0.204 

1.5 0.199 0.196 

2 0.187 0.191 

3 0.177 0.182 

4 0.163 0.173 

4.5 0.161 0.167 
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since it makes reutilization of the enzyme and 

continuous operation possible [21]. 

3.2 Artificial Neural Network 

The criterion used to select the optimal network 

architecture was based on using the smallest number 

of hidden neurons that would ensure good 

generalization and consequently good predictions [22]. 

It was found that one of the most precise network 

structures and that also consumes less computer time 

to use experimental data, were formed in three layers 

(an input layer, a hidden layer and an output one). 

Finally, the number of hidden neurons that satisfied 

this requirement was 13: six neurons in the first layer, 

six neurons in the second and one neuron in the third 

one (Fig. 3). Transference functions used were 

sigmoid in all cases. Although, other functions tested 

prediction errors were not satisfactory. 

Levenberg-Marquardt algorithm was used for 

optimization. 

The training procedure was monitored in terms of 

the mean squared error. This learning stage was 

stopped when the above mentioned measure reached a 

constant value. This was performed in order to avoid, 

or at least minimized, network over-fitting. After this 

step was accomplished, the connection weights (w) 

and threshold values (bias-b) of the network were 

recorded. These values were used to predict the 

conversion efficiency of data obtained under 

conditions not considered during the training (Fig. 4).  
 

 

Fig. 3  Neural network structure. 

Two examples of the predictive ability of the neural 

network are shown in Fig. 5. These results were 

compared with the data sets A and B obtained using 

free and an immobilized enzyme, respectively. 

Additional information about each data set is listed on 

the Table 2. 

The neural network was trained with different sets 

of randomly chosen 150 observations, which permits 

to predict the conversion efficiency of the totality of 

the data sets obtained (280). The observations and 

predictions for all of them are presented in the Fig. 6. 

Parity plot shows that there is a good correlation 

between all the experimental residual lactose 

concentration data and the values predicted using the 

neural network. Kinetic values for this data are given 

in Table 3. 

In catalytic kinetic studies, where experimental data 

is used to estimate the kinetic model parameters, ANN 

may have several benefit, this points have been well 

demonstrated in the open literature [23-25]. The main 

advantages of using ANN are that they can be 

efficiently used to approximate highly nonlinear 

functions, can deal with large data sets and can be 

trained for multi-input and multi-output variables. 

4. Conclusions 

In dairy industry, cheese whey is a waste, which 

causes several economical and environmental 

problems. Hydrolysis of lactose present in whey 

converts the effluence into very useful sweet syrup, 

which can be used in the dairy, confectionery, baking 

and drinks industries. Numerous immobilization 

systems for lactose hydrolysis have been investigated, 

but only few of them were scaled up with success and 

even few applied at an industrial or pilot scale. It is 

mainly because the materials and methods used for 

enzyme immobilization are either too expensive or 

difficult to use in industrial scale [20, 21]. This 

behavior shows the importance of developing and 

implementing a model to predict the system 

performance. 
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Fig. 4  Mean squared error during the training of the network. 
 

 
                           (a)                                               (b) 

Fig. 5  Examples of the predictive ability of the neural network (blue: observed data; green: predicted data). 
 

 

Fig. 6  Parity plot of measured values against predicted values (ideally the straight line should have slope = 1). 
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Table 3  Kinetic constant predicted with the neuronal 
network. 

Kinetic constant Free enzyme 
Immobilized 
enzyme 

km (mmol/L) 38.93 233.64 

k2 (mmol/(L min mg)) 3.815 0.973 

ki (mmol/L) 79.207 404.97 
 

Advanced design and control of biotechnology 

systems is based upon developing and using 

high-fidelity models. Parameter estimation is a key 

step in the development of these models and is based 

upon minimizing an error function given by the sum 

of the squares of the difference between the observed 

data and the model predictions [23]. In this respect, 

ANNs are an attractive alternative because they can 

perform correlations without requiring mechanistic 

assumptions of how the output depends on the inputs. 

The literature showed the potential used of ANNs in 

kinetic studies [24-26]. 

In this work, the neural-network-based models 

showed good performance to predict lactose 

hydrolysis kinetics under several conditions. The 

network had an average absolute relative error of less 

than 5%, which suggests that this tool provides an 

accurate prediction method for lactose hydrolysis. 

Additionally, the ANN technique enabled us to 

investigate the effects of the operational factors 

simultaneously instead of evaluating their effects 

separately. The superiority of the ANNs over 

conventional methods for the prediction on complex 

relationship, might be attributed to the capability of 

the ANNs to capture the nonlinear features and 

generalize the structure if whole data set [27]. 

Finally, we conclude that ANNs allow the 

modelling of complex real systems in a relatively 

simple manner without the need of a mathematical 

model or a prediction equation associated to the 

physical problem. The use of artificial neural networks 

technique in lactose hydrolysis can predict the results 

of process with high precision before it is 

implemented as practical. This advantage can save the 

process cost and runtime [28-31]. 
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